
Introduction to VHDL

Embedded Systems
Università degli Studi dell’Aquila

Outline

• Hardware Description Languages

• Concurrent and sequential area of VHDL

• Simulation

• GCD Calculator

• Testbench

• FPGA Design Tools

• References

2 of 66

Domains and abstraction levels

▪ A digital circuit can be described in the:

▪ Physical domain: physical devices that
compose the system are considered.

▪ Structural domain: system is described by
means of simpler sub-blocks that compose
the system itself.

▪ Behavioural domain: it is described only the
functionality of the system, i.e., the relation
between inputs and outputs.

3 of 66

Y-chart4 of 66

Hardware description languages

▪ An HDL (Hardware Description Language) is a
language for the description of digital electronic
circuits

▪ Hardware functionalities are described
independently from the implementation

▪ How many types of implementation do you
know?

▪ Recall the Hardware Technologies chapter

5 of 66

Key distinctive elements of HDL

▪ With respect to a programming language, HDL languages
allow to describe:

▪ The timing characteristics: within hardware systems,
there is the propagation delay of signals.

▪ The parallelism: blocks that compose a particular
system evolve at the same time during a particular
time interval.

S1

S2

y1

y2

x

t

6 of 66

Description goals

▪ A description language is not executable

▪ Digital circuit description has the
following goals:

▪ Simulation: it is checked if the circuit
behaviour has the expected trend.

▪ Synthesis: a final implementation is
produced starting from the HDL.

▪ Not all the constructs that can be
simulated are synthesizable.

Digital
Circuit Design

Hardware
description

Simulation

Implementation

Requirements

Requirements
Satisfaction?

Y

N

7 of 66

VHDL language

▪ VHDL stands for VHSIC (Very High Speed
Integrated Circuits) Hardware Description
Language

▪ It has been developed in the early ‘80 years from
Defense Department of USA and publicly
released in 1985.

▪ Standard IEEE 1076-1987, reviewed in 1993 and
2008

8 of 66

VHDL vs Verilog

VHDL Verilog

Reusability Packages -

Easy to understand Strongly typed More intuitive

Back annotation - Verilog uses the Standard
Delay Format (SDF)

High level constructs Many available
constructs

-

Large designs Package and Generate verbose descriptions

Readability Similar to ADA Similar to C

Structural replication Generate -

9 of 66

Design units

• Design Units are VHDL code segments that can
be separately processed and included in a
library.

• A VHDL description of a digital system must
contain at least one entity and one architecture.

– An entity specifies univocally the identifying
name of a system and the characteristics of
its inputs and outputs.

– In the architecture, instead, the circuit
functionality is described.

10 of 66

A simple example: half adder

▪ Half adder:
▪ Receives 2 bits as input (A,B);

▪ Generates an output bit equal to the sum of 2 input
bits (SUM);

▪ Generates an output bit equal to carry (CARRY);

Half Adder

A

B

SUM

CARRY

11 of 66

Half adder: functional specifications

▪ From functional description it is possible to fill
the truth table and obtain the circuit structure

A B SUM CARRY

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

12 of 66

Half adder: entity

▪ The following VHDL entity corresponds to the
top level of the circuit:

-- Entity declaration of half adder

entity half_adder is

port

(

A: in bit;

B: in bit;

SUM: out bit;

CARRY: out bit

);

end half_adder ;

13 of 66

Half adder: architecture (1)

▪ The functionality is described in the architecture
associated to the entity

architecture ha_arch of half_adder is

begin

end ha_arch ;

▪ Instructions contained in concurrent area are
treated as parallelly evolving

Concurrent area

14 of 66

Concurrent area: constructs (1)
▪ Concurrent assignment:

▪ The <= operator is used to assign values to a signal

Z <= A;

Z <= '1';

Z_vector <= "10001";

▪ Conditional assignment:
▪ When a certain condition is verified, a value is

assigned to a signal

Z <= A when SEL = "00" else

B when SEL = "11" else

C;

15 of 66

Concurrent area: constructs (2)

▪ Assignment with selection:
▪ Similar to the conditional assignment, it allows to

quickly enumerate a lot of different cases

▪ Similar to if and switch-case instructions of C language

with SEL select

Z <= A when "000",

B when "001",

C when "010",

D when "011"

E when others ;

16 of 66

Half adder: architecture (2)

▪ Boolean operators are used to describe
computations, while the assignment operator is
used to describe the functionality

architecture ha_arch of half_adder is

begin

SUM <= A xor B;

CARRY <= A and B;

end ha_arch ;

▪ Each architecture makes reference at only one
entity, but multiple architectures can refer to the
same entity (set by means of an opportune
configuration file, not detailed here).

17 of 66

Description styles

▪ VHDL language allows the description of the
circuit behaviour following three different styles:

▪ Behavioural: the circuit functionality in
algorithmic terms is described, or it is
specified how data move internally to the
system;

▪ Structural: the system is described as
interconnection of base components;

▪ Dataflow: the flow of data internally to the
system is described, using concurrent
assignments;

▪ Different types of descriptions can be combined
with respect of necessity.

18 of 66

Example: full adder

▪ A full adder is a digital circuit with three inputs and two
outputs.

▪ The sum of the two input bits is calculated, and it is able to
account for a carry coming from previous sum

Full Adder

A

B

S

CoutCin

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

19 of 66

Full adder: entity

▪ A full adder entity:

entity FULL_ADDER is

port (A, B, Cin : in bit ;

S , Cout : out bit);

end FULL_ADDER ;

20 of 66

Full adder: entity

▪ A full adder entity:

entity FULL_ADDER is

port (A, B, Cin : in bit ;

S , Cout : out bit);

end FULL_ADDER ;

BAD DESCRIPTION STYLE !

21 of 66

Full adder: entity

▪ A full adder entity:

entity FULL_ADDER is

port (A : in bit;

B : in bit;

Cin : in bit ;

S : out bit;

Cout : out bit

);

end FULL_ADDER ;

GOOD DESCRIPTION STYLE !

22 of 66

Full Adder: architecture

architecture Behavioural of full_adder is

begin

end Behavioural;

Concurrent Area

23 of 66

Full Adder architecture (Behavioural)

▪ The behavioural level is the highest level description
available in VHDL language.

▪ The base construct is the process: a process allows to
open a "sequential evolution area" internally to a
concurrent area.

architecture Behavioural of full_adder is

begin

sum : process (A,B,Cin)

begin

end Behavioural;

Sequential Area

Concurrent Area

24 of 66

Full Adder architecture (Behavioural)

▪ The behavioural level is the highest level description
available in VHDL language.

▪ The base construct is the process: a process allows to
open a "sequential execution area" internally to a
concurrent area.

architecture Behavioural of full_adder is

begin

sum : process (A,B,Cin)

begin

end Behavioural;

Sequential Area

Concurrent Area

Concurrent Area

25 of 66

Full Adder architecture (Behavioural)

▪ The behavioural level is the highest level description
available in VHDL language.

▪ The base construct is the process: a process allows to
open a "sequential evolution area" internally to a
concurrent area.

▪ Description of the Truth Table of the Full Adder using a
Process

architecture Behavioural of full_adder is

begin

sum : process (A,B,Cin)

begin

end process;

end Behavioural;

Concurrent Area

Concurrent Area

26 of 66

Process

▪ A process can be declared everywhere in the
architecture body, because what there is inside it
evolves in concurrent manner with other
statements in concurrent area.

▪ A process opens a sequential area internally to
the concurrent area: statements contained in a
process evolve serially.

▪ The evolution happens in correspondence of a
specified event in the sensitivity list.

27 of 66

Sensitivity list
▪ The sensitivity list contains all the signals to

which the process must be sensible.

▪ Each time that a signal in the sensitivity list
changes value, the process is activated.

architecture Behavioural of full_adder is

begin

sum : process (A,B,Cin)

begin

end process;

end Behavioural;

Sequential Area

Sensitivity List

28 of 66

Sequential area constructs (1)

▪ Internally to the process, VHDL statements
evolve sequentially "as in a classical
programming language".

▪ Conditional choice, for example, is available:

if condition then

sequential statements

[elsif condition then

sequential statements]

[else

sequential statements]

end if;

29 of 66

Sequential area constructs (2)

▪ Multiple choice: it is the same of switch-case
construct:

case expression is

when choice =>

sequential statements

when choice =>

sequential statements

[when others =>

sequential statements]

end case ;

▪ Others constructs are available in sequential area.

30 of 66

Full Adder architecture (Behavioural) (1)

architecture Behavioural of full_adder is

begin

process(A,B,Cin)

begin

if(A='0' and B='0' and Cin='0')then

S<='0';

Cout<='0';

elsif(A='0' and B='0' and C='1')then

S<='1';

Cout<='0';

elsif(A='0' and B='1' and C='0')then

S<='1';

Cout<='0';

elsif(A='0' and B='1' and C='1')then

S<='0';

Cout<='1';

31 of 66

Full Adder architecture (Behavioural) (2)

elsif(A='1' and B='0' and C='0')then

S<='1';

Cout<='0';

elsif(A='1' and B='0' and C='1')then

S<='0';

Cout<='1';

elsif(A='1' and B='1' and C='0')then

S<='0';

Cout<='1';

else

S<='1';

Cout<='1';

end if;

end process;

end Behavioural ;

32 of 66

Full Adder description

▪ We can synthesize the Full Adder with a "direct
synthesis", obtaining a logic gates network.

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

33 of 66

Full Adder architecture (Dataflow)

▪ The propagation of flow of data internally to the
circuit is described

▪ For example in the Full-Adder:

architecture dataflow of full_adder is

S <= A xor B xor C_in ;

Cout <= (A and B) or (C_in and (A or B));

end dataflow ;

34 of 66

Full Adder as multiple Half Adders

It can be noted, from the Truth Table, that
the Full Adder functionality can be obtained
by appropriately combining two Half-
Adders.

Half adder Half adder

35 of 66

Signals and Components
▪ The architecture describes the functionality of

the instantiated circuit.

▪ Over the architecture body itself it is present
also a declarative area in which is possible to
declare signals and components:

architecture name of entity_name is

component INV

port (...);

end component ;

signal s1,c1,c2 : bit;

begin

Declaration
Area

▪ Signals are not visible out of the module itself.

36 of 66

Structural view

▪ By using components it is possible to model
system as interconnection of previous defined
subsystems:
▪ The port map construct allows to instantiate the

components and to define the interconnections.

▪ The signals are used to represent connections among
components.

37 of 66

Generic construct

▪ VHDL supports the construction of parametric
components through the generic construct

entity half_adder is

generic (N: integer);

port (A, B: in std_logic_vector (N-1 downto 0);

• In addition to the port map, the instantiation of a
parametric component will include also a generic
map

generic map (N => 10)

38 of 66

Full Adder architecture (Structural) (1)

architecture struct of full_adder is

signal s1 ,c1 ,c2: bit ;

component half_adder

port (A: in bit;

B: in bit ;

S: out bit;

Cout: out bit

);

end component ;

39 of 66

Full Adder architecture (Structural) (2)

begin

HA1 : half_adder

port map(A => a,

B => b,

S => s1,

Cout => c1

);

HA2 : half_adder

port map(A => s1,

B => Cin,

S => S,

Cout => c2

);

Cout <= c1 or c2;

end struct ;

40 of 66

VHDL Data types

▪ In VHDL, bit and bitvector types are available for
digital data representation

▪ It is usually preferred to use std_logic and
std_logic_vector defined in the std_logic_1164
library

▪ The library must be always declared in the
following manner:

library IEEE ;

use IEEE.std_logic_1164.ALL;

41 of 66

IEEE std_logic_1164 types

▪ The defined types in std_logic_1164 library use a
9 values logic system:

▪ '0': zero value;

▪ '1': one value;

▪ 'Z': high impedance;

▪ 'U': uninitialized;

▪ 'X': undefined;

▪ '-': don't care;

library IEEE ;

use IEEE.STD_LOGIC_1164.ALL;

...

signal X: std_logic;

signal Y: std_logic_vector (7 downto 0);

42 of 66

Combinatorial circuits (1)

▪ A combinatorial circuit can be described by a
logic expression, combination of Boolean
operators and, or, not
▪ The VHDL makes available these operators

Y <= not(A) and B;

▪ Alternatively it is possible to use a truth table
▪ Into VHDL a concurrent conditional assignment is used

▪ The table can be also not completely specified

with X select

Y <= "01" when "00",

"10" when "11",

"--" when others;

43 of 66

Combinatorial circuits (2)

▪ A combinatorial circuit can be described also
using a process
▪ Recall the truth table description for the full

adder, that is a combinatorial block
▪ Combinatorial means that outputs are evaluated

whenever there is an input variation. Outputs are
produced with a delay depending on the circuit
complexity.

▪ From the point of view of hardware description,
this means that we need to enter into a VHDL-
process every time there is an input variation.

▪ Recalling that theory of VHDL-processes expects
sensitivity lists, we can conclude that, in order to
describe a combinatorial circuit with a process, all
the inputs must be in the sensitivity list.

44 of 66

Sequential circuits

▪ They can be synchronous and asynchronous. In
digital design it is preferred to use synchronous
systems.

▪ In VHDL the description of sequential circuits can
be done by means of process statement
▪ Example: Counter

-- Commutation on clock rising edge:

counter : process(CLOCK)

begin

if(CLOCK ='1' and CLOCK'event)

COUNT <= COUNT +1;

end if;

end process;

45 of 66

Attributes

▪ Signals change value while system is running

▪ Understanding the signal information is possible
using attributes

▪ Example - Event attribute:

Signal’event
▪ Returns a Boolean value, that is True if a signal has

events

46 of 66

Example: 1-bit Register (D-type flip-flop)

DFF

D

CLK

Q

-- D type Flip Flop

entity dff is

port (D: in std_logic;

CLK: in std_logic;

Q: out std_logic);

end dff;

▪ The input value (D) is
transferred to the output (Q)
only in the correspondence
of an edge (for example
rising edge) of the clock
signal (CLK)

47 of 66

Example: D-type flip-flop

architecture arch1 of dff is

begin

process (CLK)

begin

if (CLK ='1' and CLK'event) then

Q <= D;

end if;

end process;

end arch1;

48 of 66

Testbench

▪ The simulation of a circuit requires a model of the
circuit and a description of the stimuli to be applied

▪ In VHDL this is accomplished using a testbench, i.e.
a module:
▪ With no inputs and no outputs

▪ Including the system to be simulated

▪ Whose only functionality is to apply a proper set of
stimuli with the desired timing

▪ The testbenches are usually the only part of the
VHDL code including temporal (non-synthesizable)
statements

y <= "00" after 5s;

49 of 66

Working principle

Device Under Test
(Top Level)

Stimuli

entity testbench

50 of 66

Developing a testbench
▪ A testbench is usually the entity of higher level in

a project

entity testbench1 is

end testbench1;

▪ It will include the device to be tested as a
component and as many signals as the inputs to
be excited.

▪ Implementation of a testbench:
▪ Connect declared signals to the inputs of the system

under test using a port map

▪ Specify the temporal behaviour of the signals to obtain
the sequences of desired inputs

51 of 66

Simulation: general concepts

▪ The simulation process allows the verification of
the described circuit.

▪ The simulation can be:
▪ A functional simulation, used to verify that the system

effectively implements the desired functionality. This
type of simulation requires the definition of an
appropriate set of stimuli.

▪ A timing simulation, used to verify the (temporal)
performance of the circuit. This type of simulation
requires an opportune model of a platform, closely
related to the selected hardware technology.

52 of 66

HDL simulation

▪ HDL simulators are Event Driven simulators

▪ HDL represents hardware, that are composed of
nodes that change logic values during the circuit
work

▪ Two concepts of time
▪ Delta Time

▪ Advances through multiple delta cycles

▪ Actual Time

▪ Advances through multiple time steps

▪ The delta cycle is an HDL concept used to order
events that occur in zero physical time

53 of 66

HDL simulation

▪ General HDL simulation: relation between delta
cycles and time steps
▪ Whenever a signal changes, that signal output fans out

to the input of other logic that may cause other signals
to change. This happens over and over again and each
iteration could be considered a delta cycle. The
iteration stops when there are no more signals
changing and then the simulator is ready to advance
time with a time step.

▪ Circles: signals updates

▪ Squares: process evaluation

54 of 66

Simulation tools

▪ FPGAs Integrated Development Environments (IDE) usually include
a simulation tool or support the use of external ones.

▪ One of the most known simulation tools is ModelSim from Mentor
Graphics.

▪ ModelSim versions are provided by Mentor Graphics and often integrated
within manufacturers Design Suites.

▪ An open source tool to consider: GHDL (Gnu HDL)

55 of 66

Simulation tools

▪ A simulation tool allows the verification (functional or timing)
of a system given the set of input signals.

▪ Besides testbenches, many simulators allow to manually
specify the set of stimuli.

▪ Waveform Generators are usually graphical interface tools
that allow users to define with relative ease the timing
diagrams of the input signals.

56 of 66

Synthesis

▪ Synthesis is the process of translating a description
of a hardware system at higher abstraction level into
an (optimized) implementation on a lower
abstraction level.

▪ From HDL description to an implementation in terms of
logic gates

▪ FPGA manufacturers usually provide appropriate
synthesis tool optimized for the target devices.

▪ Not necessarily a simulated HDL model will be also
synthesizable

57 of 66

Synthesis tools

▪ The synthesis tool must interpret VHDL
constructs and translate them into the
corresponding circuit implementation

▪ The fundamental problem is to make sure that
the translation process is correct (i.e. obtain the
desired circuit)

▪ A frequent problem example: undesired latches

58 of 66

Constraints

▪ Besides the model, the synthesis process is
based also on constraints fixed by the user

▪ Using the constraints, it is possible to try to
obtain a certain behaviour of the synthesis tool,
in order to optimize the final result

▪ Most of the development environments
supports the definition of the constraints by
using dedicated files
▪ Example: Xilinx ISE User Constraints Files (.ucf)

59 of 66

FPGA Internals

▪ In a 7-series Xilinx FPGA
▪ 2 slices per CLB (Configuration Logic Block)

▪ 6-input LUTs, eight flip-flops and various multiplexers
and arithmetic carry logic form a slice

CLB block diagram
Slice internal components

60 of 66

- Xilinx ISE
- Intel Altera
- Xilinx Vivado (Homelab FPGA)

Tools for FPGA development 61 of 66

Example: Greatest Common Divisor
int x, y;

while (1)

{

while (!go_i);

x = x_i;

y = y_i;

while (x != y)

{

if (x < y)

y = y - x;

else

x = x - y;

}

d_o = x;

}

GCD

x_i

y_i
d_o

go_i

▪ Calculus of the greatest common
divisor between 2 numbers:

▪ The starting point is the
algorithm description.

62 of 66

GCD Calculator (Behavioural)

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity gcd1 is

port(Data_X: in unsigned(3 downto 0);

Data_Y: in unsigned(3 downto 0);

Data_out: out unsigned(3 downto 0)

);

end gcd1;

63 of 66

GCD Calculator (Behavioural)
architecture behav of gcd1 is

begin

process(Data_X, Data_Y)

variable tmp_X, tmp_Y: unsigned(3 downto 0);

begin

tmp_X := Data_X;

tmp_Y := Data_Y;

for i in 0 to 15 loop

if (tmp_X /= tmp_Y) then

if (tmp_X < tmp_Y) then

tmp_Y := tmp_Y - tmp_X;

else

tmp_X := tmp_X - tmp_Y;

end if;

else

Data_out <= tmp_X;

end if;

end loop;

end process;

end behav;

64 of 66

GCD Calculator (FSMD)

▪ The algorithm is converted
in a complex “finite state
machine”

▪ FSMD: finite-state machine
with data

65 of 66

GCD Calculator (FSMD)
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity gcd is

port(clk: in std_logic;

rst: in std_logic;

go_i: in std_logic;

x_i: in unsigned(3 downto 0);

y_i: in unsigned(3 downto 0);

d_o: out unsigned(3 downto 0)

);

end gcd;

66 of 66

GCD Calculator (FSMD)
architecture FSMD of gcd is

begin

process(rst, clk)

-- define states using variable

type S_Type is (ST0, ST1, ST2);

variable State: S_Type := ST0 ;

variable Data_X, Data_Y: unsigned(3 downto 0);

begin

end process;

end FSMD;

67 of 66

GCD Calculator (FSMD)

if (rst='1') then -- initialization

d_o <= "0000";

State := ST0;

elsif (clk'event and clk='1') then

case State is

when ST0 => -- starting

if (go_i='1') then

Data_X := x_i;

Data_Y := y_i;

State := ST1;

else

State := ST0;

end if;

when ST1 => -- idle state

State := ST2;

68 of 66

Example: GCD Calculator (FSMD)
when ST2 => -- computation

if (Data_X/=Data_Y) then

if (Data_X<Data_Y) then

Data_Y := Data_Y - Data_X;

else

Data_X := Data_X - Data_Y;

end if;

State := ST1;

else

d_o <=Data_X; -- done

State := ST0;

end if;

when others => -- go back

d_o <= "ZZZZ";

State := ST0;

end case;

end if;

69 of 66

GCD Calculator (FSM + DP)70 of 66

GCD Calculator (FSM + DP)

entity mux is

port(rst: in std_logic;

sLine: in std_logic;

load : in std_logic_vector(3 downto 0);

result: in std_logic_vector(3 downto 0);

output: out std_logic_vector(3 downto 0)

);

end mux;

MULTIPLEXER (ENTITY)

71 of 66

GCD Calculator (FSM + DP)

architecture mux_arc of mux is

begin

process(rst, sLine, load, result)

begin

if(rst = '1') then

output <= "0000"; -- do nothing

elsif sLine = '0' then

output <= load; -- load inputs

else

output <= result; -- load results

end if;

end process;

end mux_arc;

MULTIPLEXER (ARCHITECTURE)

72 of 66

GCD Calculator (FSM + DP)

entity comparator is

port(rst: in std_logic;

x : in std_logic_vector(3 downto 0);

y: in std_logic_vector(3 downto 0);

output: out std_logic_vector(1 downto 0)

);

end comparator;

COMPARATOR (ENTITY)

73 of 66

GCD Calculator (FSM + DP)

architecture comparator_arc of comparator is

begin

process(x, y, rst)

begin

if(rst = '1') then

output <= "00"; -- do nothing

elsif(x > y) then

output <= "10"; -- if x greater

elsif(x < y) then

output <= "01"; -- if y greater

else

output <= "11"; -- if equivalence.

end if;

end process;

end comparator_arc;

COMPARATOR (ARCHITECTURE)

74 of 66

GCD Calculator (FSM + DP)

entity subtractor is

port(rst: in std_logic;

cmd: in std_logic_vector(1 downto 0);

x : in std_logic_vector(3 downto 0);

y: in std_logic_vector(3 downto 0);

xout : out std_logic_vector(3 downto 0)

yout: out std_logic_vector(3 downto 0)

);

end subtractor;

SUBTRACTOR (ENTITY)

75 of 66

GCD Calculator (FSM + DP)

architecture subtractor_arc of subtractor is

begin

process(rst, cmd, x, y)

begin

if(rst = '1' or cmd = "00") then -- not active.

xout <= "0000";

yout <= "0000";

elsif(cmd = "10") then -- x is greater

xout <= (x - y);

yout <= y;

elsif(cmd = "01") then -- y is greater

xout <= x;

yout <= (y - x);

else

xout <= x; -- x and y are equal

yout <= y;

end if;

end process;

end subtractor_arc;

SUBTRACTOR (ARCHITECTURE)
76 of 66

GCD Calculator (FSM + DP)

entity regis is

port(rst, clk, load: in std_logic;

input: in std_logic_vector(3 downto 0);

output: out std_logic_vector(3 downto 0)

);

end regis;

architecture regis_arc of regis is

begin

process(rst, clk, load, input)

begin

if(rst = '1') then

output <= "0000";

elsif(clk'event and clk = '1') then

if(load = '1') then

output <= input;

end if;

end if;

end process;

end regis_arc;

REGISTER
77 of 66

GCD Calculator (FSM + DP)

component fsm is

port(rst, clk, proceed: in std_logic;

comparison: in std_logic_vector(1 downto 0);

enable, xsel, ysel, xld, yld: out std_logic

);

end component;

component mux is

port(rst, sLine: in std_logic;

load, result: in std_logic_vector(3 downto 0);

output: out std_logic_vector(3 downto 0)

);

end component;

component comparator is

port(rst: in std_logic;

x, y: in std_logic_vector(3 downto 0);

output: out std_logic_vector(1 downto 0)

);

end component;

GCD (ARCHITECTURE)

78 of 66

GCD Calculator (FSM + DP)

component subtractor is

port(rst: in std_logic;

cmd: in std_logic_vector(1 downto 0);

x, y: in std_logic_vector(3 downto 0);

xout, yout: out std_logic_vector(3 downto 0)

);

end component;

component regis is

port(rst, clk, load: in std_logic;

input: in std_logic_vector(3 downto 0);

output: out std_logic_vector(3 downto 0)

);

end component;

signal xld, yld, xsel, ysel, enable: std_logic;

signal comparison: std_logic_vector(1 downto 0);

signal result: std_logic_vector(3 downto 0);

signal xsub, ysub, xmux, ymux, xreg, yreg: std_logic_vector(3 downto 0);

GCD (ARCHITECTURE)
79 of 66

GCD Calculator (FSM + DP)

-- doing structure modelling here

-- FSM controller

TOFSM: fsm port map(rst, clk, go_i, comparison,

enable, xsel, ysel, xld, yld);

-- Datapath

X_MUX: mux port map(rst, xsel, x_i, xsub, xmux);

Y_MUX: mux port map(rst, ysel, y_i, ysub, ymux);

X_REG: regis port map(rst, clk, xld, xmux, xreg);

Y_REG: regis port map(rst, clk, yld, ymux, yreg);

U_COMP: comparator port map(rst, xreg, yreg, comparison);

X_SUB: subtractor port map(rst, comparison, xreg, yreg, xsub, ysub);

OUT_REG: regis port map(rst, clk, enable, xsub, result);

d_o <= result;

GCD (ARCHITECTURE)

80 of 66

GCD Calculator (FSM + DP)

-- doing structure modelling here

-- FSM controller

TOFSM: fsm port map(rst, clk, go_i, comparison,

enable, xsel, ysel, xld, yld);

-- Datapath

X_MUX: mux port map(rst, xsel, x_i, xsub, xmux);

Y_MUX: mux port map(rst, ysel, y_i, ysub, ymux);

X_REG: regis port map(rst, clk, xld, xmux, xreg);

Y_REG: regis port map(rst, clk, yld, ymux, yreg);

U_COMP: comparator port map(rst, xreg, yreg, comparison);

X_SUB: subtractor port map(rst, comparison, xreg, yreg, xsub, ysub);

OUT_REG: regis port map(rst, clk, enable, xsub, result);

d_o <= result;

BAD DESCRIPTION STYLE !

GCD (ARCHITECTURE)
81 of 66

GCD Calculator (FSM + DP)

-- doing structure modelling here

-- FSM controller

TOFSM: fsm port map(rst => rst,

clk => clk,

proceed => go_i,

comparison => comparison,

enable => enable,

xsel => xsel,

ysel => ysel,

xld => xld,

yld => yld

);

GCD (ARCHITECTURE)
82 of 66

GCD Calculator (FSM + DP)

-- Datapath

X_MUX: mux port map(rst, xsel, x_i, xsub, xmux);

Y_MUX: mux port map(rst, ysel, y_i, ysub, ymux);

X_REG: regis port map(rst, clk, xld, xmux, xreg);

Y_REG: regis port map(rst, clk, yld, ymux, yreg);

U_COMP: comparator port map(rst, xreg, yreg, comparison);

X_SUB: subtractor port map(rst, comparison, xreg, yreg, xsub, ysub);

OUT_REG: regis port map(rst, clk, enable, xsub, result);

d_o <= result;

GCD (ARCHITECTURE)

DO THE SCHEMATIC

83 of 66

GCD Calculator Testbench (FSMD)

entity test_GCD is

end test_GCD;

architecture Bench of test_GCD is

component gcd

port(clk: in std_logic;

rst: in std_logic;

go_i: in std_logic;

x_i: in unsigned(3 downto 0);

y_i: in unsigned(3 downto 0);

d_o: out unsigned(3 downto 0)

);

end component;

signal T_clk,T_rst,T_go_i: std_logic;

signal T_x_i, T_y_i, T_d_o: unsigned(3 downto 0);

84 of 66

GCD Calculator Testbench (FSMD)

begin

U1: GCD port map(T_clk,T_rst,T_go_i,T_x_i,T_y_i,T_d_o);

Clk_sig: process

begin

T_clk<='1';

wait for 5 ns;

T_clk<='0';

wait for 5 ns;

end process;

85 of 66

GCD Calculator Testbench – good description style

begin

U1: GCD port map

(clk => T_clk,

rst => T_rst,

go_i => T_go_i,

x_i => T_x_i,

y_i => T_y_i,

d_o => T_d_o

);

Clk_sig: process

begin

T_clk<='1';

wait for 5 ns;

T_clk<='0';

wait for 5 ns;

end process;

86 of 66

Synthesis of GCD (FSMD)87 of 66

Synthesis of GCD (FSM + DP)88 of 66

Example: Embedded Processors89 of 66

Embedded Processors

▪ Xilinx provides two types of processors for the
development of embedded systems:
▪ Hard-processor: PowerPC (available in various models

of Xilinx FPGAs) and ARM based processors, available
on the Zynq-7000 devices

▪ Soft-processors: MicroBlaze, PicoBlaze

▪ PowerPC and MicroBlaze are directly supported
within the Embedded Development Kit and
Vivado

90 of 66

System Generator

▪ System Generator is a development environment
for FPGA-based digital signal processing
architectures
▪ Simulink-based tool, supports the use of all Simulink

features

▪ Large number of DSP blocks immediately available

▪ Possibility of exploiting Matlab to generate vectors of
stimuli

▪ System Generator also supports hardware co-
simulation

▪ Intel also provides a similar tool (DSP Builder)

91 of 66

References

▪ ANSI/IEEE Std 1076

▪ Frank Vahid and Tony Givargis, Embedded System
Design: A Unified Hardware/Software
Introduction. John Wiley & Sons, 2002

▪ Peter J. Ashenden, The Designer's Guide to
VHDL, Morgan Kaufmann Publishers, 2008

▪ Volnei A. Pedroni, Circuit Design and Simulation
with VHDL - 2nd Edition, MIT Press, 2010

▪ Pong P. Chu, RTL Hardware Design using VHDL,
Wiley, 2006

▪ Pong P. Chu, FPGA Prototyping by VHDL
Examples: Xilinx Spartan-3 Version, Wiley, 2008

92 of 66

Free & open resources

▪ vhdl.org

▪ OpenCores: open source hardware resource

▪ Vendors websites: Xilinx (forum recommended),
Altera

▪ GHDL: GPL VHDL Simulator

▪ ActiveHDL: simulator and various tutorials

▪ Cobham Gaisler: Leon 3 processor

▪ SIGASI Insights: VHDL's crown jewel

▪ SIGASI Insights: Verilog's major flaw

93 of 66

Thank you !

Contact: giacomo.valente@univaq.it

94 of 66

