
Chapter 8

EMBEDDED DESIGN PRACTICE

Both commercial andacademic tools are available for thedesign of embedded

systems. These tools come in three categories: system-level design, software

design, and hardware design.

In this chapter, we will discuss the tools and frameworks available for these

various examples of system design. Wewill also present examples of embedded

system design and results for applications, such as JPEG encoder and an MP3

decoder. These results demonstrate thepotential impact of the embedded system

modeling, synthesis and verification technologies that have been discussed in

this book.

8.1 SYSTEM LEVEL DESIGN TOOLS

The semiconductor revolution would not have been sustainable without the

help of Electronic Design Automation (EDA) tools. Historically, the break-

through of EDA came with the availability of the first Computer-Aided Design

(CAD) tools for hardware synthesis (see Section 8.3). As we move to higher

and higher levels of abstraction, new classes of tools gradually emerged with

each new level. In recent years, we have seen a push towards development

of so-called Electronic System-Level (ESL) tools. However, while there are

many approaches that claim to provide ESL solutions, such as C-to-RTL tools

implementing high-level synthesis of a single hardware unit (described in more

detail in Section 8.3), true system-level solutions have to span the complete

design space across hardware and software boundaries.

As described in detail throughout this book, a system-level design flow is

typically separated into two parts: a frontend and a backend. The system design

© Springer Science + Business Media, LLC 2009

D.D. Gajski et al., Embedded System Design: Modeling, Synthesis and Verification,

DOI: 10.1007/978-1-4419-0504-8_8,

287

288 Embedded Design Practice

frontend takes a description of the application and target architecture at its input.

Applications are given in some MoC to describe the desired system behavior

to be implemented. Target architectures can be given in the form of archi-

tectural constraints, associated parameters, architecture templates or complete

pre-defined system-level netlists. In the frontend, application computation and

communication is then mapped onto and implemented on the selected or syn-

thesized target architecture. In the process, Design Space Exploration (DSE) is

performed to optimize design metrics under a set of constraints. At the output

of the frontend, models of the system at various levels of abstraction are gener-

ated for virtual prototyping of the system design. Predominantly, such system

models will be TLMs described in some SLDL such as SystemC. Models can

be simulated or analyzed to provide feedback about the feasibility and quality

of the generated design. In addition, modeling guidelines such as the SystemC

TLM standard [150] promise to enable easy exchange of component or design

models between companies or design divisions and across tool chains.

In the backend, high-level system descriptions are then further synthesized

down to a hardware or software implementation for each PE in the system.

ESL design flows thereby rely on the availability of corresponding software or

hardware synthesis tools (see Section 8.2 and Section 8.3, respectively). On

the software side, final target binaries for each processor are produced. On the

hardware side, high-level synthesis of behavioral, C-based component models

down to RTL descriptions is performed. In both cases, synthesized PE models

can be re-integrated into system TLMs for cycle-accurate co-simulation with

the rest of the systems. On the software side, binaries are executed in an ISS that

is integrated into the overall system simulation environment. On the hardware

side, RTL or gate-level models in SLDL form are inserted for this purpose. As

a result, a virtual prototype of the system platform is generated.

In the end, however, the desired result at the output of a system-level design

flow is a physical system prototype or a system implementation that is ready for

further manufacturing. Therefore, generated software binaries should be ready

to be directly loaded into target processors and RTL models should be created

in the form of standard HDL code (e.g., VHDL or Verilog) such that they can

feed into traditional logic and physical synthesis processes.

Overall, being based on existing commercial or proprietary backend tools,

the goal of system-level design tools is to develop and apply design automation

techniques to the steps in the frontend. At any level, thefirst set of tools to always

emerge are modeling and simulation solutions that allow designers to capture

models and execute them in a validation environment. Consequently, most cur-

rently available commercial system-level approaches are focused on providing

models and simulators either at the application, SLDL/TLM or HDL/RTL/ISS

level. Looking ahead, academic research, in contrast, is aimed at the develop-

ment of subsequent system-level synthesis and verification tools, which build

System Level Design Tools 289

on modeling solutions to provide an automated path from abstract system spec-

ification down to synthesized system models and eventually a system prototype

or implementation.

8.1.1 ACADEMIC TOOLS

METROPOLIS

� �"! #%$'& �'��() *+ ,�-/. 021�324 365 7�1	8 4 -21'9:1�-2.

;:<	$>= � ?�� (!)A@ #	B = C2)%$ = D�E2$>D'= <
F 1%3%4 G�-H9:1	. 0	I%J%I'K I�G2,L 1	. M�9NI%J%1'K+O4 9HP�K M%. I�Q

�"��! #	$ &"�'��() *R -/M'K ,	3	4 3S5 TU1'Q 4 8 4 V6M%. 4 I'-

W"D'#�E2$! � #X ?�<�E�! B ! E%C	$! � # Y:= E�Z"! $ <�E2$ D'= <X ?�<%E'! B ! E%C	$! � #[O<2)"! \"#E	��#)%$>= C�! #	$)

FIGURE 8.1 Metropolis framework

Metropolis [12] is a modeling and simulation environment originally devel-

oped at UC Berkeley. Metropolis is based on a Platform-Based Design (PBD)

paradigm (Figure 8.1) [164] in which the target system architecture, called a

platform, is assumed to be given or at least significantly pre-determined at the

input of the system design flow. This constrains and simplifies the design space

exploration process. In addition, a pre-defined and pre-determined platform fa-

cilitates the reuse of common design patterns across different design instances.

Therefore, PDB follows a meet-in-the-middle approach and the system design

problem is reduced to the mapping of a desired function onto the given target

platform to create a specific design instance.

Metropolis provides a general, proprietary metamodeling language that is

used to capture separate models for functionality (system application behav-

ior), architecture and their mapping. The metamodel employs a fundamental

discrete event-based execution model with concurrent processes communicat-

ing through channels (called media). In a similar manner to other SLDLs,

functionality is described in the form of event-driven process networks that are

general in the sense that many classes of MoCs can be represented. In addition,

functionality can be annotated with non-functional constraints. The architec-

ture is defined by using processes and media to describe available services (e.g.,

tasks) and resources (e.g., CPUs, memories or buses), respectively. Quantities

can be associated with the architecture to model metrics such as delays. Finally,

290 Embedded Design Practice

given a system functionality and architecture, synthesis or refinement is per-

formed by defining a mapping between the two in the Metropolis metamodel

as a set of additional constraints synchronizing their event execution.

Metropolis itself does not define any specific design tools but rather a general

framework and language for modeling with support for simulation, validation

and analysis ofmodels. Metropolis includes a frontend for parsing of metamod-

els and a backend for translation of metamodels into C++/SystemC simulation

code. In addition, several backend point tools have been integrated into the

Metropolis environment to support automatic scheduling, communication de-

sign, verification, or hardware synthesis. For example, the xPilot system (see

Section 8.3.1) can be plugged into Metropolis to provide high-level synthesis

of hardware blocks.

SYSTEMCODESIGNER

hw accelerators,

etc. from the

component library

implementation

SystemC Forte Cynthesizer

behavioral synthesis

library

includes

CPUs, busses,

hardware accelerators etc.

Model

Exploration

Model

Design Space

Exploration

Optimized

Solutions
Rapid

Specify mapping

Select CPUs, busses

Model

Select

prototyping

Component

FIGURE 8.2 SystemCoDesigner tool flow

SystemCoDesigner is a system-level design space exploration environment

developed at the University of Erlangen-Nuremberg in Germany (Figure 8.2)

[105]. At its input, SystemCoDesigner supports applications written in a dy-

namic dataflow oriented MoC targeted towards streaming applications. Such

input models are captured using a well-defined subset of SystemC called Sys-

teMoC. In SysteMoC, applications are modeled as a graph of atomic actors

that communicate via FIFO queues. Internally, the behavior of each actor is

described in the form of an FSMD. In contrast to SDF models, SysteMoC sup-

System Level Design Tools 291

ports applications in which actor production and consumption rates can vary

dynamically at runtime. Thus, the SysteMoC model is similar to a KPN with

the restriction of atomic process executions.

Once the application has been defined, SystemCoDesigner will automati-

cally generate a library of software and hardware implementations of all actors.

Software implementations are created through simple transformation of the

SysteMoC input into C code. On the hardware side, Forte’s Cynthesizer tool

(see Section 8.3.2) is used for high-level synthesis of all actors down to RTL

descriptions. All generated actor implementations are stored in a component

library and are annotated with performance, area and other metrics obtained

during synthesis.

Given an application, the annotated component library, and an architecture

template, SystemCoDesigner can perform a fully automatic, multi-objective

exploration of the design space. With the architecture template, the designer

can thereby constrain the search space and restrict possible target architectures

in terms of the number and type of available processors or the allowed map-

pings of actors to processor types. Design space exploration is performed using

genetic algorithms to drive and guide the automatic search process. For every

new candidate architecture selected by the search, a SystemCperformanceTLM

is automatically generated and simulated. The generated virtual architecture

model represents the mapping and scheduling of actors on the selected pro-

cessors, where actors are annotated with corresponding estimated performance

metrics from the component library. Simulation results are then fed back into

the search algorithm to evaluate the current design point and direct the next

iteration of the evolutionary exploration process.

As a result of the exploration process, a set of Pareto-optimal design solutions

is obtained and presented to the user. From this optimal set, the designer can vi-

sualize the design space and subsequently select an applicable implementation

option. After an architecture has been chosen, SystemCoDesigner can proto-

type the selected implementation on a Xilinx FPGA platform. The platform is

assembled, and pre-synthesized hardware implementations of respective actors

are inserted. For actors mapped into software, code is generated, compiled and

linked together with other actors into a binary for each processor. Finally, the

resulting bitstream is downloaded into the FPGA for rapid prototyping of the

final target implementation.

DAEDALUS

Daedalus [145] is another system-level design environment targeted towards

streaming, multimedia-type applications. Deadalus is a joint project between

the University of Amsterdam and Leiden University in the Netherlands. It

combines several tools under a common, XML-based infrastructure to provide

application capture, modeling and simulation, and backend platform synthesis

292 Embedded Design Practice

Pm

Mem

HW IPPµ

Pµ FPGA

specification

specification

specification
System−level

Gate−level

RTL

V
a
lid

a
ti
o
n
 /
 C

a
lib

ra
ti
o
n

Mem

MP−SoC

Interconnect, e.g.,

P2P, Xbar, or Bus

in XML
Platform spec.

in XML Network in XML
Kahn Process

Automated system−level synthesis:

RTL synthesis: commercial tool, e.g.

Mapping spec.

System−level architectural exploration: Sesame

ESPAM

Xilinx Platform Studio

Parallelization
KPNgen

Sequential
program in C

Models
RTL

Models

High−level

IP Library

netlist
Platform

in VHDL
IP cores

processors
C code for Auxiliary

files

FIGURE 8.3 Daedalus tool flow

functionality (Figure 8.3). At its input, Daedalus accepts applications modeled

in a KPN MoC (see Section 3.1.1) that is represented in an XML format. In

addition, through a tool called KPNgen, Daedalus can perform automatic con-

version of a well-defined subset of sequential C descriptions into a parallelized

KPN suitable for input into the Daedalus design flow.

Daedalus supports target architectures consisting of multiple programmable

processors and pre-defined hardware IPs. IP components are stored in a library

that contains both high-level, functional as well as RTL component models.

Given an input KPN and an IP library, a modeling and simulation tool called

Sesame allows the designer to assemble a target architecture and perform a

mapping of KPN processes onto architectural components. In case multiple

processes are mapped to the same processor, Sesamewill try to statically sched-

ule processes or insert a lightweight OS kernel. For performance evaluation

purposes, processor and IP models in the component library are annotated with

tables of estimated execution latencies for typical function-level operations.

Sesame links KPN processes to operational latencies of library components

they are mapped to. As a result, Sesame will automatically generate a high-

level, timed simulation TLM of the specified platform for quick evaluation

of selected candidate target architectures. Sesame also allows integration of

low-level component models such as cycle-accurate ISSes into the simulation

environment. Furthermore, Sesame supports optional automation of the design

System Level Design Tools 293

space exploration process through analytical design space pruning and heuristic

search methods such as genetic algorithms.

Given a KPN application, a platform architecture specification and an

application-to-architecture mapping (all in XLM form), a final backend syn-

thesis tool called ESPAM automatically generates a description of the selected

system implementation. Pre-defined RTLmodels of all hardware IPs are pulled

out of the component library and C code is generated for all KPN processes

mapped to programmable processors. Finally, code for each processor is com-

piled and a hardware models are assembled into a system VHDL model for

further synthesis, download and prototyping on an FPGA platform.

PEACE

Algorithm
Specification

Architecture
Specification

Graph Analysis Profiling

cluster.xml timeCost.xml

HW/SW Mapping
& Partitioning

sched.xml

Code Generation

C CodeC Code C CodeVHDL Code

HW/SW Mapping
& Partitioning

Communication
Exploration

arch.xml

Interface Generation

Coverification & Prototyping

Block
Library

Simulation

FIGURE 8.4 PeaCE tool flow

PeaCE (Ptolemy extension as a Codesign Environment) [83] is yet another

hardware/software co-design framework targeted towards multimedia applica-

tions. As the name implies, it is based on Ptolemy [28] as the framework for

294 Embedded Design Practice

modeling applications. Ptolemy is a general framework for composition and

co-simulation of a wide variety of heterogeneous MoCs in a hierarchical fash-

ion. However, of the many MoCs supported in Ptolemy, PeaCE only accepts

combinations of extended SDF and FSM models at its input.

PeaCE realizes a codesign flow from specification over system synthesis

down to system prototyping in several steps (Figure 8.4). In a first step, the

Ptolemy application model is translated into C code for functional simulation at

the specification level. In addition, given a user-defined architecture template

consisting of a list of processing elements, performance estimates of application

tasks are obtained byprofiling each functional block on an ISS of each processor.

Annotated application and architecture specifications entered through the user

interface are then translated into a generic XML-based format. Operating on

this intermediate representation, automatic or manual component selection and

HW/SW partitioning is performed. During this step, communication overhead

is assumed to be proportional to amount of data transferred. Resulting mapping

and scheduling information is stored in another XML-based, intermediate file.

Based on this information, code for all processing elements is generated and co-

simulated to obtain memory and communication traces. Next, traces are used

to drive manual or automatic communication architecture exploration, results

of which are stored in an XML-based architecture description. Finally, hard-

ware and software interfaces are generated and the complete system platform

is assembled for accurate co-simulation or FPGA-based prototyping.

PeaCE has recently been extended towards multi-processor software devel-

opment in a framework called HOPES [115]. At its input, HOPES supports a

parallel programming model called Common Intermediate Code (CIC), where

CIC code can be generated from extended UML descriptions or Ptolemy-based

PeaCE application models. CIC provides a high-level, rich and generic API

for control or data-oriented code parallelization and inter-process communica-

tion. Generic CIC descriptions can be automatically translated into optimized,

platform-specific code for a given multi-processor target architecture. Gener-

ated code can then be simulated in an ISS-based virtual prototyping environment

or downloaded into the real processors of the chosen MPSoC platform.

SCE

The System-on-Chip Environment (SCE) [52] was developed at UC Irvine

as the successor of the SpecSyn [64, 63] tool set (the successor of SCE, called

ESE, is described in Section 8.4.1). Both SpecSyn and SCE support a PSM

MoC (see Section 3.1.2) at their inputs and follow a Specify-Explore-Refine

methodology (see Section 1.3). SpecSyn is based on a PSMextension of VHDL

called SpecCharts [185]. In contrast, SCE uses the C-based SpecC SLDL (see

Section 3.2.3) as the basis for describing all design models throughout the com-

plete design flow. The SpecC language and technology has been standardized

System Level Design Tools 295

Specification

System Design
& Refinement

SW
DB

System
models

CPUn.bin

Implementation Model

TLMnTLMnTLMi

Hardware
Synthesis

Software
SynthesisRTL

DB

RTLnRTLnRTLn
ISSnISSnISSn CPUn.binCPUn.bin

HWn.vHWn.vHWn.v

Design
Decisions

PE/CE/bus
Models

FIGURE 8.5 SCE tool flow

[51] and a derivative of the SCE system-level design frontend has been com-

mercialized and integrated into a complete SpecC-based ESL design solution

commissioned by the Japanese Aerospace Exploration Agency (JAXA) [73].

As shown in Figure 8.5, SCE consists of a system design frontend and hard-

ware/software synthesis backend. The design process starts with an abstract

specification of the desired system functionality written in SpecC PSM form. In

the interactive frontend, the specification is automatically compiled down onto

a user-defined MPSoC architecture through a series of architecture, scheduling,

network and communication exploration and synthesis steps.

Design decisions such as allocation of architecture components out of the PE,

CE and bus databases, scheduling of processes, and mapping of specification

processes and channels onto allocated PEs, CEs and buses are entered by the

designer through a scripting or graphical user interface. To aid the user in the

exploration process, SCE includes retargetable profiling and estimation tools

that provide feedback about specification characteristics and effects of decisions

on design quality metrics. In addition, SCE supports a plugin mechanism for

inclusion of optimizing algorithms that perform automated decision-making.

At its output, the SCE frontend automatically generates TLMs of the system

design at successively lower levels of abstractions following a gradual, stepwise

refinement processes. Automatically generated TLMs integrate high-level per-

formancemodelswith timing-annotated processes running on top of abstractOS

and processor models to provide fast yet accurate analysis and design validation

without the need for slow instruction-set simulation.

296 Embedded Design Practice

In a backend process, hardware and software processors in the TLMs are

then individually synthesized further down to their cycle-accurate RTL and

instruction set implementations, respectively. On the hardware side, applica-

tion processes and automatically generated bus interfaces are synthesized into

VHDL or Verilog descriptions following a high-level hardware synthesis pro-

cess. Resulting RTL models are ready to be further synthesized and manufac-

tured following traditional logic and physical design processes. On the software

side, code for application tasks, middleware and bus drivers is automatically

synthesized into final target binaries ready for download into the processors. In

addition, a cycle-accurate implementation model of the system is generated that

allows for co-simulation of hardware RTLmodels with software instruction-set

simulators (ISSs) running final target binaries.

8.1.2 COMMERCIAL TOOLS

COFLUENT

CoFluent Studio by CoFluent Design [43] is a commercial spin-off based on

the MCSEmethodology (Méthodologie de Conception des Systèmes Electron-

iques, also known as CoMES, Co-design Methodology for Electronic Systems)

and tool set originally developed at the University of Nantes in France [33].

CoFluent studio is a modeling and simulation environment for early, high-

level design space exploration. As a graphical frontend for SystemC, it allows

capturing of application functionality, system architecture and their mapping.

Application models are specified as networks of timed processes. Processes are

described purely by annotated delay estimates, by their functionality given in

the form of C, C++ or SystemC code, or as a combination of both timing and be-

havior. Processes communicate through high-level, message-passing channels,

queues, events and shared variables that can also be annotated with estimated

communication latencies. The resulting application model can be simulated for

early functional and performance evaluation supported by a rich set of built-in

graphical analysis and visualization capabilities.

In the next step, an architecture platform can be graphically defined and

assembled out of generic processing element or interconnect components.

Through drag-and-drop, the designer can map application elements onto the

specified platform, and CoFluent studio will generate a SystemC TLM of the

resulting architecture for simulation and virtual prototyping. In contrast to

other approaches (see below), no detailed component, ISS or bus models are

employed. Instead, computation and communication remains at a high level, de-

scribed as time-annotated processes and message-passing transactions. CoFlu-

ent Studio does, however, insert network-level models of communication stacks

and OSmodels for dynamic scheduling of processes mapped onto software pro-

System Level Design Tools 297

cessors. All combined, this allows for fast timed simulation at early stages of

the design process (at the expense of reduced accuracy).

SPACE CODESIGN

Space Codesign is a recent startup coming out of the École Polytechnique de

Montréal in Canada [170]. Its main product is SpaceStudio, which provides a

SystemC-based system-level integrated development environment (IDE) built

on top of Eclipse (see Section 8.2.1). A specific focus of Space Codesign is

support for the increasingly important embedded software development pro-

cess. Designers can create process-based SystemC application models out of

pre-defined library blocks or by importing andwrapping existing C, C++ or Sys-

temC code, where application processes can communicate through message-

passing or shared memory channels. Next, a system architecture can be graph-

ically assembled and the application can be partitioned by dragging application

blocks onto previously allocated hardware or software processors. As a re-

sult, SpaceStudio (through a tool called Elix) will generate a SystemC TLM of

the chosen platform where timing-annotated processes are grouped into bus-

functional processor blocks, integrated with an OS simulation and connected

through register- and cycle-accurate bus models.

All SystemC application models and TLMs generated through SpaceStudio

can be simulated for analysis and performance evaluation. High-level models

are based on native, host-compiled execution of application processes for fast

simulation. In addition, a tool called Simtek will allow creation of cycle-

accurate, transaction-level virtual platforms by replacing host simulation of

software processes with processor ISS models. Finally, a tool called GenX will

take virtual platform TLMs create through SpaceStudio and synthesize them

down to a Xilinx FPGAprototyping platform. Software processes are compiled

for the selected processor and linked against the target RTOS. Hardware IPs are

replaced with pre-designed RTL descriptions, and custom hardware blocks are

synthesized using third-party high-level synthesis tools such asMentorCatapult

or Forte Cynthesizer (see Section 8.3.2). Finally, components are assembled

into a system netlist for input to the Xilinx FPGA platform synthesis process.

COWARE

CoWare technology started originally as a project at IMEC in Belgium to

develop a process-based system-level modeling framework [188]. Since its

commercialization, CoWare has evolved into a suite of products that provide

a frontend for SystemC TLM capture, modeling and simulation [46]. At the

core of the product portfolio, the CoWare Platform Architect is a graphical

environment for capturing and assembling virtual system platform models at

the cycle-approximate implementation level. CoWare includes an extensive li-

298 Embedded Design Practice

braryof detailed componentmodels for hardware IPs, programmableprocessors

and system buses. Hardware IPs are provided either in RTL or bus-functional

behavioral form. For programmable processors, ISS models are employed.

With the acquisition of LISATek [91], CoWare gained the capability to design

application-specific and configurable embedded processors, including genera-

tion of associated custom ISSes and software tool chains. Different component

models are integrated under a standard SystemCTLMframework using register-

and protocol-accurate transactional interconnect models.

Virtual platform models captured and assembled through CoWare’s Plat-

form Architect and associated Model Library and Processor Designer can then

be simulated using CoWare’s own performance-optimized SystemC simulation

kernel. Platform Architect thereby includes advanced capabilities for debug-

ging, visualization and analysis of simulation results in order to aid the designer

in the overall exploration, platform design and embedded software development

process.

SOC DESIGNER

Carbon’s SoC Designer [37] is another tool for platform architecture capture

and modeling that dates back to simulation technology originally developed at

the University of Aachen in Germany. Initially, this technology was marketed

under the product name MaxSim by a spin-off called AXYS. Later on, AXYS

got acquired by ARM and MaxSim was renamed to ARM RealView SoC De-

signer. Eventually, ARM sold the SoC Designer product family to Carbon

Design Systems.

Similar to othervirtual platform tools, SoCDesigner includes agraphical user

interface for assembling of system architectures out of pre-defined library or

user-made custom components. SoC Designer integrates cycle-accurate hard-

ware, ISS and bus models in a proprietary simulation setup. To avoid the

need for expensive context switches necessary in typical event-driven SLDL or

HDL simulations, components are statically scheduled into a single-threaded,

straight-line C/C++ executable that calls individual blocks cycle-by-cycle in a

round-robin fashion. This allows for fast yet fully cycle-accurate system sim-

ulation. However, components need to be modeled in a specific cycle-callable

fashion. SoC Designer includes a frontend for component model development.

In addition, existing SystemC, Matlab and VHDL or Verilog RTL models can

either be integrated into or co-simulated with the SoC Designer simulation

framework.

VAST AND VIRTUTECH

In contrast to virtual platform approaches based on standardized modeling

backplanes and languages such as the SystemC, both VaST [187] and Virtutech

Embedded Software Design Tools 299

[189] are providers of software-centric virtual prototyping solutions based on

proprietary simulation technologies. To achieve faster simulation speeds com-

pared to an interpreted ISS, such approaches are based on binary translation

or compiled instruction-set simulation of software code. In all cases, simula-

tions are functionally accurate but techniques can vary in terms of achievable

simulation bandwidth and cycle-approximate timing accuracy.

BothVaSTandVirtutech include graphical environments (calledCoMETand

Simics, respectively) to integrate software simulators with models of peripher-

als and other hardware in order to provide full system simulation. In contrast

to event-driven system simulation in typical SLDLs, hardware models are di-

rectly integrated into the software execution loop, reducing the need for context

switches and further speeding up simulations. However, this requires propri-

etary models to be developed for each hardware block or peripheral. While

both companies provide a large library of standard components and graphical

frontends to aid in component model development, recent extensions include

support for integration of standard SystemC models in such virtual prototyping

environments.

On top of virtual prototypes of the platform hardware created with VaST

or Virtutech tools, embedded software can then be developed and validated.

Both approaches include corresponding software development environments

coupled with extensive debugging capabilities (called METeor and Hindsight).

8.1.3 OUTLOOK

In recent years, ESL design concepts, methods and methodologies have ex-

perienced increasing interest and adoption in industry. This trend has been

accompanied by a growing number of commercially available tools mainly

aimed at modeling, simulation and virtual prototyping of complete system plat-

forms and architectures. As technologies mature, we can expect that more

and more of the advanced synthesis and design automation solutions currently

under development in academia will be transfered into such commercial set-

tings. On the one hand, as described in the following chapters, tools are already

emerging that can provide an automated path to implementation from such

system-level virtual platform models. On the other hand, additional research

and development efforts will be necessary to provide future tools for automation

of the design and design space exploration process at the system level. Only

automation of the ESL design flow from specification down to implementation

will provide the necessary productivity gains that will enable us in the future

to close the gap between continously increasing application complexities and

exponentiallly growing technological and device-level capabilities.

300 Embedded Design Practice

8.2 EMBEDDED SOFTWARE DESIGN TOOLS

The close relation between embedded software and the underlying cus-

tomized hardware platform demands special procedures when developing em-

bedded software, for example in terms of: cross compiling, host/target debug-

ging, and testing. With specialized hardware, the embedded software devel-

opment also needs to take measures for system booting and hardware specific

functionality such as system diagnostics and analysis. By its nature, embed-

ded software design has to deal with hardware-specific tools, such as processor

specific instruction set simulators, hardware simulators and emulators, and dis-

tributed debuggers. This hardware dependency necessitates the use of special

development tools.

To aid the development process, hardware vendors provide development en-

vironments geared toward their products. For example, the processor IP vendor

ARM, provides RVDS (RealView Development Suite) for developing software

for various platforms based on ARM cores. The suite integrates ARM cross

compilers, enhanced debug capabilities, ARM specific code optimization op-

tions, and libraries for commondevices (such as flashdevices). Similarly, RTOS

vendors offer development support tools. Examples include the Tornado tool

suite from WindRiver, and MULTI, the integrated development environment

from GreenHills. Such development environments are typically point solutions

supporting a fixed system architecture. They are less applicable in a scenario in

which the target platform remains flexible until the final stage of system design

(e.g. complex multi-processor systems), and which may be composed out of

heterogeneous components.

Many programmable logic device vendors also provide an embedded soft-

ware design tool as a part of their design environment. The SOPCBuilder from

Altera is an example of this, as is the Embedded Development Kit (EDK) from

Xilinx. Both of these tools let system designers define and implement a custom

platform out of standard building blocks and user defined hardware compo-

nents. Once the developer has defined and implemented the platform, these

tools synthesize the hardware and produce custom software libraries (e.g. for

accessing a programmable interrupt controller) reflecting the target’s hardware

configuration. By generating customized libraries, embedded software design

tools like the SOPC Builder and EDK provide some level of abstraction above

the hardware (e.g. resolving addressing and basic device access). However, the

designer has to manually develop the embedded software on top of the provided

low-level primitives for basic device access. Common to both examples is the

focus on the vendor specifics of the target platform in terms of processor and

RTOS selection. For example, Altera currently supports the NIOS processor

with uC/OS-II, whereas Xilinx supports PPC and Microblaze with Xilkernel.

Embedded Software Design Tools 301

In this way, these vendor-supplied tools are point solutions, that help developers

only in case of matching target platforms.

In addition to development tools, simulation environments are important for

development of customized embedded systems as development of a hardware

prototype is time consuming and a parallel development of hardware and soft-

ware is desired. HW/SW co-simulation is one approach that allows for an

overlapped development of software and hardware, as the SW can be devel-

oped on top of a virtual prototype of the hardware. The nature of a suitable

approach for simulation highly depends on the envisioned platform complexity,

the desired amount of observable simulation features, the required prototype’s

equivalence to the final software code, and in the needed simulation speed. For

simple single core architectures, using an instruction set simulator or processor

emulator may suffice. Similarly, for a system that uses one homogeneous RTOS

type and does not feature complicated HW interaction, a minimal model may be

sufficient, such as a host-compiled RTOS. In a host-compiled RTOS, amodified

version of the target RTOS, togetherwith the developed application, is compiled

to run on top of host operating system. However, performance limitations make

simple solutions such as these infeasible for complex multi-processor SoCs.

In summary, there are many different tools and methodologies currently

available for designers to use in developing embedded software. However,

these tools are typically point solutions, specific to a vendor or platform. In

addition, current techniques rely on the manual development of software. To

achieve higher design productivity, amore global approach is desirable, one that

can target a wide range of platforms and has, furthermore, a path to synthesis.

Next, we will outline some academic and commercially available tools for

embedded software development and generation.

8.2.1 ACADEMIC TOOLS

ECLIPSE

The open source Eclipse [59], is a multi-language software development

platform. It consists of an Integrated Development Environment (IDE) with

a flexible plug-in system. The IDE provides a source code editor with a rich

set of source annotation and browsing capabilities, integrates a compiler, a

source code debugger and manymore facilities to aid the software development

process. Eclipse’s primary focus is the Java language, hoverer with various

plug-ins it addresses many other languages as well, such as C/C++, Cobol,

Python, Perl, PHP. Eclipse’s well defined plug in systemmakes it very attractive

for customized extensions.

With the popularity of Eclipse IDE, many academic and commercial

providers use Eclipse as a platform for their own products with a wide range

302 Embedded Design Practice

of specific functionalities. For example, plug-ins exist for UML-based captur-

ing and development (e.g. IBM Telelogic Rhapsody [94]). They extend the

IDE with an interface to graphically capture UML-diagrams and later generate

structural source code (e.g. class hierarchy) out of the diagrams. Many Eclipse

plug-ins more specifically target embedded software development. One exam-

ple is the Tensilica Xtensa Xplorer IDE [97]. It provides a GUI for customizing

an Xtensa processor, integrates a specific cross compilation tool chain and

furthermore offers co-simulation and emulation integration. Another Eclipse

plug-in example addresses automotive software component design following

the AUTOSAR standard, Greensys’ Autosar Builder [67]. It supports develop-

ing AUTOSAR Software Component (SW-C), ECU and System descriptions

at the applications level, integrates their validation and end emulation. Many

more plug-ins exist, which we can not enumerate there. The wide range of

highly specialized plug-ins make Eclipse an very versatile and powerful soft-

ware development environment.

POLIS

The POLIS system [11] developed at UC Berkeley is a hardware/software

co-design environment with a focus on reactive systems. POLIS allows the

user to specify the application in a high level language such as the Esterel

or using a graphical as FSM notation. The input specification is internally

converted into a co-design finite state machine (CFSM) model. Each FSM

within aCFSM represents a component in the system. Using thisCFSM, POLIS

allows the designer to partition the design, formally verify it, co-simulate as

well as synthesize portions of the system. Software generation is performed by

transforming the CFSM sub-network chosen for SW implementation into an

S-Graph, and subsequent C code generation. In addition an application specific

scheduler and drivers are generated for each partitioned design.

DESCARTES

DESCARTES [162] is a software synthesis environment that targets real-time

signal processing systems. It focuses specially on optimization techniques for

mapping data flow oriented block diagrams onto a DSP. It provides a combi-

nation of different mapping and optimization strategies that allow comfortable

synthesis of real-time codewhich is highly adapted to application-specific needs

as imposed by constraints on memory consumption, sampling rate, or latency.

DESCARTESuses a data flow description (Asynchronous Data Flow (ADF)

and an extended SynchronousData Flow (SDF)) as an input. Thework provides

scheduling algorithms defining the order of execution for each computation

kernel (node) in the data flow following input constraints of latency, throughput

and memory consumption. It generates C code for each computation kernel

Embedded Software Design Tools 303

that then is compiled using a DSP specific C compiler. With the choice of

input model, DESCARTES is tightly coupled to the signal processing domain.

In contrast, a flexible generic C-programming model is desirable over these

specific input models to cater to the needs of a broader programming audience

and to capture a wider range of application domains.

8.2.2 COMMERCIAL TOOLS

MATHWORKS: REAL-TIMEWORKSHOP

MathWorks offers a range of packages that are centered around Matlab, a

numerical computing environment and programming language. Simulink [132]

is a commercial model-based design tool for modeling, simulation and analysis

of multi-domain systems. As an input, Simulink has a graphical user interface

for assembling a system as a block diagram describing the system functionality.

Blocks within Simulink are typically library defined containing standard signal

processing (e.g. filters) and control functions. They are connected and hierar-

chically composed to express the system either as discrete timed or continues

timed models. Simulink is tightly integrated into the Matlab environment, and

widely used for simulation and design in the control theory and the digital signal

processing domain.

On top of Simulink, MathWorks offers Real-Time Workshop [131] for the

synthesis of an software implementation. It generates stand-alone C code for

algorithms modeled in Simulink. The generated code can be used in many real-

time and non-real-time applications, as well as for simulation acceleration and

hardware-in-the-loop testing. Real-Time Workshop generates ANSI/ISO C or

C++ code from discrete, continuous, or hybrid Simulink models for execution

on a wide range of target platforms. It can target bare processors without any

operating system, as well as multi-tasking systems with an RTOS.

DSPACE: TARGETLINK

TargetLink [53] is a code generator, by dSpace. It integrates into the Mat-

lab/Simulink environment and is similar to the above discussed Real-Time

Workshop. It uses Matlab/Simulink as a graphical editor for system capture.

However, it comeswith an own library of block components for graphical design

composition.

TargetLink provides generation of production code out of aMatlab/Simulink

model for a wide range of target processors and platforms. TargetLink mainly

addresses the design of automotive systems. It supports targeting OSEK/VDX-

compliant operating systems [92] for integration of the generated function code

onto an Electronic Control Unit (ECU).

304 Embedded Design Practice

dSpace offers both hardware and software solutions for the automotive de-

sign. For validation and testing of applications, it provides three levels of

model testing. Model-in-the-Loop (MiL) executes the original model, vali-

dating functionality and dimensioning of the algorithm. Software-in-the-Loop

(SiL) executes the generated software code on the simulation host, for vali-

dation of the implementation. Hardware-in-the-Loop (HiL) executes the final

software on an actual ECU. The inputs and outputs of the ECU are controlled

by a Matlab/Simulink model simulating the physical control environment.

In summary, dSpace TargetLink, offers a comprehensive solution for the

design, synthesis and test of automotive designs with a focus on software.

Current development extensions are addressing the emerging AUTOSAR [9]

as multi-core ECU platforms.

ESTEREL TECHNOLOGIES: SCADE

Esterel Technologies’ commercial SCADE suite [57] is a development en-

vironment for system and software engineers targeted for safety-critical ap-

plications. With its editor complex systems are captured using a graphical

notation for hierarchical composition of data flow and safe state machine no-

tations. SCADE comes with a rich library of predefined blocks for operators,

linear functions, digital functions, filters, state machines and model composi-

tion. The product is internally based on the synchronous data-flow program-

ming language Lustre [85]. The tool suite is mainly used in the aerospace and

defense domains.

SCADE offers a C code generator (KCG) that is certified for the develop-

ment of airborne systems and equipment, which allow the production use of the

generated code. The code generator translates each block of the system speci-

fication into a software implementation that can be integrated for execution on

a target processor.

For the analysis of generated code, SCADES integrates with external tools

for Worst Case Execution Time (WCET) and stack utilization analysis. They

provide WCET and stack utilization information at the model level, detailed

for each function block within the specification. These analysis capabilities,

provide design quality feedback aboutmaintaining timely execution and staying

withing resource constraints, which are important for safety critical systems

early in the process supporting an efficient design.

In addition, Esterel Technologies offers gateway integration with other mod-

eling environments that allow importing specifications and requirements into

SCADES. For example, it provides a gateway for importing of discrete con-

trollers prototyped in Matlab/Simulink. It further integrates with Rhapsody

UML/SysML for high-level system requirements. These gateways expand the

coverage of SCADES tool suite to other modeling approaches.

Embedded Software Design Tools 305

UML/SYSML PRODUCTS

The Unified Modeling Language (UML) [147] is an standardized language

for the specification of software systems. It is a language for specifying, visual-

izing, constructing, and documenting the artifacts of a system with an emphasis

on the earliest part of a design process. UML is amodeling language, in contrast

to a a programming language. It therefore focuses on capturing relevant infor-

mation required for understanding the design problem, solving it, and guiding

implementation of the solution. It excludes any irrelevant information that may

hinder that progress.

UML defines 13 different datagram types with a wide range of modeling

system structure, system behavior and the interaction of system elements. With

this range of diagram styles it is apparent that the designer has great flexibility

in capturing system structure. UML provides means to capture boundaries,

requirements and system interaction. On the other hand UML by itself is not

very suitable to concisely express formulas. For capturing algorithms in the

system, UML often relies on embedded C, C++, or Java code as a description.

The Systems Modeling Language (SysML) [149] an extension of a subset

UML by using UML’s profile mechanism. SysML reduces UML’s restriction to

software-centric systems, and is positioned as a modeling language for systems

engineering applications. It onlyuses 7out of the13UMLdiagrams, but extends

it by additional diagrams and concepts. For example, it adds requirement dia-

grams for capturing parametric constraints between structural elements, which

aid performance and quantitative analysis. It also introduces additional MoCs

by extending the behavior of UML activities for the modeling of continuous

and probabilistic systems. The use of UML and SysML for system level design

of SoCs is discussed in [116, 126].

Many commercial products for model-based development exist, which are

based onUML/SysML.Examples include IBMTelelogic Rhapsody [94], Spark

Systems’ Enterprise Architect [175], Gentleware’s Poseidon for UML [69] and

Artisan Software’s Artisan Studio [169]. These tools offer graphical editors for

capturing UML/SysML diagrams, the analysis and consistency validation. In

addition these tools offer generation of targeted code for framework integration.

The framework code itselfmaynot contain all algorithm code, however provides

a start framework for manual software development.

8.2.3 OUTLOOK

With the increasing attention to embedded software design, the tool support

for developing embedded applications has significantly improved in the recent

years. Vendors of hardware (e.g. FPGA) and software products (e.g. RTOS)

provide an added value to their products by offering integrated development en-

306 Embedded Design Practice

vironments with specialized support for their own product. In addition, many

domain specific specialized solutions guide the application development for

example in the automotive and signal processing domain. A stronger focus

on better structured, reusable, and expandable software implementations is no-

ticeable, for example through utilizing component-based principles such as in

AUTOSAR or through tighter connecting documentation and implementation

as seen in an UML-based process.

The complexities of future platforms will continue to grow. We will see

systems with diverse distributed heterogeneous components as well as systems

with many cores. As platform complexities grow, manually implementing

embedded software will become infeasible, especially when considering the

decreasing time-to-market. Therefore, there is an essential need to further

simplify the modeling and development of software and systems. In particular,

design environments are needed, which enable abstract development of complex

systems at the algorithm level, which automate the implementation process

through automatic synthesis of both hardware and software, and which allow

the designer to focus on essential functional aspects without the burden of low-

level implementation details.

8.3 HARDWARE DESIGN TOOLS

Research and tool development for hardware design-automation began four

decades ago, and progressed through four phases. The 1970s embodied the

concept phase, which gave birth to basic definitions for the languages, design

methods, and tools necessary for standard and custom processors. The 1980s

introduced the algorithm phase, which saw a flurry of research activities defin-

ing algorithms for allocation, binding, and scheduling in a new field called

High-Level Synthesis (HLS). During the decade which followed, these new

approaches were consolidated with the emergence of several seminal books on

HLS and the first commercial tools. Finally, the first decade of this century

ushered in the acceptance phase, during which the concept of automatically

generating custom hardware components from high-level programming lan-

guages (C-to-RTL) has become accepted and applied to many custom designs

by industrial designers world-wide.

The concept phase began with Bell and Newell’s seminal book on com-

puter structures [16], which introduced Instruction-Set Processor (ISP) nota-

tion. ISP was intended to precisely and unambiguously describe the behavior

of instruction-set processors. This behavior was characterized by the existence

of an interpretation algorithm that fetches, decodes, and executes "instructions"

stored in the memory. The ISP concept was refined by Barbacci at CMU who

introduced the Instruction-Set Processor Specification (ISPS) for the simula-

Hardware Design Tools 307

tion, evaluation, and synthesis of simple processors [14, 15, 13]. Barbacci,

along with Siewiorek, also developed an initial system for the synthesis of

processors called CMU RT-CAD System in 1976 [168]. That opened broader

investigations into the different aspects of synthesis process such as internal

representations [133], component allocation [84] and processor architecture

selection [179]. At this same time, Zimmermann and Marwedel at Kiel devel-

oped the MIMOLA design method to design of digital processors from a very

high-level behavioral specification [199, 127]. A key feature of this method

is the synthesis from application programs expected to run on that processor.

This was the first attempt at C-to-RTL compilation.

In the 1980s, research on algorithms for HLS spread to many different coun-

tries. This research was focused on languages and representations, algorithms

and methodologies, and tools and environments. In terms of languages every

research group used a different subset since standard languages such as C or

VHDL were not synthesizable [122]. In the representation domain CDFG be-

came popular at this time [151]. Allocation, binding and scheduling algorithms

were the most popular topic for research [155, 128, 10, 34, 49, 156, 153]. This

was a time of great diffusion of new ideas. Different methodologies for the de-

sign of controllers, datapaths or complete custom processors were introduced

based on different design paradigms [26, 50, 152, 176, 177, 181, 153, 134].

Similarly, many HLS tools came into use, the most prominent being the York-

town Silicon Compiler from IBM [25] which included high-level, logic and

layout synthesis, CATHEDRAL from IMEC in Belgium [160], which focused

on multiprocessor DSP applications, as well as The System Architect’s Work-

bench from CMU [176], and Design Environment from U of Karlsruhe [36].

The consolidation phase of HLS in 1990s is characterized by the appear-

ance of several books defining the seminal work in the field. Don Thomas

and associates published a book on CMU’s System Architect’s Workbench in

1990 [178], followed by several other books by different authors on different

aspects of HLS, including timing constraints [114], methodologies and algo-

rithms [61], digital signal processing [186], synthesis and optimization [139],

and component reuse [102]. Several edited books concerning the issues in-

volved in HLS [35, 138] were also published in that period. 1990s were also

characterized by the appearance of EDA companies offering commercial tools.

Wakabayashi introduced NECs Cyber synthesis tool [191], Synopsys intro-

duced Behavioral Compiler (BC) [110], and Mentor introduced Monet [56].

Those early tools followed basic principles of HLS as described in the above

mentioned HLS books. For example, BC accepted a behavioral description in

a subset of VHDL or Verilog. It converted the input description into a CDFG

representation that exposed control and data dependences. In order to perform

technology-specific scheduling BC converted data flow graph in each basic

block of CDFG into gates in order to produce accurate delay estimates. This

308 Embedded Design Practice

way BC could schedule two operations into the same clock cycle as long as their

joint delay was smaller than the clock cycle. After scheduling, BC performed

allocation and binding and synthesized the control FSM with gates. The last

step was logic optimization of the generated datapath and controller.

The early tools showed the possibility of HLS automation. However, there

were several obstacles for commercial success. Designers had to use a tool-

dependent subset of HDLs instead of a standard programming language such

as C or Java. Datapath and controller architectures were overly simple without

pipelining or data forwarding. The controller was implemented as an FSMwith

gates, so that later upgrade or changes needed re-synthesis. Since the controller

did not use control or program memory, it was not possible to execute large

programs. Even when the synthesized result was acceptable, interfacing the

synthesized component into a larger system was not well defined.

The largest obstacle to widespread acceptance of HLS was the market’s un-

preparedness for processor-level abstraction. This has changed dramatically in

this decade because of increased system complexities. The newHLS tools use a

standard programming language as the input and generate RTL in a HDL as the

output so synthesized designs can be prototyped with FPGA tools. Moreover,

the quality of these tools has improved through the use of more sophisticated

algorithms. At the same time the complexity of synthesized components in-

creased from special functions with a FSM controller to custom processors with

a programmable controller.

8.3.1 ACADEMIC TOOLS

GAUT

The GAUT tool from UBS [157] is an academic and open-source HLS tool

dedicated to digital signal processing applications. It generates an indepen-

dent custom processor with custom interface that allows it to be inserted into

any system. Starting from an algorithmic bit-accurate specification written in

C/C++, GAUT extracts the potential parallelism before performing the alloca-

tion, scheduling and binding tasks. The mandatory synthesis constraints are

the throughput, the clock period, and the target technology while the optional

design constraints are I/O timing diagram and the variables-to-memory map-

pings. GAUT synthesizes a potentially pipelined architecture composed of a

processing unit, a memory unit, a communication interface unit that uses a

globally-asynchronous, locally-synchronous protocol.

GAUT generates an IEEE P1076 compliant RTL level VHDL file. This

VHDL file is an input for commercial, off the shelf, logical synthesis tools such

as ISE/Foundation from Xilinx, Quartus from Altera, or Design Compiler from

Hardware Design Tools 309

Synopsys. GAUT also generates a SystemC cycle-accurate simulation model

for simulation-based validation.

NO-INSTRUCTION-SET COMPUTER

The No-Instruction-Set Computer (NISC) from UCI [40] is an attempt to

overcome two of the weaknesses of HLS: programmability and metric closure.

Most HLS designs are special function components with a fixed controller that

implements the FSM of the special function executed in the datapath. Such

a controller is usually implemented with gates which limit the FSM size to a

couple of hundred states. The first problem with such an implementation is

that the complete design has to be re-synthesized for any change or upgrade

in the given function. The other problem is that this type of implementation

can not support large amounts of code. To solve this problem NISC uses a

programmable controller with a control-word memory that stores control words

for every clock cycle. This way large codes can be accommodated and even

dynamically up-loaded.

The second HLS weakness is that during synthesis and optimization the re-

quired metrics must be estimated. The exact value of delay, power, and perfor-

mance is not known until the final layout. The finalized metrics values or metric

closure is needed to fine tune the architecture and the application code. NISC

solves this problem by separating the allocation and datapath structure genera-

tion from scheduling and binding performed by the NISC compiler. Therefore,

making it possible to a create complete structure with all the metrics known

before compilation. If the final results are not acceptable, the datapath can be

modified and the application code recompiled. Furthermore, NISC methodol-

ogy leads to the concept of standard architecture-cells or templates that can be

stored in the library and used by different application designers. Having several

such templates per application domain greatly simplifies the methodology and

tools on lower levels of abstraction.

A NISC tool set as shown in Figure 8.6 consists of three different compo-

nents: a datapath generator, a NISC Compiler, and an RTL Generator. The

datapath generator is used to create a datapath structure for a given application.

This task can be done automatically by profiling the application code in C,

compiling usage statistics, selecting components and connectivity for the given

performance metrics and generating a Generic Netlist Representation (GNR)

of the datapath. A datapath template can be also selected from the template

library, or designers can specify their own datapath by creating a GNR through

GUI. The NISC cycle-accurate compiler [161] compiles the application for a

given datapath. It converts the application code into a control-words stream

controlling datapath on each clock cycle. The RTL Generator produces the

RTL description for inputing to FPGA or ASIC tools. It converts the datapath

310 Embedded Design Practice

and controller GNR into RTL with control words generated by the compiler

loaded into the control-word memory in the controller.

If synthesized results are not satisfactory, the datapath structure and/or ap-

plication code can be modified. This can be done manually by rewriting the

application code andGNRor automatically through code refinement or datapath

refinement tools.

A NISC enables the designers to control every aspect of the design. The de-

signer can select the exact points for improvement and then make the changes

quickly. For example, by changing the GNR description of the datapath archi-

tecture, the designer can reduce a critical path delay or fix complex multiplexers

and connections that consume too much power or make the layout unroutable.

Since datapath can be an input in NISC technology, the designer can selectively

explore options for quality metrics. For example, a designer can focus on dy-

namic power minimization by modifying the connections or gating or latching

them in the datapath description and quickly see the effect on the final results.

SPARK HIGH LEVEL SYNTHESIS

SPARK tool from UCSD [140] is a C-to-VHDL high-level synthesis frame-

work that employs a set of innovative compiler, and synthesis transformations

to improve the quality of high-level synthesis results. The SPARK paralleliz-

ing high-level synthesis methodology is targeted particularly to multimedia

and image processing applications along with control-intensive microproces-

sor functional blocks.

As shown in Figure 8.7, SPARK takes a behavioral description in ANSI-

C as input. It also takes additional information as input, such as a hardware

IDE

Code
Refinement

Application

GUI

Datapath
Refinement

Datapath

Component/
Template
Library

Datapath Generator

NISC Compiler

RTL Generator

Synthesis Backend

RTL

FIGURE 8.6 NISC technology tools

Hardware Design Tools 311

resource library, resource and timing constraints and user directives for the

various heuristics and transformations. SPARK stores the input behavior in a

hierarchical intermediate representation, a CDFG derivative with dependences

across basic blocs. This is critical for enabling coarse-level transformations

and making global decisions about code motion.

SPARKfirst applies a set of coarse-grain and fine-grain code transformations

to the input description during a pre-synthesis phase before performing the tra-

ditional high-level synthesis tasks of scheduling, allocation and binding. The

transformations in the pre-synthesis phase include (a) coarse-level code restruc-

turing by function inlining and loop transformations, (b) transformations that

remove unnecessary and redundant operations such as common sub-expression

elimination (CSE), copy propagation, and dead code elimination (c) transfor-

mations such as loop-invariant code motion, induction variable analysis (IVA)

and operation strength reduction, which reduce the number of operations within

loops and replace expensive operations with simpler operations.

The pre-synthesis phase is followed by the scheduling and allocation phase.

Resource allocation and module selection are done by the designer and are

given as input to the synthesis tool through a hardware resource library. The

scheduler is organized into two parts: the heuristics that perform scheduling

Code Generation Back End

C Input

Synthesizable RTL VHDL, Behavioral C

Constraints &
Resource

Library Parser Front End

SPARK IR

Hierarchica
l Task

Graphs
(HTGs) +
Data Flow

Graphs

PreSynthesis Optimizations
Loop Unrolling, Loop Fusion, Loop Invariant Code Motion CSE,

IVA, Copy Propagation, Inlining, Dead Code Elimination

Scheduling and Allocation
Heuristics Transformation Toolbox

Resource Binding & Control Synthesis
Operation/Variable Binding FSM Generation/Optimiz.

FIGURE 8.7 The SPARK Synthesis Methodology

312 Embedded Design Practice

and a transformations toolbox. The transformations toolbox contains specula-

tive code motion transformations, the percolation and trailblazing code motion

techniques, dynamic renaming of variables et cetera. The synthesis transfor-

mations include chaining operations across conditional blocks, scheduling on

multi-cycle operations, and resource sharing.

Besides the traditional high-level synthesis transformations, the scheduling

phase also employs several compiler transformations applied "dynamically"

during scheduling. These dynamic transformations, such as dynamic CSE

and dynamic copy propagation, exploit the new opportunities created by code

motions. A branch balancing technique also dynamically adds scheduling steps

in conditional branches to enable code motions, specifically those code motions

that duplicate operations in conditional branches.

Passes from the toolbox are called by a set of heuristics that guide how the

code refinement takes place. The heuristics and the underlying transformations

that they use are kept completely independent from each other. This allows

the heuristics to employ the various transformations as and when required,

thus enabling a modular approach that allows the easy development of new

heuristics.

The scheduling phase is followed by a resource binding and control synthesis

phase. This phase binds operations to functional units, ties the functional units

together, allocates and binds registers, generates the steering logic and generates

the control circuits to implement the schedule. The focus of resource binding

approach is to minimize the interconnect between functional units and registers.

After binding, SPARK generate a FSM controller for the scheduled and bound

design.

Finally, a back-end code generation pass generates a synthesizable RTL

VHDL. SPARK also has back-end code generation passes that generateANSI-C

and behavioral VHDL. These behavioral output codes represent the scheduled

and optimized design. The output C code can be used in conjunction with the

input C code to perform functional verification and also, to improve visualiza-

tion for the designer on the effects of the transformations applied by SPARK

on the design.

XPILOT SYNTHESIS SYSTEM

The xPilot is a behavioral synthesis system being developed at UCLA [183,

41]. The goal of xPilot is to provide novel platform-based behavior synthesis

technologies to optimize logic, interconnects, performance, and power simul-

taneously, so that designers can improve both design productivity and quality

of results.

The overall design flow of the xPilot system is shown in Figure 8.8. xPilot

accepts synthesizable C or SystemC as input. The behavioral description is first

parsed and optimized by the UIUC LLVM compiler infrastructure. A System-

Hardware Design Tools 313

level Synthesis Data Model (SSDM) is then constructed from the LLVM’s

internal representation. The basic building blocks in SSDM are processes and

channels. A process describes the behavior of one module, and each process

uses aCDFG to capture its behavior. Each process interactswith other processes

through ports and channels.

Each channel implements some interface to implement certain communi-

cation protocols. In total, an SSDM defines a process network to model the

concurrent behavior of a complex system. On top of SSDM, xPilot performs

platform-based synthesis and physical-aware optimizations during scheduling

and resource binding; these construct an optimized State Transition Diagram

(STG) and an associated datapath model. At the back end, xPilot generates

RTL implementations together with constraint files such as multi-cycle path

constraints and physical location constraints, to leverage the existing logic syn-

thesis and physical design toolset.

Compilation Front End

RTL Generation

Binding

Scheduling

SSDM (System-Level
Synthesis Data Model)

SSDM/CDFG

SSDM/STG

RTL VHDL and
Design Constraints

SystemC/C Behavior Spec.

Platform Description and
Constraints

FIGURE 8.8 xPilot Synthesis System

314 Embedded Design Practice

8.3.2 COMMERCIAL TOOLS

CATAPULT SYNTHESIS

Catapult from Mentor [137] takes a behavioral description written in ANSI

C++ and a set of user directives as input and generates an RTL that is opti-

mized for the specified target technology. The input specification is behavioral

and does not include any notion of explicit parallelism, time, state or inter-

face protocol or the design structure. Required directives specify the selected

component library and the clock period. Optional directives control hardware

details such as interface and memory mappings, how much parallelism to im-

plement in loop unrolling and loop pipelining, hardware hierarchy and block

communication, latency or cycle constraints for scheduling, the number and/or

type of hardware resources for allocation , etc. Catapult supports native C++

integer types as well as C++ bit accurate integer and fixed-point datatypes are

supported for synthesis. The generated RTL faithfully reflects the bit-accurate

behavior specified in the source.

One of the advantages of keeping the input untimed is that a very wide range

of interfaces and design structures can be generated without changing the input

specification. Another advantage is that errors that are created through manual

coding are avoided. The interface and the design structure of the generated

design are all under the control of the user via synthesis directives. Interface

synthesismaps the data transfer that is implied by passing of function arguments

to a variety of hardware interfaces such aswires, registers, handshaked registers,

memories, buses or more complex user-defined interfaces. All the necessary

signals and timing constraints are generated during the synthesis process so that

the generated RTL conforms and is optimized for the desired interfaces.

Hierarchy or block-level concurrency can be also specified by user directives

with Catapult. For example, a C function can be synthesized as a separate hard-

ware block instead of being inlined in its caller(s). The blocks are connected

with the appropriate communication channels and the required handshaking

interfaces are generated to guarantee the correct execution of the specified be-

havior. The blocks may be synthesized to be driven by different clocks. The

clock domain crossing logic is generated by Catapult. Communication is opti-

mized depending on user directives to enable maximal block-level concurrency

using FIFOs and ping-pong memories to enable block-level pipelining and thus

improved throughput.

All the HLS synthesis steps are aware of accurate component area and timing

numbers for the target technology (ASIC or FPGA) for the RTL synthesis tool

of choice. Accurate timing and area numbers for components are essential

for generating an RTL that meets the timing and area constraints. During

synthesis, Catapult queries the component library so that it can allocate a variety

of combinational or pipelining components with different performance and area

Hardware Design Tools 315

tradeoffs. The queried component library is pre-characterized for the target

technology and the target RTL synthesis tool. Component libraries can also be

built by the user to incorporate specific characterization for memories, buses,

I/O interfaces or other pieces of functionality such as pipelined components..

The synthesis process generates the required verification infrastructure in

SystemC so that the input stimuli from the original C++ testbench may be

applied to the generated RTL to verify its functionality against the original

input specification using simulation. The synthesis process also generates the

required verification infrastructure for sequential equivalence checking between

the input specification and the generated RTL. Catapult has been successfully

used in over 200 ASIC tapeouts and several hundred FPGA designs. Typical

applications include computation-intensive algorithms in communications and

video and image processing.

CYNTHESIZER

Cynthesizer from Forte [58] takes a SystemC module containing hierarchy,

multiple processes, interface protocol and algorithm and produces RTLVerilog

optimized to a specific target technology and clock speed. The target technology

is specified by a user provided library file or, for FPGA implementation, by

identifying the targeted Xilinx or Altera tools.

The input to the high-level synthesis flow used with Cynthesizer is a pin- and

protocol-accurate SystemC model. The designer puts untimed high-level C++

in a hardware context using SystemC to represent the hardware elements such as

ports, clock edges, structural hierarchy, bit-accurate data types and concurrent

processes.

Clocked thread processes are used for the majority of the module functional-

ity. They contain an infinite loop that implements the bulk of the functionality

alongwith the reset code that initializes I/O ports and variables. Within a thread,

the designer can combine untimed computation with cycle-accurate communi-

cation. A hybrid scheduling approach is used in which the protocol sections are

scheduled in a cycle-accurate way, honoring the clock edges specified by the

designer as SystemC wait statements. The computation code is written without

any wait statements and scheduled by the tool to satisfy latency, pipelining and

other constraints given by the designer. Triggered methods can also be used

to implement behaviors that are triggered by activity on signals in a sensitivity

list, similar to a Verilog ’always’ block. This allows a mix of high-level and

low-level coding styles to be used if needed.

Complex subsystems are built and verified by combining modules using

structural hierarchy just as it would be done in Verilog or VHDL. The high-

level models used as the input to synthesis can be simulated directly to validate

both the algorithms and the way the algorithm code interacts with the inter-

face protocol code. Multiple modules are simulated together to validate that

316 Embedded Design Practice

they interoperate correctly to implement the functionality of the hierarchical

subsystem.

In order to ensure that the synthesized RTL meets timing at a given clock

rate using a specific foundry and process technology, a high-level synthesis

tool requires accurate estimates of the timing characteristics each operation.

Cynthesizer uses an internal datapath optimization engine to create a library of

gate-level adders, multipliers, etc. The timing and area characteristics of these

components are used by Cynthesizer to make tradeoffs and optimize the RTL.

Designers have the option of using the gates for implementation or of giving

their logic synthesis tool RTL representations of the datapath components.

Cynthesizer produces RTL Verilog for use with logic synthesis tools. The

RTL consists of a finite state machine and a set of explicitly instantiated data-

path components such as multipliers, adders, and multiplexors. More complex

custom datapath components that implement arithmetic expressions used in

the design are automatically created, and the user can specify sections of C++

code to be implemented as datapath components. The multiplexors directing

the dataflow through the datapath components and registers are controlled by a

conventional finite state machine implementation.

SystemC is a good fit for high-level synthesis because it combines the high-

level and object-oriented features of C++ with hardware constructs that allow

a designer to directly represent structural hierarchy, signals, ports, clock edges

etc. This provides a very efficient design and verification flow in which be-

havioral models of multiple modules can be concurrently simulated to verify

their combined algorithm and interface behavior. Most functional errors can

be found and eliminated at this high-speed behavioral level instead of through

time-consuming RTL simulation. Once the behavior is functionally correct, the

models that were simulated are used directly for synthesis, eliminating oppor-

tunities for mistakes or misunderstanding.

PICO

PICO tools developed by Synofra [45] support the development of custom

processors or application engines for a system platform consisting of standard

CPUs and DSPs, memories, IF components such as DMAs or USBs and com-

plex application engines such as video codecs and wireless modems. PICO

provides a fully automated, performance-driven, application engine synthesis

methodology that enables true algorithmic-level input specification. It produces

C-to-RTL mapping under performance constraints in terms of throughput and

cycle-time. The key to PICO’s approach is the use of an advanced parallelizing

compiler in conjunction with an optimized, compile-time configurable archi-

tecture template to generate an application-engine RTL.

PICOusesC/C++ language as the preferredmode of input specification at the

algorithmic level to allow the user to specify functionality as a sequential pro-

Hardware Design Tools 317

gram. PICO’s parallelizing compiler automatically extracts parallelism from

the input specification to meet the desired performance based on its analysis

of program dependencies and external resource constraints. PICO is intended

for applications that process data streams such as audio, video, imaging, secu-

rity, wireless, networking applications, among others. There is large amount of

parallelism in such applications at various levels of granularity. These applica-

tions consist of a sequence of transformations expressed as multiple loop-nests

encapsulated in a C procedure that is executed repetitively on a stream of data

blocks.

One invocation of this procedure is called a task. PICOoptimizes parallelism

on task-level, loop-level, iteration-level, and instruction level at the same time to

satisfy performance and cost constraints. Given the parallelism available in the

application code at various levels, the PICO compiler exploits this parallelism

without violating the sequential semantics of the application code by following

the well-defined model of Kahn process networks, in which a set of sequential

processes communicate via streams through unbounded FIFOs. This Kahn

process network concept is implemented in PICOwith an architectural template

defined by a Pipeline of Processing Arrays (PPA). Each of the top level loop-

nests in the C procedure is mapped to a custom processor called Processing

Array (PA) which communicates with other PAs via one or more FIFOs or

memories. Each PA is structured like a wide Very Long Instruction Word

(VLIW) processor that is customized to execute only one program: a loop

iteration.

Along with the hardware RTL and its related software, PICO also produces

SystemC-based TLM models of the hardware at two levels of abstraction: an

untimed programmer’s view and a timed programmer’s view. Knowledge of

the target technology and its design trade-offs is embedded as a part of a macro-

cell library which PICO tools use as a database of hardware building blocks.

The library consists of pre-verified, parameterized, synthesizable RTL compo-

nents such as register, adders, multipliers and interconnect elements. These

macrocells are independently characterized for various target technologies and

various macrocell parameters. PICO uses these characterization data for its

internal delay and area estimates.

CYBERWORKBENCH

CyberWorkBench (CWB) from NEC is a C-based high-level synthesis and

verification tool that has been in development since 1990s [190, 191, 144]. The

main idea behind the CWB is an "all-in-C" approach in which all the modules

in the design are described in the behavioral C language. CWB also supports

legacy RTL blocks as black boxes, which are called as C functions. At the

same time the synthesis, verification, and debugging tasks are all done in the C

source code.

318 Embedded Design Practice

CWB targets general SoC platforms which normally contain several CPUs

or DSPs, in addition to custom HW modules and some pre-designed or fixed

RTL or gate level IP modules that are connected directly or through buses in

the platform.

Initially, each custom HWmodule is described in a specialized behavioral C

called Cyber-C. Once its functionality is verified through the C simulator and

debugger, the HW module is synthesized with the behavioral synthesizer. The

custom processors are also synthesized from their C description in the CWB

environment. Legacy RTL blocks are described as functions and handled as

black boxes. The CPU bus and other bus interface circuits are also automat-

ically generated using a CPU bus library. After synthesis and verification of

each module, the CWB environment allows designers to create a cycle-accurate

simulationmodel for the entire platform includingCPUs, DSPs and customHW

modules. With this model designers can verify both the functionality and the

performance of their design, as well as the embedded software running on the

CPU, DSP and custom processors. The behavioral synthesis is fast enough to

allow designers to modify and synthesize HWmodules and embedded software

many times. The input C code can also be debugged with a formal verification

tool that checks properties and model assertions. These global properties and

in-context assertions are described in the original input C code. The equivalence

between the behavioral C and the generated RTL can be verified dynamically

and statically.

Currently, the platform-level parallelization is left to the system designers.

They partition the input C code into individual HW modules and embedded

software based on the performance results of the cycle simulation or FPGA

prototyping.

BLUESPEC

Bluespec tools from Bluespec provide an alternative to the standard C-based

HLS technology by focusing on components that do not fall into the loop-

and-array paradigm: processors, caches, interconnects, bridges, DMAs, I/O

peripherals, and similarly others. These components are characterized by het-

erogeneous, irregular and complex parallelism for which the sequential com-

putational model of C is not expressive enough. They use a language in which

the concurrent behavior of a system is expressed as a collection of rewrite rules.

Each rule has a guard expressed by a Boolean predicate on the current state,

and an action that transforms the state of the system. These rules can be applied

in parallel, that is, any rule whose guard is true can be applied at any time. The

only assumption is that each rule is an atomic transaction, meaning that each

rule observes and delivers a consistent state, relative to all other rules. The rules

and their ordering are described in Bluespec System Verilog (BSV).

Case Study 319

BSV allows designers to specify the micro architecture precisely, but with

powerful generative and parameterization mechanisms which allow a single

source to flexibly represent a family of micro architectures, within which dif-

ferent choices may be appropriate for different metric optimizations. Thus BSV

provides synthesis from very high level description with a precisely-specified

micro architecture in the parameterized program structure. Bluespec Com-

piler compiles a BSV description into Verilog RTL or SystemC while Bluspec

Simulator simulates Bluespec designs with cycle accuracy.

8.3.3 OUTLOOK

The last thirty years of research and development into high-level synthesis

has proven profitable, as evinced by the increasing supply of HLS tools and

by designers’ acceptance of C-to-RTL concepts. Though there has been much

progress in the concepts, algorithms, and methods for HLS, there is more work

ahead, which is driving the surge in HLS research and tools [45].

Although some tool suppliers are offering specific languages that support

efficient descriptions of functionality or architecture, most of the market is

settling on C/C++ for describing input functionality. That decision is leading to

increasing efforts in pre-synthesis compilation to increase possible concurrency

for future optimization and to improve the quality of the synthesized design.

The synthesized architecture is usually the set of storage and functional-unit

components connected through multiplexers. Still, much work must be done

to improve the architecture by adding busses, control and datapath pipelining,

and programmable controllers in order to move the architecture into direction

of custom processors. Some suppliers offer specific pipelined-blocks architec-

ture for "loop-and-array" applications, but there is no conclusion on standard

architecture-cells or templates that will make C-to-RTL compilation more effi-

cient, as in the compilation of C to instruction-sets.

Moreover, the problem of interfacing synthesized components and merging

them into a system platform is still grossly under solved. As with component

architecture, there is a need for standard interface-cells so that any two syn-

thesized components can be easily connected. With availability of architecture

and interface standard cells and an efficient compilation from C, the directions

of the IP industry in the future still remain to be answered.

8.4 CASE STUDY

So far we have looked at a variety of system level, software and hardware

design tools. Many tools are available publicly or commercially to assist with

320 Embedded Design Practice

different aspects of embedded system design. We advocate that there will be a

need for new tool-sets or design environments that integrate different aspects of

embedded system design. These developments will be crucial to the evolution

of a model based design and verification methodology for embedded systems.

In the long term, there will be no distinction between hardware and software at

the design entry stage. The next generation of embedded system design tools

will focus on applications and enable non-experts to design embedded systems.

In this section, we will present a case study for the design of an industrial

size application, the MP3 decoder. We use the Embedded System Environment

(ESE) tool set [39] topresent themodel based design of theMP3decoder on four

heterogeneous embedded platforms. The ESE tool flow embodies the design

methods and principles that have been discussed in this book. We will present

results that demonstrate the speed and accuracy of automatically generated

models, the quality of the synthesized design and the productivity gains that

results from using ESE. The case study is meant to motivate designers to adopt

the embedded system design methods and principles presented in this book.

8.4.1 EMBEDDED SYSTEM ENVIRONMENT

ESE consists of two parts, the front end and the back end, as shown in

Figure 8.9. The input to front end is the system specification consisting of an

application model mapped to a given platform. It automatically generates a

TLM of the system for fast and early design evaluation. The back end reads

this TLM and synthesizes the required software and hardware to produce the

System Definition

Component
Models Front End

Component
Libraries Back End

Application Platform

TLM

CAM

mapping

ASIC
flow

FPGA
flow

FIGURE 8.9 ESE tool flow

Case Study 321

cycle accurate model (CAM). The CAM is the hand-off point to standard FPGA

and ASIC design automation tools. Therefore, ESE enables a structured and

automated design flow from an abstract specification to an implementation,

based on well defined design decisions.

The application, platform and mapping entry in ESE are simplified by an

intuitive Graphical User Interface (GUI). The application is captured as a set of

concurrent communicating processes. Each process has an associated C/C++

description. Channels are used to specify communication between processes.

These channels provide a rich set of user level communication mechanisms,

such as handshake, FIFO and asynchronous read/write.

The hardware platform is composed in the GUI from a set of processing ele-

ments (PEs), buses, and interface components called transducers. The software

platform is defined by configuring the software parameters of the processing

elements. These configurations include the RTOS definition, task scheduling

policy and memory management. Amapping from application to platform may

also be defined graphically in ESE. The C/C++ processes are mapped to PEs.

Channels are mapped to buses or routes in the hardware platform.

ESE FRONT END

The goal of ESE front end is to enable fast and early design space exploration by

automatically generating fast and accurate TLMs from the system specification.

The details of the TLM generation process are shown in Figure 8.10. The basic

idea is to automatically generate a high speed TLM that can be simulated to

obtain metrics about the design; these metrics may be performance, power,

reliability, security and so on. Once the metrics are obtained, the designer may

System Definition

Processor
Models

Timing
Estimation

Bus/RTOS
Models TLM Generation

SystemC
Simulation

Application Platform

Timed Application

SystemC TTLM Metrics

Design
Optimization

mapping

FIGURE 8.10 System level design with ESE front end

322 Embedded Design Practice

either be satisfied with them or go back to change either the application model,

the platform or the mapping decisions. A practical design space exploration

flow requires the capability to generate TLMs quickly. Therefore, manually

coding the TLMs is not an option. TLMs must also provide reliable metrics.

Perfect accuracy is desirable, but marginal error may be tolerated for a higher

simulation speed.

The metric estimation supported by ESE generated TLMs is timing. Timing

is annotated inside the TLM such that TLM simulation can predict timing for

any input. ESE uses a retarget-able technique to automatically annotate cycle-

approximate timing to the TLM. Data models of the PEs, buses and RTOS are

used for timing annotation. The PE data model includes the data path and the

memory hierarchy information of the PE. Therefore, it includes the number

and type of architectural components and the size and configuration of caches.

The bus model defines the bus transaction delays for various bus modes such

as word, burst or pipelined transfer. The RTOS model includes methods for

dynamic scheduling of processes and inter-process communication inside the

PE.

The TLM generation occurs in two steps. The first step is the computation

timing estimation where the application process code is instrumented with de-

lays. The process code is converted into a Control Data Flow Graph (CDFG)

representation. Each CDFG node represents a basic block in the application

process. Based on the mapping of the process to a given PE, each basic block

is statically scheduled on the PE data path. The scheduling provides the num-

ber of cycles needed to execute the basic block. The memory model of the

PE is used to estimate the overhead of data and instruction cache misses. The

scheduling and memory overhead delays are added to predict the delay for the

basic block. This prediction is done for all the basic blocks in all the processes

of the application model.

The processes, annotated with computation timing, are instantiated inside

PE models. The executable models of the buses, transducers and RTOSes are

instantiated and linked with the PEmodels. The RTOSmodel is used to capture

resource contention and dynamic scheduling of processes mapped to the same

PE. The abstract channel communication between the processes is transformed

into sequence of bus transactions, based on themapping of channels to buses and

routes. The final result of the above steps is the timed TLM (TTLM) written

in SystemC, which is the de facto language for system level modeling. The

SystemC TLLM can be compiled natively on the host machine and simulated

to obtain timingmetrics. Thesemetrics can then be used for design optimization

as explained earlier.

Case Study 323

ESE BACK END

After the design optimization steps are completed, a satisfactory designed is

obtained at the system level. However, this design is still in the form of a TLM,

which is suitable for simulation but for ready for implementation with standard

EDA tools. The TLM must be transformed into the aforementioned CAM for

hand-off to ASIC and FPGA implementation tools. The synthesis of the CAM

from TLM is supported by the ESE back end as shown in Figure 8.11.

There are three modules in the back end, each working on different parts

of the TLM. The software synthesis module produces the PE specific C/C++

code for software implementation. Naturally, the PEs in consideration for SW

synthesis are embedded processors such as CPUs or DSPs. The application

code is imported as is from the TLM. If an RTOS is present, the RTOS model

is replaced with the actual RTOS kernel library from the database. Finally, the

communication layers are generated. The communication layers implement

the abstract channel based communication in the TLM using processor spe-

cific code. The synchronization with external processes is implemented using

interrupt or polling. If interrupts are used, the specific interrupt handlers are

generated and instantiated for each channel. If a polling option is chosen, then

the HW polling flag management code is generated. The abstract data transfer

of the TLM is implemented by creating an address map for the transactions and

generating specific load and store transactions. Once all the code is generated,

the cross-compiler for the embedded processor is used to generate the software

binary.

For hardware implementation, the RTL code for the specific hardware PE

must be generated. If a RTL model of the PE is already available in the IP

FIGURE 8.11 SW-HW synthesis with ESE back end

324 Embedded Design Practice

database, the C model in the TLM is simply replaced with this RTLmodel. If a

RTL implementation is not available, it must be synthesized from theCmodel in

the TLM. For this purpose, an industrial high level synthesis (HLS) tool may be

used. ESE also supports generation of PE RTL model using the No Instruction

Set Computer (NISC) technology [40]. The NISC technology is based on the

programmable controller design of hardware PEs as explained in Section 6.1.

A suitable data path template is selected based on the C profile of the process

mapped to the hardware PE. Then, the NISC compiler is used to translate the

C code of the process into control words to drive the data path. A Verilog RTL

description of the data path and the control memory is automatically generated

from the NISC tools for hardware implementation.

Thefinal step inCAMgeneration is theRTLgenerationof the communication

structure of the system. The bus protocol library is used to instantiate the bus

controllers for all the buses in the system. The RTL description of all the

transducers is also generated automatically based on themapping of channels to

routes in the platform. Interrupt controllers are also instantiated and configured,

if needed.

The CAM produced by the ESE back end consists of C or binary code for all

the software PEs in the system and RTL Verilog code for all the hardware PEs,

buses and transducers. The CAM may be simulated using standard Verilog

simulators available commercially. Since the Verilog code is synthesize-able,

it can be input to logic synthesis tool for ASIC implementation. Alternately,

ESE produces FPGA-ready description of the CAM for prototyping on FP-

GAs. Therefore, ESE enables a well defined and automated path from system

specification to a software/hardware implementation.

8.4.2 DESIGN DRIVER: MP3 DECODER

As explained earlier, ESE provides model automation, estimation and soft-

ware/hardware synthesis from abstract system representation. The tool support

HuffDec

FilterCoreIMDCT

PCM

FilterCoreIMDCT

mp3 pcm

Left channel

Right channel

AliasRed

AliasRed

2granules

FIGURE 8.12 MP3 decoder application model

Case Study 325

in ESE facilitates design of complex embedded systems for large applications.

In order to demonstrate the efficacy of ESE, we have chosen the MP3 decoder

application as a design driver. The MP3 decoder is an ideal application in

many ways. It is reasonably complex, with over 13000 lines of C code, to jus-

tify a system level design approach. It is modular with well defined functions

to demonstrate partitioning and hardware-software implementation. Since it

typically has streaming input and output, there are real time constraints that

require an application specific implementation. Finally, MP3 decoder designs

are pervasive and highly relevant to mobile multimedia devices.

MP3 APPLICATION

The functional block diagramof theMP3decoder [182] is shown inFigure 8.12.

The input to the decoder is an MP3 data stream consisting of frames. Each

frame of MP3 data is decoded using huffman decoding function (HuffDec).

The frame is then split into granules that are sent to two channels, left channel

and right channel, for stereo decoding. The two channels are data independent,

so they can work on completely independent sections of the granules. Each

granule section undergoes a sequence of transforms, namely alias reduction

(AliasRed), inverse modified discrete cosine transform (IMDCT), and discrete

cosine transform (DCT). Finally, the decoded granules are combined into pulse

code modulated (PCM) frames that are ready to be sent to speaker.

In order to play the streamingMP3 filewithout dropped frames, the decoding

ratemust be at least 36 framesper second. As a result, after compensating for I/O

delays, each framemust be decoded within 26.12milliseconds (ms). Therefore,

we have a real time constraint on the execution time of the decoder application.

If a pure software implementation meets the required constraint, it would be

an ideal implementation. Otherwise, a multi-core implementation, may be

required. The decoding can be sped up by adding specialized hardware PEs

for the compute intensive IMDCT and DCT functions. The data independence

between the two decoding channels can also be used to parallelize the left and

right channel transforms.

MP3 DESIGN FLOW

A design space exploration exercise is done with ESE to implement the MP3

decoder on a suitable platform that meets the real time constraint of 26.12 ms on

the frame delay. In other words, the delay for each frame from the beginning of

huffman decoding to the end of PCMoutput must be less than 26.12 ms. During

this design space exploration, we start with a pure software implementation and

incrementally move the compute intensive functions to hardware processors

until the timing constraint is satisfied. The timed TLMs generated by ESE and

326 Embedded Design Practice

simulated with a sample MP3 file, as input, to estimate the performance of the

design and to determine if it meets the timing constraint.

The chosen underlying implementation technology is Xilinx Virtex-II FPGA

[196]with a maximum clock rate of 100 MHz. For software implementation, a

Xilinx Microblaze (MB) processor is used on the FPGA chip. MB interfaces

with the open peripheral bus (OPB and an off-chip SRAM is used to store the

program and data. All hardware processors are generated using the NISC tools

and they interface to the double handshake bus (DHB). Since the OPB and

DHB protocols are different, a transducer is used to interface between them.

The transducer component, therefore, enables communication betweenMB and

the hardware processors.

We start with a software implementation, in which all the MP3 functions are

mapped to MB. We will refer to this mapping as SW+0. The 0 indicates the
lack of any hardware processors. The timed TLM forSW +0was generated by
ESE and the frame decoding time was estimated to be 35.66ms. Based on this
estimation, the SW +0 design of the MP3 decoder does not meet the decoding
time constraint.

As a next step, we decided to add a hardware processor to implement the

DCT function. We will refer to the new design as SW+1, in which 1 refers
to the DCT hardware processor. The DCT hardware is generated using the

NISC tools and it uses the (DHB) interface protocol, as mentioned earlier. A

transducer (Tx) was also introduced to connect OPB and DHB. The timed TLM

for SW + 1was generated by ESE and the frame decoding time was estimated
to be 32.89ms. Based on this estimation, the SW + 1 design of the MP3
decoder also does not meet the decoding time constraint. The improvement

over SW +0was not too large because of the communication overhead caused
by Tx.
To further improve the design performance, without much effort, we decided

to use two instances of theDCThardware processor to execute theDCT function

MB1 Memory

Tx

DCT1 DCT2 IMDCT1 IMDCT2

OPB

DHB

FIGURE 8.13 MP3 decoder platform SW+4

Case Study 327

for the two decoding channels in parallel. This design is referred to as SW+2

because of the two hardware processors. The timed TLM for SW + 2 was
generated by ESE and the frame decoding time was estimated to be 29.99ms.
Again, the speed up over SW + 1 design was only marginal. The SW + 2
design of the MP3 decoder also did not meet the decoding time constraint.

As a next step, we created a SW+4 design that included two instances each

of DCT and IMDCT hardware processors. Therefore, the IMDCTs were also

accelerated using specialized hardware. This platform in shown in Figure 8.13.

The timed TLM for SW + 4 was generated by ESE and the frame decoding
time was estimated to be 15.96ms. Based on this estimation, SW + 4 design
of the MP3 decoder met the decoding time constraint of 26.12ms. As a result,
the SW + 4 design was selected for implementation.
The above four platforms and mappings were created graphically in ESE and

TLMs were automatically generated for evaluation of the respective designs.

The TLMs were then used to synthesize software and hardware for the Mi-

croblaze soft-core processor and the Xilinx FPGA by the ESE back end. The

generated software and hardware were exported to Xilinx Embedded Develop-

ment Kit (EDK) for bitstream generation and programming of the FPGA. The

programmed FPGA was tested with various MP3 sample inputs. In the next

section, we will present various results pertaining to design of the MP3 decoder

for the four platforms using ESE.

8.4.3 RESULTS

In this section we will discuss the results for system level design of the MP3

decoder with ESE.Wewill discuss four designs SW +0 toSW +4 as described
above. The results for ESE front end demonstrate the benefits of using TLMs

for early design performance estimation. The back end results demonstrate

that automatic software and hardware synthesis can lead to design quality that

is comparable to manual design. Automatic synthesis naturally leads to huge

productivity gain in both design development and validation time. The overall

design time is reduced from several months to less than a week as a result of

using automatic system level design tools.

TLM ACCURACY

TheMP3 design flow is simplified by the interactive graphical design decisions

and automatic TLM generation. The design decisions of adding hardware pro-

cessors were based on the estimation provided by the timed TLMs. Therefore,

it is crucial that the TLM estimation is accurate enough for the design decisions

to bemade reliably. To determine if TLM estimation is accurate, let us compare

328 Embedded Design Practice

the timing estimates provided by TLMs to actual board measurements for the

same designs.

Figure 8.14 compares the speed and accuracy of automatically generated

TLMs with traditional models. The X-axis shows the execution time of the

model and theY-axis is the relative accuracy of the timing reported by themodel.

The actual board design is the naturally the reference for measuring accuracy.

It can be seen that the CAM provides timing estimation that is identical to the

board measurements. Since the CAM is cycle accurate, this is to be expected.

However, the simulation time of the CAM is in the order of 15 to 18 hours for

each MP3 sample frame. This is inordinately long for any reasonable design

space exploration.

Typically, designers use instruction set simulationmodel (ISM) of a processor

to speed up simulation. An ISM models the processor micro-architecture in a

high level language such as C/C++. The binary of the software is loaded into

the ISM memory. During simulation, the ISM interprets the instruction stream

and updates the processor state. The hardware peripherals may be modeled in

RTL using VHDL or Verilog. The high level processor model is instantiated as

a module in Verilog. The ISM is typically faster than the CAM because it does

not model the processor at the cycle-accurate level. However, the performance

estimation accuracy of the ISM may vary based on the quality of the processor

model. In the case of the MP3 designs, the accuracy of the ISM varied from

50% to 80% compared to board measurements. The unpredictable accuracy of

<1sec0 <1 min 3~4 hrs 15~18hrs
Func. TLM

Exec. Time

Accuracy

100%
85-95%

~50-80%

Board

Timed TLM

ISM

CAM

FIGURE 8.14. Execution speed and accuracy trade-offs for embedded system models

Case Study 329

ISMs makes them unsuitable for early design space exploration. Furthermore,

although the simulation speed of ISMs was about 5 times faster than the CAMs,

it was still in the order of few hours.

The TLMs generated automatically by the ESE front end were two orders of

magnitude faster than the ISM or the CAM. The timed TLMs were generated

for all the design in under a minute and simulated under a minute as well. In

contrast with the ISM, the timed TLMs were consistently accurate for all the

platforms. A marginal error of under 15% was found in the TLM performance

estimation. Therefore, designers can use timed TLMs for early estimation with

a high degree of confidence.

In Figure 8.14, we distinguish between timed and untimed (or functional)

TLMs. While the timed TLMs are used for performance estimation, the high

simulation speed of functional TLMs makes them ideal for software develop-

ment. It must be noted that functional TLMsmay be generated even for a partial

or test application. The process code may be developed using the functional

TLM as a virtual platform. The results therefore demonstrate the efficacy and

suitability of TLMs for early application development and reliable performance

estimation.

DESIGN QUALITY

One of the primary concerns of automatic synthesis methods is the quality

of design. Various metrics for design quality may be used. Some of the most

commonmetrics are performance, silicon footprint and powerdissipation. Gen-

erally speaking, it is difficult to evaluate the efficiency of a synthesis method

by comparing its output to a manual design. The manual design is highly sen-

sitive to the type of application, its complexity and most of all the expertise of

0

5

10

15

20

25

30

35

0
10
20
30
40
50
60
70
80
90

100

SW+0 SW+1 SW+2 SW+4

De
lay

[m
s]

Ch
ip

uti
liz

ati
on

[%
]

%Slices

%BRAMs

Exec. time

FIGURE 8.15 MP3 manual design quality

330 Embedded Design Practice

the designer. Nonetheless, a comparison of synthesized designs with an expert

manual designer may give us better insight into the industrial viability of the

synthesis tool.

To evaluate the quality of implementation produced by ESE back end, an

expert designer created the software/hardware implementations of the fourMP3

decoder designs described earlier. The hardware PEs were designed in RTL

and the software was implemented directly on the FPGA using the Xilinx EDK

tools. Figure 8.15 shows the performance and area of the manual designs.

In order to evaluate the performance of the designs, a sample MP3 file was

loaded on the on-board memory and used as input. The average decoding time

for each frame is shown in milliseconds. The pure software design is too slow

to meet the 26.12 millisecond decoding time constraint. As predicted by TLM

simulation, only the SW +4 implementation was able to meet the specified real
time constraint. The design area is indicated by the percentage of block RAMs

(BRAMs) and FPGA slices used by the implementation. The hardware PEs,

namely the DCT and the IMDCT, had a hardwired controller implementation,

which justifies the high number of slices used by the SW + 4 implementation.
Figure 8.16 shows the performance and area of designs generated automat-

ically from ESE. Compared to the corresponding manual designs, the perfor-

mance of the generated designs was almost identical. In this case too, only

the SW + 4 design was able to meet the real time constraints imposed by
the application. The area of the generated designs was different compared the

manual designs. Notably, fewer slices were used in the generated design but

significantly more BRAMs were used. The reasoning is that the NISC design

0

5

10

15

20

25

30

35

0
10
20
30
40
50
60
70
80
90

100

SW+0 SW+1 SW+2 SW+4

De
lay

[m
s]

Ch
ip

 ut
iliz

ati
on

[%
]

%Slices

%BRAMs

Exec. time

FIGURE 8.16 Automatically generated MP3 design quality

Case Study 331

template was used for the hardware PEs in automatically generated designs.

In contrast to the manual designed hardware PEs, NISC uses control words in

memory to drive the data path. Therefore, NISC implementations are generally

memory intensive. However, all the design could still fit on the target Virtex-II

FPGA. The total number of FPGA resources used by automatically generated

designs was comparable to the manual designs. Therefore, we can conclude

that automatically generated designs are comparable to manual designs in terms

of quality metrics of performance and area. This is a significant argument in

favor of using automatic system level design tools.

PRODUCTIVITY GAINS

The single most important factor that drives the rise in design abstraction level

is productivity gain. Typically, designs descriptions at higher abstraction levels

are more compact, understandable and easily modified. Therefore, greater

optimization opportunities are available at higher abstraction level. The two

key productivity metrics we consider here are the design development time

and validation time. Development time directly translates to design cost and

time to market. Naturally, reducing the development time is always desirable.

Similarly, design validation time directly impacts quality of design which is an

important factor is product success.

Figure 8.17 illustrates the productivity gain in development time as a result

of using ESE. Traditional design practice starts with RTL and embedded SW

coding for selected platforms. The reference C specification model is used for

developing test bench to verify the cycle accurate models. For MP3 platforms

0
10
20
30
40
50
60
70

Spec. TLM CAM Board

De
v.

tim
e [

da
ys

] SW+0
SW+1
SW+2
SW+4

ESE

Manual

FIGURE 8.17 Development productivity gains from model automation

332 Embedded Design Practice

with HW components, the RTL development time was in the order of months.

As a result, board prototypes for these designs took between 40 to 60 days.

ESE drastically cuts prototype development time by automatically generating

TLM and RTL models. With ESE, the final board prototypes for MP3 designs

were available in less than a week after the specification model was finalized.

Consequently, ESE results in significant savings in design cost and shorter

development cycles.

Figure 8.18 illustrates the productivity gain resulting from a TLM based

design methodology supported by ESE. As a consequence of traditional cycle

accurate modeling, designers must make design optimizations and changes on

RTL and low level SW code. Each change needs to be verified using time

consuming cycle accurate simulations. Each CAM simulation of the MP3

designs took 15 to 18 hours for MP3 designs. This is a significant component

of design time. Although at speed on-board verification is faster than even

reference application C model simulation, bugs found in on-board testing are

difficult to trace back to the CAM.

TLMs remove the burden of cycle accurate simulations bymoving the design

abstraction to a higher level. ESE generated TLMs execute at the same speed

as reference C simulation. Design changes can made at the transaction level

and can hence be verified and debugged using the automatically generated high

speed TLMs. TLMs are easier to debug and maintain because their code size

is at least an order of magnitude less than corresponding CAM code size.

Automatic CAM generation from TLM is also less likely to introduce bugs

in the design compared to manual CAM optimizations. This has been true in

0
1
2
3
4
5
6
7
8
9

10

Spec. TLM CAM Board

SW+0
SW+1
SW+2
SW+4

ESE

Va
lid

ati
on

 Ti
me

 [s
ec

]

18.06 hrs17.71 hrs17.56 hrs15.93 hrs
Traditional

FIGURE 8.18 Validation productivity gain from using TLM vs. CAM

Summary 333

the past when the modeling abstraction moved from gate level to RTL with the

use of logic synthesis tools. Therefore, ESE reduces validation time from an

order of several hours or even days to a few seconds. As a results, designers

can use ESE to make platform and application optimizations at a higher level,

automatically generate TLMs and verify the optimizations in a few seconds.

8.5 SUMMARY

We discussed several academic and commercial tools for various aspects

of embedded system design. These range from system level modeling and

simulation to automatic synthesis of software and hardware. We also presented

a case study fordesign ofMP3decoder on a heterogeneousplatform. The results

show that the design methods presented in this book can work for practical

embedded system design. The automatic design tools provide fast and accurate

models, design quality comparable to manual and huge productivity gains.

These results point to the significant advantages and benefits of using embedded

system design methods described in this book.

References

[1] Samar Abdi and Daniel Gajski. Functional validation of system level model transfor-

mations. International Journal of Parallel Programming, 34(1):29–59, February 2006.

[2] Samar Abdi, Dongwan Shin, and Daniel Gajski. Automatic communication refinement

for system level design. In Design Automation Conference, pages 300–305, 2003.

[3] Accellera. RTL Semantics: Draft Specification, Version 0.8. Working Group of the

Architectural Language Committee, February 2001.

[4] Advanced RISCMachines Ltd. (ARM). AMBASpecification (Revision 2.0), 1999. ARM

IHI 0011A.

[5] Perry Alexander. System Level Design with Rosetta. Morgan Kaufmann, 2006.

[6] Charles André. Representation and analysis of reactive behaviors: A synchronous ap-

proach. In Computational Engineering in System Applications (CESA), Lille, France,

July 1996.

[7] Peter J. Ashenden. The Designer’s Guide to VHDL. Morgan Kaufmann, December

1995.

[8] Motor Industry Research Association. MISRA-C 2004: Guidelines for the Use of the C

Language in Critical Systems. 2004.

[9] AUTOSAR Partnership. Autosar: Automotive open system architecture. http://www.

autosar.org/.

[10] M. Balakrishnan and P. Marwedel. Integrated scheduling and binding: A synthesis

approach for design space exploration. InDesign Automation Conference, pages 68–74,

Las Vegas, NV, June 1989.

[11] Felice Balarin, Massimiliano Chiodo, Paolo Giusto, Harry Hsieh, Attila Jurecska, Lu-

ciano Lavagno, Claudio Passerone, Alberto Sangiovanni-Vincentelli, Ellen Sentovich,

Kei Suzuki, andBassamTabbara. Hardware-SoftwareCo-Design of Embedded Systems:

The POLIS Approach. Kluwer Academic Publishers, 1997.

[12] Felice Balarin, Harry Hsieh, Luciano Lavagno, Claudio Passerone, Alessandro Pinto,

Alberto Sangiovanni-Vincentelli, Yosinori Watanabe, and Guang Yang. Metropolis: A

336 REFERENCES

design environment for heterogeneous systems. In Wayne Wolf and Ahmed Jerraya,

editors,Multiprocessor Systems-on-Chips. Morgan Kaufmann, 2004.

[13] M. Barbacci. Instruction set processor specification (isps): The notation and its applica-

tion. IEEE Transactions on Computers, C-30(1):24–40, January 1981.

[14] M. R. Barbacci. A comparison of register transfer level languages for describing com-

puters and other digital systems. IEEE Transactions on Computers, C-24(2), February

1975.

[15] M. R. Barbacci. Instruction set processor specifications for simulation, evaluation, and

synthesis. In Design Automation Conference, pages 64–72, San Diego, CA, United

States, 1979.

[16] C. G. Bell and A. Newell. Computer Structures: Readings and Examples. McGraw-Hill,

1971.

[17] Rudy Belliardi, Ben Brosgol, Peter Dibble, David Holmes, and Andy Wellings. The

Real-Time Specification for Java, 2006.

[18] Albert Beneviste, Paul Caspi, StephenA. Edwards, NicolasHalbwachs, Paul LeGuernic,

and Robdert de Simone. The synchronous languages twelve years later. Proceedings of

the IEEE, 91(1):64–83, January 2003.

[19] L. Bening and H. Foster. Principles of Verifiable RTL Design. Kluwer Academic Pub-

lishers, 2000.

[20] Luca Benini, Davide Bertozzi, Alessandro Bogliolo, Francsco Menichelli, and Mauro

Olivieri. MPARM: Exploring the multi-processor SoC design space with SystemC.

Journal of VLSI Signal Processing, 41(2):169–182, September 2005.

[21] Gerard Berry. The foundations of Esterel. In Gordon Plotkin, Colin Stirling, and Mads

Tofte, editors, Proof, Language, and Interaction: Essays in Honor of Robin Milner. MIT

Press, 2000.

[22] Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jean Peperstraete. Cyclo-static

dataflow. IEEE Transactions on Signal Processing, 44(2):397–408, February 1996.

[23] GradyBooch, Ivar Jacobson, and James Rumbaugh. UnifiedModeling Language (UML)

Specification, Version 1.5. Object Management Group (OMG), March 2003.

[24] AimenBouchhima, Iuliana Bacivarov,WassimYoussef,Marius Bonaciu, and Ahmed A.

Jerraya. Using abstract CPU subsystem simulation model for high level HW/SW ar-

chitecture exploration. In Asia and South Pacific Design Automation Conference (ASP-

DAC), Shanghai, China, January 2005.

[25] R. K. Brayton, R. Camposano, G. De Micheli, R.H.J.M. Otten, and J. Van Eijndhoven.

The yorktown silicon compiler system. In Daniel D. Gajski, editor, Silicon Compilation.

Addison-Wesley, 1988.

[26] Forrest D. Brewer and Daniel D. Gajski. An expert-system paradigm for design. In

Design Automation Conference, pages 203–509, Las Vegas, NV, June 1986.

[27] R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-

actions on Computer, C-35(8):677–691, August 1986.

REFERENCES 337

[28] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. Ptolemy: A

framework for simulating and prototyping heterogeneous systems. International Journal

of Computer Simulation, Special Issue on Simulation SoftwareDevelopment, 4:155–182,

April 1994.

[29] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 1997.

[30] GiorgioC.Buttazzo.HardReal-TimeComputingSystems. KluwerAcademicPublishers,

1999.

[31] Lukai Cai and Daniel Gajski. Transaction level modeling: An overview. In International

Symposium on Hardware/Software Codesign and System Synthesis (CODES+ISSS),

Newport Beach, CA, USA, October 2003.

[32] Lukai Cai, Andreas Gerstlauer, and Daniel Gajski. Retargetable profiling for rapid, early

system-level design space exploration. In Design Automation Conference, San Diego,

CA, USA, June 2004.

[33] Jean-Paul Calvez. Embedded Real-Time Systems: A Specification and Design Method-

ology. John Wiley and Sons, 1993.

[34] RaulCamposano. Path-based scheduling for synthesis. IEEETransactions onComputer-

Aided Design of Integrated Circuits and Systems, 10(1):85–93, January 1991.

[35] Raul Camposano and Wayne Wolf (editors). High-Level VLSI Synthesis. Kluwer Aca-

demic Publishers, 1991.

[36] Raul Camposano and Wolfgang Rosenstiel. A design environment for the synthesis of

integrated circuits. In EUROMICRO Symposium on Microprocessing and Micropro-

gramming, Brussels, Belgium, September 1985.

[37] Carbon Design Systems. Carbon SoC Designer. http://www.carbondesignsystems.

com/.

[38] Celoxica Ltd. Handel-C Language Reference Manual, 2005.

[39] Center for Embedded Computer Systems (CECS). Embedded System Environment,

Center for Embedded Computer Systems, University of California, Irvine. http://www.

cecs.uci.edu/∼ese, 2008.

[40] Center for EmbeddedComputer Systems (CECS). NISCTechnology. http://www.cecs.

uci.edu/∼nisc/, 2008.

[41] D. Chen, J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang. xpilot: A platform-based

behavioral synthesis system. In SRC Techcon Conference, October 2005.

[42] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, January

2000.

[43] CoFluent Design. CoFluent Studio. http://www.cofluentdesign.com/.

[44] Lockheed Martin Corporation. JSF Air Vehicle C++ Coding Standards for the System

Development and Demonstration Program, 2005.

338 REFERENCES

[45] P. Coussy and A. Morawiec, editors. High-Level Synthesis: from Algorithm to Digital

Circuit. Springer, 2008.

[46] CoWare. http://www.coware.com/.

[47] G. de Jong. A uml-based design methodology for real-time and embedded systems.

In IEEE International Conference Design and Test in Europe (DATE), pages 776–779,

Paris, France, March 2002.

[48] S. Devadas, H.K. T. Ma, and A. R. Newton. On the verification of sequential machines

at different levels of abstraction. In Design Automation Conference, pages 271–276,

Miami Beach, FL, USA, June 1987.

[49] Srinivas Devadas and A. Richard Newton. Algorithm for allocation in data path synthe-

sis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

8(7):768–781, July 1989.

[50] S. W. Director, A. C. Parker, D. P. Siewiorek, and D. E. Thomas. A design methodology

and computer design aids for digital vlsi systems. IEEE Transactions on Circuits and

Systems, 28(7):634–645, July 1981.

[51] Rainer Dömer, Andreas Gerstlauer, and Daniel Gajski. SpecC Language Reference

Manual, Version 2.0. SpecC Technology Open Consortium (STOC), 2002.

[52] Rainer Dömer, Andreas Gerstlauer, Junyu Peng, Dongwan Shin, Lukai Cai, Haobo Yu,

Samar Abdi, and Daniel Gajski. System-on-Chip Environment: A SpecC-based Frame-

work for Heterogeneous MPSoC Design. EURASIP Journal on Embedded Systems

(JES), 2008(647953):13, 2008.

[53] dSPACE (Digital Signal ProcessingAndControl Engineering). TargetLink. http://www.

dspace.com/.

[54] Bruce Eckel. Thinking in Java. Prentice-Hall, Upper Saddle River, N.J., 2003.

[55] Stephen A. Edwards. Languages for Digital Embedded Systems. Kluwer Academic

Publishers, 2000.

[56] J. P. Elliot. Understanding Behavioral Synthesis: A Practical Guide to High-Level

Design. Kluwer Academic Publishers, 1999.

[57] Esterel Technologies. Scade suite. http://www.esterel-technologies.com/.

[58] Forte Design Systems. Cynthesizer. http://www.forteds.com/, 2008.

[59] Eclipse Foundation. Eclipse. http://www.eclipse.org/.

[60] D. Gajski and R. Kuhn. New vlsi tools. Computer Magazine, pages 11–14, December

1983.

[61] Daniel Gajski, Nikil Dutt, Allan Wu, and Steve Lin. High-Level Synthesis: Introduction

to Chip and System Design. Kluwer Academic Publishers, 1992.

[62] Daniel D. Gajski. Principles of Digital Design. Prentice-Hall, September 1996.

REFERENCES 339

[63] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan, and Jie Gong. Specification and Design

of Embedded Systems. Prentice-Hall, July 1994.

[64] Daniel D. Gajski, FrankVahid, SanjivNarayan, and Jie Gong. SpecSyn:An environment

supporting the specify-explore-refine paradigm for hardware/software system design.

IEEE Transactions onVery Large Scale Integrated Systems (TVLSI), 6(1):84–100,March

1998.

[65] Daniel D. Gajski, Jianwen Zhu, Rainer Doemer, Andreas Gerstlauer, and Shuqing Zhao.

SpecC: Specification Language andMethodology. Kluwer Academic Publishers, March

2000.

[66] LovicGauthier, SungjooYo, andAhmedA. Jerraya. AutomaticGeneration andTargeting

of Application-Specific Operating Systems and Embedded Systems Software. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 20(11),

November 2001.

[67] Geensys. Autosar builder. http://www.geensys.com/.

[68] MarcGeilen andTwanBasten. Requirements on the executionofKahnprocess networks.

In European Symposium on Programming (ESOP), pages 319–334, Warsaw, Poland,

April 2003.

[69] Gentleware. Poseidon for uml. http://www.gentleware.com/.

[70] Patrice Gerin, Sungjoo Yoo, Gabriela Nicolescu, and Ahmed A. Jerraya. Scalable and

flexible cosimulation of SoC designs with heterogeneous multiprocessor target architec-

tures. InAsia and South Pacific Design Automation Conference (ASP-DAC), Yokohama,

Japan, January 2001.

[71] Andreas Gerstlauer. Modeling Flow for Automated System Design and Exploration.

PhD thesis, Information and Computer Science, University of California, Irvine, May

2004.

[72] Andreas Gerstlauer, Rainer Dömer, Junyu Peng, and Daniel D. Gajski. System Design:

A Practical Guide with SpecC. Kluwer Academic Publishers, 2001.

[73] Andreas Gerstlauer, Junyu Peng, Dongwan Shin, Daniel Gajski, Atsushi Nakamura,

Dai Araki, and Yuuji Nishihara. Specify-Explore-Refine (SER): From specification to

implementation. In Proceedings of the Design Automation Conference (DAC), pages

586–591, Anaheim, CA, USA, June 2008.

[74] Andreas Gerstlauer, Dongwan Shin, Junyu Peng, Rainer Doemer, and Daniel Gajski.

Automatic, layer-based generation of system-on-chip bus communication models.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

26(9):1676–1687, September 2007.

[75] Andreas Gerstlauer, Haobo Yu, and Daniel D. Gajski. RTOS modeling for system level

design. In Ahmed A. Jerraya, Sungjoo Yu, Norbert Wehn, and Diedrik Verkest, editors,

Embedded Software for SoC. Springer, September 2003.

[76] Andreas Gerstlauer, Shuqing Zhao, Daniel Gajski, and Arkady Horak. Specc system-

level design methodology applied to the design of a gsm vocoder. In SASIMI, 2000.

340 REFERENCES

[77] Frank Ghenassia, editor. Transaction-Level Modeling with SystemC: TLMConcepts and

Applications for Embedded Systems. Springer, November 2005.

[78] Gordon. Specification and verification of hardware, October 1992.

[79] James Gosling, Bill Joy, Guy L. Steele Jr., and Gilad Bracha. The Java Language

Specification. Addison-Wesley, third edition, 2005.

[80] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel

Programming with the Message Passing Interface. MIT Press, second edition, 1999.

[81] TorstenGrötker, StanLiao, GrantMartin, and Stuart Swan. SystemDesignwith SystemC.

Springer, 2002.

[82] Yuri Gurevich. Evolving algebras 1993: Lipari guide. In Egon Börger, editor, Specifi-

cation and Validation Methods. Oxford University Press, 1995.

[83] Soonhoi Ha, Sungchan Kim, Choonseung Lee, Youngmin Yi, Seongnam Kwon, and

Young-Pyo Joo. PeaCE: A hardware-software codesign environment of multimedia

embedded systems. ACM Transactions on Design Automation of Electronic Systems

(TODAES), 12(3):1–25, 2007.

[84] L. Hafer and A. C. Parker. Register transfer level automatic digital design: The allocation

process. In Design Automation Conference, Las Vegas, NV, United States, June 1978.

[85] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous

dataflow programming language Lustre. Proceedings of the IEEE, 79(9):1305–1320,

September 1991.

[86] DavidHarel. Statecharts: A visual formalism for complex systems. Science of Computer

Programming, 8(3):231–274, June 1987.

[87] David Harel and Amnon Naamad. The STATEMATE semantics of Statecharts. ACM

Transactions on Software Engineering and Methodology (TOSEM), 5(4):293–333, Oc-

tober 1996.

[88] GrahamHellestrand. The engineering of supersystems. IEEEComputer, 38(1):103–105,

January 2005.

[89] F. Herrera, H. Posadas, P. Sanchez, and E. Villar. Systematic Embedded Software Gen-

eration from SystemC. In Proceedings of the Design Automation and Test Conference

in Europe, Munich, Germany, March 2003.

[90] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[91] Andreas Hoffmann, Heinrich Meyr, and Rainer Leupers. Architecture Exploration for

Embedded Processors with LISA. Kluwer Academic Publishers, 2003.

[92] Matthias Homann. OSEK: Betriebssystem-Standard für Automotive und Embedded Sys-

tems. mitp-Verlag, 2 edition, 2005.

[93] Yonghyun Hwang, Samar Abdi, and Daniel Gajski. Cycle-approximate retargetable per-

formance estimation at the transaction level. In IEEE International Conference Design

and Test in Europe (DATE), pages 3–8, Munich, Germany, March 2008.

REFERENCES 341

[94] IBM. Telelogic rhapsody. http://www.ibm.com/.

[95] MathWorks Inc. MATLAB and Simulink Student Edition. Pearson, 2008.

[96] National Instruments Inc. and Robert H. Bishop. LabVIEW Student Edition. Prentice-

Hall, 2007.

[97] Tensilica Inc. Xtensa xplorer design environment. http://tensilica.com/.

[98] International Organization for Standardization. Reference Model of Open System Inter-

connection (OSI), second edition, 1994. ISO/IEC 7498 Standard.

[99] International Technology Roadmap for Semiconductors (ITRS). ITRS Home. http:

//www.itrs.net/, 2008.

[100] R. S. Janka. Specification and Design Methodology for Real-Time Embedded Systems.

Kluwer Academic Publishers, 2004.

[101] Axel Jantsch.Modeling Embedded Systems and SoCs: Concurrency and Time inModels

of Computation. Morgan Kaufmann, 2004.

[102] A. A. Jerraya, H. Ding, P. Kission, and M. Rahmouni. Behavioral Synthesis and Com-

ponent Reuse with VHDL. Kluwer Academic Publishers, 1997.

[103] Ahmed A. Jerraya. Long term trends for embedded system design. In EUROMICRO

Symposium on Microprocessing and Microprogramming, pages 20–26, Rennes, France,

September 2004.

[104] Gilles Kahn. The semantics of a simple language for parallel programming. In Infor-

mation Processing, pages 471–475, Stockholm, Sweden, August 1974.

[105] Joachim Keinert, Martin Streubühr, Thomas Schlichter, Joachim Falk, Jens Gladigau,

Christian Haubelt, Jürgen Teich, and Mike Meredith. SystemCoDesigner - an auto-

matic ESL synthesis approach by design space exploration and behavioral synthesis for

streaming applications. ACM Transactions on Design Automation of Electronic Systems

(TODAES), 14(1):1–23, 2009.

[106] Brian Kernighan and Dennis Ritchie. The C programming language. Prentice-Hall,

Englewood Cliffs, NJ, 1988.

[107] Kurt Keutzer, Sharad Malik, Richard A. Newton, Jan M. Rabaey, and Alberto

Sangiovanni-Vincentelli. System-level design: Orthogonalization of concerns and

platform-based design. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 19(12):1523–1543, December 2000.

[108] A. A. Khan, Carolyn McCreary, and M. S. Jones. A comparison of multiprocessor

scheduling heuristics. In International Conference on Parallel Processing, pages 243–

250, 1994.

[109] Wolfgang Klingauf, Robert Günzel, Oliver Bringmann, Pavel Parfuntesu, and Mark

Burton. GreenBus: A generic interconnect fabric for transaction-level modeling. In

Design Automation Conference, San Francisco, CA, USA, July 2006.

[110] D. W. Knapp. Behavioral Synthesis: Digital System Design Using the Synopsys Behav-

ioral Compiler. Prentice-Hall, 1996.

342 REFERENCES

[111] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Applications.

Kluwer Academic Publishers, 1997.

[112] Matthias Krause, Oliver Bringmann, and Wolfgang Rosenstiel. Target software gen-

eration: An approach for automatic mapping of SystemC specifications onto real-time

operating systems. 10(4):229–251, December 2005.

[113] T. Kropf. Introduction to Formal Hardware Verification. Springer, 1999.

[114] D. Ku and G. De Micheli. High Level Synthesis of ASICs under Timing and Synchro-

nization Constraints. Kluwer Academic Publishers, 1992.

[115] Seongnam Kwon, Yongjoo Kim, Woo-Chul Jeun, Soonhoi Ha, and Yunheung Paek. A

retargetable parallel programming framework forMPSoC. ACMTransactions on Design

Automation of Electronic Systems (TODAES), 13(3), 2008.

[116] Luciano Lavagno, Grant Martin, and Bran Selic, editors. UML for Real: Design of

Embedded Real-Time Systems. KluwerAcademic Publishers, Norwell,MA, USA, 2003.

[117] Luciano Lavagno, Alberto Sangiovanni-Vincentelli, and Ellen Sentovich. Models of

computation for embedded system design. In Ahmed Jerraya and Jean Mermet, editors,

System-Level Synthesis. Kluwer Academic Publishers, 1999.

[118] Edward A. Lee. Consistency in dataflow graphs. IEEE Transactions on Parallel and

Distributed Systems, 2(2):223–235, April 1991.

[119] Edward A. Lee. The problem with threads. IEEE Computer, 39(5):33–42, May 2006.

[120] Edward A. Lee and David G. Messerschmitt. Synchronous data flow. Proceedings of

the IEEE, 75(9):1235–1245, September 1987.

[121] INMOS Limited. Occam 2 Reference Manual. Prentice-Hall, 1988.

[122] Joe S. Lis and Daniel D. Gajski. Synthesis from vhdl. In IEEE International Conference

on Computer Design, 1988.

[123] Lucky Lo Chi Yu Lo and Samar Abdi. Automatic systemc tlm generation for custom

communication platforms. In International Conference on Computer Design, pages

41–46, 2007.

[124] H. De Man, J. Rabaey, P. Six, and L. Claesen. Cathedral-II: A Silicon Compiler for

Digital Signal Processing. IEEE Design and Test of Computers, 3(6):13–25, November

1986.

[125] Florence Maraninch. The Argos language: Graphical representation of automata and

description of reactive systems. In International Conference on Visual Languages, Kobe,

Japan, October 1991.

[126] Grant Martin and Wolfgang Müller, editors. UML for SOC Design. Springer, 2005.

[127] Peter Marwedel. The MIMOLA design system: Detailed description of the software

system. InDesign Automation Conference, pages 59–63, San Diego, CA, United States,

June 1979.

REFERENCES 343

[128] Peter Marwedel. A new synthesis algorithm for mimola software system. In Design

Automation Conference, pages 131–137, Las Vegas, NV, June 1986.

[129] Peter Marwedel. Embedded Systems Design. Kluwer Academic Publishers, 2003.

[130] Peter Marwedel. Embedded System Design. Springer, 2006.

[131] MathWorks Inc. Real-Time Workshop. http://www.mathworks.com/.

[132] MathWorks Inc. Simulink - Simulation and Model-Based Design. http://www.

mathworks.com/.

[133] M. C. McFarland. The value trace: A database for automated digital design. Master’s

thesis, Carnegie-Mellon University, December 1978.

[134] M. C.McFarland. Using bottom-up design technique in the synthesis of digital hardware

from abstract behavioral descriptions. In Design Automation Conference, Las Vegas,

NV, June 1986.

[135] M.C. McFarland. Formal verification of sequential hardware: A tutorial. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 12(5):633–653,

May 1993.

[136] K.L.McMillan. SymbolicModel Checking: An approach to the State ExplosionProblem.

Kluwer Academic Publishers, 1993.

[137] MentorGraphics. TheEDATechnologyLeader -MentorGraphics. http://www.mentor.

com/, 2008.

[138] P.Michel, U. Lauther, and P. Duzy, editors. Synthesis Approach toDigital SystemDesign.

Kluwer Academic Publishers, 1992.

[139] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill,

1994.

[140] Microelectronic Embedded Systems Laboratory. SPARK: High-Level Synthesis using

Parallelizing Compiler Techniques. http://mesl.ucsd.edu/spark/, 2008.

[141] Robin Milner. A Calculus of Communicating Systems. Springer, 1980.

[142] TadaoMurata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,

77(4):541–580, April 1989.

[143] AndreNacul andTonyGivargis. Synthesis of Time-ConstrainedMultitaskingEmbedded

Software. volume 11, pages 822–847, October 2006.

[144] NEC System Technologies Ltd. CyberWorkBench - System LSI Design Environment

to implement All-in-C Concept. http://www.necst.co.jp/, 2008.

[145] H.Nikolov,M.Thompson, T. Stefanov,A.D. Pimentel, S. Polstra, R.Bose,C.Zissulescu,

and E. F. Deprettere. Daedalus: Toward composable multimedia MP-SoC design. In

Proc. of the ACM/IEEE Int. Design Automation Conference (DAC ’08), pages 574–579,

June 2008.

344 REFERENCES

[146] Achim Nohl, Gunnar Braun, Oliver Schliebusch, Rainer Leupers, Heinrich Meyr, and

Andreas Hoffmann. A universal technique for fast and flexible instruction-set archi-

tecture simulation. In Design Automation Conference, New Orleans, LA, USA, June

2002.

[147] Object Management Group (OMG). Unified modeling language (UML). http://www.

uml.org/.

[148] ObjectManagement Group (OMG). CommonObject Request Broker Architecture: Core

Specification, Version 3.0.3, 2004.

[149] Object Management Group (OMG). OMG Systems Modeling Language (OMG SysML),

Version 1.1, 2008.

[150] Open SystemC Initiative (OSCI). http://www.systemc.org/, 2008.

[151] Alex Orailoglu and Daniel D. Gajski. Flow graph representation. InDesign Automation

Conference, pages 503–509, Las Vegas, NV, June 1986.

[152] Barry M. Pangrle and Daniel D. Gajski. Design tools for intelligent silicon compila-

tion. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

6(6):1098–1112, November 1987.

[153] BarryM. Pangrle and Daniel D. Gajski. Slicer: A state synthesizer for intelligent silicon

compilation. In IEEE International Conference on Computer Design, Rye Brook, NY,

October 1987.

[154] Thomas M. Parks. Bounded Scheduling of Process Networks. PhD thesis, Electrical

Engineering and Computer Science, University of California, Berkeley, December 1995.

[155] P. Paulin and J. P. Knight. Algorithms for high-level synthesis. IEEEComputer, 6(6):18–

31, November 1989.

[156] P. G. Paulin and J. P. Knight. Force-directed scheduling for behavioral synthesis of

asic’s. IEEETransactions onComputer-AidedDesignof IntegratedCircuits andSystems,

8(6):661–679, June 1989.

[157] Philippe Coussy and Dominique Heller. GAUT WEB SITE. http://web.univ-ubs.fr/

gaut, 2008.

[158] Gordon D. Plotkin. A structural approach to operational semantics. Journal of Logic

and Algebraic Programming, 60(61):17–139, July 2004.

[159] Chris Porthouse. Jazelle for execution environments. http://www.arm.com/pdfs/

JazelleRCTWhitePaper final1-0 .pdf, May 2005.

[160] J. Rabaey, H. De Man, J. Vanhoof, G. Goossens, and F. Catthoor. Cathedral-II: A

Synthesis System for Multiprocessor DSP Systems. In Daniel D. Gajski, editor, Silicon

Compilation. Addison-Wesley, 1988.

[161] MehrdadReshadi andDaniel Gajski. A cycle-accurate compilation algorithm for custom

pipelined datapaths. In International Symposium on Hardware/Software Codesign and

System Synthesis (CODES+ISSS), 2005.

REFERENCES 345

[162] Sebastian Ritz, Matthias Pankert, Vojin Zivojnvic, and Heinrich Meyr. High-Level Soft-

ware Synthesis for the Design of Communication Systems. IEEE Journal on Selected

Areas in Communications, April 1993.

[163] Stewart Robinson. Simulation: The Practice of Model Development and Use. John

Wiley and Sons, March 2004.

[164] Alberto Sangiovanni-Vincentelli. Quo Vadis SLD: Reasoning about the Trends and

Challenges of System Level Design. Proceedings of the IEEE, 95(3):467–506, March

2007.

[165] Alberto Sangiovanni-Vincentelli and Grant Martin. The platform-based design and soft-

ware design methodology for embedded systems. IEEE Design and Test of Computers,

18(6):23–33, November 2001.

[166] Gunar Schirner, Andreas Gerstlauer, and Rainer Doemer. Abstract, multifaceted mod-

eling of embedded processors for system level design. In Asia and South Pacific Design

Automation Conference (ASP-DAC), Yokohama, Japan, January 2007.

[167] Dana Scott and Christopher Strachey. Toward a mathematical semantics for computer

languages. Technical Report PRG-6, Oxford Programming Research Group, 1971.

[168] D. P. Siewiorek and M. R. Barbacci. The cmu rt-cad system: An innovative approach to

computer aided design. In AFIPS National Computer Conference, pages 643–655, New

York, NY, United States, June 1976.

[169] Artisan Software. Artisan studio. http://www.artisansoftwaretools.com/.

[170] Space Codesign Systems. http://www.spacecodesign.com/.

[171] SpecC Technology Open Consortium Office. SpecC Technology Open Consortium.

http://www.specc.gr.jp/, 2008.

[172] The SPIRIT Consortium. IP-XACT, Release 1.4, March 2008.

[173] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA,

1997.

[174] Stuart Sutherland, Simon Davidmann, and Peter Flake. SystemVerilog For Design: A

Guide to Using SystemVerilog for Hardware Design andModeling. Springer, June 2003.

[175] Spark Systems. Enterprise architect. http://www.sparxsystems.com.au/.

[176] D. E. Thomas, E.M. Dirkes, R. A.Walker, J. V. Rajan, J. A. Nestor, and R. L. Blackburn.

The system architect’s workbench. In Design Automation Conference, pages 337–343,

Anaheim, CA, June 1988.

[177] D. E. Thomas, C. Y. Hitchcock, T. J. Kowalski, J. V. Rajan, and R. A. Walker. Method

of automatic data path synthesis. IEEE Computer, 16(12):59–70, December 1983.

[178] D. E. Thomas, E. D. Lagnese, R. A.Walker, J. A. Nestor, J.VRajan, and R.L. Blackburn.

Algorithmic and Register-Transfer Level Synthesis: The System Architect’s Workbench.

Kluwer Academic Publishers, 1990.

346 REFERENCES

[179] Donald E. Thomas. The Design and Analysis of an Automated Design Style Selector.

PhD thesis, Department of Electrical Engineering, Carnegie-Mellon University, 1977.

[180] Donald E. Thomas and Philip R.Moorby. The Verilog Hardware Description Language.

Kluwer Academic Publishers, June 2002.

[181] C. J. Tseng and D. P. Siewiorek. Automated synthesis of data paths on digital sys-

tems. IEEE Transactions onComputer-Aided Design of Integrated Circuits and Systems,

5(3):379–395, July 1986.

[182] Underbit Technologies Inc. MAD: MPEG audio decoder. http://www.underbit.com/,

2008.

[183] University of California, Los Angeles (UCLA). The xPilot System. http://cadlab.cs.

ucla.edu/soc/, 2008.

[184] Frank Vahid and Tony Givargis. Embedded System Design: A Unified Hardware/Soft-

ware Introduction. John Wiley and Sons, October 2001.

[185] Frank Vahid, Sanjiv Narayan, and Daniel D. Gajski. SpecCharts: A VHDL front-end

for embedded systems. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 14(6):694–706, June 1995.

[186] J. Vanhoof, K. V. Rompaey, I. Bolsens, G. Goossens, and H. DeMan. High-Level Syn-

thesis for Real-Time Digital Signal Processing. Kluwer Academic Publishers, 1993.

[187] VaST Systems Technology Corporation. http://www.vastsystems.com/.

[188] DiederikVerkest, KarlVanRompaey, IvoBolsens, andHugoDeMan. CoWare:ADesign

Environment for Heterogeneous Hardware/Software Systems. Design Automation for

Embedded Systems, 1(4):357–386, October 1996.

[189] Virtutech. Virtutech Simics. http://www.virtutech.com/.

[190] K.Wakabayashi and T. Yoshimura. A resource sharing and control synthesis method for

conditional branches. In International Conference on Computer Aided Design, pages

62–65, November 1989.

[191] Kazutoshi Wakabayashi. Cyber: High level synthesis system from software into asic.

In Camposano and Wolf, editors, High-Level Synthesis. Kluwer Academic Publishers,

1991.

[192] John Waldron. Introduction to RISC Assembly Language Programming. Addison-

Wesley, 1998.

[193] Andy Wellings. Concurrent and Real-Time Programming in Java. Wiley, 2004.

[194] ReinhardWilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,

DavidWhalley,GuillemBernat,ChristianFerdinand,ReinholdHeckmann,TulikaMitra,

Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The

worst-case execution time problem: Overview of methods and survey of tools. ACM

Transactions on Embedded Computing Systems (TECS), 7(3):1–53, April 2008.

[195] Wayne Wolf. Computers as Components. Morgan Kaufmann, 2001.

REFERENCES 347

[196] Xilinx Inc. FPGA and CPLDSolutions fromXilinx, Inc. http://www.xilinx.com/,2008.

[197] Haobo Yu. Software Synthesis for System-on-Chip. PhD thesis, Information and Com-

puter Science, University of California, Irvine, June 2005.

[198] Henning Zabel, Wolfgang Mueller, and Andreas Gerstlauer. Accurate RTOS modeling

and analysis with SystemC. In Wolfgang Ecker, WolfgangMueller, and Rainer Doemer,

editors, Hardware Dependent Software: Principles and Practice. Springer, 2009.

[199] Gerhard Zimmermann. The MIMOLA design system: A computer aided digital proces-

sor design method. In Design Automation Conference, pages 53–58, San Diego, CA,

United States, June 1979.

	Embedded System Design
	Preface
	Acknowledgments
	Contents
	List of Figures
	List of Tables

	Chapter 1 INTRODUCTION
	1.1 SYSTEM-DESIGN CHALLENGES
	1.2 ABSTRACTION LEVELS
	1.2.1 Y-CHART
	1.2.2 PROCESSOR-LEVEL BEHAVIORAL MODEL
	1.2.3 PROCESSOR-LEVEL STRUCTURAL MODEL
	1.2.4 PROCESSOR-LEVEL SYNTHESIS
	1.2.5 SYSTEM-LEVEL BEHAVIORAL MODEL
	1.2.6 SYSTEM STRUCTURAL MODEL
	1.2.7 SYSTEM SYNTHESIS

	1.3 SYSTEM DESIGN METHODOLOGY
	1.3.1 MISSING SEMANTICS
	1.3.2 MODEL ALGEBRA

	1.4 SYSTEM-LEVEL MODELS
	1.5 PLATFORM DESIGN
	1.6 SYSTEM DESIGN TOOLS
	1.7 SUMMARY

	Chapter 2 SYSTEM DESIGN METHODOLOGIES
	2.1 BOTTOM-UP METHODOLOGY
	2.2 TOP-DOWN METHODOLOGY
	2.2 TOP-DOWN METHODOLOGY
	2.3 MEET-IN-THE-MIDDLE METHODOLOGY
	2.4 PLATFORM METHODOLOGY
	2.5 FPGA METHODOLOGY
	2.6 SYSTEM-LEVEL SYNTHESIS
	2.7 PROCESSOR SYNTHESIS
	2.8 SUMMARY

	Chapter 3 MODELING
	3.1 MODELS OF COMPUTATION
	3.1.1 PROCESS-BASED MODELS
	3.1.2 STATE-BASED MODELS

	3.2 SYSTEM DESIGN LANGUAGES
	3.2.1 NETLISTS AND SCHEMATICS
	3.2.2 HARDWARE-DESCRIPTION LANGUAGES
	3.2.3 SYSTEM-LEVEL DESIGN LANGUAGES

	3.3 SYSTEM MODELING
	3.3.1 DESIGN PROCESS
	3.3.2 ABSTRACTION LEVELS

	3.4 PROCESSOR MODELING
	3.4.1 APPLICATION LAYER
	3.4.2 OPERATING SYSTEM LAYER
	3.4.3 HARDWARE ABSTRACTION LAYER
	3.4.4 HARDWARE LAYER

	3.5 COMMUNICATION MODELING
	3.5.1 APPLICATION LAYER
	3.5.2 PRESENTATION LAYER
	3.5.3 SESSION LAYER
	3.5.4 NETWORK LAYER
	3.5.5 TRANSPORT LAYER
	3.5.6 LINK LAYER
	3.5.7 STREAM LAYER
	3.5.8 MEDIA ACCESS LAYER
	3.5.9 PROTOCOL AND PHYSICAL LAYERS

	3.6 SYSTEM MODELS
	3.6.1 SPECIFICATION MODEL
	3.6.2 NETWORK TLM
	3.6.3 PROTOCOL TLM
	3.6.4 BUS CYCLE-ACCURATE MODEL (BCAM)
	3.6.5 CYCLE-ACCURATE MODEL (CAM)

	3.7 SUMMARY

	Chapter 4 SYSTEM SYNTHESIS
	4.1 SYSTEM DESIGN TRENDS
	4.2 TLM BASED DESIGN
	4.3 AUTOMATIC TLM GENERATION
	4.3.1 APPLICATION MODELING
	4.3.2 PLATFORM DEFINITION
	4.3.3 APPLICATION TO PLATFORM MAPPING
	4.3.4 TLM BASED PERFORMANCE ESTIMATION
	4.3.5 TLM SEMANTICS

	4.4 AUTOMATIC MAPPING
	4.4.1 GSM ENCODER APPLICATION
	4.4.2 APPLICATION PROFILING
	4.4.3 LOAD BALANCING ALGORITHM
	4.4.4 LONGEST PROCESSING TIME ALGORITHM

	4.5 PLATFORM SYNTHESIS
	4.5.1 COMPONENT DATA MODELS
	4.5.2 PLATFORM GENERATION ALGORITHM
	4.5.3 CYCLE ACCURATE MODEL GENERATION
	4.5.4 SUMMARY

	Chapter 5 SOFTWARE SYNTHESIS
	5.1 PRELIMINARIES
	5.1.1 TARGET LANGUAGES FOR EMBEDDED SYSTEMS
	5.1.2 RTOS

	5.2 SOFTWARE SYNTHESIS OVERVIEW
	5.2.1 EXAMPLE INPUT TLM
	5.2.2 TARGET ARCHITECTURE

	5.3 CODE GENERATION
	5.4 MULTI-TASK SYNTHESIS
	5.4.1 RTOS-BASED MULTI-TASKING
	5.4.2 INTERRUPT-BASED MULTI-TASKING

	5.5 INTERNAL COMMUNICATION
	5.6 EXTERNAL COMMUNICATION
	5.6.1 DATA FORMATTING
	5.6.2 PACKETIZATION
	5.6.3 SYNCHRONIZATION
	5.6.4 MEDIA ACCESS CONTROL

	5.7 STARTUP CODE
	5.8 BINARY IMAGE GENERATION
	5.9 EXECUTION
	5.10 SUMMARY

	Chapter 6 HARDWARE SYNTHESIS
	6.1 RTL ARCHITECTURE
	6.2 INPUT MODELS
	6.2.1 C-CODE SPECIFICATION
	6.2.2 CONTROL-DATA FLOWGRAPH SPECIFICATION
	6.2.3 FINITE STATE MACHINE WITH DATASPECIFICATION
	6.2.4 RTL SPECIFICATION
	6.2.5 HDL SPECIFICATION

	6.3 ESTIMATION AND OPTIMIZATION
	6.4 REGISTER SHARING
	6.5 FUNCTIONAL UNIT SHARING
	6.6 CONNECTION SHARING
	6.7 REGISTER MERGING
	6.8 CHAINING AND MULTI-CYCLING
	6.9 FUNCTIONAL-UNIT PIPELINING
	6.10 DATAPATH PIPELINING
	6.11 CONTROL AND DATAPATH PIPELINING
	6.12 SCHEDULING
	6.12.1 RC SCHEDULING
	6.12.2 TC SCHEDULING

	6.13 INTERFACE SYNTHESIS
	6.14 SUMMARY

	Chapter 7 VERIFICATION
	7.1 SIMULATION BASED METHODS
	7.1.1 STIMULUS OPTIMIZATION
	7.1.2 MONITOR OPTIMIZATION
	7.1.3 SPEEDUP TECHNIQUES
	7.1.4 MODELING TECHNIQUES

	7.2 FORMAL VERIFICATION METHODS
	7.2.1 LOGIC EQUIVALENCE CHECKING
	7.2.2 FSM EQUIVALENCE CHECKING
	7.2.3 MODEL CHECKING
	7.2.4 THEOREM PROVING
	7.2.5 DRAWBACKS OF FORMAL VERIFICATION
	7.2.6 IMPROVEMENTS TO FORMAL VERIFICATIONMETHODS
	7.2.7 SEMI-FORMAL METHODS: SYMBOLICSIMULATION

	7.3 COMPARATIVE ANALYSIS OF VERIFICATIONMETHODS
	7.4 SYSTEM LEVEL VERIFICATION
	7.4.1 FORMAL MODELING
	7.4.2 MODEL ALGEBRA
	7.4.3 VERIFICATION BY CORRECT REFINEMENT

	7.5 SUMMARY

	Chapter 8 EMBEDDED DESIGN PRACTICE
	8.1 SYSTEM LEVEL DESIGN TOOLS
	8.1.1 ACADEMIC TOOLS
	8.1.2 COMMERCIAL TOOLS
	8.1.3 OUTLOOK

	8.2 EMBEDDED SOFTWARE DESIGN TOOLS
	8.2.1 ACADEMIC TOOLS
	8.2.2 COMMERCIAL TOOLS
	8.2.3 OUTLOOK

	8.3 HARDWARE DESIGN TOOLS
	8.3.1 ACADEMIC TOOLS
	8.3.2 COMMERCIAL TOOLS
	8.3.3 OUTLOOK

	8.4 CASE STUDY
	8.4.1 EMBEDDED SYSTEM ENVIRONMENT
	8.4.2 DESIGN DRIVER: MP3 DECODER
	8.4.3 RESULTS

	8.5 SUMMARY

	References
	Index

