Chapter 2

SPECIFICATIONS AND MODELING

2.1 Requirements

Consistent with the simplified design flow (see fig. 1.6), we will now describe
requirements and approaches for specifying and modeling embedderdhsys

Specifications for embedded systems provitmlelsof the system under de-
sign (SUD). Models can be defined as follows [Jantsch, 2004]:

Definition: “A model is a simplification of another entity, which can be a phys-
ical thing or another model. The model contains exactly those charaitsris
and properties of the modeled entity that are relevant for a given task.d&imo
is minimal with respect to a task if it does not contain any other charactesistic
than those relevant for the task

Models are described in languages. Languages should be capadypeasdant-
ing the following feature's

m Hierarchy: Human beings are generally not capable of comprehending
systems containing many objects (states, components) having complex re-
lations with each other. The description of all real-life systems needs more
objects than human beings can understand. Hierarchy (in combination with
abstraction) is a key mechanism helping to solve this dilemma. Hierar-
chies can be introduced such that humans need to handle only a small num-
ber of objects at any time.

There are two kinds of hierarchies:

Lnformation from the books of Burns et al. [Burns and Welling890], Berg et al. [Berg et al., 1995]
and Gajski et al. [Gajski et al., 1994] is used in this list.

20

EMBEDDED SYSTEM DESIGN

— Behavioral hierarchies: Behavioral hierarchies are hierarchies con-
taining objects necessary to describe the system behavior. States, events
and output signals are examples of such objects.

— Structural hierarchies: Structural hierarchies describe how systems
are composed of physical components.

For example, embedded systems can be comprised of components such
as processors, memories, actuators and sensors. Processors, in tur
include registers, multiplexers and adders. Multiplexers are composed
of gates.

Component-based desigfSifakis, 2008] It must be “easy” to derive the
behavior of a system from the behavior of its components. If two com-
ponents are connected, the resulting new behavior should be predictable
Example: suppose that we add another component (say, some GPS unit) to
a car. The impact of the additional processor on the overall behavibeof
system (including busses etc.) should be predictable.

Concurrency: Real-life systems are distributed, concurrent systems com-
posed of components. It is therefore necessary to be able to spenify co
currency conveniently. Unfortunately, human beings are not verg gbo
understanding concurrent systems and many problems with real systems
are actually a result of an incomplete understanding of possible behaviors
of concurrent systems.

Synchronization and communication: Components must be able to com-
municate and to synchronize. Without communication, components could
not cooperate and we would use each of them in isolation. It must also be
possible to agree on the use of resources. For example, it is necassary
express mutual exclusion.

Timing-behavior: Many embedded systems are real-time systems. There-
fore, explicit timing requirements are one of the characteristics of embed-
ded systems. The need for explicit modeling of time is even more obvious
from the term “cyber-physical system”. Time is one of the key dimensions
of physics. Hence, timing requirememtsist be captured in the specifica-
tion of embedded/cyber-physical systems.

However, standard theories in computer science model time only in a very
abstract way. Th@©-notation is one of the examples. This notation just re-
flects growth rates of functions. It is frequently used to model run-times of
algorithms, but it fails to describe real execution times. In physics, quanti-
ties have units, but th®-notation does not even have units. So, it would not
distinguish between femtoseconds and centuries. A similar remark applies
to termination properties of algorithms. Standard theories are concerned

Specifications and Modeling 21

with proving that a certain algorithmventuallyterminates. For real-time
systems, we need to show that an algorithm terminates in a given amount
of time.

The resulting problems are very clearly formulated in a statement made by
E. Lee: ‘The lack of timing in the core abstraction (of computer science) is
a flaw, from the perspective of embedded softiviree, 2005].

According to Burns and Wellings [Burns and Wellings, 1990], modeling
time must be possible in the following four contexts:

— Techniques for measurirgjapsed time

For many applications it is necessary to check, how much time has
elapsed since some computation was performed. Access to a timer
would provide a mechanism for this.

— Means fordelaying of processe$or a specified time:

Typically, real-time languages provide some delay construct. Unfor-
tunately, typical implementations of embedded systems in software do
not guarantee precise delays. Let us assume thafltasiould be de-
layed by some amoudt Usually, this delay is implemented by chang-
ing taskT’s state in the operating system from “ready” or “run” to
“suspended”. At the end of this time interval's state is changed from
“suspended” to “ready”. This does not mean that the task actually exe-
cutes. If some higher priority task is executing or if preemption is not
used, the delayed task will delayed longer than

— Possibility to specifimeouts:
There are many situations in which we must wait for a certain event to
occur. However, this event may actually not occur within a given time
interval and we would like to be notified about this. For example, we
might be waiting for a response from some network connection. We
would like to be notified if this response is not received within some
amount of time, sap. Real-time languages usually also provide some
timeout construct. Implementations of timeouts frequently come with
the same problems which we mentioned for delays.

— Methods for specifyingleadlinesandschedules

For many applications it is necessary to complete certain computations
in a limited amount of time. For example, if the sensors of some car
signal an accident, air-bags must be ignited within about ten millisec-
onds. In this context, we must guarantee that the software will decide
whether or not to ignite the air-bags in that given amount of time. The
air-bags could harm passengers, if they go off too late. Unfortunately,
most languages do not allow to specify timing constraints. If they can

22

EMBEDDED SYSTEM DESIGN

be specified at all, they must be specified in separate control files, pop-
up menus etc. But the situation is still bad even if we are able to specify
these constraints: many modern hardware platforms do not have a very
predictable timing behavior. Caches, stalled pipelines, speculative ex-
ecution, task preemption, interrupts etc. may have an impact on the
execution time which is very difficult to predict. Accordingtiming
analysis(verifying the timing constraints) is a very hard design task.

State-oriented behavior: It was already mentioned in Chapter 1 that au-
tomata provide a good mechanism for modeling reactive systems. There-
fore, the state-oriented behavior provided by automata should be easy to
describe. However, classical automata models are insufficient, since they
cannot model timing and since hierarchy is not supported.

Event-handling: Due to the reactive nature of embedded systems, mecha-
nisms for describing events must exist. Such events may be external events
(caused by the environment) or internal events (caused by comporients o
the SUD).

Exception-oriented behavior: In many practical systems exceptions do
occur. In order to design dependable systems, it must be possible to de-
scribe actions to handle exceptions easily. It is not acceptable that-excep
tions must be indicated for each and every state (such as in the case of
classical state diagrams). Example: In fig. 2.1, inpaotight correspond to

an exception.

Figure 2.1. State diagram with exceptida

Specifying this exception at each state makes the diagram very complex.
The situation would get worse for larger state diagrams with many transi-
tions. We will later show, how all the transitions can be replaced by a single
one.

Presence of programming elements:Popular programming languages
have proven to be a convenient means of expressing computationsweat ha
to be performed. Hence, programming language elements should be avail-
able in the specification technique used. Classical state diagrams do not
meet this requirement.

Specifications and Modeling 23

m Executability: Specifications are not automatically consistent with the
ideas in people’s heads. Executing the specification is a means of plausi-
bility checking. Specifications using programming languages have a clear
advantage in this context.

= Support for the design of large systems:There is a trend towards large
and complex embedded software programs. Software technology mak fou
mechanisms for designing such large systems. For example, object-orien-
tation is one such mechanism. It should be available in the specification
methodology.

= Domain-specific support: It would of course be nice if the same speci-

fication technique could be applied to all the different types of embedded
systems, since this would minimize the effort for developing specification
techniques and tool support. However, due to the wide range of appticatio
domains, there is little hope that one language can be used to efficiently
represent specifications in all domains. For example, control-dominated,
data-dominated, centralized and distributed applications-domains can all
benefit from language features dedicated towards those domains.

= Readability: Of course, specifications must be readable by human beings.
Otherwise, it would not be feasible to validate whether or not the specifica-
tion meets the real intent of the the persons specifying the SUD. All design
documents should also be machine-readable into order to process them in a
computer. Therefore, specifications should be captured in langudmnes w
are readable by humans and by computers.

Initially, such specifications could use a natural language such as English
Japanese. Even this natural language description should be captaietin
sign document, so that the final implementation can be checked against the
original document. However, natural languages are not sufficierater
design phases, since natural languages lack key requirements éifi-spe
cation techniques: it is necessary to check specifications for complstenes
absence of contradictions and it should be possible to derive implementa-
tions from the specification in a systematic way. Natural languages do not
meet these requirements.

= Portability and flexibility: Specifications should be independent of spe-
cific hardware platforms so that they can be easily used for a variety of
target platforms. Ideally, changing the hardware platform should have n
impact on the specification. In practice, small changes may have to be tol-
erated.

= Termination: It should be feasible to identify processes that will terminate
from the specification. This means that we would like to use specifications

24 EMBEDDED SYSTEM DESIGN

for which the halting problem (the problem of figuring out whether or not a
certain algorithm will terminate; see, for example [Sipser, 2006]) is decid-
able.

= Support for non-standard I/0O-devices: Many embedded systems use
I/0-devices other than those typically found in a PC. It should be possi-
ble to describe inputs and outputs for those devices conveniently.

= Non-functional properties: Actual SUDs must exhibit a number of non-
functional properties, such as fault-tolerance, size, extendibility, at&de
lifetime, power consumption, weight, disposability, user friendliness, elec-
tromagnetic compatibility (EMC) etc. There is no hope that all these prop-
erties can be defined in a formal way.

= Support for the design of dependable systemsSpecification techniques
should provide support for designing dependable systems. For example
specification languages should have unambiguous semantics, facilitate for-
mal verification and be capable of describing security and safety require
ments.

= No obstacles to the generation of efficient implementationsSince em-
bedded systems msut be efficient, no obstacles prohibiting the generation
of efficient realizations should be present in the specification.

= Appropriate model of computation (MoC): The von-Neumann model of
sequential execution combined with some communication technique is a
commonly used MoC. However, this model has a number of serious prob-
lems, in particular for embedded system applications. Problems include:

— Facilities for describing timing are lacking.

— Von-Neumann computing is implicitly based on accesses to globally
shared memory (such as in Java). It has to guarantee mutually exclusive
access to shared resources. Otherwise, multi-threaded applications al-
lowing pre-emptions at any time can lead to very unexpected program
behaviors. Using primitives for ensuring mutually exclusive access
can, however, very easily lead to deadlocks. Possible deadlocks may
be difficult to detect and may remain undetected for many years.

Lee [Lee, 2006] provided a very alarming example in this direction.
Lee studied implementations of a simple observer pattern in Java. For
this pattern, changes of values must be propagated from some producer
to a set of subscribed observers. This is a very frequent pattern in

2Examples are typically provided in courses on operatingesyst

Specifications and Modeling 25

embedded systems, but is difficult to implement correctly in a multi-
threaded von-Neumann environment with preemptions. Lee’s code is
a possible implementation of the observer pattern in Java for a multi-
threaded environment:

public synchronized void addListener(listener) {...}
public synchronized void setValue(newvalue) {
myvalue=newvalue;
for (inti=0; i<mylisteners.length; i++) {
myListeners]i].valueChanged(newvalue)

}

MethodaddListener subscribes new observers, metisetl/alue propa-

gates new values to subscribed observers. In general, in a multithreaded
environment, threads can be pre-empted any time, resulting in an abri-
trarily interleaved execution of these threads. Adding observers while
setValue is already active could result in complications, i.e. we would
not know if the new value had reached the new listener. Moreover, the
set of observers constitutes a global data structure of this class.-There
fore, these methods are synchronized in order to avoid changing the set
of observers while values are already partially propagated. This way,
only one of the two methods can be active at a given time. This mutual
exclusion is necessary to prevent unwanted interleavings of the exe-
cution of methods in a multithreaded environment. Why is this code
problematic? It is problematic sincalueChanged could attempt to

get exclusive access to some resource @ayf that resource is allo-
cated to some other method (sa&y, then this access is delayed until

A releasesR. If A calls (possibly indirectlyaddListener or setValue
before releasin®, then these methods will be in a deadlosktvalue

waits forR, releasingr requiresA to proceedA cannot proceed before

its call of setvalue or addListener is serviced. Hence, we will have a
deadlock.

This example demonstrates the existence of deadlocks resulting from
using multiple threads which can be arbitrarily pre-empted and there-
fore require mutual exclusion for their access to critical resources. Le
showed [Lee, 2006] that many of the proposed “solutions” of the prob-
lem are problematic themselves. So, even this very simple pattern is
difficult to implement correctly in a multi-threaded von-Neumann en-
vironment. This example demonstrates that concurrency is really diffi-
cult to understand for humans and there may be the risk of oversights,
even after very rigorous code inspections.

Lee came to the drastic conclusion thabhtrivial software written

with threads, semaphores, and mutexes is incomprehensible to Humans

26 EMBEDDED SYSTEM DESIGN

and that threads as a concurrency model are a poor match for embed-
ded systems. ... they work well only ... where best-effort scheduling
policies are sufficieritiLee, 2005].

The underlying reasons for deadlocks have been studied in detail in
the context of operating systems (see, for example, [Stallings, 2009]).
From this context, it is well-known that four conditions must hold at
run-time to get into a deadlock: mutual exclusion, no pre-emption of
resources, holding resources while waiting for more, and a cyclic de-
pendency between threads. Obviously, all four conditions are met in
the above example. The theory of operating systems provides no gen-
eral way out of this problem. Rare deadlocks may be acceptable for a
PC, but they are clearly unacceptable for a safety-critical system.

We would like to specify SUDs such that we do not have to care about
possible deadlocks. Therefore, it makes sense to study non-vamaeu
MoCs avoiding this problem. We will study such MoCs from the next
section onwards. It will be shown that the observer pattern can be easily
implemented in other MoCs.

From the list of requirements, it is already obvious that there will not be any
single formal language capable of meeting all these requirements. Tieerefo
in practice, we must live with compromises and possibly also with a mixture of
languages (each of which would be appropriate for describing a céyparof
problems). The choice of the language used for an actual design wdhdep

on the application domain and the environment in which the design has to be
performed. In the following, we will present a survey of languages t¢hat

be used for actual designs. These languages will demonstrate théiassen
features of the corresponding model of computation.

2.2 Models of computation

Models of computation (MoCs) describe the mechanism assumed formerfor
ing computations. In the general case, we must consider systems comprising
components. It is now common practice to strictly distinguish between the
computations performed in the components and communication. Accordingly,
MoCs define (see also [Lee, 1999], [Janka, 2002], [Jantsch}]2(Iantsch,
2006)):

s Componentsand the organization of computations in such components:
Procedures, processes, functions, finite state machines are poesiiple-c
nents.

Specifications and Modeling 27

= Communication protocols: These protocols describe methods for com-
munication between components. Asynchronous message passing-and ren
dez-vous based communication are examples of communication protocols.

Relations between components can be captured in graphs. In sucls,graph

will refer to the computations also as processes or tasks. Accordinfgdy, re
tions between these will be captured tagk graphs andprocess networks

Nodes in the graph represent components performing computations. Com-
putations map input data streams to output data streams. Computations are
sometimes implemented in high-level programming languages. Typical com-
putations contain (possibly non-terminating) iterations. In each cycle of the
iteration, they consume data from their inputs, processes the data tkceive
and generate data on their output streams. Edges represent relatisasrbe
components. We will now introduce these graphs at a more detailed level.

The most obvious relation between computations is their causal dependence
Many computations can only be executed after other computations have termi-
nated. This dependence is typically capturedépendence graphsFig. 2.2
shows a dependence graph for a set of computations.

T
%@

Figure 2.2. Dependence graph

Definition: A dependence graph is a directed gr&pk- (V,E), whereV is
the set ofvertices or nodesandE is the set ofedges E CV xV imposes a
relation onV. If (vi,v2) € E, thenv; is called anmmediate predecessoof
v2 andv; is called anmmediate successoof vi. Supposé* is the transitive
closure oft. If (v1,v2) € E*, thenv, is called apredecessornf v, andv, is
called asuccessoof v;.

Such dependence graphs form a special case of task graphgyrapbls may
contain more information than modeled in fig. 2.2. For example, task graphs
may include the following extensions of dependence graphs:

1 Timing information: Tasks may have arrival times, deadlines, periods,
and execution times. In order to take these into account while scheduling
computations, it may be useful to include this information in the graphs.
Adopting the notation used in the book by Liu [Liu, 2000], we include pos-
sible execution intervals in fig. 2.3. ComputatioiRsto Tz are assumed to

28

EMBEDDED SYSTEM DESIGN

be independent. The first number in brackets is the arrival time, thedecon
the deadline (execution times are not explicitly shown). For exaripls,
assumed to be available at time 0 and should be completed no later than at
time 7.

0,7] (1,8] (3,10]
® @® ®

Figure 2.3. Graphs including timing information

Significantly more complex combinations of timing and dependence rela-
tions can exist.

Distinction between different types of relationsbetween computations:
Precedence relations just model constraints for possible executioarsequ
ces. At a more detailed level, it may be useful to distinguish between con-
straints for scheduling and communication between computations. Com-
munication can again be described by edges, but additional information
may be available for each of the edges, such as the time of the communica-
tion and the amount of information exchanged. Precedence edges may be
kept as a separate type of edges, since there could be situations in which
computations must execute sequentially even though they do not exchange
information.

In fig. 2.2, input and output (I/O) is not explicitly described. Implicitly it

is assumed that computations without any predecessor in the graph might
be receiving input at some time. Also, they might generate output for the
successor and that this output could be available only after the computa-
tion has terminated. It is often useful to describe input and output more
explicitly. In order to do this, another kind of relation is required. Using
the same symbols as Thoen [Thoen and Catthoor, 2000], we use partially
filled circles for denoting input and output. In fig. 2.4, partially filled circles
identify 1/0O edges.

Figure 2.4. Graphs including 1/0-nodes and edges

Specifications and Modeling 29

3 Exclusive access to resource€omputations may be requesting exclusive
access to some resource, for example to some input/output device or some
communication area in memory. Information about necessary exclusive ac-
cess should be taken into account during scheduling. Exploiting this infor-
mation might, for example, be used to avoid the priority inversion problem
(see page 186). Information concerning exclusive access to cesocan
be included in the graphs.

4 Periodic schedules:Many computations, especially in digital signal pro-
cessing, are periodic. This means that we must distinguish more carefully
between a task and its execution (the latter is frequently caljed fLiu,
2000]). Task graphs for such schedules are infinite. Fig. 2.5 shaaska
graph including jobs),_1 to J,.1 of a periodic task.

Figure 2.5. Graph including jobs

5 Hierarchical graph nodes: The complexity of the computations denoted
by graph nodes may be quite different. On one hand, specified compu-
tations may be quite involved and contain thousands of lines of program
code. On the other hand, programs can be split into small pieces of code
so that in the extreme case, each of the nodes corresponds only to a single
operation. The level of complexity of graph nodes is also called grain-
ularity . Which granularity should be used? There is no universal answer to
this. For some purposes, the granularity should be as large as possible. F
example, if we consider each of the nodes as one process to be schedule
by the RTOS, it may be wise to work with large nodes in order to minimize
context-switches between different processes. For other purpbsesy
be better to work with nodes modeling just a single operation. For exam-
ple, nodes will must be mapped to hardware or to software. If a certain
operation (such as the frequently used Discrete Cosine TransfornGDr D
can be mapped to special purpose hardware, then it should not bd burie
in a complex node that contains many other operations. It should rather be
modeled as its own node. In order to avoid frequent changes of the gran
ularity, hierarchical graph nodes are very useful. For example, &ha h
hierarchical level, the nodes may denote complex tasks, at a lower level ba
sic blocks and at an even lower level individual arithmetic operations. Fig.

3Basic blocks are code blocks of maximum length not includingtaanch except possibly at their end and
not being branched into.

30

EMBEDDED SYSTEM DESIGN

2.6 shows a hierarchical version of the dependence graph in fig.<2ti) u
a rectangle to denote a hierarchical node.

o
o

Figure 2.6. Hierarchical task graph

As indicated above, MoCs can be classified according to the models of com-
munication (reflected by edges in the task graphs) and the model of computa-
tions within the components (reflected by the nodes in the task graph). In the
following, we will explain prominent examples of such models:

= Models of communication:

We distinguish between two communication paradigstgared memory
andmessage passingOther communication paradigms exist (e.g. entan-
gled states in quantum mechanics [Bouwmeester et al., 2000]), but are not
considered in this book.

Shared memory:
For shared memory, communication is carried out by accesses to the
same memory from all components.

Access to shared memory should be protected, unless access is totally
restricted to reads. If writes are involved, exclusive access to the mem-
ory must be guaranteed while components are accessing shared mem-
ories. Segments of program code, for which exclusive access must
be guaranteed, are calleditical sections Several mechanisms for
guaranteeing exclusive access to resources have been propbsed.
include semaphores, conditional critical regions and monitors. Refer
to books on operating systems (e.g. Stallings [Stallings, 2009]) for a
description of the different techniques. Shared memory-based commu-
nication can be very fast, but is difficult to implement in multiprocessor
systems if no common memory is physically available.

Message passing:For message passing, messages are sent and re-
ceived. Message passing can be implemented easily even if no common
memory is available. However, message passing is generally slower
than shared memory based communication. For this kind of communi-
cation, we can distinguish between the following three techniques:

Specifications and Modeling 31

x asynchronous message passinglso callednon-blocking com-
munication : In asynchronous message passing, components com-
municate by sending messages through channels which can buffer
the messages. The sender does not need to wait for the recipient
to be ready to receive the message. In real life, this corresponds
to sending a letter or an e-mail. A potential problem is the fact
that messages may must be stored and that message buffers can
overflow. There are several variations of this scheme, including
communicating finite state machines (see page 52) and data flow
models (see page 58).

x synchronous message passimg blocking communication, ren-
dez-voushased communication In synchronous message pass-
ing, available components communicate in atomic, instantaneous
actions calledendez-vous The component reaching the point of
communication first has to wait until the partner has also reached
its point of communication. In real life, this corresponds to phys-
ical meetings or phone calls. There is no risk of overflows, but
the performance may suffer. Examples of languages following this
model of computation include CSP (see page 100) and ADA (see
page 100).

x extendedrendez-vousremote invocation: In this case, the sender
is allowed to continue only after an acknowledgment has been re-
ceived from the recipient. The recipient does not have to send
this acknowledgment immediately after receiving the message, but
can do some preliminary checking before actually sending the ac-
knowledgment.

= Organization of computations within the components:

Von-Neumann model: This model is based on the sequential execu-
tion of sequences of primitive computations.

Discrete event model: In this model, there are events carrying a to-
tally ordered time stamp, indicating the time at which the event occurs.
Discrete event simulators typically contain a global event queue sorted
by time. Entries from this queue are processed according to this order.
The disadvantage is that this model relies on a global notion of event
gueues, making it difficult to map the semantic model onto parallel im-
plementations. Examples include VHDL (see page 78), SystemC (see
page 94), and Verilog (see page 96).

Finite state machines (FSMs):This model is based on the notion of
a finite set of states, inputs, outputs, and transitions between states.

32 EMBEDDED SYSTEM DESIGN

Several of these machines may need to communicate, forming so-called
communicating finite state machines (CFSMs)

— Differential equations: Differential equations are capable of modeling
analog circuits and physical systems. Hence, they can find applications
in cyber-physical system modeling.

s Combined models: Actual languages are typically combining a certain
model of communication with an organization of computations within com-
ponents. For example, SDL (see page 52) combines finite state machines
with asynchronous message passing. StateCharts (see page 40) sombine
finite state machines with shared memories. ADA (see page 100) and CSP
(see page 100) combine von-Neumann execution with synchronous mes-
sage passing. Fig. 2.7 gives an overview of combined models which we
will consider in this chapter. This figure also includes examples of lan-
guages for most of the MoCs.

Communication/ Shared memory Message passing

Organization of compo- synchronous asynchronous

nents

Undefined components Plain text or graphics, use cases
(Message) sequence charts

Communicating finite | StateCharts SDL

state machines (CF:

SMs)

Data flow (not useful) Kahn networks

SDF

Petri nets C/E nets, P/T nets, ...

Discrete event (DE) VHDL, Verilog (Only experimental systems)

modef SystemC Distributed DE in Ptolemy

Von-Neumann C, C++, Java C, C++, Java, ... with libraries

model CSP, ADA |

Figure 2.7. Overview of MoCs and languages considered

Some MoCs have advantages in certain application areas, while other have
advantages in others. Choosing the “best” MoC for a certain application may
be difficult. Being able to mix MoCs (such as in the Ptolemy framework [Davis
et al., 2001]) can be a way out of this dilemma. Also, models may be translated
from one MoC into another one. Non-von-Neumann models are frequently

4The classification of VHDL, Verilog and SystemC is based onithglementation of these languages in
simulators. Message passing can be modeled in these landoageg” of the simulation kernel.

Specifications and Modeling 33

translated into von-Neumann models. The distinction between the different
models is blurring if the translation between them is easy.

Designs starting from non-von-Neumann models are frequently aaibet|-

based designs The key idea of model-based design is to have some abstract
model of the system under design. Properties of the system can thenligelstu

at the level of this model, without having to care about software codéw8iaf

code is generated only after the behavior of the model has been studied in
detail and this software is generated automatically. The term “model-based
design” is not precisely defined. It is usually associated with models afalon
systems, comprising traditional control system elements such as integrators,
differentiators etc. However, this view seems to be too restricted, since we
could also start with abstract models of consumer systems.

In the following, we will present different MoCs, using existing language
examples for demonstrating their features. A related (but shorter)ysigve
provided by Edwards [Edwards, 2006]. For a more comprehensasepta-
tion see [Gomez and Fernandes, 2010].

2.3 Early design phases

The very first ideas about systems are frequently captured in a venyriaf

way, possibly on paper. Frequently, only descriptions of the SUD in a natu
ral language such as English or Japanese exist in the early phasesigi d
projects. They are typically using a very informal style. These description
should be captured in some machine-readable document. They should be en
coded in the format of some word processor and stored by a tool managing
design documents. A good tool would allow links between the requirements, a
dependence analysis as well as version management.

DOORSR) [IBM, 2010b] exemplifies such a tool.

2.3.1 Use cases

For many applications, it is beneficial to envision potential usages of the SUD
Such usages are capturedise casesUse cases describe possible applications
of the SUD. Different notations for use cases could be used.

Support for a systematic approach to early specification phases is thefgoa
the so-called UML standardization effort [Object Management Grolg&)
2010b], [Fowler and Scott, 1998], [Haugen and Moller-Pederse®62 UML
stands for “Unified Modeling Language”. UML was designed by leadoft s
ware technology experts and is supported by commercial tools. UML primarily
aims at the support of the software design process. UML provides dasthn
ized form for use cases.

34 EMBEDDED SYSTEM DESIGN

For use cases, there is neither a precisely specified model of the compaitatio
nor is there a precisely specified model of the communication. It is frequently
argued that this is done intentionally in order to avoid caring about too many
details during the early design phases.

For example, fig. 2.8 shows some use cases for an answering ntachine

Play next message
Erase last message
Erase all messages

Caller
Turn answering machine off
Welcome+beep+voice mail

Figure 2.8. Use case example

User

Use cases identify different classes of users as well as the applicttites
supported by the SUD. In this way, it is possible to capture expectations at a
very high level.

2.3.2 (Message) Sequence Charts

At a slightly more detailed level, we might want to explicitly indicate the se-
guences of messages which must be exchanged between componedes in or
to implement some use of the SUBequence chartSCs) -earlier called
message sequence char{MSCs)- provide a mechanism for this. Sequence
charts use one dimension (usually the vertical dimension) of a 2-dimensional
chart to denote sequences and the second dimension to reflect thendiffer
communication components. SCs describe partial orders between message
transmissions. SCs display a possible behavior of a SUD.

SCs are also standardized in UML. UML 2.0 has extended SCs with elements
allowing a more detailed description than UML 1.0. Fig. 2.9 shows one of the
use cases of the answering machine as an example.

Dashed lines are so-called “life-lines”. Messages are assumed to &edrd
according to their sequence along the life-line. We assume that, in this ex-

SWe assume that UML is covered in-depth in a software engingarourse included in the curriculum.
Therefore, UML is only briefly discussed in this book.

Specifications and Modeling 35

:Caller :Phone :Answering machine

type numbers

signal call
signal pick-up wait
welcome send welcome
beep transmit beep
voice mail

transmit voice mail

return hand-set

signal end of call

Calling an answering machine

Figure 2.9. Answering machine in UML

ample, all information is sent in the form of messages. Arrows used in this
diagram denote asynchronous messages. This means several messege

sent by a sender without waiting for the receipt to be confirmed. Boxésmon

of life-lines represent active control at the corresponding comgonarthe
example, the answering machine is waiting for the user to pick up the phone
within a certain amount of time. If he or she fails to do so, the machine signals
a pick-up itself and sends a welcome message to the caller. The caller is then
supposed to leave a voice-mail message. Alternative sequences (eaglyan
termination of the call by the caller or the callee picking up the phone) are not
shown.

Complex control-dependent actions cannot be described by SCs. NG

must be used for this. Frequently, certain preconditions must be met©ra S
to apply. Such preconditions, a distinction between sequences which might
happen and those which must happen, as well as other extensionsitablav

in the so-called Live Sequence Charts [Damm and Harel, 2001].

Time/distance diagrams(TDDs) are a commonly used variant of SCs. In
time/distance diagrams, the vertical dimension reflects real time, not just se-
guence. In some cases, the horizontal dimension also models the reat@istan
between the components.

36 EMBEDDED SYSTEM DESIGN

TDDs provide the right means for visualizing schedules of trains or buses
Fig. 2.10 is an example. This example refers to trains between Amsterdam,
Cologne, Brussels and Paris. Trains can run from either Amsterdawiogii2

to Paris via Brussels. Aachen is included as an intermediate stop between
Cologne and Brussels. Vertical segments correspond to times spenioatssta

For one of the trains, there is a timing overlap between the trains coming from
Cologne and Amsterdam at Brussels. There is a second train which travels
between Paris and Cologne which is not related to an Amsterdam train.

Cologne Aachen Amsterdam Brussels Paris

Figure 2.10. Timel/distance diagram

This example and other examples can be simulated withetheimulation
software [Sirocic and Marwedel, 2007d]. A larger, more realistic example
is shown in fig. 2.11. This example [Huerlimann, 2003] describes simulated
Swiss railway traffic in the titschberg area. Slow and fast trains can be distin-
guished by their slope in the graph. This modeling technique is very frédguen
used in practice.

One of the key distinctions between the type of diagrams shown in figs. 2.9
and 2.11 is that fig. 2.9 does not include any reference to real time. UML
was initially not designed for real-time applications. UML 2.0 inclutiesng
diagrams as a special class of diagrams. Such diagrams enable referring to
physical time. Also, certain UML “profiles” (see page 112) allow additional
annotations to refer to time [Martin andiMer, 2005], [Muller, 2007].

TDDs are appropriate means for representing typical schedules.Mdo@&€s

and TDDs fail to provide information about necessary synchronizatieor.
example, in the presented example of fig. 2.10 it is not known whether the tim-
ing overlap at Brussels happens coincidentally or whether some redireyn
nization for connecting trains is required. Furthermore, permissible davsatio
from the presented schedule (min/max timing behavior) can hardly be included
in these charts.

Specifications and Modeling 37

= b g I =3 5
= if i o o -4 e -
Ed B B R = 5 g =3 £ 8B
and b T - 1000
I T 1 - L =
e 62
[+ o
0 1.1 3 a
iy
“ A
T
o) ;
1100 1
A [
i ?
20 1 Fo
al + L% E
T4y J*
- -
&3
L L
1200 1200

Figure 2.11. Railway traffic displayed by a TDD (courtesy H.&dli, IVT, ETH Zirich),
(©ETH Zirich

24 Communicating finite state machines

(CFSMs)

If we start to represent our SUD at a more detailed level, we need mansere
models. We mentioned at the beginning of this chapter that we need to describe
state-oriented behavior. State diagrams are a classical means of doing this.
Fig. 2.12 (the same as fig. 2.1) shows an example of a classical state diagram,
representing &nite state machine (FSM)

Figure 2.12. State diagram

Circles denote states. We will consider FSMs for which only one of their
states is active. Such FSMs are caltkterministic FSMs. Edges denote
state transitions. Edge labels represent events. Let us assume th&tim cer
state of the FSM is active, and that an event happens which correspmnd
one of the out-going edges for the active state. Then, the FSM will change
its state from the currently active state to the one indicated by the edge. FSM

38 EMBEDDED SYSTEM DESIGN

may be implicitly clocked. Such FSMs are calleghchronous FSMs For
synchronous FSMs, state changes will happen only at clock transiE&hgs
may also generate output (not shown in fig. 2.12). For more informatiomtabo
classical FSMs refer to, for example, Kohavi [Kohavi, 1987].

2.4.1 Timed automata

Classical FSMs do not provide information about time. In order to model
time, classical automata have been extended to also include timing informa-
tion. Timed automata are essentially automata extended with real-valued vari-
ables. The variables model the logical clocks in the system, that are initialized
with zero when the system is started, and then increase synchronoustiavith
same rate. Clock constraints i.e. guards on edges are used to restribethe
havior of the automaton. A transition represented by an edge can be taken
when the clocks values satisfy the guard labeled on the edge. Clocks may be
reset to zero when a transition is takgBengtsson and Yi, 2004].

Fig. 2.13 shows an example.

return hand-set

Wi off

Figure 2.13. Servicing an incoming line in an answering machine

The answering machine is usually in the initial state on the left. Whenever a
ring signal is received, clockis reset to 0 and a transition into a waiting state
is made. If the called person lifts off the hand-set, talking can take place until
the hand-set s returned. Otherwise, a transition to plaietextcan take place

if time has reached a value of 4.

Once the transition took place, a recorded message is played and thisgphase
terminated with a beep. Clogkensures that this beep lasts at least one time
unit. After the beep, clock is reset to 0 again and the answering machine is
ready for recording. If time has reached a value of 8 or if the caller resnain
silent, the next beep is played. This second beep again lasts at least one time
unit. After the second beep, a transition is made into the final state. In this

Specifications and Modeling 39

example, transitions are either caused by inputs (sulitt-aff) or by so-called
clock constraints

Clock constraints describe transitions whicdin take place, but they do not
have to. In order to make sure that transitions actually take place, additional
location invariants can be defined. Location invariants<= 5, x <=9 and

y <= 2 are used in the example such that transitions will take place no later
than one time unit after the enabling condition became true. Using two clocks
is for demonstration purposes only; a single clock would be sufficient.

Formally speaking, timed automata can be defined as follows [Bengtsson and
Yi, 2004]:

Let C be a set of real-valued, non-negative variables representing clbeks
> be a finite alphabet of possible inputs.

Definition: A clock constraintis a conjunctive formula of atomic constraints
of the formxonorx—yonforx,yeC,o € {<,<,=,>,>}andne N

Note that constanta used in the constraints must be integers, even though
clocks are real-valued. An extension to rational constants would bestasy
they could be turned into integers with simple multiplications. Bg) be the

set of clock constraints.

Definition [Bengtsson and Yi, 2004]: Amed automatonis a tuple(S s, E, I)
where:

= Sis a finite set of states.
m & is the initial state.

m E CSxB(C) x X x 2° x Sis the set of edge$(C) models the conjunctive
condition which must hold an&l models the input which is required for
a transition to be enabled® 2eflects the set of clock variables which are
reset whenever the transition takes place.

= | :S— B(C) is the set of invariants for each of the statB&C) represents
the invariant which must hold for a particular st&e This invariant is
described as a conjunctive formula.

This first definition is usually extended to allow parallel compositions of timed
automata. Timed automata having a large number of clocks tend to be difficult
to understand. More details about timed automata can be found, for example,
in papers by Dill et al. [Dill and Alur, 1994] and Bengtsson et al. [Besgts

and Yi, 2004].

Timed automata extend classical automata with timing information. However,
many of our requirements for specification technigques are not met by timed

40 EMBEDDED SYSTEM DESIGN

automata. In particular, in their standard form, they do no provide higrarch
and concurrency.

2.4.2 StateCharts: implicit shared memory
communication

StateCharts is presented here as a very prominent example of a langsade b
on automata and supporting hierarchical models as well as concurtethogs
include a limited way of specifying timing.

The StateCharts language was introduced by David Harel [Harel, 1887]
1987 and later described more precisely in [Drusinsky and Harel, 1989]
cording to Harel, the name was chosen since it vilas Hnly unused combina-
tion of flow or statewith diagramor chart”.

2.4.2.1 Modeling of hierarchy

StateCharts describes extended FSMs. Due to this, they can be usedifor mo
eling state-oriented behavior. The key extensiohiearchy. Hierarchy is
introduced by means aluper-states

Definitions:

m States comprising other states are caflefer-states

m States included in super-states are cadleb-statesof the super-states.

Fig. 2.14 shows a StateCharts example. It is a hierarchical version af1ig.
[s]
f

—
(30" () o)
™ k

Figure 2.14. Hierarchical state diagram

Super-states includes state$\,B,C,D andE. Suppose the FSM is in state
Z (we will also callZ to be anactive statg. Now, if input mis applied to
the FSM, themA and S will be the new active states. If the FSM is &$and
inputk is applied, therZ will be the new active state, regardless of whether the
FSM is in sub-state8, B,C,D or E of S. In this example, all states contained
in S are non-hierarchical states. In general, sub-stateS afuld again be

Specifications and Modeling 41

super-states consisting of sub-states themselves. Wisenever a sub-state
of some super-state is active, the super-state is active as well

Definitions:

= Each state which is not composed of other states is calbedia state

= For each basic statg the super states containirsgare calledancestor
states

The FSM of fig. 2.14 can only be in one of the sub-states of superSiaite
any time. Super states of this type are cal@-super-state$.

In fig. 2.14,k might correspond to an exception for which st&tbas to be
left. The example already shows that the hierarchy introduced in StatsChar
enables a compact representation of exceptions.

StateCharts allows hierarchical descriptions of systems in which a system de
scription comprises descriptions of subsystems which, in turn, may contain
descriptions of subsystems. Therarchy of the entire system can repre-
sented by dree. The root of the tree corresponds to the system as a whole,
and all inner nodes correspond to hierarchical descriptions (in tleecd&tat-
eCharts called super-nodes). The leaves of the hierarchy areieramehical
descriptions (in the case of StateCharts called basic states).

So far, we have used explicit, direct edges to basic states to indicate the nex
state. The disadvantage of that approach is that the internal structsupenf
states cannot be hidden from the environment. However, in a true hiaralrc
environment, we should be able to hide the internal structure so that it can
be described later or changed later without affecting the environment.isT his
possible with other mechanisms for describing the next state.

The first additional mechanism is tdefault state mechanism It can be used

in super-states to indicate the particular sub-states that will become active if
the super-states become active. In diagrams, default states are iddmyified
edges starting at small filled circles. Fig. 2.15 shows a state diagram using the
default state mechanism. It is equivalent to the diagram in fig. 2.14. Note that
the filled circle does not constitute a state itself.

Another mechanism for specifying next states isttts¢ory mechanism With

this mechanism, it is possible to return to the last sub-state that was active
before a super-state was left. The history mechanism is symbolized by a circle
containing the letteH. In order to define the next state for the very initial

6More precisely, they should be called XOR-super-statesesthe FSM is ireither A,B,C, D or E. How-
ever, this name is not commonly used in the literature.

42 EMBEDDED SYSTEM DESIGN

[s]

f
OROROROS0

Xké

Figure 2.15. State diagram using the default state mechanism

transition into a super-state, the history mechanism is frequently combined
with the default mechanism. Fig. 2.16 shows an example.

[s]
“——— T
RO ORCROEe
™~

Figure 2.16. State diagram using the history and the default state mechanism

The behavior of the FSM is now somewhat different. If we inputhile the
system is irZ, then the FSM will enteA if this is the very first time we entes,

and otherwise it will enter the last state that we were in before legxifdnis
mechanism has many applications. For examplé&, denotes an exception,
we could use inpuin to return to the state we were in before the exception.
StatesA,B,C,D andE could also callZ like a procedure. After completing
“procedure”Z, we would return to the calling state.

Fig. 2.16 can also be redrawn as shown in fig. 2.17. In this case, the Bymbo
for the default and the history mechanism are combined.

[s]

A
G) h i '
(o)) (o) (e)

Xké

Figure 2.17. Combining the symbols for the history and the default state mechanism

Specifications and Modeling 43

Specification techniques must also be able to describe concurrencg-conv
niently. Towards this end, the StateChart language provides a seca@wd cla
of super-states, so call&dND-states.

Definition: Super-stateSare calledAND-super-statesif the system contain-
ing Swill be in all of the sub-states @whenever it is irS.

An AND-super-state is included in the answering machine example shown in
fig. 2.18.

]answering—machine
e ™

o

line—-monitoring

T
|
|
ring | key pressed
@ Lproc | @ Kproc
|
hangup 1 done
|
|
|
|

key—monitoring (excl. on/off)

(caller)

key—on key—off

Figure 2.18. Answering machine

An answering machine normally performs two tasks concurrently: it is moni-
toring the line for incoming calls and the keys for user input. In fig. 2.18, the
corresponding states are calledait andKwait. Incoming calls are processed

in stateLproc while the response to pressed keys is generated in lSpate.

For the time being, we assume that the on/off switch (generating eveysif
andkey-or) is decoded separately and pushing it does not result in entering
Kproc. If this switch is pushed, the line monitoring state as well as the key
monitoring state are left and re-entered only if the machine is switched on.
At that time, default statekwait andKwait are entered. While switched on,
the machine will always be in the line monitoring state as well as in the key
monitoring state.

For AND-super-states, the sub-states entered as a result of someavde
defined independently. There can be any combination of history, defiadlt
explicit transitions. It is crucial to understand tladitsub-states will always be
entered, even if there is just one explicit transition to one of the sub-states.
cordingly, transitions out of an AND-super-state will always result iwvileg
all the sub-states.

44 EMBEDDED SYSTEM DESIGN

For example, let us modify our answering machine such that the on/off switch
like all other switches, is decoded in sté#tproc (see fig. 2.19).

lanswering-machine]
p

[on |

line-monitoring

key—monitoring h

|
1
|
ring ! key pressed
|
|
i |
|
1
1

hangup done
(caller) i
o)
kew/
key—off
N J

Figure 2.19. Answering machine with modified on/off switch processing

If pushing that key is detected idproc, a transition is made to theff state.
This transition results in leaving the line-monitoring state as well. Switching
the machine on again results in also entering the line-monitoring state.

AND-super-states provide the key mechanism for describing comayrr&ach
sub-state can be considered a state machine by itself. These machir@sare ¢
municating with each other, formingpmmunicating finite state machines
(CFSMs). This term has been used as the title of this section.

Summarizing, we can state the followin@tates in StateCharts diagrams
are either AND-states, OR-states or basic states.

2.4.2.2 Timers

Due to the requirement to model time in embedded systems, StateCharts also
provides timers. Timers are denoted by the symbol shown in fig. 2.20 (left).

a
20 ms timeout

Figure 2.20. Timer in StateCharts

Specifications and Modeling 45

After the system has been in the state containing the timer for the specified pe-
riod, a time-out will occur and the system will leave the specified state. Timers
can also be used hierarchically.

Timers can be employed, for example, at the next lower level of the higrarc
of the answering machine in order to describe the behavior of Efartec.

Fig. 2.21 shows a possible behavior for that state. The timing specification is
slightly different from the one in fig. 2.13.

Lproc

~

lift off \@ return dead

(callee)

timeout

AN, T
timeout
% 8s :
record silent

- J

Figure 2.21. Servicing the incoming line ih proc

Due to the exception-like transition for hangups by the caller in fig. 2.18, state
Lproc is terminated whenever the caller hangs up. For hangups (returns) by
the callee, the design of stdt@roc results in an inconvenience: If the callee
hangs up the phone first, the telephone will be dead (and quiet) until the calle
has also hung up the phone.

StateCharts do include a number of other language elements. For a full de-
scription refer to Harel [Harel, 1987]. A more detailed description of #e s
mantics of StateCharts is described by Drusinsky and Harel [Drusinsky a
Harel, 1989].

2.4.2.3 Edge labels and StateMate semantics

Until now, we have not considered outputs generated by our exterisigs.F
Generated outputs can be specified using edge labels. The generaiffan

edge label is évenfconditior] /reactiorf. All three label parts are optional.
Thereactionpart describes the reaction of the FSM to a state transition. Pos-
sible reactions include the generation of events and assignments to variables
Theconditionpart implies a test of the values of variables or a test of the cur-
rent state of the system. Theentpart refers to a test of current events. Events
can be generated either internally or externally. Internal events aeeajed as

a result of some transition and are describeckactionparts. External events

are usually described in the model environment.

Examples:

46 EMBEDDED SYSTEM DESIGN

= on-key/ on:=1 (Event-test and variable assignment),
= [on=1] (Condition test for a variable value),

= off-key[not in Lproc] / on:=0 (Event-test, condition test for a state, variable
assignment. The assignment is performed if the event has occurredeand th
condition is true).

The semantics of edge labels can only be explained in the context of the se-
mantics of StateMate [Drusinsky and Harel, 1989], a commercial implementa-
tion of StateCharts. StateMate assumes a step-based execution of StateMate-
descriptions. Each step consists of three phases:

1 In the first phase, the impact of external changes on conditions @mtsev
is evaluated. This includes the evaluation of functions which depend on
external events. This phase does not include any state changesr In ou
simple examples, this phase is not actually needed.

2 The next phase is to calculate the set of transitions that should be made in
the current step. Variable assignments are evaluated, but the newasdues
only assigned to temporary variables.

3 In the third phase, state transitions become effective and variables obtain
their new values.

The separation into phases 2 and 3 is especially important in order to tgeran
a reproducible behavior of StateMate models. Consider the StateMate model
of fig. 2.22.

swap
| \ Ja:=1b:= 0
| <
|
NS
ela:=b 1 e/b:=a

Figure 2.22. Mutually dependent assignments

In the second phase, new valuesdandb are stored in temporary variables,
saya’ andb'. In the final phase, temporary variables are copied into the user-
defined variables:

phase 2: a:=b; b’:=a;
phase 3: a:=a’; b:=b’

Specifications and Modeling 47

As a result, the values of the two variables will be swapped each time an event
e happens. This behavior corresponds to that of two cross-coupjéstacs

(one for each variable) connected to the same clock (see fig. 2.23p#exts

the operation of a clocked finite state machine including those two redisters

clock j—ﬁ\—ﬂ

b
DaD—‘

Figure 2.23. Cross-coupled D-type registers

Without the separation into phases, the same value would be assigned to both
variables. The result would depend on the sequence in which the assignme
were performed. The separation into (at least) two phases is quite typical f
languages that try to reflect the operation of synchronous hardwegsewill

find the same separation in VHDL (see page 94).

Due to the separation, the results do not depend on the order in which parts
of the model are executed by the simulation. This property is extremely im-
portant. Otherwise, there could be simulation runs generating differauitse

all of which would be considered correct. This could be very confusirall
design procedures. This is not what we expect from the simulation dala re
circuit with a fixed behavior.

There are different names for this property:

m Kahn [Kahn, 1974] calls this propertieterminate.

= |n other papers, this property is callddterministic. However, this termis
employed with different meanings:

— This term is used to denote non-deterministic finite state machines,
FSMs which can be in several states at the same time [Hopcroft et al.,
2006].

— Languages may have non-deterministic operators. For these operators,
different behaviors are legal implementations.

— Many authors consider systems to be non-deterministic if their behav-
ior depends on some input not known before run-time.

"We adopt IEEE standard schematic symbols [IEEE, 1991] forsgatd registers for all the schematics in
this book. The symbols in fig. 2.23 denote clocked D-type tegis We continue denoting multiplexers,
arithmetic units and memories by shape symbols, due to theirspidad use in technical documentation.

48 EMBEDDED SYSTEM DESIGN

— Inthe sense Kahn uses the term “determinate”.

In this book, we prefer to reduce possible confusion by following Ralote

that StateMate models can be determinate only if there are no other reasons
for an undefined behavior. For example, conflicts between transitiondmay
allowed (see fig. 2.24).

O~O ORe
I [0 | w10

Figure 2.24. Conflicting StateCharts transitions

Consider fig. 2.24 (a). If everA takes place while the system is in the left
state, we will must figure out, which transition will take place. If these conflicts
would be resolved arbitrarily, then we would have a non-determinate lmehav
Typically, priorities are defined such that this type of a conflict is eliminated.

Now, consider fig. 2.24 (b). There will be a conflict for1l5. Such conflicts
are difficult to detect. Achieving a determinate behavior requires the absen
of conflicts that are resolved in an arbitrary manner.

Note that there may be cases in which we would like to describe non-determi-
nate behavior (e.g. if we have a choice to read from two inputs). In soabey

we would typically like to explicitly indicate that this choice can be taken at
run-time (see theelect statement of ADA on page 102).

Implementations of hierarchical state charts other than StateMate typically
do not exhibit determinate behavior. These implementations correspond to a
software-oriented view onto hierarchical state charts. In such implemeargatio
choices are usually not explicitly described.

The three phases are assumed to be executed fostgiSteps are assumed
to be executed each time events or variables have changed. The exefution
a StateCharts model consists of the execution of a sequence of stefig.(see
2.25), each step consisting of three phases.

The set of all values of variables, together with the set of events gedera
(and the current time) is defined as ttatus’ of a StateMate model. After

8In earlier versions of the book, we used the term “deterniagtigbgether with an additional explanation.
SWe would normally use the term “state” instead of “status”.wdwer, the term “state” has a different
meaning in StateMate.

Specifications and Modeling 49

Status Step Status Step Status Step Status
O---------= >0 - - - - - - - - = >0- - - - - - - - -3 =0

3 phases 3 phases 3 phases

Figure 2.25. Steps during the execution of a StateMate model

executing the third phase, a new status is obtained. The notion of steps allows
us to define the semantics efentsmore precisely. Events are generated, as
mentioned, either internally or externallyhe visibility of events is limited

to the step following the one in which they are generated.Thus, events
behave like single bit values which are stored in permanently enabled registe
at one clock transition and have an effect on the values stored at theloeik
transition. They do not live forever.

Variables, in contrast, retain their values, until they are reassignedrdiog

to StateMate semantics, new values of variables are visible to all parts of the
model from the step following the step in which the assignment was made on-
wards. That means, StateMate semantics implies that new values of variables
are propagated to all parts of a model between two steps. StateMate implic-
itly assumes &roadcast mechanism for updates on variablesThis means

that StateCharts or StateMate can be implemented easily for shared memory-
based platforms but are less appropriate for message passing andididtrib
systems. These languages essentially assume shared memory-based commu-
nication, even though this is not explicitly stated. For distributed systems, it
will be very difficult to update all variables between two steps. Due to this
broadcast mechanism, StateMate is not an appropriate language for rgodelin
distributed systems.

2.4.2.4 Evaluation and extensions

StateCharts’ main application domain is that of local, control-dominated sys-
tems. The capability of nesting hierarchies at arbitrary levels, with a freieeh

of AND- and OR-states, is a key advantage of StateCharts. Anothen-adva
tage is that the semantics of StateMate is defined at a sufficient level of detalil
[Drusinsky and Harel, 1989]. Furthermore, there are quite a numbsorot
mercial tools based on StateCharts. StateMate [IBM, 2010a] and StateFlow
[MathWorks, 2010] are examples of commercial tools based on StateCharts
Many of them are capable of translating StateCharts into equivalentiglescr
tions in C or VHDL (see page 78). From VHDL, hardware can be gdéeédra
using synthesis tools. Therefore, StateCharts-based tools providemete

path from StateCharts-based specifications down to hardware. Gxh€ra

50 EMBEDDED SYSTEM DESIGN

programs can be compiled and executed. Hence, a path to softwarkrbase
alizations also exists.

Unfortunately, the efficiency of the automatic translation is sometimes a con-
cern. For example, we could map sub-states of AND-states to UNIX-pro-
cesses. This would hardly lead to efficient implementations on small proces-
sors. The productivity gain from object-oriented programming is not avail-
able in StateCharts, since it is not object-oriented. Furthermore, thedastad
mechanism makes it less appropriate for distributed systems. StateCharts do
not comprise program constructs for describing complex computation and ca
not describe hardware structures or non-functional behavior.

Commercial implementations of StateCharts typically provide some mecha-
nisms for removing the limitations of the model. For example, C code can
be used to represent program constructsrandule charts of StateMate can
represent hardware structures.

StateCharts allows timeouts. There is no straightforward way of specifying
other timing requirements.

UML includes a variation of StateCharts and hence allows modeling state ma-
chines. In UML, these diagrams are callstéte diagramsin version 1 of
UML and state machine diagramgrom version 2.0 onwards. Unfortunately,
the semantics of state machine diagrams in UML is different from StateMate:
the three simulation phases are not included.

2.4.3 Synchronous languages
2.4.3.1 Motivation

Describing complex SUDs in terms of state machine diagrams is difficult. Such
diagrams cannot express complex computations. Standard programming lan-
guages can express complex computations, but the sequence of exeeutin
eral threads may be unpredictable. In a multi-threaded environment with pre
emptive scheduling there can be many different interleavings of the efiffer
computations. Understanding all possible behaviors of such contwsysn
tems is difficult. A key reason for this is that, in general, many different exe-
cution orders are feasible, i.e. the execution order is not specifiedortiee

of execution may well affect the result. The resulting non-determinate be-
havior can have a number of negative consequences, such axafople,
problems with verifying a certain design. For distributed systems with in-
dependent clocks, determinate behavior is difficult to achieve. Howfyrer
non-distributed systems, we can try to avoid the problems of unnecessary n
determinate semantics.

Specifications and Modeling 51

For synchronous languages, finite state machines and programmingdasgua
are merged into one model. Synchronous languages can express coorplex
putations, but the underlying execution model is that of finite automata. They
describe concurrently operating automata. Determinate behavior is athieve
by the following key feature: .!. when automata are composed in parallel,

a transition of the product is made of the “simultaneous” transitions of all of
theni [Halbwachs, 1998]. This means: we do not have to consider all the
different sequences of state changes of the automata that would higl@dss
each of them had its own clock. Instead, we can assume the presersiegi€a
global clock. Each clock tick, all inputs are considered, new outputstatels

are calculated and then the transitions are made. This requires a faftdsba
mechanism for all parts of the model. This idealistic view of concurrency has
the advantage of guaranteeidgterminate behavior. This is a restriction if
compared to the general communicating finite state machines (CFSM) model,
in which each FSM can have its own clock. Synchronous languagest tiige
principles of operation in synchronous hardware and also the semaniiod f

in control languages such as IEC 60848 [IEC, 2002] and STEP 7 [&&me
2010]. See Potop-Butucaru et al. [Potop-Butucaru et al., 2006] forneg on
synchronous languages.

2.4.3.2 Examples of synchronous languages: Esterel, Lustre
and SCADE

Guaranteeing a determinate behavior for all language features has oleen
sign goal for the synchronous languages Esterel [Esterel Tedafiaslinc.,
2010] [Boussinot and de Simone, 1991] and Lustre [Halbwachs etS8l1]1

Esterel is a reactive language: when activated with an input eventebsted-

els react by producing an output event. Esterel is a synchronousdgegall
reactions are assumed to be completed in zero time and it is sufficient to ana-
lyze the behavior at discrete moments in time. This idealized model avoids all
discussions about overlapping time ranges and about events that\ahiie

the previous reaction has not been completed. Like other concurrgnidges,
Esterel has a parallelism operator, writterSimilar to StateCharts, communi-
cation is based on a broadcast mechanism. In contrast to StateChadsehow
communication is instantaneous. Instantaneous in this context means “within
the same clock cycle”. This means that all signals generated in a particular
clock cycle are also seen by the others parts of the model in the same clock cy
cle and these other parts, if sensitive to the generated signals, reactantbe
clock cycle. Several rounds of evaluations may be required until a sttdike

is reached. The propagation of values during the same macroscopia imistan
time corresponds to the generation of a next status for the same moment in time
in StateCharts, except that the broadcast is now instantaneous arelayetc

52 EMBEDDED SYSTEM DESIGN

until the next round of evaluations like in StateMate. For more and updated in-
formation about Esterel, refer to the Esterel home page [Esterel Tiegie®
Inc., 2010].

Esterel and Lustre use different syntactic techniques to denote CFEMs.
terel appears as a kind of imperative language, whereas Lustre loaks mo
like a data flow language (see page 58 for a description of data flow)-Syn
Charts is a graphical version of Esterel. In all three cases, semardiexar
plained by the closely-related underlying CFSMs. The commercial grahical
language SCADE [Esterel Technologies, 2010] combines elements ofeadl th
languages. SCADE is used for a number of safety-critical software comp
nents, for example by Airbus.

Due to the three simulation phases in StateMate, StateMate has the key at-
tributes of synchronous languages and it is determinate. According te Halb
wachs, ‘StateMate is almost a synchronous language and the only feature miss-
ing in StateMate is the instantaneous broadtfidalbwachs, 2008].

2.4.4 SDL: A case of message passing
2.4.4.1 Features of the language

StateCharts is not appropriate for modeling distributed communicating finite
state machines. For distributed systems, message passing is the better com-
munication paradigm. Therefore, we will now present a second example of
language based on communication finite state machines, an example based on
asynchronous message passing.

This language is called SDL (specification and description language). SDL
was designed for distributed applications. It dates back to the earlytis/en
Formal semantics have been available since the late eighties. The language
was standardized by the ITU (International Telecommunication Union). The
first standards document is the Z.100 Recommendation published in 1980, with
updates in 1984, 1988, 1992 (SDL-92), 1996 and 1999. Relevasibus of

the standard include SDL-88, SDL-92 and SDL-2000 [SDL Forum $gacie
2010].

Many users prefer graphical specification languages while othefsr gex-

tual ones. SDL pleases both types of users since it provides textualas w

as graphical formats. Processes are the basic elements of SDL.4&®0e3-
resent components modeled as extended finite state machines. Extensions in-
clude operations on data. Fig. 2.26 shows the graphical symbols used in the
graphical representation of SDL.

As an example, we will consider how the state diagram in fig. 2.27 can be rep-
resented in SDL. Fig. 2.27 is the same as fig. 2.15, except that outpuedas b

Specifications and Modeling 53

© identifies initial state C) state
[< input L >

Figure 2.26. Symbols used in the graphical form of SDL

output

k

Figure 2.27. FSM to be described in SDL

added, stat& has been deleted, and the effect of sighnhhas been changed.
Fig. 2.28 contains the corresponding graphical SDL representationio @iy,
the representation is equivalent to the state diagram of fig. 2.27.

(A (e)Ce (o JCE)
!i !i !wi !Y‘ [+ <[«
!w !w !w !w !w
{ | | | |
(8)Cc)Co)CE JCAICA)

Figure 2.28. SDL-representation of fig. 2.27

As an extension to FSMs, SDL processes can perform operationsarvdai-
ables can be declared locally for processes. Their type can eithez-oefned

or defined in the SDL description itself. SDL supports abstract data types
(ADTs). The syntax for declarations and operations is similar to that in other
languages. Fig. 2.29 shows how declarations, assignments and deceions
be represented in SDL.

SDL also contains programming language elements such as procedwes. Pr
cedure calls can also be represented graphically. Object-orientedefeaer
came available with version SDL-1992 of the language and were extentied w
SDL-2000.

54 EMBEDDED SYSTEM DESIGN

DCL Counter := Counter + 3;

Counter Integer;

_ 1
Date String; ‘@
|
Y v v
(1:30) (11:30) ELSE

¢

Figure 2.29. Declarations, assignments and decisions in SDL

Extended FSMs are just the basic elements of SDL descriptions. In ¢enera
SDL descriptions will consist of a set of interacting processes, or F$ts
cesses can send signals to other processes. Semantics of interparoess
munication in SDL is based on asynchronous message passing andtoencep
ally implemented througfirst-in first-out(FIFO)-queuesassociated with pro-
cesses. There is exactly one queue per process. Signals sent twalgrar
process will be placed into the corresponding FIFO-queue (see fi§). 2.3

process 3
process 2

Figure 2.30. SDL interprocess communication

Each process is assumed to fetch the next available entry from the FEt@ qu
and check whether it matches one of the inputs described for the cataéat

If it does, the corresponding state transition takes place and output istgthe
The entry from the FIFO-queue is ignored if it does not match any of thelliste
inputs (unless the so-called SAVE-mechanism is used). FIFO-queziesm@r
ceptually thought of as being of infinite length. This means: in the description
of the semantics of SDL models, FIFO-overflow is never considered:tirabh
systems, however, infinite FIFO-queues cannot be implemented. Theypenust
of finite length. This is one of the problems of SDL.: in order to derive realiza

Specifications and Modeling 55

tions from specifications, safe upper bounds on the length of the FUleQe3
must be proven.

Process interaction diagrams can be used for visualizing which of the pro-
cesses are communicating with each other. Process interaction diagrams in-
clude channelsused for sending and receiving signals. In the case of SDL,
the term “signal” denotes inputs and outputs of modeled automata. Process
interaction diagrams are special caseblotk diagrams (see below).

Example: Fig. 2.31 shows a process interaction diaggamvith channelswi1
andSw2. Brackets include the names of signals propagated along a certain
channel.

BLOCK B1
[A.B]
process P1 process P2
Swl
Signal A.B;
Sw2 |[A]
Y

Figure 2.31. Process interaction diagram

There are three ways of indicating the recipient of signals:

1 Through process identifiers: by using identifiers of recipient processes in
the graphical output symbol (see fig. 2.32 (left)).

Counter Counter
TO OFFSPRING VIA Swl

Figure 2.32. Describing signal recipients

Actually, the number of processes does not even need to be fixed at com-
pile time, since processes can be generated dynamically at run@irfe.
SPRING represents identifiers of child processes generated dynamically by
a process.

2 Explicitly: by indicating the channel name (see fig. 2.32 (righ§)1 is
the name of a channel.

3 Implicitly: if signal names imply the channel names, those channels are
used. Example: for fig. 2.31, signalwill implicitly always be communi-
cated via channedwl.

56 EMBEDDED SYSTEM DESIGN

No process can be defined within any other (processes cannottbdaétow-
ever, they can be grouped hierarchically into so-callkatks. Blocks at the
highest hierarchy level are callegistems Process interaction diagramsare
one level above the leaves of the hierarchical descriptieh.can be used
within intermediate level blocks (such as wittsrin fig. 2.33).

Block B

Bl >~ B2 >

y C3

Figure 2.33. SDL block

At the highest level in the hierarchy, we have the system (see fig. 2/84).
system will not have any channels at its boundary if the environment is also
modeled as a block.

System S

Figure 2.34. SDL system

Fig. 2.35 shows the hierarchy modeled by block diagrams 2.31, 2.33 and 2.34
Process interaction diagrams are next tolé@avesof the hierarchical descrip-
tion, while system descriptions represent theat. Some of the restrictions of
modeling hierarchy are removed in version SDL-2000 of the language. With
SDL-2000, the descriptive power of blocks and processes is hargtbaizd
replaced by a generafyentconcept.

AN
7 A

Figure 2.35. SDL hierarchy

Specifications and Modeling a7

In order to support the modeling of time, SDL includésers. Timers can
be declared locally for processes. They can be set and reset Usingrifi

RESET primitives, respectively. Fig. 2.36 shows the use of a timérhe

diagram corresponds to that of fig. 2.28, with the exceptions that timer
set to the current time plysduring the transition from state to E. For the

transition frome to A we now have a timeout gf time units. If these time
units have elapsed before sigridlas arrived, a transition to stateis taken

without generating output signeal

? Process S

e
¥ ¥ ¥ ¥ I

’ \3 ’ E ’ i/]set(Jow+p,T) | \\E
Ce)CeJCP JCE)

a_ D@)

Figure 2.36. Using timerT

SDL can be used, for example, to describe protocol stacks found inutemp
networks. Fig. 2.37 shows three processors connected througkea réom-
munication between processors and the router is based on FIFOs.

System

Processor A Router Processor B Processor C

e P11 2§

C3

Figure 2.37. Small computer network described in SDL

The processors as well as the router implement layered protocols (see fig
2.38).

Each layer describes communication at a more abstract level. The bebfvior
each layer is typically modeled as a finite state machine. The detailed descrip-
tion of these FSMs depends on the network protocol and can be quite comple
Typically, this behavior includes checking and handling of error condition
and sorting and forwarding of information packages.

58 EMBEDDED SYSTEM DESIGN

Block Processor A Block Processor B Block Processor C

layer-n Block Router layer-n layer-n

b ayer-2 b b

b ! b b

layer-1 layer-1 layer-1 layer-1

Figure 2.38. Protocol stacks represented in SDL

Available tools for SDL include interfaces to UML (see page 111), and SCs
(see page 34). A comprehensive list of tools is available from the SQinfor
[SDL Forum Society, 2009].

Estelle is another language which was designed to describe communication
protocols. Similar to SDL, Estelle assumes communication via channels and
FIFO-buffers. Attempts to unify Estelle and SDL failed.

2.4.4.2 Evaluation of SDL

SDL is excellent for distributed applications and has been used, for éeamp
for specifying ISDN. SDL is not necessarily determinate (the order, iichvh
signals arriving at some FIFO at the same time are processed, is not speci-
fied). Reliable implementations require the knowledge of a upper bound on
the length of the FIFOs. This upper bound may be difficult to compute. The
timer concept is sufficient for soft deadlines, but not for hard oH@s.archies

are not supported in the same way as in StateCharts. There is no futhprogr
ming support (but recent revisions of the standard have started tgeiiais)

and no description of non-functional properties.

2.5 Data flow
2.5.1 Scope

Data flow is a very “natural” way of describing real life applications. Data
flow models reflect the way in which data flows from component to component
[Edwards, 2001]. Each component transforms the data in one way otttbe

The following is a possible definition of data flow [Wikipedia, 2010]:

Definition: Data flow modeling is the process of identifying, modeling and
documenting how data moves around an information system. Data flow mod-
eling examines processes (activities that transform data from one form to an-

Specifications and Modeling 59

other), data stores (the holding areas for data), external entities (Wads
data into a system or receives data from a system), data flows (routesdiy wh
data can flow).

A data flow program is specified by a directed graph where the nodes (ver-
tices), calledactors, represent computations and the arcs represent commu-
nication channels. The computation performed by each actor is assumed to
be functional, that is, based on the input values only. Each processdtaa d
flow graph is decomposed into a sequence of firings, which are atomicsction
Each firing produces and consumes tokens.

For example, fig. 2.39 describes the flow of data in a video-on-dematehsys
[Ko and Koo, 1996].

\1/7 Admission Customer <
control Queue

Customer V 4\

List
Scheduler

Viewer Commands

Net Viewers

Network

File System Address
Viewers
Network
Storage Storage Video
Subsystem Control Data Interface Video Data

Figure 2.39. Video-on-demand system

For unrestricted data flow, it is difficult to prove requested system priepe
Therefore, restricted models are commonly used.

2.5.2 Kahn process networks

Kahn process networks (KPN) [Kahn, 1974] are a special casataf ftbw
models. Like other data flow models, KPNs consist of nodes and edgdssNo
correspond to computations performed by some program or task. KPNsyra
like all data flow graphs, show computations to be performed and their de-
pendence, but not the order in which the computations must be performed (
contrast to specifications in von-Neumann languages such as C). iatggs
communication via channels containing potentially infinite FIFOs. Computa-
tion times and communication times may vary, but communication is guaran-
teed to happen within a finite amount of time. Writes are never non-blocking,
since the FIFOs are assumed to be as large as needed. Reads mugtaspecif

60 EMBEDDED SYSTEM DESIGN

single channel to be read from. A node cannot check whether dataledea
before attempting a read. A process cannot wait for data for more thgrooine

at atime. Read operations block whenever an attempt is made to read from an
empty FIFO queue. Only a single process is allowed to read from a certain
gueue and only a single process is allowed to write into a queue. So, if out-
put data has to be sent to more than a single process, duplication of data must
be done inside processes. There is no other way for communication Inetwee
processes except through FIFO-queues.

In the following examplepl andp2 are incrementing and decrementing the
value received from the partner:

process pl(in int u, out int v){
int i;
i=0;
for (:) {
send (i,v);
i = wait (u);
i =i-1;
1
process p2(inint v, out int u){
int i
for () {
i = wait (v);
i =i+l
send (i,u);

H

Fig. 2.40 shows a graphical representation of this KPN.

Figure 2.40. Graphical representation of KPN

Specifications and Modeling 61

Obviously, we do not really need the FIFOs in this example, since messages
cannot accumulate in the channels. This example and other examples can be
simulated with theevi simulation software [Sirocic and Marwedel, 2007b].

The restrictions are resulting in tikey beauty of KPNs the order in which

a node is reading data from its channels is fixed by the sequence ofpead o
erations and does not depend on the order in which producers asmttiimg
data over the channels. This means that the sequence of operations-is inde
pendent of the speed of the nodes producing data.a given set of input
data, KPNs will always generate the same results, independently olfie
speed of the nodesThis property is important, for example, for simulations:
it does not matter how fast we are simulating the KPN, the result will always
be the same. In particular, the result does not depend on using harderar
celerators for some of the nodes and a distributed execution will give the sa
result as a centralized one. This property has been called “determimate” a
we are following this use. SDL-like conflicts at FIFOs do not exist. Due to this
nice property, KPNs are frequently used as an internal representéttin a
design flow.

Sometimes, KPNs are extended with a “merge”-operator (corresponding to
ADAs select statement, see page 102). This operation allows for queuing
reads with a list of channels at the same time and waiting for channels to gen-
erate data. Such an operator introduces a non-determinate behaviordé¢hne

of processing inputs is not specified if both inputs arrive at the same time. Th
extension is useful in practice, but it destroys the key beauty of KPNs.

In general, Kahn processes require scheduling at run-time, sinceifiicsilti

to predict their precise behavior over time. These problems result frofa¢he
that we do not make any assumptions regarding the speed of the chamhels a
the nodes. The question of whether or not finite-length FIFOs are isuffic
for an actual KPN model is undecidable in the general case. Nevedheles
execution times are actually unknown during early design phases antbtieere
this model is very adequate. Useful scheduling algorithms exist [Kienhuis
et al., 2000]. For KPNs, the number of processes is fixed, i.e. it does no
change at run-time.

2.5.3 Synchronous data flow

Scheduling becomes significantly easier and questions regarding bizisr

can decidably be answered if we impose restrictions on the timing of nodes
and channels. Synchronous data flow (SDF) [Lee and Messersche8ift] it

such a model.

SDF can best be introduced by referring to its graphical notation. Fig. 2.4
(left) shows a synchronous data flow graph. The graph is a directgghgr

62 EMBEDDED SYSTEM DESIGN

nodesA andB denote computatiorntsand+. Inputs to SDF graphs are assumed

to consist of an infinite stream of samples. Nodes can start their computations
when their inputs are available. Edges must be used whenever theretés a da
dependency between any two nodes.

1 1
A B A B
A A \le

Figure 2.41. Graphical representations of synchronous data flow

For each execution, the computation in a node is called a firing. For each fir-
ing, a number of tokens, representing data, is consumed and prodioncyd-
chronous data flow, the number of tokens produced or consumed inrimgge fi

is constant. Constant edge labels denote the corresponding numbesr. to
These constants facilitate the modelinghuidlti-rate signal processing appli-
cations, applications for which certain signals are generated at frei@sahat

are multiples of other frequencies. For example, in a TV set, some computa-
tions might be performed at a rate of 100 Hz while others are performed at a
rate of 50 Hz. In general, the number of tokens sent to an edge mustibk eq
to the number of tokens consumed. lbgetbe the number of tokens produced
by some sender per firing, and I&tbe the corresponding rate. Lat be the
corresponding number of tokens consumed per firing at the recaieietf,

be the corresponding rate. Then, we must have

ns* fS = nr * f|’ (2.1)
This situation is also visualized in fig. 2.42. The FIFO is needed for bufferin
if ng # n,. In contrast to Kahn process networks, the size can be computed
easily.

FIFO

Figure 2.42. Multi-rate SDF model

The termsynchronousdata flow reflects the fact that tokens are consumed
from the incoming arcs in a synchronous manner (all at the same instant in
time). The termasynchronousmessage passing reflects the fact that tokens

Specifications and Modeling 63

can be buffered using FIFOs. The property of producing and coimgua
constant number of tokens makes it possible to determine execution oter an
memory requirements at compile time. Hence, complex run-time scheduling
of executions is avoided. SDF graphs may include delays, denoted by the
symbolD on an edge (see fig. 2.41 (right)). SDF graphs can be translated
into periodic schedules for mono- as well as for multi-processor systesas (s
e.g. [Pino and Lee, 1995]). A legal schedule for the simple example of fig.
2.41 would consist of the sequen@e B) (repeated forever). A sequeng@e

A, B) (A executed twice as many times Bswould be illegal, since it would
accumulate an infinite number of tokens on the implicit FIFO buffer between
A andB.

SDF is very useful, for example, in modeling multimedia systems. In this case,
each token would correspond to audio or video information, such asdio au
sample or a video frame. The observer pattern, mentioned as a problem for
modeling with von-Neumann languages on page 25, can be easily implemented
correctly in SDF (see fig. 2.43). There is no risk of deadlocks. How&RF

does not allow adding new observers at run-time.

1 Bl
A

L = er2
\/X\Q%

Figure 2.43. Observer pattern in SDF

SDF models are determinate, but they are not appropriate for modelinglcontr
flow, such as branches etc. Several extensions and variations om®D&ls
have been proposed (see, for example Stuijk [Stuijk, 2007]):

= For example, we can hawveodescorresponding to states of an associated
finite state machine. For each of the modes, a different SDF graph could be
relevant. Certain events could then cause transitions between these modes.

= Homogeneous synchronous data flow (HSDF) graphs are a spes@l ca
of SDF graphs. For HSDF graphs, the number of token consumed and
produced per firing is always 1.

» For cyclo-static data flow (CSDF), the number of tokens produced amd co
sumed per firing can vary over time, but has to be periodic.

Complex SUDs including control flow must be modeled using more general
computational graph structures.

64 EMBEDDED SYSTEM DESIGN

2.5.4 Simulink

Computational graph structures are also frequently used in controle=gig.

For this domain, the Simulink toolbox of MATLAB [The MathWorks Inc.,
2010], [Tewari, 2001] is very popular. MATLAB is a modeling and simulation
tool based on mathematical models including, for example, partial differential
equations. Fig. 2.44 shows an example of a Simulink model [Marian and Ma,
2007].

tetalO

teta_in

(:) ~/| stick_cmd
pitch_mode

stick_com
not_teta
@% sticks
teta_com_select goto

sticks

elevator
teta0

control

O

elev_com 1.1235

o o
o o

& i) ‘|Hv—
) =
]

vc_cmd . .
- n Gain6é Saturation

speed_com Speed_com u\
|

teta_com

7

Vc_sens

|
Vc_sens . 0
- ineg_rst

9

pitch_net
air_speed_net

From
Figure 2.44. Simulink model

The amplifier and the saturation component on the right demonstrate the inclu-
sion of analog modeling. In the general case, the “schematic” could contain
symbols denoting analog components such as integrators, differentiahars.
switch in the center indicates that Simulink also allows some control flow mod-
eling.

The graphical representation is intuitive and allows control engineemstes f
on the control function, without caring about the code necessary to impteme
the function. The graphical symbols suggest that analog circuits adeasse
traditional components in control designs. A key goal is to synthesize aatw
from such models. This approach is typically associated with the rieodel-
based designbut there is no precise definition for this term.

Semantics of Simulink model reflect the simulation on a digital computer and
the behavior may be similar to that of analog circuits, but possibly not quite the
same. What is actually the semantics of a Simulink model? Marian and Ma
[Marian and Ma, 2007] describe the semantics as follov@&mulink uses an

idealized timing model for block (node) execution and communication. Both
happen infinitely fast at exact points in simulated time. Thereafter, simulated

Specifications and Modeling 65

time is advanced by exact time steps. All values on edges are constant in
between time stepsThis means that we execute the model time step after
time step. For each step, we compute the function of the nodes (in zero time)
and propagate the new values to connected inputs. This explanationatoes n
specify the distance between time steps. Also, it does not immediately tell us
how to implement the system in software, since even slowly varying outputs
may be recomputed frequently.

This approach is appropriate for modeling physical systems such asrcars
trains at a high level and then simulating the behavior of these systems. Also,
digital signal processing systems can be conveniently modeled with MATLAB
and Simulink. In order to generate implementations, MATLAB/Simulink mod-
els first must be translated into a language supported by software avdrard
design systems, such as C or VHDL.

Components in Simulink models provide a special casaabbrs. We can
assume that actors are waiting for input and perform their operationalhce
required inputs have arrived. SDF is another case of actor-basgabiges. In
actor-based languageghere is no need to pass control to these actors, like in
von-Neumann languages.

2.6 Petri nets
2.6.1 Introduction

Very comprehensive descriptions of control flow are feasible with caapu
tional graphs known as Petri nets. Actually, Petri nets mods} control and
control dependencies. Modeling data as well requires extensiongrohes.
Petri nets focus on the modeling of causal dependencies.

In 1962, Carl Adam Petri published his method for modeling causal digpen
cies, which became known as Petri nets. Petri nets do not assume aal glob
synchronization and are therefore especially suited for modeling distributed
systems.

Conditions, eventsand aflow relation are the key elements of Petri nets.
Conditions are either satisfied or not satisfied. Events can happen. ovihe fl
relation describes the conditions that must be met before events camhappe
and it also describes the conditions that become true if events happen.

Graphical notations for Petri nets typically use circles to denote conditiwhs a
boxes to denote events. Arrows represent flow relations. Fig. 2. 4&ssibirst
example.

This example describes mutual exclusion for trains at a railroad track thsit mu
be used in both directions. A token is used to prevent collisions of traing goin

66 EMBEDDED SYSTEM DESIGN

train entering track train leaving track
from the left to the right

train wanting | train going |

togoright Y totheright V

] M]
\J;
track available
| I U/ | I

train going
to the left
<— single-laned =—

Figure 2.45. Single track railroad segment

into opposite directions. In the Petri net representation, that token is $ymbo
ized by a condition in the center of the model. A patrtially filled circle (a circle
containing a second, filled circle) denotes the situation in which the condition
is met (this means: the track is available). When a train wants to go to the right
(also denoted by a patrtially filled circle in fig. 2.45), the two conditions that
are necessary for the event “train entering track from the left” are metcalV
these two conditionpreconditions. If the preconditions of an event are met,

it can happen. As a result of that event happening, the token is norlangié

able and there is no train waiting to enter the track. Hence, the preconditions
are no longer met and the partially filled circles disappear (see fig. 2.46).

train entering track train leaving track
from the left to the right

train wanting | train going |
togoright YV totheright V
1 1

(@)
&

train going
to the left

Figure 2.46. Using resource “track”

However, there is now a train going on that track from the left to the rigtit an
thus the corresponding condition is met (see fig. 2.46). A condition which is
met after an event happened is calledastcondition. In general, an event
can happen only if all its preconditions are true (or met). If it happens, the
preconditions are no longer met and the postconditions become valid. g\rrow

Specifications and Modeling 67

identify those conditions which are preconditions of an event and those tha

are postconditions of an event. Continuing with our example, we see that a
train leaving the track will return the token to the condition at the center of the

model (see fig. 2.47).

train entering track train leaving track
from the left to the right

train wanting |, train going }

togoright YV totheri ht
go rig — '9
\J

—

I _/ I
train going
to the left

track available

Figure 2.47. Freeing resource “track”

If there are two trains competing for the single-track segment (see fig), 2.48
only one of them can enter.

train entering track train leaving track
from the left to the right

train wanting |, train going }

to go right Y to the ri ht
g g — g
%Iable

=

L / L
train going
to the left

Figure 2.48. Conflict for resource “track”

In such situations, the next transition to be fired is non-deterministically cho-
sen. Analyses of the net must consider all possible firing sequenceBeFi
nets, we are intentionally modeling non-determinism.

A key advantage of Petri nets is that they can be the basis for formalsproo
about system properties and that there are standardized ways oatjgne
such proofs. In order to enable such proofs, we need a more foefiaitabn

of Petri nets. We will consider three classes of Petri nets: conditiornt/eets)
place/transitions nets, and predicate transition nets.

68 EMBEDDED SYSTEM DESIGN

2.6.2 Condition/event nets

Condition/event nets are the first class of Petri nets that we will define more
formally.

Definition: N = (C,E,F) is called anet, iff the following holds:

1 CandE are disjoint sets.

2 F C(ExC)U(CxE)isabinary relation, called flow relation.

The seC is called conditions and the détis called events.
Definition: LetN be a netand letc (CUE). Then,

1 *x:={y|lyFxye (CUE)} is called thepre-setof x. If x denotes an event,
*x is also called the set qireconditions of x.

2 x*:={y|xFy,y € (CUE)} is called thepost-setof x. If x denotes an event,
x* is also called the set gfostconditionsof x.

The terms preconditions and postconditions are preferred if these agHyac
denote conditiong C, that is, ifx € E.

Definition: Let (c,e) € C x E.
1 (c,e) is called doop, if cFeAeFc

2 N is calledpure, if F does not contain any loops (see fig. 2.49, left).

Definition: A net is calledsimpleif no two transitiong; andt, have the same
set of pre- and postconditions.

Gt o™ 20

Figure 2.49. Nets which are not pure (left) and not simple (center and right)

Simple nets with no isolated elements meeting some additional restrictions are
calledcondition/event nets Condition/event nets are a special case of bipar-
tite graphs (graphs with two disjoint sets of nodes). We will not discus®thos
additional restrictions in detail since we will consider more general cladses
nets in the following.

Specifications and Modeling 69

2.6.3 Place/transition nets

For condition/event nets, there is at most one token per condition. For many
applications, it is useful to remove this restriction and to allow more tokens
per conditions. Nets allowing more than one token per condition are called
place/transition nets. Places correspond to what we so far called cosditidn
transitions correspond to what we so far called events. The numberardok
per place is called marking. Mathematically, a marking is a mapping from
the set of places to the set of natural numbers extended by a speciallsymb
denoting infinity.

Let Np denote the natural numbers including 0. Then, formally speaking,
place/transition nets can be defined as follows:

Definition: (P, T,F,K,W,My) is called a place/transition net=

1 N=(P,T,F) is anetwith placep € P, transitiong € T, and flow relation
F.

2 MappingK : P — (NoU {w}) \ {0} denotes the capacity of places gym-
bolizes infinite capacity).

3 MappingW : F — (No\ {0}) denotes the weight of graph edges.

4 MappingMp : P — NoU {w} represents the initial marking of places.

Edge weights affect the number of tokens that are required beforstioms
can happen and also identify the number of tokens that are generatexittia c
transition takes place. L&l (p) denote a current marking of plages P and

let M’(p) denote a marking after some transitioa T took place. The weight
of edges belonging to preconditions represents the number of tokerer¢hat
removed from places in the precondition set. Accordingly, the weightgé&d
belonging to the postconditions represents the number of tokens thatme ad
to the places in the postcondition set. Formally, marKifigis computed as
follows:

M(p)_W<p7t)7 if pe .t\ t*

M (o) = J M(P)+W(t,p), if pe t*) °t

PI=1Y M(p)—W(p.) +W(t, p), if pe *tnte
M(p) otherwise

Fig. 2.50 shows an example of how transittpaffects the current marking.

By default, unlabeled edges are considered to have a weight of 1 &ixkied
places are considered to have unlimited capaoity

70 EMBEDDED SYSTEM DESIGN

Figure 2.50. Generation of a new marking

We now need to explain the two conditions that must be met before a transition
t € T can take place:

= for all placesp in the precondition set, the number of tokens must at least
be equal to the weight of the edge frgmto t and

m for all placesp in the postcondition set, the capacity must be large enough
to accommodate the new tokens whichill generate.

Transitions meeting these two conditions are caNédctivated. Formally,
this can be defined as follows:

Definition: Transitiont € T is said to be M-activated=-
(Vpe *t:M(p) >W(p,t)) A(Vp et®: M(p)+W(t,p') <K(p))

Activated transitions can happen, but they do not need to. If severaitr
tions are activated, the sequence in which they happen is not deterministically
defined.

The impact of a firing transitiohon the number of tokens can be represented
conveniently by a vectdrassociated with. t is defined as follows:

-W(p,t), if pe °t\ t°
t(p) = +W(t, p), if pe t*\ °t
N -W(p,t)+W(t,p), if pe *tNt*
0 otherwise

The new numbeM’ of tokens, resulting from the firing of transitiancan be
computed for all placep as follows:

Using “+” to denote vector addition, we can rewrite this equation as follows:

M =M+t

Specifications and Modeling 71

The set of all vectors form an incidence matriN. N contains vectors as
columns.

N:PxT—2Z; VteT:N(pt)=t(p)
Itis possible to formally prove system properties by using madrior exam-
ple, we are able to compute sets of places, for which firing transitions will not
change the overall number of tokens [Reisig, 1985]. Such sets ard phdte
invariants. Let us initially consider a single transitiapin order to find such

invariants. Let us search for sd®sC P of places such that the total number of
tokens does not changetjffires. The following must hold for such sets:

> () =0 (2.2)
pe

Fig. 2.51 shows a transition for which the total number of tokens does not

change if it fires.
t.
. o
1

Figure 2.51. Transition with a constant number of tokens

We are now introducing the characteristic vedgof some seR of places:

1 iffpeR
CR(p)_{O ifpr/R

With this definition, we can rewrite equation 2.2 as:
tj(p) = > tj(p)*Cr(p) =t;-cr=0 (2.3)
p; j ng i j

- denotes the scalar product. Now, we search for sets of places stiniiga
of any transition will not change the total number of tokens. This means that
equation 2.3 must hold for all transitiotjs

t;-cg=0

72 EMBEDDED SYSTEM DESIGN

t, cr=0 (2.4)
Ln'QR =0

Equations 2.4 can be combined into the following equation by using the trans-
posed incidence matriX":

NTcg=0 (2.5)

Equation 2.5 represents a system of linear, homogeneous equation$x Matr
N represents edge weights of our Petri nets. We are looking for solutizn ve
tors ci for this system of equations. Solutions must be characteristic vectors.
Therefore, their components must be 1 or 0 (integer weights can betedcep
if we use weighted sums of tokens). This is more complex than solving sys-
tems of linear equations with real-valued solution vectors. Nevertheless, it is
possible to obtain information by solving equation 2.5. Using this proof tech-
nique, we can for example show that we are correctly implementing mutually
exclusive access to shared resources.

Let us now consider a larger example: We are again considering thersync
nization of trains. In particular, we are trying to model high-speed Thadysdr
traveling between Amsterdam, Cologne, Brussels and Paris. Segments of the
train run independently from Amsterdam and Cologne to Brussels. Tiere,
segments get connected and then they run to Paris. On the way back from
Paris, they get disconnected at Brussels again. We assume that Thalgs tr
must synchronize with some other train at Paris. The corresponding Betri n

is shown in fig. 2.52.

Places 3 and 10 model trains waiting at Cologne and Amsterdam, respectively
Transitions 2 and 9 model trains driving from these cities to Brussels. After
their arrival at Brussels, places 2 and 9 contain tokens. Transitiomdie®
connecting the two trains. The cup symbolizes the driver of one of the trains
who will have a break at Brussels while the other driver is continuing on to
Paris. Transition 5 models synchronization with other trains aiGhe du

Nord station of Paris. These other trains conr@ate du Nord with some other
station (we have usedare de Lyon as an example, even though the situation
at Paris is somewhat more complex). Of course, Thalys trains do natazse s
engines; they are just easier to visualize than modern high speed trains. Fig
2.53 shows matrixNT for this example.

For example, line 2 indicates that firitgwill increase the number of tokens
on p2 by 1 and decrease the number of tokenggry 1. Using techniques

Specifications and Modeling 73

@ Amsterdam e Cologne

T

Brussel

Paris

KA

e Gare de Lyon

Figure 2.52. Model of Thalys trains running between Amsterdam, Cologne, Bruszets
Paris

P1 P2 | P3 P4 | Ps Ps| P7 Pg| Po P10 | P11 P12 | P13
1 1 -1 -1 1

to 1|1

t3 1 -1
ta 1 -1 1

ts 1 -1|- 1

t7 1 -1
tg 1 -1

Figure 2.53. NT for the Thalys example

from linear algebra, we are able to show that the following four vectars ar
solutions for this system of linear equations:

cr1-(1,1,1,1,1,1,0,0,0,0,0,0,0)
cr2=(1,0,0,0,1,1,0,0,1,1,1,0,0)
cr3=(0,0,0,0,0,0,0,0,1,1,0,0,1)
cr4 =(0,0,0,0,0,0,1,1,0,0,0,1,0)

74 EMBEDDED SYSTEM DESIGN

These vectors correspond to the places along the track for trains fotogiie,

to the places along the track for trains from Amsterdam, to the places along the
path for drivers of trains from Amsterdam, and to the places along the track
within Paris, respectively. Therefore, we are able to show that the nuohbe
trains and drivers along these tracks is constant (something which vwadlactu
expect). This example demonstrates that place invariants provide us with a
standardized technique for proving properties about systems.

2.6.4 Predicate/transition nets

Condition/event nets as well as place/transition nets can quickly become very
large for large examples. A reduction of the size of the nets is frequently
possible with predicate/transition nets. We will demonstrate this, using the so-
called “dining philosophers problem” as an example. The problem is based o
the assumption that a set of philosophers is dining at a round table. In fron
of each philosopher, there is a plate containing spaghetti. Between eth of
plates, there is just one fork (see fig. 2.54). Each philosopher is eitiage

or thinking. Eating philosophers need their two adjacent forks for thaheso

can only eat if their neighbors are not eating.

Q 9
SRS
&>

>

Figure 2.54. The dining philosophers problem

This situation can be modeled as a condition/event net, as shown in fig. 2.55.
Conditionstj correspond to the thinking states, conditiensorrespond to the
eating states, and conditiofisrepresent available forks.

Considering the small size of the problem, this net is already very large. The
size of this net can be reduced by using predicate/transition nets. Figsa56
model of the same problem as a predicate/transition net.

With predicate/transition nets, tokens have an identity and can be distinguished
from each othéf. We use this in fig. 2.56 in order to distinguish between the
three different philosopherp; to ps and to identify fork f3. Furthermore,

10we could also think of adding eolor to each of the tokens.

Specifications and Modeling 75

—

Figure 2.55. Place/transition net model of the dining philosophers problem

Figure 2.56. Predicate/transition net model of the dining philosophers problem

edges can be labeled with variables and functions. In the example, we use
variables to represent the identity of philosophers and functiogsandr (x)

to denote the left and right forks of philosophxerespectively. These two forks

are required as a precondition for transitioand returned as a postcondition

by transitionv. Note that this model can be easily extended to the case-@&
philosophers. We just need to add more tokens. In contrast to the net in fig
2.55, the structure of the net does not have to be changed.

76 EMBEDDED SYSTEM DESIGN

2.6.5 Evaluation

The key advantage of Petri nets is their power for modeling causal depen
dencies. Standard Petri nets have no notion of time and all decisions can be
taken locally, by just analyzing transitions and their pre- and post-conslition
Therefore, they can be used for modeling geographically distributedregs
Furthermore, there is a strong theoretical foundation for Petri nets, syinglif
formal proofs of system properties. Petri nets are not necessatdyntieate:
different firing sequences can lead to different results. The déiseripower

of Petri nets encompasses that of other MoCs, including finite state machines

In certain contexts, their strength is also their weakness. If time is to be explic-
itly modeled, standard Petri nets cannot be used. Furthermore, stdPetaird
nets have no notion of hierarchy and no programming language elements, let
alone object oriented features. In general, it is difficult to represatiat d

There are extended versions of Petri nets avoiding the mentioned vesakne
However, there is no universal extended version of Petri nets medtirgy a
guirements mentioned at the beginning of this chapter. Nevertheless, due to
the increasing amount of distributed computing, Petri nets became more pop-
ular than they were initially.

UML includes extended Petri nets calladtivity diagrams. Extensions in-
clude symbols denoting decisions (just like in ordinary flow charts). Treepla
ment of symbols is somewhat similar to SDL. Fig. 2.57 shows an example.

The example shows the procedure to be followed during a standardization p
cess. Forks and joins of control correspond to transitions in Petri ndtdhay

use the symbols (horizontal bars) that were initially used for Petri netgkhs w
The diamond at the bottom shows the symbol used for decisions. Activities ca
be organized into “swim-lanes” (areas between vertical dotted lines)teath

the different responsibilities and the documents exchanged can be \éslializ

It is interesting to note how a technique like Petri nets was initially certainly
not a mainstream technique. Decades after its invention, it has become a fre
guently applied technigue due to its inclusion in UML.

2.7 Discrete event based languages

The discrete event-based model of computation is based on the idea of sim-
ulating the generation of events and the processing of events over time. In
this model, we are using a queue of future events. These events am sorte
by the time at which they should be processed. Semantics is defined by re-
moving the events concerning the current time from the queue, performéng th

corresponding actions, possibly entering new events into the queue. Time is

Specifications and Modeling 77

start activity ;- >

I
1

fork of ¢ontrol
| T

activity i e
controliflow

! | -
3 ‘%r
Develop techno- i Issue RFP
logy specification i

__4RFP ! |
— ¥ o~ M

Y i

| .
ubmit specifi- ! OPJeCt flow
ation draft L2 input value

— Specif‘ication

] - o P
[optional] y - [initial iproposal] <

Collaborate with
other submitters
_ i
Finalize i
specification I
I

~
~
~
~

Evaluate initial
submissions

conditional thread

" join & fork
of control

al Specificati'pn
[final propasal] |

Evaluate final

submissions

Vote to
recommend
~
[if YES]

if NO
(drves) 1. o)

Specification
adopted ~

Figure 2.57. Activity diagram [Kobryn, 2001]

advanced whenever no action exists, which should be performed airtieec
time.

Hardware description languages (HDLs) are designed to model haagdWaey

are typically based on the discrete event model. We will use HDLs as a promi-
nent example of discrete event modeling. The focus will be on the haedwar
description language VHDL, and we will briefly cover other HDLs as well.

A key distinction between common software languages and hardwarepdescr
tion languages is the need to model time in HDLs. Another distinction comes
from the requirement to describe concurrency among different feaedeom-
ponents.

78 EMBEDDED SYSTEM DESIGN

2.7.1 VHDL
2.7.1.1 Introduction

VHDL is a prominent example of HDLs. VHDL usgsocessesor modeling
concurrency. Each process models one component of the potentiatiyreon
rent hardware. For simple hardware components, a single processenay b
sufficient. More complex components may need several processes det-mo
ing their operations. Processes communicate thrsigghals Signals roughly
correspond to physical connections (wires).

The origin of VHDL can be traced back to the eighties of the last century.
At that time, most design systems used graphical HDLs. The most common
building block was the gate. However, in addition to using graphical HDLs,
we can also use textual HDLs. The strength of textual languages is tlyat the
can easily represent complex computations including variables, loojsidnn
parameters and recursion. Accordingly, when digital systems became more
complex in the eighties, textual HDLs almost completely replaced graphical
HDLs. Textual HDLs were initially a research topic at universities. See-Me
met et al. [Mermet et al., 1998] for a survey of languages designedriopEu

in the eighties. MIMOLA was one of these languages and the author of this
book contributed to its design and applications [Marwedel and Sche8B],19
[Marwedel, 2008b]. Textual languages became popular when VHDLitan
competitor Verilog (see page 96) were introduced.

VHDL was designed in the context of the VHSIC program of the Department
of Defense (DoD) in the US. VHSIC stands faary high speed integrated cir-
cuitst®. Initially, the design of VHDL (VHSIC hardware description language)
was done by three companies: IBM, Intermetrics and Texas Instruments. A
first version of VHDL was published in 1984. Later, VHDL became anHEE
standard, called IEEE 1076. The first IEEE version was standartizE2B7;
updates were designed in 1992, in 1997, in 2002 and in 2006 [Lewis et al.,
2007]. VHDL-AMS allows modeling analog and mixed-signal systems by in-
cluding differential equations in the language. The design of VHDL uded A
(see page 100) as the starting point, since both languages were ddsighed
DoD. Since ADA is based on PASCAL, VHDL has some of the syntactical fla-
vor of PASCAL. However, the syntax of VHDL is much more complex and it
is necessary not to get distracted by the syntax. In the current beokilljyust
focus on some concepts of VHDL which are useful also in other language

full description of VHDL is beyond the scope of this book. The standard is
available from IEEE (see, for example, [IEEE, 2002]).

11The design of the Internet was also part of the VHSIC program.

Specifications and Modeling 79

2.7.1.2 Entities and architectures

VHDL, like all other HDLs, includes the necessary support for modeling ¢
current operation of hardware components. Hardware componentac-

eled by so-calledesign entitiesor VHDL entities. Entities contairprocesses
used to model concurrency. According to the VHDL grammar, design entities
are composed of two types of ingredients: eamity declaration and one (or
severaljarchitectures (see fig. 2.58).

’ Entity declaration ‘

N T

’ Architecture 1‘ ’ Architecture 2‘ ’ Architecture 3‘ ’ ‘

Figure 2.58. An entity consists of an entity declaration and architectures

For each entity, the most recently analyzed architecture will be used ayltef
Using other architectures can be specified. Architectures may contarakev
processes.

We will discuss a full adder as an example. Full adders have three iopist p
and two output ports (see fig. 2.59).

a ——=

b — =1 full_adder

—————= sum

. —
carry_in carry_out

Figure 2.59. Full-adder and its interface signals

An entity declaration corresponding to fig. 2.59 is the following:

entity full_adder is - - entity declaration
port (a, b, carry_in: in Bit; -- input ports
sum, carry_out: out Bit); - - output ports

end full_adder;

Two hyphens-) are starting a comments. They extend until the the end of
the line. Architectures consist of architecture headers and architeotalias.

We can distinguish between different styles of bodies, in particular betwee
structural and behavioral bodies. We will show how the two are diftarsimg

the full adder as an example. Behavioral bodies include just enougtmafo
tion to compute output signals from input signals and the local state (if any),
including the timing behavior of the outputs. The following is an example of
this (<= denotes assignments to signals):

80 EMBEDDED SYSTEM DESIGN

architecture behavior of full_adder is -- architecture
begin
sum <= (a xor b) xor carry_in after 10 Ns;
carry_out <= (a and b) or (a and carry_in) or
(b and carry_in) after 10 Ns;
end behavior;
VHDL-based simulators are capable of displaying output signal wawvefor
resulting from stimuli applied to the inputs of the full adder described above.

In contrast, structural bodies describe the way entities are composieaobéis
entities. For example, the full adder can be modeled as an entity consisting of
three components (see fig. 2.60). These components are idalteid and are

of typehalf_adder or or_gate.

full_adder _
a . N i3:
i1: or_ carry_out
b half_adder | Y_ 2 | gate
carry_in 12: [
Y half_adder sum

Figure 2.60. Schematic describing structural body of the full adder

In the 1987 version of VHDL, these components must be declared in a so-
called component declaration. This declaration is very similar (and it serves
the same purpose) as forward declarations in other languages. Thisatiea
provides the necessary information about the component even if theefull d
scription of that component is not yet stored in the VHDL database (this may
happen in the case of so-called top-down designs). From the 1998rvefs
VHDL onwards, such declarations are not required if the relevant caets

are already stored in the component database.

Connections between local component and entity ports are descrilpedtin
maps. The following VHDL code represents the structural body shown in fig.
2.60:

architecture structure of full_adder is -- architecture head
component half_adder
port (inl,in2: in Bit; carry: out Bit;
sum: out Bit);

end component;

Specifications and Modeling 81
Component or,gate
port (inl, in2: in Bit; o: out Bit);

end component;

signal x, vy, z: Bit; - - local signals
begin - - port map section
i1: half_adder - - introduction of half_adder il

port map (a, b, X, y); -- connections between ports
i2: half_adder port map (y, carry.in, z, sum);
i3: or_gate port map (x, z, carry_out);

end structure;

2.7.1.3 Multi-valued logic and IEEE 1164

In this book, we are restricting ourselves to embedded systems implemented
with binary logic. Nevertheless, it may be advisable or necessary to use mor
than two values for modeling such systems. For example, our systems might
contain electrical signals of different strengths and it may be necetssanyn-

pute the strength and the logic level resulting from a connection of two or more
sources of electrical signals. In the following, we will therefore distiniytis-
tween thdeveland thestrength of asignal. While the former is an abstraction

of the signal voltage, the latter is an abstraction of the impedance (resisténce)
the voltage source. We will be using discrete sets of signal values ezpires

the signal level and the strengtbising discrete sets of strengths avoids the
problems of having to solve Kirchhoff's equations and enables us tovaid
analog models used in electrical engineeringMe will also model unknown
electrical signals by special signal values.

In practice, electronic design systems use a variety of value sets. Saemsys
allow only two, while others allow 9 or 46. The overall goal of developing
discrete value sets is to avoid the problems of solving network equations (e.g.
Kirchoff’'s laws) and still model existing systems with sufficient precisian. |
the following, we will present a systematic technique for building up value
sets and for relating these to each other. We will use the strength of electrica
signals as the key parameter for distinguishing between various valuesets.
systematic way of building up value sets, called CSA-theory, was presented
Hayes [Hayes, 1982]. We will later show how the standard value sdtfose
most cases of VHDL-based modeling can be derived as a special case.

1 signal strength (Two logic values)

82 EMBEDDED SYSTEM DESIGN

In the simplest case, we will start with just two logic values, caltednd’1'.
These two values are considered to be of the same strength. This meamws: if tw
wires connect valueg’ and’'1’, we will not know anything about the resulting
signal level.

A single signal strength may be sufficient if no two wires carrying valdes
and’1’ are connected and no signals of different strength meet at a particular
node of electronic circuits.

2 signal strengths (Three and four logic values)

In many circuits, there may be instances in which a certain electrical signal is
not actively driven by any output. This may be the case, when a certagrisvir
not connected to ground, the supply voltage or any circuit node.

For example, systems may contain open-collector outputs (see fig. 2.61, left)
If the “pull-down” transistorPD is non-conducting, the output is effectively
disconnected. For the tristate outputs (see fig. 2.61, righgnale signal of

'0’ will generate a0’ at the outputs of the and-gates (denotedipyand will
make both transistors non-conducting. As a result, outpwill be discon-
nected?. Hence, using appropriate input signals, such outputs can be effec-
tively disconnected from a wire.

VDD VDD

Output A — A
Input _
~—|[PD f E [PD
GROUND GROUND
Input ='0" —> A disconnected enable ='0" —> A disconnected

Figure 2.61. Outputs that can be effectively disconnected from a wire

Obviously, the signal strength of disconnected outputs is the smallesttstreng
that we can think of. In particular, the signal strengttza$é smaller than that

of '0’ and'1’. Furthermore, the signal level of such an output is unknown. This
combination of signal strength and signal value is represented by a Idge& va
called'z'. If a signal of valuez’ is connected to another signal, that other signal
will always dominate. For example, if two tristate outputs are connected to the

12| practice, pull-up transistors may be depletion transisamd the tri-state outputs may be inverting.

Specifications and Modeling 83

same bus and if one output contributes a valug'othe resulting value on the
bus will always be the value contributed by the second output (see). 2.6

VDD
e JHel
enable="0’ 'z > bus enable’="1’
3 H [PD PD’] H P
GROUND

Figure 2.62. Right output dominates bus

In VHDL, each output is associated with a so-called siginader . Computing

the value resulting from the contributions of multiple drivers to the same sig-
nal is calledresolution and resulting values are computed by functions called
resolution functions.

In most cases, three-valued logic sgts,1’,Z'} are extended by a fourth value
called’X’. X’ represents an unknown signal level of the same strength ais
'1’. More precisely, we are usiny’ to represent unknown values of signals
that can be eithed’ or 1’ or some voltage representing neitt@mor 113,

The resolution that is required if multiple drivers get connected can be com-
puted very easily, if we make use of a partial order among the four sighss
'0’,'1’, 'Z, and’X'. The partial order is depicted in thdasse diagramin fig.

2.63.

-
/N
.
N/

z

Figure 2.63. Partial order for value s€to’, '1’,'Z', "X’}

Edges in this figure reflect the domination of signal values. Edges define a
relation>. If a > b, thena dominates. '0’ and’1l’ dominatez’. "X’ dominates

all other signal values. Based on the relatiopwe define a relatio>. a> b

holds iffa>bora=nb.

13There are other interpretations’&f, but the one presented above is the most useful one in ountonte

84 EMBEDDED SYSTEM DESIGN

We define an operatiosupon two signals, which returns treipremum of
the two signal values. The supremurof the two values andb is the weak-
est value for whichc > a andc > b holds. For examplesup ('Z’, '0’)="0’,
suf’z','1)="1 etc. The interesting observation is that resolution functions
should compute thesupfunction according to the above definition

3 signal strengths (Seven signal values)

In many circuits, two signal strengths are not sufficient. A common case that
requires more values is the use of depletion transistors (see fig. 2.64).

VDD

depletion
transistor

GROUND

Figure 2.64. Output using depletion transistor

The effect of the depletion transistor is similar to that of a resistor providing a
low conductance path to the supply voltageD. The depletion transistor as
well as the “pull-down transistorPD act as drivers for noda of the circuit
and the signal value at nodecan be computed using resolution. The pull-
down transistor provides a driver value'ofor 'Z’, depending upon the input
to PD. The depletion transistor provides a signal value, which is weaket@han
and'l'. Its signal level corresponds to the signal leveliof We represent the
value contributed by the depletion transistory and we call it a “weak logic
one”. Similarity, there can be weak logic zeros, represented.bihe value
resulting from the possible connection betwelghand’L is called a “weak
logic undefined”, denoted ag/. As a result, we have three signal strengths
and seven logic valuego’, '1’, 'L, 'H’, 'W’, ’X’, 'Z’}. Resolution can again be
based on a partial order among these seven values. The corregppadial
order is shown in fig. 2.65.

This order also defines an operatgunpreturning the weakest value at least as
strong as the two arguments. For exampleg(’H’,0’) =°0’, sug’H’,Z’) ='H’,
SUp’H’, L) = W'

'0’ and’'L represent the same signal levels, but a different strength. The same
holds for the pairsl’ and’H'. Devices increasing the signal strength are called
amplifiers, devices reducing the signal strength are cadiéenuators.

Specifications and Modeling 85

X’
/ \ } strongest
111

0
N ¥

W’
VZ2ERN medium strength
L H
N/

Z weakest

Figure 2.65. Partial order for value s€to’, '1’, 'L, '"H’, "W, 'X’, 'Z'}

Ten signal values (4 signal strengths)

In some cases, three signal strengths are not sufficient. For examgie, th
are circuits using charges stored on wires. Such wires are chargeetts le
corresponding t®’ or 1’ during some phases of the operation of the electronic
circuit. This stored charge can control the (high impedance) inputs of some
transistors. However, if these wires get connected to even the wesigieat
source (except’), they loose their charge and the signal value from that source
dominates.

For example, in fig. 2.66, we are driving a bus from a specialized outfhg. T
bus has a high capacitive load While functionf is still '0’, we set to '1’,
charging capacito€. Then we setpto '0’. If the real value of function be-
comes known and it turns out to ke, we discharge the bus. The key reason
for using pre-charging is that charging a bus using an output sucteamth
shown in fig. 2.64 is a slow process, since the resistance of depletioistongs

is large. Discharging through regular pull-down transisripgs a much faster

process.
VDD
—
Bus
f 4{ q PD

GROUND

7:C

Figure 2.66. Pre-charging a bus

86 EMBEDDED SYSTEM DESIGN

In order to model such cases, we need signal values which are whakét’
and’L, but stronger tharz’. We call such values “very weak signal values”
and denote them b’ and’l'. The corresponding very weak unknown value is
denoted byw’. As a result, we obtain ten signal valuge’, '1’, 'L, '"H’, 'I', 'h’,

X', 'W’, 'w’, ’Z’'}. Using the signal strength, we can again define a partial order
among these values (see fig. 2.67).

X’
/ \ } strongest

0 L
N ¥

W’
Z medium strength
" Hr
N ¥/

W’
\ pre—charged
it h
N K/

'z weakest

Figure 2.67. Partial order for value sgt0’, '1',°z’, X, 'H', 'L, "W, b, ', 'w'}

Five signal strengths

So far, we have ignored power supply signals. These are strongettba
strongest signals we have considered so far. Signal value sets takirgg p
supply signals into account have resulted in the definition of 46-value@ valu
sets [Coelho, 1989]. However, such models are not very popular.

IEEE 1164

In VHDL, there is no predefined number of signal values, except dones
basic support for two-valued logic. Instead, the used value sets cdefined
in VHDL itself and different VHDL models can use different value sets.

However, portability of models would suffer in a very severe manner if this
capability of VHDL was applied in this way. In order to simplify exchanging
VHDL models, a standard value set was defined and standardized li5EEe |
This standard is called IEEE 1164 and is employed in many system models.
IEEE 1164 has nine value$0’, 'L, 'L, 'H’, 'X’, "W, ’Z’, 'U’, *-’}. The first seven
values correspond to the seven signal values described atw\wsenotes an
uninitialized value. It is used by simulators for signals that have not been
explicitly defined.

Specifications and Modeling 87

- denotes thenput don’t care. This value needs some explanation. Fre-
guently, hardware description languages are used for describingdofunc-
tions. The VHDLselect statement is a very convenient means for doing that.
Theselect statement correspondsdwitch andcase statements found in other
languages and its meaning is different from $letect statement in ADA (see
page 102).

Example: Suppose that we would like to represent the Boolean function
f(a,b,c) = ab+bc

Furthermore, suppose thishould be undefined for the caseact b=c="0".
A very convenient way of specifying this function would be the following:

f <=select a& b & c -- & denotes concatenation

"1’ when "10-" -- corresponds to first term
'"1’when "-11" - - corresponds to second term
"X’ when " 000"

This way, functions given above could be easily translated into VHDLobInf
tunately, theselect statement denotes something completely different. Since
IEEE 1164 is just one of a large number of possible value sets, it does not
include any knowledge about the “meaning”'ef Whenever VHDL tools
evaluate select statements such as the one above, they check if the selecting
expressiond & b & c in the case above) is equal to the values inihen
clauses. In particular, they check if eg& b & c is equal to" 10-". In this
context,-' behaves like any other value: VHDL systems checkhfs a value

of . Since’-’ is never assigned to any of the variables, these tests will never
be true. Therefore, - is of limited benefit. The non-availability of coriesi

input don't care values is the price that one has to pay for the flexibility of
defining value sets in VHDL its€lf.

The nice property of the general discussion on pages 81 to 86 is theifuljiow

it allows us to immediately draw conclusions about the modeling power of
IEEE 1164. The IEEE standard is based on the 7-valued value settdesc
on page 84 and, therefore, is capable of modeling circuits containingtideple
transistors. Itis, however, not capable of modeling charge stbrage

14This problem was corrected in VHDL 2006 [Lewis et al., 2007].

15As an exception, if the capability of modeling depletion siators or pull-up resistors is not needed, one
could interpret weak values as stored charges. This is, y@weot very practical since pull-up resistors
are found in most actual systems.

88 EMBEDDED SYSTEM DESIGN

2.7.1.4 VHDL processes and assignments

VHDL treats components described above as processes. The syehx us
above is just a shorthand for processes. The general syntaxdoegses is
as follows:

label: - - optional
process
declarations - optional
begin
statements optional
end process ;

Assignments are special cases of statements. In VHDL, there are twodfinds
assignments:

m Variable assignments The syntax of variable assignments is
variable := expression

Whenever control reaches such an assignment, the expression istedmpu
and assigned to the variable. Such assignments behave like assignments in
common programming languages.

= Signal assignments Signals and signal assignments are introduced in an
attempt to model electrical signals in real hardware systems. Signals asso-
ciate values with instances in time. In VHDL, such a mapping from time to
values is represented aveforms Waveforms are computed from signal
assignments. The syntax of signal assignments is

signal <= expression

signal <= transport expressiorafter delay,
signal <= expressiorafter delay,

signal <= reject timeinertial expressiorafter delay

Whenever control reaches such an assignment, the expression istedmpu
and used to extend predicted future values of the waveform. In order to
compute future valuessimulators are assumed to include a queue of
events to happen later than the current simulated time This queue is
sorted by the time, at which future events (e.g. updates of signals) should
happen. Executing a signal assignment results in the creation of entries in
this queue. Each entry contains a time for executing the event, the affected
signal and the value to be assigned. For signal assignments not containing
any after clause (first syntactical form), the entry will contain the current

Specifications and Modeling 89

simulation time as the time at which this assignment has to be performed.
In this case, the change will take place after an infinitesimally small amount
of time, called®d-delay (see below). This allows us to update signals without
changing macroscopic time.

For signal assignments containingransport prefix (second syntactical
form), the update of the signal will be delayed by the specified amount.
This form of the assignment is following the so-callednsport delay
model. This model is based on the behavior of simple wires: wires are (as a
first order of approximation) delaying signals. Even short pulsesgyate
along wires. The transport delay model can be used for logic circugs, ev
though its main application is to model wires. Suppose that we model a
simple or-gate using a transport delay signal assignment:

¢ <= transport aor b after 10 ns;

Such a model would propagate even short pulses (see fig. 2.68).

[N N
UEEREEERREN
[U

7~ pulseiof 5 ns

L

o o o o o o o o
-l N ™ < Te] © N~ [°¢] t [ns]

Figure 2.68. Gate modeled with transport delay

Transport delay signal assignments will delete all entries in the queue cor-
responding to the time of the computed update or later times (if we first
execute an assignment with a rather large delay and then execute an assign
ment with a smaller delay, then the entry resulting from the first assignment
will be deleted).

For signal assignments containing ater clause, but naransport clause,
inertial delay is assumed. The inertial delay model reflects the fact that
real circuits come with some “inertia”. This means that short spikes will
be suppressed. For the third syntactical form of the signal assignntlent, a
signals changes which are shorter than the specified delay are sgupres
For the fourth form, all signal changes which are shorter than the indicate
amount are removed from the predicted waveform. Suppose that we model
a simple or-gate using inertial delay:

c <= aor b after 10 ns;

90

EMBEDDED SYSTEM DESIGN

[N
JEEEREEEEEEN

. No pulseiof 5 ns

S 8§ 8 § B 8 R g th

Figure 2.69. Gate modeled with inertial delay

For such a model, short spikes would be suppressed (see fig. 2.69).

The implementation of inertial delay relies on the removal of entries in the
predicted waveform. The subtle rules for removals are not repeated her

In addition to assignments, processes may comtainstatements. Such state-
ments can be used to suspend a process. There are the following kimais of
statements:

wait on signal list suspend until one of the signals in the list changes;
wait until condition suspend untitonditionis met, e.ga ='1’;
wait for duration; suspend for a specified period of time;

wait ; suspend indefinitely.

As an alternative to explicivait statements, a list of signals can be added to
the process header. In that case, the process is activated whenewvefrthe
signals in that list changes its value. Example: The following model of an and-
gate will execute its body once and will restart from the beginning every time
one of the inputs changes its value:

process (X, y) begin
prod <=x ANDY;

end process ;

This model is equivalent to

process begin
prod <=x ANDY;
wait on Xx,y;

end process ;

Specifications and Modeling 91

2.7.1.5 The VHDL simulation cycle

According to the original standards document [IEEE, 1997], the e¢ietaf a
VHDL model is described as followsThe execution of a model consists of an
initialization phasefollowed by theepetitive execution of process statements
in the description of that model. Each such repetition is said to fienalation
cycle In each cycle, the values of all signals in the description are computed.
If as a result of this computation an event occurs on a given signal.egsc
statements that are sensitive to that signal will resume and will be execsited a
part of the simulation cycle”

The initialization phase takes signal initializations into account and executes
each process once. Itis described in the standards as féftows

“At the beginning of initialization, the current time; TS assumed to be 0 ns.
The initialization phase consists of the following stéps:

= The driving value and the effective value of each explicitly declared signal
are computed, and the current value of the signal is set to the effective
value. This value is assumed to have been the value of the signal for an
infinite length of time prior to the start of the simulation. ...

= Each ... process in the model is executed until it suspends. ...

= The time of the next simulation cycle (which in this case is the first simula-
tion cycle), T is calculated according to the rules of step f of the simulation
cycle, below”

Each simulation cycle starts with setting the current time to the next time at
which changes must be considered. This tifpevas either computed during
the initialization or during the last execution of the simulation cycle. Simu-
lation terminates when the current time reaches its maxinumlE'HIGH.
According to the original document, the simulation cycle is described as fol-
lows: “A simulation cycle consists of the following steps:

a) The current time, Jis set equal to J. Simulation is complete wher £
TIME’HIGH and there are no active drivers or process resumptiongat T

b) Each active explicit signal in the model is updated. (Events may occur as a
result.)” ...

16We leave out the discussion of implicitly declared signald so-called postponed processes introduced
in the 1997 version of VHDL.

17In order not to get lost in the amount of details provided bystemdard, some of its sections (indicated
by “...") are omitted in the citation.

92 EMBEDDED SYSTEM DESIGN

This phrase from the document refers to the fact that in the cycle preced
the current cycle, new future values for some of the signals have loeen c
puted. If T corresponds to the time at which these values become valid,
they are now assigned. Note that new values of signals are never immedi-
ately assigned while executing a simulation cycle. They are not assigned
before the next simulation cycle, at the earliest. Signals that change their
value generate so-called events which, in-turn, may enable the execltion o
processes that are sensitive to that signal.

¢) “For each process P, if P is currently sensitive to a signal S and if anteven
has occurred on S in this simulation cycle, then P resumes.

d) Each ... process that has resumed in the current simulation cycle istexecu
until it suspends.

e) The time of the next simulation cycle, i¥ determined by setting it to the
earliest of
1 TIME'HIGH (This is the end of simulation time).

2 The next time at which a driver becomes acfibés is the next instance
in time, at which a driver specifies a new valug),

3 The next time at which a process resurftess time is determined by
wait for statements).

If T, = T, then the next simulation cycle (if any) will be a delta cycle”

The iterative nature of simulation cycles is shown in fig. 2.70.

Start of simulation

Future values for signal drivers

T

Assign new values to signals Evaluate processes

~N_ S

Activate all processes sensitive to signal changes
Figure 2.70. VHDL simulation cycles

Delta @) simulation cycles have been the source of many discussions. Their
purpose is to introduce a infinitesimally small delay even in cases in which the
user did not specify any. As an example, we will show the effect of tbpdes

using a flip-flop as an example. Fig. 2.71 shows the schematic of the flip-flop.

The flip-flop is modeled in VHDL as follows:

Specifications and Modeling 93

Figure 2.71. RS-Flipflop

entity RS_Flipflop is
port (R:in BIT; - - reset
S:in BIT; - - set
Q: inout BIT; - - output
nQ: inout BIT; - - Q-bar
);
end RS_Flipflop;
architecture one of RS_Flipflop is
begin
process : (R,S,Q,nQ)
begin
Q <=RnornQ;
nQ <= S nor Q;
end process ;
end one;
PortsQ andnQ must be of mod@out since they are also read internally, which
would not be possible if they were of modet. Fig. 2.72 shows the simulation
times at which signals are updated for this model. During each cycle, updates

are propagated through one of the gates. Simulation terminates aftedthree
cycles. The last cycle does not change anything, Sihisealready 0.

<0Ons Ons Onsd Ons+2d 0Ons+3«d
R 0 1 1 1 1
S 0 0 0 0 0
Q 1 1 0 0 0
nQ 0 0 0 1 1

Figure 2.72. & cycles for RS-flip-flop

94 EMBEDDED SYSTEM DESIGN

0 cycles correspond to an infinitesimally small unit of time, which will always
exist in reality.d cycles ensure that simulation respects causality.

The results do not depend on the order in which parts of the model are exe
cuted by the simulation. This feature is enabled by the separation between the
computation of new values for signals and their actual assignment. In a model
containing the lines

a<=b;
b <=a;

signalsa andb will always be swapped. If the assignments were performed
immediately, the result would depend on the order in which we execute the as-
signments (see also page 486HDL models are therefore determinate This

is what we expect from the simulation of a real circuit with a fixed behavior.

There can be arbitrarily manycycles before the current tinlg is advanced.
This possibility of infinite loops can be confusing. One of the options of avoid
ing this possibility would be to disallow zero delays, which we used in our
model of the flip-flop.

The propagation of values using signals also allows an easy implementation
of the observer pattern (see page 25). In contrast to SDF, the nurhbbr o
servers can vary, depending on the number of processes waitingdoges

on a signal.

What is the communication model behind VHDL? The description of the se-
mantics of VHDL relies heavily onsingle, centralizedqueue of future events,
storing values of all signals in the future. The purpose of this quenetito
implement asynchronous message passing. Rather, this queue is sujgpose
be accessed by the simulation kernel, one entry at a time, in a non-distributed
fashion. Attempts to perform distributed VHDL simulations are typically suf-
fering from a poor performance. All modeled components can accésssva

of signals and variables which are in their scope without any messagd-bas
communication. Therefore, we tend towards associating VHDL with a shared
memory based implementation of the communication. However, FIFO-based
message passing could be implemented in VHDL on top of the VHDL simula-
tor as well.

2.7.2 SystemC

Due to the trend of implementing more and more functionality in software,

a growing number of embedded systems includes a mixture of hardware and
software. Most of the embedded system software is specified in C. Bor-ex

ple, embedded systems implement standards such as MPEG 1/2/4 or decoders
for mobile phone standards such as GSM or UMTS. The standardseare fr

Specifications and Modeling 95

guently available in the form of “reference implementations”, consisting of
C programs not optimized for speed but providing the required functional-
ity. The disadvantage of design methodologies based on VHDL or Verilog is
the fact that these standards must be rewritten in order to generateanardw
Furthermore, simulating hardware and software together requires oitgfa
software and hardware simulators. Typically, this involves a loss of simulation
efficiency and inconsistent user interfaces. Also, designers mustdeseral
languages.

Therefore, there has been a search for techniques for repraegbatidware
structures in software languages. Some fundamental problems must éé solv
before hardware can be modeled with software languages:

= Concurrency, as it is found in hardware, has to be modeled in software.
m There has to be a representation for simulatiore.

= Multiple-valued logic andresolution as described earlier must be sup-
ported.

m Thedeterminate behaviorof almost all useful hardware circuits must be
guaranteed.

SystemCM [SystemC, 2010], [Open SystemC Initiative, 2005] is a C++ class
library designed to solve these problems. With SystemC, specifications can be
written in C or C++, making appropriate references to the class libraries.

SystemC comprises a notion of processes executed concurrently. Simulation
semantics are similar to VHDL, including the presence of delta cycles. The
execution of these processes is controlled via sensitivity lists and caltsitto
primitives. The sensitivity list concept of VHDL has been extended to also
include dynamic sensitivity lists.

SystemC includes a model of time. Earlier SystemC 1.0 used floating point
numbers to denote time. In the current standard, an integer model of time is
preferred. SystemC also supports physical units such as picosenandsec-
onds, microseconds etc.

SystemC data types include all common hardware types: four-valued i@gic (
'1’, X" and’z’) and bitvectors of different lengths are supported. Writing digital
signal processing applications is simplified due to the availability of fixed-point
data types.

Determinate behavior (see page 47) is not guaranteed in general, aciess

tain modeling style is used. Using a command line option, the simulator can
be directed to run processes in different orders. This way, the asetheck

if the simulation results depend on the sequence in which the processes are

96 EMBEDDED SYSTEM DESIGN

executed. However, for models of realistic complexity, only the presehce o
non-determinate behavior can be proved, not its absence.

Reusing hardware components in different contexts is simplified by the sepa
ration of computation and communication. SystemC provides channels, ports
and interfaces as abstract components for communication. The introdattion
these mechanisms facilitate so-called transaction-level modeling, as defined b
Grotker et al. [Gitker et al., 2002]:

Definition: “Transaction-level modelindTLM) is a high-level approach to
modeling digital systems where details of communication among modules are
separated from the details of the implementation of functional units or of the
communication architecture. Communication mechanisms such as biEes o
FOs are modeled as channels, and are presented to modules usingnSyste
terface classes. Transaction requests take place by calling interface fasictio
of these channel models, which encapsulate low-level details of the atform
exchange. At the transaction level, the emphasis is more on the functionality
of the data transfers - what data are transferred to and from what locations
and less on their actual implementation, that is, on the actual protocol used
for data transfer. This approach makes it easier for the system-levigrazs

to experiment, for example, with different bus architectures (all supmpgin
common abstract interface) without having to recode models that intesigtct

any of the buses, provided these models interact with the bus througbrthie ¢
mon interfacé

SystemC has the potential for replacing existing VHDL-based design flows.
Hardware synthesis starting from SystemC has become available [Hetredra
2003a], [Herrera et al., 2003b]. Methodology and applications fate3gC-
based design are described in a book on that topidligvi et al., 2003]. Sys-
temC has been standardized as IEEE standard 1666-2005 [Open SystemC
tiative, 2005].

2.7.3 Verilog and SystemVerilog

Verilog is another hardware description language. Initially it was a propri-
etary language, but it was later standardized as IEEE standard 1864w
sions called IEEE standard 1364-1995 (Verilog version 1.0) and |E&tlard
1364-2001 (Verilog 2.0). Some features of Verilog are quite similar to VHDL.
Just like in VHDL, designs are described as a set of connected detitas

and design entities can be described behaviorally. Also, processesee

to model concurrency of hardware components. Just like in VHDL, bitvec
tors and time units are supported. There are, however, some areas n whic
Verilog is less flexible and focuses more on comfortable built-in features. Fo
example, standard Verilog does not include the flexible mechanisms for defin

Specifications and Modeling 97

ing enumerated types such as the ones defined in the IEEE 1164 standard.
However, support for four-valued logic is built into the Verilog langueayed

the standard IEEE 1364 also provides multiple valued logic with 8 different
signal strengths. Multiple-valued logic is more tightly integrated into Verilog
than into VHDL. The Verilog logic system also provides more features for
transistor-level descriptions. However, VHDL is more flexible. For eXamp
VHDL allows hardware entities to be instantiated in loops. This can be used to
generate a structural description for, endpit adders without having to specify

n adders and their interconnections manually.

Verilog has a similar number of users as VHDL. While VHDL is more popular
in Europe, Verilog is more popular in the US.

Verilog versions 3.0 and 3.1 are also known as SystemVerilog. They include
numerous extensions to Verilog 2.0. These extensions include [Accelleta |
2003], [Sutherland, 2003]:

= additional language elements for modeling behavior,

= C data types such ast and type definition facilities such agpedef and
struct,

m definition of interfaces of hardware components as separate entities,

= standardized mechanism for calling C/C++ functions and, to some extend,
to call built-in Verilog functions from C,

= significantly enhanced features for describing an environment (cabed te
bench) for the hardware under design (called CUD), and for usingg#ite
bench to verify the CUD by simulation,

m classes known from object-oriented programming for use within testben-
ches,

= dynamic process creation,

= standardized interprocess communication and synchronization, including
semaphores,

= automatic memory allocation and deallocation,

» |anguage features that provide a standardized interface to formataerifi
tion (see page 201).

Due to the capability of interfacing with C and C++, interfacing to SystemC
models is also possible. Improved facilities for simulation- as well as for for-
mal verification-based design validation and the possible interfacing to Sys-
temC will potentially create a very good acceptance. Recently, Verilog and

98 EMBEDDED SYSTEM DESIGN

SystemVerilog have been merged into one standard, IEEE 1800-20BE,[IE
2009].

2.7.4 SpecC

The SpecC language [Gajski et al., 2000] is based on the clear sepdratio
tween communication and computation that should be used for modeling em-
bedded systems. This separation paves the way for re-using companents
different contexts and enabletug-and-playfor system components. SpecC
models systems as hierarchical networks of behaviors communicating lthroug
channels. SpecC descriptions consist of behaviors, channels arfddate
Behaviors include ports, locally instantiated components, private variabtes
functions and a publieain function. Channels encapsulate communication.
They include variables and functions, which are used for the definitian of
communication protocol. Interfaces are linking behaviors and channels to-
gether. They declare the communication protocols which are defined ima cha
nel.

SpecC can model hierarchies with nested behaviors. Fig. 2.73 [Gajak| et
2000] shows a componeBtincluding sub-componentsl andb2.

G — T
B Pl L c2 R P2

I (.
(i 2 g 2 s |

U;l b2 J
U y N\

Figure 2.73. Structural hierarchy of SpecC example

The sub-components are communicating through integand through chan-
nelc2. The structural hierarchy includes andb2 as the leaves$1 andb2 are
executed concurrently, denoted by the keywgaid in SpecC. This structural
hierarchy is described in the following SpecC model.

interface L {void Write(int x); };

interface R {int Read(void); };

channel Cimplements L,R
{int Data; bool Valid;

Specifications and Modeling 99

void Write(int x) {Data=x; Valid=true;}
int Read (void)
{while ('Valid) waitfor (10); return (Data);} }
behavior Bl(in int p1, L p2,inint p3)
{void main (void) {/*...*/ p2.Write(p1);} };
behavior B2 (outint pl, R p2, outint p3)
{void main(void) {/*...*/ p3=p2.Read(); } };
behavior B(in int p1, outint p2)

{int c1; Cc2; B1bl(pl,c2,cl); B2b2(cl,c2, p2);
void main (void)

{par {b1.main(); b2.main();}}
%

Note that the interface protocol implemented in chahalonsisting of meth-
ods for read and write operations, can be changed without chandiagibes

B1 andB2. For example, communication can be bit-serial or parallel and the
choice does not affect the modelsBif andB2. This is a necessary feature for
IP-reuse.

In order to simplify designs containing software and hardware compaqrikats
syntax of SpecC is based on C and C++. In fact, SpecC models are trdnslate
into C++ for simulation.

At the specification level, SpecC can model any kind of communication and
typically uses message passing. The implementation of simulators is neverthe-
less typically based on a non-distributed system. The communication model of
SpecC has inspired communication in SystemC 2.0.

2.8 Von-Neumann languages

The sequential execution of von-Neumann languages is their commaohar-
acteristic. Also, such languages allow an almost unrestricted access to global
variables. Model-based design using CFSMs and computational graghy is
appropriate for embedded system design. Nevertheless, the use ddrstan
von-Neumann languages is still widespread. Therefore, we canratitinese
languages.

However, the distinction between KPNs and properly restricted von-Neama
languages is blurring. For KPNs, we do also have sequential exectitiba o
code for each of the nodes. We are still keeping the distinction between KPN
and von-Neumann languages since for KPNs, the emphasis of modeling is on

100 EMBEDDED SYSTEM DESIGN

the communication and details of the execution within the nodes are irrelevant.
For the first two languages covered in this section, communication is still built
into the languages, whereas for the remaining languages, focus is amthe ¢
putations and communication can be replaced by selecting different libraries

2.8.1 CSP

CSP communicating sequential procesg@idoare, 1985] is one of the first
languages comprising mechanisms for interprocess communication. Commu-
nication is based on channels.

Example:
process A process B
var a var b
a:=
cla; - - output to channel ¢ c?b; - - input from channel ¢
end; end,;

Both processes will wait for the other process to arrive at the inputifpud
statement. This is a caser@ndez-vousbased oblocking communication.

CSP is determinate, since it relies on the commitment to wait for input from a
particular channel, like in Kahn process networks.

CSP has laid the foundation for the OCCAM language that was proposed as
a programming language of theansputer [Thiébaut, 1995]. The focus on
communication channels has been picked up again in the design of the XS1
processor [XMOS Ltd., 2010].

2.8.2 ADA

During the eighties of the last century, the Department of Defense (DoD) in
the US realized that the dependability and maintainability of the software in
its military equipment could soon become a major source of problems, un-
less some strict policy was enforced. It was decided that all softwarddhe
written in the same real-time language. Requirements for such a language were
formulated. No existing language met the requirements and, consequently, th
design of a new one was started. The language which was finally aceegded
based on PASCAL. It was called ADA (after Ada Lovelace, who candie ¢
sidered being the first (female) programmer). ADA95 [Kempe, 199E]rhs

and Wellings, 2001] is an object-oriented extension of the original stendar

One of the interesting features of ADA is the ability to have nested declara-
tions of processes (called tasks in ADA). Tasks are started whenertok

Specifications and Modeling 101

passes into the scope in which they are declared. The following is an example
(according to Burns et al. [Burns and Wellings, 1990]):

procedure examplel is
task a;
task b;
task body ais
- - local declarations for a
begin
- - statements for a
end a;
task body b is
- - local declarations for b
begin
- - statements for b
end b;
begin
- - Tasks a and b will start before the 1st statement of examplel
end;

The communication concept of ADA is another key concept. It is based on
therendez-vouparadigm. Whenever two tasks want to exchange information,
the task reaching the “meeting point” first has to wait until its partner has also
reached a corresponding point of control. Syntactically, procecanesised

for describing communication. Procedures which can be called from other
tasks must be identified by the keywadtry. Example [Burns and Wellings,
1990]:

task screen_out is
entry call (val : character; x, y : integer);

end screen_out;

Task screen_out includes a procedure namedll which can be called from
other processes. Some other task can call this procedure by prefixifité it
the name of the task:

screen_out.call("Z’,10,20);

102 EMBEDDED SYSTEM DESIGN

The calling task has to wait until the called task has reached a point of tontro
at which it accepts calls from other tasks. This point of control is indicbyed
the keywordaccept:

task body screen_out is

begin
accept call (val : character; x, y : integer) do

end call;

end screen_out;

Obviously, taskscreen_out may be waiting for several calls at the same time.
The ADA select -statement provides this capability. Example:

task screen_output is
entry call_ch(val:character; X, y: integer);
entry call_int(z, x, y: integer);

end screen_out;

task body screen_output is

select
accept call_ch ... do...
end call_ch;

or
accept call.int ... do ..
end call.int;

end select ; ...

In this case, taskcreen_out will be waiting until eithercall_ch or call_int are
called.

Due to the presence of theelect-statement, ADA is not determinate. ADA
has been the preferred language for military equipment produced in tsie We
ern hemisphere for some time. Recently produced information about ADA is
available from a web sites (see, for example [Kempe Software Capital-Enter
prises (KSCE), 2010)).

Specifications and Modeling 103

2.8.3 Java

For Java, communication can be selected by choosing between different li-
braries. Computation is strictly sequential.

Java was designed as a platform-independent language. It can hdeske
on any machine for which an interpreter of the internal byte-code repres
tation of Java-programs is available. This byte-code representation iy a ve
compact representation, which requires less memory space than a dtandar
nary machine code representation. Obviously, this is a potential advantage
system-on-a-chip applications, where memory space is limited.

Also, Java was designed as a safe language. Many potentially dasdeasu
tures of C or C++ (like pointer arithmetic) are not available in Java. Hence,
Java meets the safety requirements for specification languages for eedbedd
systems. Java supports exception handling, simplifying recovery in ¢ase o
run-time errors. There is no danger of memory leakages due to missing mem-
ory deallocation, since Java provides automatic garbage collection. Hais fe
ture avoids potential problems in applications that must run for months or even
years without ever being restarted. Java also meets the requiremenptwtsup
concurrency since it includes threads (light-weight processes).

In addition, Java applications can be implemented quite fast, since Java sup-
ports object orientation and since Java development systems come with pow-
erful libraries.

However, standard Java is not really designed for real-time systemswama-a
ber of characteristics which would make it a real-time programming language
are missing:

m The size of Java run-time libraries has to be added to the size of the ap-
plication itself. These run-time libraries can be quite large. Consequently,
only really large applications benefit from the compact representation of
the application itself.

= For many embedded applications, direct control over I/O devices isheces
sary (see page 24). For safety reasons, no direct control ovelelioes is
available in standard Java.

= Automatic garbage collection requires some computing time. In standard
Java, the instance in time at which automatic garbage collection is started
cannot be predicted. Hence, the worst case execution time is very Mifficu
to predict. Only extremely conservative estimates can be made.

= Java does not specify the order in which threads are executed ifakever
threads are ready to run. As a result, worst-case execution time estimates
must be even more conservative.

104 EMBEDDED SYSTEM DESIGN

Proposals for solving the problems were made by Nilsen [Nilsen, 1998}. Pr
posals include hardware-supported garbage-collection, replacefibatrun-
time scheduler and tagging of some of the memory segments.

Currently (in 2010) relevant Java programming environments include viae Ja
Enterprise Edition (J2EE), the Java Standard Edition (J2SE), the Java Mic
Edition (J2ME), and CardJava [Sun, 2010]. CardJava is a strippeud-ter-

sion of Java with emphasis on security for SmartCard applications. J2ME is
the relevant Java environment for all other types of embedded systemes. T
library profiles have been defined for J2ME: CDC and CLDC. CLDC &dus
for mobile phones, using the so-called MIDP 1.0/2.0 as its standard for the ap
plication programming interface (API). CDC is used, for example, for Tig se
and powerful mobile phones. Currently relevant sources for Jaldinee pro-
gramming include book by Wellings [Wellings, 2004], Dibble [Dibble, 2008]
and Bruno [Bruno and Bollella, 2009] as well as web sites [Java Community
Process, 2002] and [Anonymous, 2010b].

2.8.4 Pearl and Chill

Pearl [Deutsches Instituiif Normung, 1997] was designed for industrial con-

trol applications. It does include a large repertoire of language elemants f
controlling processes and referring to time. It requires an underlyia re
time operating system. Pearl has been very popular in Europe and a large
number of industrial control projects has been implemented in Pearl. Pearl
supports semaphores which can be used to protect communication based on
shared buffers.

Chill [Winkler, 2002] was designed for telephone exchange stationa:ast
standardized by the CCITT and used in telecommunication equipment. Chill
is a kind of extended PASCAL.

2.8.5 Communication libraries

Standard von-Neumann languages do not come with built-in communication
primitives. However, communication can be provided by libraries. There is a
trend towards supporting communication within some local system as well as
communication over longer distances. The use of internet protocols isbeco
ing more popular. Libraries will be described in more detail in the section on
system software (see page 193).

2.9 Levels of hardware modeling

In practice, designers start design cycles at various levels of atisitradn
some cases, these are high levels describing the overall behavior gbthms

Specifications and Modeling 105

to be designed. In other cases, the design process starts with the gfieaific
of electrical circuits at lower levels of abstraction. For each of the lezels,
variety of languages exists, and some languages cover various lendlse |
following, we will describe a set of possible levels. Some lower end levels
are presented here for context reasons. Specifications shoulriatshose
levels. The following is a list of frequently used names and attributes of tevels

= System level models:The term system level is not clearly defined. It is
used here to denote the entire embedded system and the system into which
information processing is embedded (“the product”), and possibly also the
environment (the physical input to the system, reflecting e.g. the roads,
weather conditions etc.). Obviously, such models include mechanical as
well as information processing aspects and it may be difficult to find ap-
propriate simulators. Possible solutions include VHDL-AMS (the analog
extension to VHDL), SystemC or MATLAB. MATLAB and VHDL-AMS
support modeling partial differential equations, which is a key requirémen
for modeling mechanical systems. It is a challenge to model information
processing parts of the system in such a way that the simulation model
can also be used for the synthesis of the embedded system. If this is not
possible, error-prone manual translations between different modelbenay
needed.

= Algorithmic level: At this level, we are simulating the algorithms that we
intend to use within the embedded system. For example, we might be sim-
ulating MPEG video encoding algorithms in order to evaluate the resulting
video quality. For such simulations, no reference is made to processors or
instruction sets.

Data types may still allow a higher precision than the final implementation.
For example, MPEG standards use double precision floating point numbers
The final embedded system will hardly include such data types. If data
types have been selected such that every bit corresponds to exaethjt on

in the final implementation, the model is said tolietrue . Translating
non-bit-true into bit-true models should be done with tool support (see page
284).

Models at this level may consist of single processes or of sets of catomgr
processes.

m Instruction set level: In this case, algorithms have already been compiled
for the instruction set of the processor(s) to be used. Simulations at this
level allow counting the executed number of instructions. There areadever
variations of the instruction set level:

106 EMBEDDED SYSTEM DESIGN

— In a coarse-grained model, only the effect of the instructions is sim-
ulated and their timing is not considered. The information available
in assembly reference manuals (instruction set architecture (ISA)) is
sufficient for defining such models.

— Transaction level modeling: In transaction level modeling, transac-
tions, such as bus reads and writes, and communication between differ-
ent components is modeled. Transaction level modeling includes less
details than cycle-true modeling (see below), enabling significantly su-
perior simulation speeds [Clouard et al., 2003].

— In a more fine-grained model, we might hasycle-true instruction
set simulation In this case, the exact number of clock cycles required
to run an application can be computed. Defining cycle-true models re-
quires a detailed knowledge about processor hardware in order-to cor
rectly model, for example, pipeline stalls, resource hazards and mem-
ory wait cycles.

» Register-transfer level (RTL): At this level, we model all the components
at the register-transfer level, including arithmetic/logic units (ALUS), regis-
ters, memories, muxes and decoders. Models at this level are alwdgs cyc
true. Automatic synthesis from such models is not a major challenge.

m Gate-level models:In this case, models contain gates as the basic compo-
nents. Gate-level models provide accurate information about signal tran-
sition probabilities and can therefore also be used for power estimations.
Also delay calculations can be more precise than for the RTL. However,
typically no information about the length of wires and hence no informa-
tion about capacitances is available. Hence, delay and power consumption
calculations are still estimates.

The term “gate-level model” is sometimes also employed in situations in
which gates are only used to denote Boolean functions. Gates in such a
model do not necessarily represent physical gates; we are onlgledng

the behavior of the gates, not the fact that they also represent phymica
ponents. More precisely, such models should be called “Boolean function
models™8, but this term is not frequently used.

= Switch-level models: Switch level models use switches (transistors) as
their basic components. Switch level models use digital values models
(refer to page 81 for a description of possible value sets). In coritrast
gate-level models, switch level models are capable of reflecting bidirec-
tional transfer of information.

18These models could be represented with binary decisionatisg(BDDs) [Wegener, 2000].

Specifications and Modeling 107

» Circuit-level models: Circuit theory and its components (current and volt-
age sources, resistors, capacitances, inductances, and frequestiple
macro-models of semiconductors) form the basis of simulations at this
level. Simulations involve partial differential equations. These equations
are linear if and only if the behavior of semiconductors is linearized (ap-
proximated). The most frequently used simulator at this level is SPICE
[Vladimirescu, 1987] and its variants.

= Layout models: Layout models reflect the actual circuit layout. Such mod-
els includegeometric information. Layout models cannot be simulated
directly, since the geometric information does not directly provide infor-
mation about the behavior. Behavior can be deduced by correlating the
layout model with a behavioral description at a higher level or by extract-
ing circuits from the layout, using knowledge about the representation of
circuit components at the layout level. In a typical design flow, the length of
wires and the corresponding capacitances are extracted from thé éangbu
back-annotatedto descriptions at higher levels. This way, more precision
can be gained for delay and power estimations.

= Process and device modelsAt even lower levels, we can model fabri-
cation processes. Using information from such models, we can compute
parameters (gains, capacitances etc) for devices (transistors).

2.10 Comparison of models of computation

2.10.1 Criteria

Models of computation can be compared according to several criteria. For
example, Stuijk [Stuijk, 2007] compares MoCs according to the following cri-
teria:

= Expressivenessndsuccinctnessndicate, which systems can be modeled
and how compact the are.

= Analyzability relates to the availability of scheduling algorithms and the
need for run-time support.

= Theimplementation efficiencyis influenced by the required scheduling
policy and the code size.

Fig. 2.74 classifies data flow models according to these criteria.

This figure reflects the fact that Kahn process networks are expgesthey
are Turing-complete, meaning that any problem which can be computed on a
Turing machine can also be computed in a KPN. Turing machines are used

108 EMBEDDED SYSTEM DESIGN

Expressiveness and succinctness

O Kahn process networks
® SDF
X Homogeneous SDF (HSDF)

Analyzability Implementation efficiency

Figure 2.74. Comparison between data flow models

as the standard model of universal computers [Herken, 1995]. wower-
mination properties and upper bounds on buffer sizes of KPNs areuttiftic
analyze. SDF graphs, on the other hand, are not Turing-completeurihe
derlying reason is that they cannot model control flow. However, Idekd
properties and upper bounds on buffer sizes of SDF graphs dex tmana-
lyze. Homogeneous SDF (HSDF) graphs (graphs for which all ratescaral
to one) are even less expressive, but also easier to analyze.

We could also compare MoCs with respect to the type of processes seghpor

= Thenumber of processegan be eithestatic or dynamic. A static number
of processes simplifies the implementation and is sufficient if each process
models a piece of hardware and if we do not consider “hot-plugging” (dy
namically changing the hardware architecture). Otherwise, dynamic pro-
cess creation (and death) should be supported.

= Processes can either be staticaifstedor all declared at the same level.
For example, StateCharts allows nested process declarations while SDL
(see page 52) does not. Nesting provides encapsulation of concerns.

= Different techniques foprocess creatiorexist. Process creation can result
from an elaboration of the process declaration in the source codegthrou
the fork and join mechanism (supported for example in Unix), and also
through explicit process creation calls.

The expressiveness of different data flow oriented models of computatio
also shown in fig. 2.75 [Basten, 2008]. MoCs not discussed in this bk a
indicated by dashed lines.

Kahn process networks afi@ring complete. This means that any computa-
tion which can be performed by a Turing machine can also be performed by

Specifications and Modeling 109

Figure 2.75. Expressiveness of data flow models

Kahn process networks. Turing machines are the standard refdogresalu-
ating the computability in computer science. In contrast, cyclo-static data flow
(CSDF, see page 63) is not Turing complete.

None of the MoCs and languages presented so far meets all the requsemen
for specification languages for embedded systems. Fig. 2.76 presentsran
view over some of the key properties of some of the languages.

Behavioral Structural Programming Exceptions Dynaric
Hierarchy Hierarchy Language Supported Process
Language Elements Creation
StateCharts + - - + -
VHDL + + + - -
SpecCharts + - + + -
SDL +- +- +- - +
Petri nets - - - - +
Java + - + + +
SpecC + + + + +
SystemC + + + + +
ADA + - + + +

Figure 2.76. Language comparison

Interestingly, Spec and SystemC meet all listed requirements. However, some
other requirements (like a precise specification of deadlines etc) is not in-
cluded. It is not very likely that a single MoC or language will ever meet all
requirements, since some of the requirements are essentially conflicting. A lan
guage supporting hard real-time requirements well may be inconvenierd to us
for less strict real-time requirements. A language appropriate for distdbute
control-dominated applications may be poor for local data-flow dominated ap-

110 EMBEDDED SYSTEM DESIGN

plications. Hence, we can expect that we will have to live with compromises
and possibly with mixed models.

Which compromises are actually used in practice? In practice, assembly lan-
guage programming was very common in the early years of embedded systems
programming. Programs were small enough to handle the complexity of prob-
lems in assembly languages. The next step is the use of C or derivati@es of
Due to the ever increasing complexity of embedded system software @ee pa
xi), higher level languages are to follow the introduction of C. Object oeién
languages and SDL are languages which provide the next level ohetisir.

Also, languages like UML are required to capture specifications at dn ear
design stage. In practice, these languages can be used like showrRiiTig.

|(RT—) UML or equivalent |(RT—) UML or equivalent |
| SDL (RT-) Java |
v N Vo
| C-programs | VHDL | L
! !
|Assembly programs | | Net list |
{ {
|Objectcode | | hardware | |Objectcode

Figure 2.77. Using various languages in combination

According to fig. 2.77, languages like SDL or StateCharts can be translated
into C. These C descriptions are then compiled. Starting with SDL or State-
Chart also opens the way to implementing the functionality in hardware, if
translators from these languages to VHDL are provided. Both C and VHDL
will certainly survive as intermediate languages for many years. Jaambde
need intermediate steps but does also benefit from good translatiomptotece
assembly languages. In a similar way, translations between various guaphs
feasible. For example, SDF graphs can be translated into a subclassiof Pe
nets [Stuijk, 2007]. Also, they correspond to a subclass otctiraputation
graph model proposed by Karp and Miller [Karp and Miller, 1966]. Linking
the various models of computation is facilitated by formal techniques [Chen
et al., 2007].

Several languages for embedded system design are covered in @&ditek
by M. Radetzki [Radetzki, 2009]. Popovici et al. [Popovici et al.,@0lise a
combination of Simulink and SystemC.

Specifications and Modeling 111

2.10.2 UML

UML ™ is a language including diagrams reflecting several MoCs. Fig. 2.78
classifies the UML diagrams mentioned so far with respect to our table of
MoCs.

Communication/ Shared memory Message passing
Components synchronous [asynchronous
Undefined components Use cases

Sequence charts, timing diagrams
Finite state machines State diagrams | - [-
Data flow (not useful) Data flow diagrams
Petri nets (not useful) Activity charts

Distributed event model - -
Von-Neumann model - -

Figure 2.78. Models of computation available in UML

This figure shows how UML covers several models of computation, with a
focus on early design phases. Semantics of communication is typically impre-
cisely defined. Therefore, our classification cannot be precise ingbjsect.

In addition to the diagrams already mentioned, the following diagrams can be
modeled:

= Deployment diagrams These diagrams are important for embedded sys-
tems: they describe the “execution architecture” of systems (hardware or
software nodes).

m Package diagrams Package diagrams represent the partitioning of soft-
ware into software packages. They are similar to module charts in State-
Mate.

m Class diagrams These diagrams describe inheritance relations of object
classes.

= Communication diagram (calledCollaboration diagrams in UML 1.x):
These graphs represent classes, relations between classes, aaderes
that are exchanged between them.

s Component diagrams: They represent the components used in applica-
tions or systems.

= Object diagrams, interaction overview diagrams composite structure
diagrams:. This list consists of three types of diagrams which are less fre-
quently used. Some of them may actually be special cases of other types of
diagrams.

112 EMBEDDED SYSTEM DESIGN

Available tools provide some consistency checking between the diffeient d
gram types. Complete checking, however, seems to be impossible. Ooe reas
for this is that the semantics of UML initially was left undefined. It has been
argued that this was done intentionally, since one does not like to botheatr abo
the precise semantics during the early phases of the design. As a censegu
precise, executable specifications can only be obtained if UML is combined
with some other, executable language. Available design tools have combined
UML with SDL [IBM, 2009] and C++. There are, however, also some firs
attempts to define the semantics of UML.

Version 1.4 of UML was not designed for embedded systems. Thereafore
lacks a number of features required for modeling embedded systemsafgee p
19). In patrticular, the following features are missing [McLaughlin and Moo
1998]:

= the partitioning of software into tasks and processes cannot be modeled,
= timing behavior cannot be described at all,

= the presence of essential hardware components cannot be described

Due to the increasing amount of software in embedded systems, UML is gain-
ing importance for embedded systems as well. Hence, several proposals f
UML extensions to support real-time applications have been made [McLaugh
lin and Moore, 1998], [Douglass, 2000]. These extensions have deesid-

ered during the design of UML 2.0. UML 2.0 includes 13 diagram types (up
from nine in UML 1.4) [Ambler, 2003]. Special profiles are taking the fiesu
ments of real-time systems into account [Martin andllier, 2005], [Miller,
2007]. Profiles include class diagrams with constraints, icons, diagram sy
bols, and some (partial) semantics. There are UML profiles fanlg, 2007]:

= Schedulability, Performance, and Time Specification (SPT) [Object Man-
agement Group (OMG), 2005b],

» Testing [Object Management Group (OMG), 2010a],

= Quality of Service (QoS) and Fault Tolerance [Object Managementgsrou
(OMG), 2010a],

= a Systems Modeling Language called SysML [Object Management Group
(OMG), 2008],

= Modeling and Analysis of Real-Time Embedded Systems (MARTE), [Ob-
ject Management Group (OMG), 2009]

UML and SystemC interoperability [Riccobene et al., 2005],

Specifications and Modeling 113

= The SPRINT profile for reuse of intellectual property (IP) [Sprint €am
tium, 2008].

Using such profiles, we can -for example- attach timing information to se-
guence charts. However, profiles may be incompatible. Also, UML has bee
designed for modeling and frequently leaves too many semantical issugs ope
to allow automatic synthesis of implementationsiidr, 2007].

2.10.3 Ptolemy 11

The Ptolemy project [Davis et al., 2001] focuses on modeling, simulation, and
design of heterogeneous systems. Emphasis is on embedded systems that mix
different technologies and, accordingly, also MoCs. For exampldogquaend

digital electronics, hardware and software, and electrical and mecthalsic

vices can be described. Ptolemy supports different types of applications
cluding signal processing, control applications, sequential decisiornmak

and user interfaces. Special attention is paid to the generation of embedded
software. The idea is to generate this software from the MoC which is most
appropriate for a certain application. Version 2 of Ptolemy (Ptolemy II) sup-
ports the following MoCs and corresponding domains (see also page 31):

1 Communicating sequential processes (CSP).

2 Continuous time (CT): This model is appropriate for mechanical systems
and analog circuits. It is supported through a set of extensible diffaten
equation solvers.

3 Discrete event model (DE): this is the model used by many simulators, e.g.
VHDL simulators.

4 Distributed discrete events (DDE). Discrete event systems are difficult to
simulate in parallel, due to the inherent centralized queue of future events.
Attempts to distribute this data structure have not been very successful so
far. Therefore, this special (experimental) domain is introduced. Seraantic
can be defined such that distributed simulation becomes more efficient than
in the DE model.

Finite state machines (FSM).
Process networks (PN), using Kahn process networks (see page 5

Synchronous dataflow (SDF).

o N o O

Synchronous/reactive (SR) MoC. This model uses discrete time, maisig
do not need to have a value at every clock tick. Esterel (see page &1) is
language following this style of modeling.

114 EMBEDDED SYSTEM DESIGN

This list clearly shows the focus on different models of computation in the
Ptolemy project.
2.11 Assignments

1 Prepare a list of up to 6 requirements for specification languages for em-
bedded systems!

2 Suppose the StateCharts in fig. 2.79 model is given.

Figure 2.79. StateCharts example

Also, suppose that we have the following sequence of input evenrtéh

g heabc. Inthe diagram in fig. 2.80, mark all the states the StateCharts
model will be in after a particular input has been applied! Note that
denotes the history mechanism.

M|IN|IP|Q|R|S|T|X]|Y]|Z
(Reset) v
b
c
f
h
9
h
e
a
b
Cc

Figure 2.80. States of the StateCharts example

3 Are StateCharts determinate models if we follow the StateMate semantics?
Please explain your answer!

Specifications and Modeling 115
4 Which three types of Petri nets did we discuss in this book?

5 One of the types of Petri nets allows several non-distinguishable tpleens
place. Which components are used in a mathematical model of such nets?
Hint: N=(P,)

6 How does a compact model of the dining philosopher’s problem look like?

7 CSAtheoryleadsto 2, 3 and 4 logic strengths, corresponding to 4, 70and
logic values. How many strengths and values are we using in IEEE 11647?
Please show the partial order among the values of IEEE 1164 in a diagram!
Which of the values of IEEE 1164 are not included in the partial order and
what is the meaning of these values?

8 Which of the following circuits can be modeled with IEEE 1164: comple-
mentary CMOS outputs, outputs with a depletion transistor, open collector
outputs, tristate outputs, pre-charging on buses (if depletion transiséors ar
used as well)?

9 Suppose that a bus as shown in fig. 2.81 is given. Rectangles contaming
&-sign denote AND-gates.

VDD
f1 — f
&—[pu1 PU2 }—E 2
bus
enal enaz2
_ la+[pp2 PD2 }—E _
f1 o f2
GROUND

Figure 2.81. Bus driven by tri-state outputs

Which of the IEEE 1164 values will be on the bus if both enable inputs are
setto '0’ (enal = ena2="0")? Which of the IEEE 1164 values will be on
the bus ifenal="0", ena&2="1" and f2="1"?

10 Simulate trains between Paris, Brussels, Amsterdam and Cologne, using
the levi simulation software [Sirocic and Marwedel, 2007d]! Modify the
examples included with the software such that two independent tracks exist
between any two stations and demonstrate an (arbitrary) schedule involving
10 trains!

116 EMBEDDED SYSTEM DESIGN

11 Simulate a Kahn process network computing Fibonacci numbers, using the
levi simulation software [Sirocic and Marwedel, 2007b].

12 Which of the following languages are using asynchronous messasgjaga
communication: StateCharts, SDL, VHDL, CSP, Petri nets?

13 Which of the following languages use a broadcast mechanism fotingda
variables: StateCharts, SDL, Petri nets?

14 Which of the following diagram types are supported by UML: Sequence
charts, record charts, Y-charts, use cases, activity diagramsijt aiau
grams?

