
1 Copyright 2005 CADENCE DESIGN SYSTEMS, INC.

A Tutorial Introduction to the SystemC
TLM Standard

Stuart Swan
Cadence Design Systems, Inc
March 2006

2 Copyright 2005 Cadence Design Systems, Inc.

SystemC Transaction Level Modeling

• What is TLM?
– Communication uses function calls

 burst_read(char* buf, int addr, int len);

• Why is TLM interesting?
– Fast and compact

– Integrate HW and SW models

– Early platform for SW development, easy to distribute

– Early system exploration and verification

– Verification reuse

master router slaves

3 Copyright 2005 Cadence Design Systems, Inc.

SystemC Transaction Level Modeling

• How is TLM being adopted?

– Widely used for verification

– TLM for design is starting at major electronics companies

• Is it really worth the effort?

– Yes, particularly for platform-based design and verification

• What will help proliferate TLM?

– Standard TLM APIs and guidelines

– Availability of TLM platform IP

– Tool support

SystemC TLM Standard

4 Copyright 2005 Cadence Design Systems, Inc.

May 2005: OSCI Releases SystemC TLM
Standard

• TLM Standard API provides the foundation layer to develop
interoperable SystemC TLM IP

• Full press release available at www.systemc.org
• Companies endorsing TLM standard within press release:

– Cadence, CoWare, Forte, Mentor, Philips, ST, Synopsys
– Atrenta, Calypto, Celoxica, Chip Vision, ESLX, Summit, Synfora
– OCP-IP

• TLM kit, whitepaper, and examples publicly available at
www.systemc.org

• See also June 6 2005 online articles in EETimes and EDN
• TLM standard is already in use in industry
• IEEE standardization process to begin soon

5 Copyright 2005 Cadence Design Systems, Inc.

TLM API Goals

• Support design & verification IP reuse

• Provide common TLM recipe

• Usability

• Safety

• Speed

• Generality

– Abstraction Levels

– HW / SW

– Different communication architectures (bus, packet, NOC, ...)

– Different protocols

6 Copyright 2005 Cadence Design Systems, Inc.

Key Concepts

• Focus on SystemC interface classes

– Define small set of generic, reusable TLM interfaces

– Different components implement same interfaces

– Same interface can be implemented

– directly within a C/C++ function, or

– via communication with other modules/channels in system

• Object passing semantics

– Similar to sc_fifo, effectively pass-by-value

– Avoids problems with raw C/C++ pointers

– Leverage C++ smart pointers and containers where needed

7 Copyright 2005 Cadence Design Systems, Inc.

Transaction Level Modeling with the TLM API

an sc_port

an sc_export

port binds to
channel
a thread

master router slaves

master calls transport()
in router

slave implementation of
transport() does the work

router calls transport() in
slave through 1 of 2 ports

masters FIFOs arbiter slave

SymbolsArbitration Example

Router Example

8 Copyright 2005 Cadence Design Systems, Inc.

TLM Abstraction Levels

Cycle Accurate Level (CA) Word transfers
Foundation: Clock Edge Cycle-accurate

Programmer’s View + Timing (PVT) Bus architecture
Foundation: Timed Protocol Timing approx.

Programmer’s View (PV) Bus generic
Foundation: Memory Map Masters/Slaves

RT Level (RT) Signal/Pin/Bit
Foundation: Registers, logic Cycle-accurate

Algorithmic Level (AL) Functional
Foundation: No Implementation Aspects

Smaller,
faster,
less
accurate

Larger,
slower,
more
accurate

Model at a few levels that target the “pain” and risk in your D&V flow

9 Copyright 2005 Cadence Design Systems, Inc.

Example TLM Application #1
Wireless Picture Frame based on ARM920T

SystemC TLM Model

 Full address map
 Models all AHB transactions
 ARM920 ISS master
 Multiple slaves
 Complete SW on ISS

 PV provides ~1M cps
 CA provides ~50kcps

MAC 1 MAC 2

DMA

DES

FIFO memory
8KB

FIFO memory
8KB

MII MII VMIVGA

FIFO memory
8KB

Analog
LCD/VGA

AHB/Wishbone
wrapper

Control and
JPEG software

ARM920T

ROM and
DRAMData

cache
Inst

cache

Memory
controller

AMBA
AHB

SystemC
TLM

Interrupt
controller

10 Copyright 2005 Cadence Design Systems, Inc.

TLM Eases System Debug and Analysis

11 Copyright 2005 Cadence Design Systems, Inc.

Review of Key TLM Terms

• Nonblocking: Means function implementations can never call wait().
• Blocking: Means function implementations might call wait().
• Unidirectional: data transferred in one direction
• Bidirectional: data transferred in two directions
• Poke/Peek: Poke overwrites data and can never block. Peek reads

most recent valid value. Poke/Peek are similar to write/read to a
variable or signal.

• Put/Get: Put queues data. Get consumes data. Put/Get are similar to
writing/reading from a FIFO.

• Pop: A pop is equivalent to a get in which the data returned is simply
ignored.

• Master/Slave: A master initiates activity by issuing a request. A slave
passively waits for requests and returns a response.

12 Copyright 2005 Cadence Design Systems, Inc.

Unidirectional versus Bidirectional

• Unidirectional interfaces send data in only a single direction, and
flow of control is in either or both directions.

• Bidirectional interfaces send data in both directions, and flow of
control is in either or both directions.

• Examples:
– A complete read transaction across a bus is bidirectional

– “Place read address on bus” is unidirectional

– Burst write with a completion status returned is bidirectional

– Send IP packet is unidirectional

• Any complex protocol can be broken down into a set of
unidirectional and bidirectional accesses that use the TLM API

13 Copyright 2005 Cadence Design Systems, Inc.

Primary TLM Interfaces

• Primary Unidirectional Interfaces

– tlm_poke_if<T> / tlm_peek_if<T>

– tlm_put_if<T> / tlm_get_if<T>

• Primary Bidirectional Interfaces

– tlm_master_if<REQ, RSP>

– tlm_slave_if<REQ, RSP>

– tlm_transport_if<REQ, RSP>

• Note: tlm_poke_if should be added to OSCI TLM kit soon

14 Copyright 2005 Cadence Design Systems, Inc.

Hardware Implied by TLM Interfaces

tlm_poke_if*
valid

data

valid

data tlm_peek_if

tlm_put_if valid

ready

data

valid

ready

data
tlm_get_if

tlm_master_if

req_valid

req_ready

req_data

rsp_valid

rsp_ready

rsp_data

req_valid

req_ready

req_data

rsp_valid

rsp_ready

rsp_data

tlm_slave_if

tlm_transport_if implies same HW as tlm_master_if, but also requests and responses are tightly coupled.

tlm_poke_if is not yet in OSCI TLM standard, should be added soon.

Poke/peek have overwrite semantics
similar to writing to a variable or signal

Put/get have queuing semantics similar to
writing to a FIFO

When values propagate asynchronously,
combinational logic is implied.

When values are held across clock
edges, hardware registers are implied.

The TLM interfaces can be easily mapped
to HW. Understanding this mapping helps
you to understand how to use the TLM
interfaces.

Note that the TLM interfaces are also
useful in non-HW parts of your system
(e.g. testbenches, SW modeling).

15 Copyright 2005 Cadence Design Systems, Inc.

TLM Unidirectional Interfaces
Inheritance Diagram

tlm_blocking_get_if tlm_nonblocking_get_if tlm_blocking_peek_if tlm_nonblocking_peek_if

tlm_get_if tlm_peek_if

tlm_blocking_put_if tlm_nonblocking_put_if

tlm_put_if

 tlm_blocking_get_peek_if tlm_nonblocking_get_peek_if

tlm_get_peek_if

tlm_fifo_debug_if

tlm_fifo_get_iftlm_fifo_put_if

tlm_poke_if

tlm_fifo specific interfaces

Primary
Unidirectional
Interfaces

Pure Blocking
and
Nonblocking
Interfaces

16 Copyright 2005 Cadence Design Systems, Inc.

Thinking of Interfaces as Contracts
– Provides versus Requires

Requires Provides Requires

Requires subset of provided interface, still plug-compatible

17 Copyright 2005 Cadence Design Systems, Inc.

Importance of sc_export in SystemC 2.1

• sc_ports facilitate modular design by precisely declaring
interfaces required at a module boundary

• sc_exports facilitate modular design by precisely declaring
interfaces provided at a module boundary

• sc_ports and sc_exports allow interfaces to be passed through
each level of the hierarchy

• Use of sc_port and sc_export improves modularity by avoiding
reliance on explicit multilevel paths

• sc_export permits direct function call interfaces for TLM without
introduction of extra process switches

18 Copyright 2005 Cadence Design Systems, Inc.

Summarizing Provides / Requires

• A channel that implements an interface class by inheriting from that class
provides that interface to the outside world

• An sc_export<IF> member within a module or channel provides that interface
to the outside world

• An sc_port<IF> member within a module or channel requires that interface
from the outside world

Requires Provides Requires

port
instance
within
module
“lamp”

 two sc_export instances within module “wall”

port
instance
within
module
“extension
cord”

19 Copyright 2005 Cadence Design Systems, Inc.

Design your components to maximize
opportunities for reuse

• In SystemC, channels and sc_exports that provide more than ports
actually require are still “plug compatible”.
– Mechanism that achieves this is C++ implicit conversion to base classes

– Having a hierarchy of interface classes is thus the key enabler for this
feature

• Require the most minimal interfaces that are possible in a given
situation
– e.g. sc_port<tlm_nonblocking_get_if<T> > rather than

sc_port<tlm_get_if<T> >

• Provide the maximal interfaces that makes sense in a given
situation
– e.g. sc_export<tlm_put_if<T> > rather than

sc_export<tlm_blocking_put_if<T> >

20 Copyright 2005 Cadence Design Systems, Inc.

Leverage tlm_fifo to connect
incompatible interfaces

• tlm_fifo provides all the put, get and peek interfaces in blocking
and nonblocking forms, so tlm_fifo can be used to connect any
two unidirectional tlm interfaces except tlm_poke_if.

• For example, can do blocking puts into tlm_fifo, and nonblocking
gets out of it.

21 Copyright 2005 Cadence Design Systems, Inc.

Develop and use a library of generic TLM
components

• The OSCI TLM already contains several good examples of generic
TLM components:

– tlm_fifo<T>

– tlm_req_rsp_channel<REQ, RSP>

– tlm_transport_channel<REQ, RSP>

– router<ADDRESS, REQ, RSP>

– simple_arb<REQ, RSP> // not a fully generic arbiter, example only

• Leverage existing TLM generic components as much as possible.

• Create your own generic TLM modules, channels, adapters,
transactors, etc., when needed.

– e.g. generic crossbar, pipeline, parallel to serial adaptor, cache, etc.

22 Copyright 2005 Cadence Design Systems, Inc.

Deterministic Modeling

• Use a good strategy for deterministic modeling (a.k.a. “avoid
races”)
– Enables reproducibility of simulation results across simulators
– Aids refinement: a properly refined design will give same result

• Strategies: (See “System Design With SystemC” page 120)
– Use two-phase primitive channels such as tlm_fifo,
tlm_poke_channel, tlm_req_rsp_channel, sc_fifo,
sc_signal for all communication between SystemC processes

– TLM models and systems that model arbitration commonly use an explicit
two-phase synchronization scheme (SDWS ch. 8)

– Use a deterministic model of computation such as KPN or SDF (SDWS ch.
5)

– Combine above approaches for systems with mixed abstraction levels

23 Copyright 2005 Cadence Design Systems, Inc.

TLM Interface Style

• The TLM interface style is the same as sc_fifo, SystemC as a whole, and other
C++ libraries, e.g. stl

– Inbound data is always passed by const &
– eg bool nb_put(const &)

– Outbound data returned by value if we can guarantee that there will be data to return
– eg T get(tlm_tag<T> *)

– If we cannot guarantee that data will come back, we return the status and pass in a
non const & :

– eg bool nb_get(T &)

– We never use pointers

– We never use non const & for inbound data

• This is not pure pass-by-value, but it shares the need to provide copy
constructors and destructors with pass-by-value

– Think of it as being effectively pass-by-value

24 Copyright 2005 Cadence Design Systems, Inc.

“Effective” Pass-by-Value

• Benefits

– Eliminates problems/bugs associated with pointers and explicit dynamic
memory allocation and deallocation

– Helps eliminate problems/bugs in which multiple SystemC processes write
to the same shared variable (i.e. “races”)

– Lifetime and ownership of objects is very simple and clear

– Helps you reason about concurrent systems

– Enables use of C++ smart containers and handles

• Potential Drawbacks

– Naive passing of large objects may lead to performance problems

– Most common problem is passing large vectors or arrays of data by value

25 Copyright 2005 Cadence Design Systems, Inc.

The TLM Copy-on-Write Vector

• To pass large vectors or arrays very efficiently, use the TLM
copy-on-write vector – tlm_cow_vec<T>

• tlm_cow_vec<T> is nearly identical to std::vector<T>
– The two can be easily swapped for each other.
– Both use strict “by-value” semantics for assignment, construction,

reading/writing elements, copying slices, etc.
– Unlike std::vector<T>, tlm_cow_vec<T> does not support any operations

that involve resizing the vector.
– Unlike std::vector<T>, tlm_cow_vec<T> is very “smart” and does not

actually copy any of the underlying data or allocate new data unless
required. But this is all hidden to the user.

– When tlm_cow_vec<T> is passed by value, copied, assigned, sliced, etc.,
only a very small amount of data in a handle is actually exchanged.

• tlm_cow_vec<T> should be added soon to OSCI TLM kit
• Contact stuart@cadence.com for more information about

tlm_cow_vec<T>.

26 Copyright 2005 Cadence Design Systems, Inc.

Conclusions

• Benefits of TLM:
– Fast and compact

– Integrate HW and SW models

– Early platform for SW development, easy to distribute

– Early system exploration and verification

– Verification reuse

• TLM is the next level of design and verification abstraction in
EDA, and the shift is now starting.

• The OSCI TLM standard is available now and is already in use,
and should foster the development of a TLM IP ecosystem.

