
1

Embedded Systems Design: A Unified
Hardware/Software Introduction

General-Purpose Processors: Software

2Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Introduction

• General-Purpose Processor
– Processor designed for a variety of computation tasks
– Low unit cost, in part because manufacturer spreads NRE

over large numbers of units
• Motorola sold half a billion 68HC05 microcontrollers in 1996 alone

– Carefully designed since higher NRE is acceptable
• Can yield good performance, size and power

– Low NRE cost, short time-to-market/prototype, high
flexibility

• User just writes software; no processor design
– a.k.a. “microprocessor” – “micro” used when they were

implemented on one or a few chips rather than entire rooms

3Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Basic Architecture

• Control unit and
datapath
– Note similarity to

single-purpose
processor

• Key differences
– Datapath is general
– Control unit doesn’t

store the algorithm –
the algorithm is
“programmed” into the
memory

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

4Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Datapath Operations

• Load
– Read memory location

into register
• ALU operation

– Input certain registers
through ALU, store
back in register

• Store
– Write register to

memory location

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...

10

+1

11

11

5Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit

• Control unit: configures the datapath
operations

– Sequence of desired operations
(“instructions”) stored in memory –
“program”

• Instruction cycle – broken into
several sub-operations, each one
clock cycle, e.g.:

– Fetch: Get next instruction into IR
– Decode: Determine what the

instruction means
– Fetch operands: Move data from

memory to datapath register
– Execute: Move data through the

ALU
– Store results: Write data from

register to memory

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1

6Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit Sub-Operations

• Fetch
– Get next instruction

into IR
– PC: program

counter, always
points to next
instruction

– IR: holds the
fetched instruction

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

7Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit Sub-Operations

• Decode
– Determine what the

instruction means

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

8Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit Sub-Operations

• Fetch operands
– Move data from

memory to datapath
register

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

10

9Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit Sub-Operations

• Execute
– Move data through

the ALU
– This particular

instruction does
nothing during this
sub-operation

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

10

10Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit Sub-Operations

• Store results
– Write data from

register to memory
– This particular

instruction does
nothing during this
sub-operation

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

10

11Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Instruction Cycles

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1

PC=100

10

Fetch
ops

Exec. Store
results

clk

Fetch

load R0, M[500]

Decode

100

12Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Instruction Cycles

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1
10

PC=100
Fetch Decode Fetch

ops
Exec. Store

results
clk

PC=101

inc R1, R0

Fetch Fetch
ops

+1

11

Exec. Store
results

clk

101

Decode

13Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Instruction Cycles

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1
1110

PC=100
Fetch Decode Fetch

ops
Exec. Store

results
clk

PC=101
Fetch Decode Fetch

ops
Exec. Store

results
clk

PC=102
store M[501], R1

Fetch Fetch
ops

Exec.

11

Store
results

clk

Decode

102

14Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Architectural Considerations

• N-bit processor
– N-bit ALU, registers,

buses, memory data
interface

– Embedded: 8-bit, 16-
bit, 32-bit common

– Desktop/servers: 32-
bit, even 64

• PC size determines
address space

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

15Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Architectural Considerations

• Clock frequency
– Inverse of clock

period
– Must be longer than

longest register to
register delay in
entire processor

– Memory access is
often the longest

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

16Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Pipelining: Increasing Instruction
Throughput

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Fetch-instr.

Decode

Fetch ops.

Execute

Store res.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Wash

Dry

Time

Non-pipelined Pipelined

Time

Time

Pipelined

pipelined instruction execution

non-pipelined dish cleaning pipelined dish cleaning

Instruction 1

17Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Superscalar and VLIW Architectures

• Performance can be improved by:
– Faster clock (but there’s a limit)
– Pipelining: slice up instruction into stages, overlap stages
– Multiple ALUs to support more than one instruction stream

• Superscalar
– Scalar: non-vector operations
– Fetches instructions in batches, executes as many as possible

• May require extensive hardware to detect independent instructions
– VLIW: each word in memory has multiple independent instructions

• Relies on the compiler to detect and schedule instructions
• Currently growing in popularity

18Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Two Memory Architectures

Processor

Program
memory

Data memory

Processor

Memory
(program and data)

Harvard Princeton (Von Neumann)

• Princeton
– Fewer memory

wires

• Harvard
– Simultaneous

program and data
memory access

19Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Cache Memory

• Memory access may be slow
• Cache is small but fast

memory close to processor
– Holds copy of part of memory
– Hits and misses

Processor

Memory

Cache

Fast/expensive technology, usually on
the same chip

Slower/cheaper technology, usually on
a different chip

20Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Programmer’s View

• Programmer doesn’t need detailed understanding of architecture
– Instead, needs to know what instructions can be executed

• Two levels of instructions:
– Assembly level
– Structured languages (C, C++, Java, etc.)

• Most development today done using structured languages
– But, some assembly level programming may still be necessary
– Drivers: portion of program that communicates with and/or controls

(drives) another device
• Often have detailed timing considerations, extensive bit manipulation
• Assembly level may be best for these

21Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Assembly-Level Instructions

opcode operand1 operand2

opcode operand1 operand2

opcode operand1 operand2

opcode operand1 operand2

...

Instruction 1

Instruction 2

Instruction 3

Instruction 4

• Instruction Set
– Defines the legal set of instructions for that processor

• Data transfer: memory/register, register/register, I/O, etc.
• Arithmetic/logical: move register through ALU and back
• Branches: determine next PC value when not just PC+1

22Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

A Simple (Trivial) Instruction Set

opcode operands

MOV Rn, direct

MOV @Rn, Rm

ADD Rn, Rm

0000 Rn direct

0010 Rn

0100 RmRn

Rn = M(direct)

Rn = Rn + Rm

SUB Rn, Rm 0101 Rm Rn = Rn - Rm

MOV Rn, #immed. 0011 Rn immediate Rn = immediate

Assembly instruct. First byte Second byte Operation

JZ Rn, relative 0110 Rn relative PC = PC+ relative
(only if Rn is 0)

Rn

MOV direct, Rn 0001 Rn direct M(direct) = Rn

Rm M(Rn) = Rm

23Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Addressing Modes

Data

Immediate

Register-direct

Register
indirect

Direct

Indirect

Data

Operand field

Register address

Register address

Memory address

Memory address

Memory address Data

Data

Memory address

Data

Addressing
mode

Register-file
contents

Memory
contents

24Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Sample Programs

int total = 0;
for (int i=10; i!=0; i--)

total += i;
// next instructions...

C program

MOV R0, #0; // total = 0
MOV R1, #10; // i = 10

JZ R1, Next; // Done if i=0
ADD R0, R1; // total += i

MOV R2, #1; // constant 1

JZ R3, Loop; // Jump always

Loop:

Next: // next instructions...

SUB R1, R2; // i--

Equivalent assembly program

MOV R3, #0; // constant 0

0
1
2
3

5
6
7

25Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Programmer Considerations

• Program and data memory space
– Embedded processors often very limited

• e.g., 64 Kbytes program, 256 bytes of RAM (expandable)

• Registers: How many are there?
– Only a direct concern for assembly-level programmers

• I/O
– How communicate with external signals?

• Interrupts

26Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Operating System

• Optional software layer
providing low-level services to
a program (application).
– File management, disk access
– Keyboard/display interfacing
– Scheduling multiple programs for

execution
• Or even just multiple threads from

one program
– Program makes system calls to

the OS

DB file_name “out.txt” -- store file name

MOV R0, 1324 -- system call “open” id
MOV R1, file_name -- address of file-name
INT 34 -- cause a system call
JZ R0, L1 -- if zero -> error

. . . read the file
JMP L2 -- bypass error cond.
L1:

. . . handle the error

L2:

27Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Development Environment

• Development processor
– The processor on which we write and debug our programs

• Usually a PC

• Target processor
– The processor that the program will run on in our embedded

system
• Often different from the development processor

Development processor Target processor

28Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Software Development Process

Compiler

Linker

C File C File Asm.
File

Binary
File

Binary
File

Binary
File

Exec.
File

Assembler

Library

Implementation Phase

Debugger

Profiler

Verification Phase

• Compilers
– Cross compiler

• Runs on one
processor, but
generates code for
another

• Assemblers
• Linkers
• Debuggers
• Profilers

29Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Running a Program

• If development processor is different than target, how
can we run our compiled code? Two options:
– Download to target processor
– Simulate

• Simulation
– One method: Hardware description language

• But slow, not always available

– Another method: Instruction set simulator (ISS)
• Runs on development processor, but executes instructions of target

processor

30Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Instruction Set Simulator
for a simple processor

#include <stdio.h>
typedef struct {

unsigned char first_byte, second_byte;
} instruction;

instruction program[1024]; //instruction memory
unsigned char memory[256]; //data memory

void run_program(int num_bytes) {

int pc = -1;
unsigned char reg[16], fb, sb;

while(++pc < (num_bytes / 2)) {
fb = program[pc].first_byte;
sb = program[pc].second_byte;
switch(fb >> 4) {

case 0: reg[fb & 0x0f] = memory[sb]; break;
case 1: memory[sb] = reg[fb & 0x0f]; break;
case 2: memory[reg[fb & 0x0f]] =

reg[sb >> 4]; break;
case 3: reg[fb & 0x0f] = sb; break;
case 4: reg[fb & 0x0f] += reg[sb >> 4]; break;
case 5: reg[fb & 0x0f] -= reg[sb >> 4]; break;
case 6: pc += sb; break;
default: return –1;

}
}
return 0;

}

int main(int argc, char *argv[]) {

FILE* ifs;

If(argc != 2 ||
(ifs = fopen(argv[1], “rb”) == NULL) {

return –1;
}
if (run_program(fread(program,

sizeof(program) == 0) {
print_memory_contents();
return(0);

}
else return(-1);

}

31Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Testing and Debugging

Implementation
Phase

Implementation
Phase

Verification
Phase

Verification
Phase

Emulator

Debugger
/ ISS

Programmer

Development processor

(a) (b)

External tools

• ISS (HDL)
– Gives us control over time –

set breakpoints, look at
register values, set values,
step-by-step execution, ...

– But, doesn’t interact with real
environment

• Download to board
– Use device programmer
– Runs in real environment, but

not controllable
• Compromise: emulator

– Runs in real environment, at
speed or near

– Supports some controllability
from the PC

32Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Application-Specific Instruction-Set
Processors (ASIPs)

• General-purpose processors
– Sometimes too general to be effective in demanding

application
• e.g., video processing – requires huge video buffers and operations

on large arrays of data, inefficient on a GPP
– But single-purpose processor has high NRE, not

programmable
• ASIPs – targeted to a particular domain

– Contain architectural features specific to that domain
• e.g., embedded control, digital signal processing, video processing,

network processing, telecommunications, etc.
– Still programmable

33Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

A Common ASIP: Microcontroller

• For embedded control applications
– Reading sensors, setting actuators
– Mostly dealing with events (bits): data is present, but not in huge

amounts
– e.g., VCR, disk drive, digital camera (assuming SPP for image

compression), washing machine, microwave oven
• Microcontroller features

– On-chip peripherals
• Timers, analog-digital converters, serial communication, etc.
• Tightly integrated for programmer, typically part of register space

– On-chip program and data memory
– Direct programmer access to many of the chip’s pins
– Specialized instructions for bit-manipulation and other low-level

operations

34Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Another Common ASIP:
Digital Signal Processors (DSP)

• For signal processing applications
– Large amounts of digitized data, often streaming
– Data transformations must be applied fast
– e.g., cell-phone voice filter, digital TV, music synthesizer

• DSP features
– Several instruction execution units
– Multiple-accumulate single-cycle instruction, other instrs.
– Efficient vector operations – e.g., add two arrays

• Vector ALUs, loop buffers, etc.

35Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Trend: Even More Customized ASIPs

• In the past, microprocessors were acquired as chips
• Today, we increasingly acquire a processor as Intellectual

Property (IP)
– e.g., synthesizable VHDL model

• Opportunity to add a custom datapath hardware and a few
custom instructions, or delete a few instructions
– Can have significant performance, power and size impacts
– Problem: need compiler/debugger for customized ASIP

• Remember, most development uses structured languages
• One solution: automatic compiler/debugger generation

– e.g., www.tensilica.com
• CPU+DSP=DPU (Dataplane Processor Unit)

• Another solution: retargettable compilers
– e.g., www.improvsys.com (customized VLIW architectures)

• Improv Systems (???)

36Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Selecting a Microprocessor

• Issues
– Technical: speed, power, size, cost
– Other: development environment, prior expertise, licensing, etc.

• Speed: how evaluate a processor’s speed?
– Clock speed – but instructions per cycle may differ
– Instructions per second – but work per instr. may differ
– Dhrystone: Synthetic benchmark, developed in 1984. Dhrystones/sec.

• MIPS: 1 MIPS = 1757 Dhrystones per second (based on Digital’s VAX
11/780). A.k.a. Dhrystone MIPS. Commonly used today.

– So, 750 MIPS = 750*1757 = 1,317,750 Dhrystones per second
– SPEC: set of more realistic benchmarks, but oriented to desktops
– EEMBC – EDN Embedded Benchmark Consortium, www.eembc.org

• Suites of benchmarks: automotive, consumer electronics, networking, office
automation, telecommunications

37Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

General Purpose Processors (1998!)

Processor Clock speed Periph. Bus Width MIPS Power Trans. Price
General Purpose Processors

Intel PIII 1GHz 2x16 K
L1, 256K
L2, MMX

32 ~900 97W ~7M $900

IBM
PowerPC
750X

550 MHz 2x32 K
L1, 256K
L2

32/64 ~1300 5W ~7M $900

MIPS
R5000

250 MHz 2x32 K
2 way set assoc.

32/64 NA NA 3.6M NA

StrongARM
SA-110

233 MHz None 32 268 1W 2.1M NA

Microcontroller
Intel
8051

12 MHz 4K ROM, 128 RAM,
32 I/O, Timer, UART

8 ~1 ~0.2W ~10K $7

Motorola
68HC811

3 MHz 4K ROM, 192 RAM,
32 I/O, Timer, WDT,
SPI

8 ~.5 ~0.1W ~10K $5

Digital Signal Processors
TI C5416 160 MHz 128K, SRAM, 3 T1

Ports, DMA, 13
ADC, 9 DAC

16/32 ~600 NA NA $34

Lucent
DSP32C

80 MHz 16K Inst., 2K Data,
Serial Ports, DMA

32 40 NA NA $75

Sources: Intel, Motorola, MIPS, ARM, TI, and IBM Website/Datasheet; Embedded Systems Programming, Nov. 1998

38Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Chapter Summary

• General-purpose processors
– Good performance, low NRE, flexible

• Controller, datapath, and memory
• Structured languages prevail

– But some assembly level programming still necessary
• Many tools available

– Including instruction-set simulators, and in-circuit emulators
• ASIPs

– Microcontrollers, DSPs, network processors, more customized ASIPs
• Choosing among processors is an important step

