
1

Embedded Systems

Design Methodologies (2/2)

Adapted from:

“Sistemi Embedded: Sviluppo HW e SW per sistemi dedicati (Cap. 3)”

W. Fornaciari, C. Brandolese - Edizioni Pearson – Prentice Hall 2007

and other different sources (some in the Extra folder).

Suggested complementary reading: “ESD: Unified HW/SW approach” – Chapter 11



2

Overview

• Design Flows

– System-Level Design Flows

• An ideal flow

• An academic flow

• Others specific/generic design flows

– Hardware Design Flow

– Software Design Flow

– Conclusions



3

System-Level Design Flows



4

System-Level Design Flows

• A system-level specification is an abstract description of 
the system behaviour and/or its logical structure as much 
as possible independent from the implementation issues
– HW/SW domain

– Physical structure

– Implementation technologies

• The development of HW/SW systems starting from a 
system-level specification is a current research field and 
they are still missing commercial and/or academic 
consolidated methodologies and tools
– Anyway, some theoretical aspects should be common to all the 

approaches



5

System-Level Design Flows

• Notations

– One or more models and/or files

– Some data processing

• Normally supported by a tool

– A library or a configuration file

– A whole design flow

step/tool

library/input

flow

file/data



6

System-Level Design Flows

An ideal flow



7

System-Level Design Flows

• An ideal flow
(HW/SW Co-Design)

Architecture

Refinement/Definition

ESL

High-Level

Synthesis

or

COTS

HW/SW

Architecture or

Component Library

System-Level Flow

Algorithmic-Level Flow

SoB

ASIC

PLD

SoPC



8

System-Level Design Flows

An academic flow



9

System-Level Design Flows

• An academic flow
System

Behaviour

Model

Functional

Simulation

Test

Cases

Co-Analysis

Co-Estimation

- Affinity

- Timing

- Size

- Concurrency

- Load

- Bandwidth

Timing

Constraints

HW/SW Partitioning,

Mapping and

Architecture Definition

Timing

Co-Simulation

Design Space Exploration

Algorithm-Level

Flow

System-Level Flow

Hetrogeneous

Parallel

Dedicated

System

Technologies Library

-Processors

-Memories

-Interconnections

Scheduling

Directives

Architectural

Constraints

SoB

ASIC

PLD

SoPC



10

System-Level Design Flows

• An academic flow

Architecture

Definition

System

Behaviour

Model

Functional

Simulation

Test

Cases

Co-Analysis

Co-Estimation

- Affinity

- Timing

- Size

- Concurrency

- Load

- Bandwidth

Timing

Constraints

HW/SW Partitioning,

Mapping and

Architecture Definition

Timing

Co-Simulation

Design Space Exploration

Algorithm-Level

Flow

System-Level Flow

Hetrogeneous

Parallel

Dedicated

System

Technologies Library

-Processors

-Memories

-Interconnections

Scheduling

Directives

Architectural

Constraints



11

System-Level Design Flows

• An academic flow
– Main publications

• PhD Thesis and main related publications (MI: 2001-2006)

– “Metrics for Design Space Exploration of Heterogeneous 
Multiprocessor Embedded System”, IEEE/ACM CODES 2002)

– “Partitioning of Embedded Applications onto Heterogeneous 
Multiprocessor Architectures”, ACM Symposium on Applied Computing 
(ACM SAC 2003)

– “Affinity-Driven System Design Exploration for Heterogeneous 
Multiprocessor SoC”, IEEE Trans. on Computers 2006



12

System-Level Design Flows

• An academic flow
– Main publications

• Next steps (AQ: 2006-today)

– "System-level design space exploration for dedicated heterogeneous 
multi-processor systems“. IEEE ASAP 2011

– “HW/SW Co-Design of Dedicated Heterogeneous Parallel Systems: an 
Extended Design Space Exploration Approach”, IET CDT 2013

– Electronic System-Level HW/SW Co-Design of Heterogeneous Multi-
Processor Embedded Systems (2016)

» http://www.riverpublishers.com/series_search.php?val=pomante

– SystemC-based electronic system-level design space exploration 
environment for dedicated heterogeneous multi-processor systems, 
Microprocessors and Microsystems (2020)

• WIP

– Re-Engineering & Graphical Front-End

– Customization/extensions for Power/Energy, Monitorable and Mixed-
Critical Systems

– Real-World V&V

http://www.riverpublishers.com/series_search.php?val=pomante


13

System-Level Design Flows

Others specific/generic design flows
(Things are always changing very quickly…)



14

System-Level Design Flows

• System-Level Generic Flows

– ESL Design

• Ptolemy

– https://ptolemy.berkeley.edu/

• Metropolis

– https://ptolemy.berkeley.edu/projects/embedded/metropolis/

• SystemCoDesigner

– https://sop.tik.ee.ethz.ch/pisa/variators/scd/documentation.html

• ForSyDE

– https://forsyde.ict.kth.se/trac/wiki/WikiStart

https://ptolemy.berkeley.edu/
https://ptolemy.berkeley.edu/projects/embedded/metropolis/
https://sop.tik.ee.ethz.ch/pisa/variators/scd/documentation.html
https://forsyde.ict.kth.se/trac/wiki/WikiStart


15

System-Level Design Flows

• System-Level Generic Flows

– ESL Design

• Space Codesign (HW, HW/SW?)

– C/C++, SystemC

» http://www.spacecodesign.com/

• Mentor Graphics VISTA (HW, HW/SW?)

– SystemC TLM, HandelC?

» http://www.mentor.com/esl/

• ???

– Poseidon Design (HW, HW/SW?)

» C, C++, SystemC, SystemVerilog,…

» http://www.poseidon-systems.com/index.htm

– Impulse Co-Developer (HW, HW/SW)

» ImpulseC (C/HandelC-like with CSP MoC)

» http://www.impulseaccelerated.com/

http://www.spacecodesign.com/
http://www.mentor.com/esl/
http://www.poseidon-systems.com/index.htm
http://www.impulseaccelerated.com/


16

System-Level Design Flows

• System-Level Generic Flows

– ESL Design

• Intel CoFluent (HW, HW/SW)

– DSL (process-based MoC), SysML

» http://www.intel.com/content/www/us/en/cofluent/intel-cofluent-studio.html

• Polimi Panda (HW, HW/SW)

– C, C++, SystemC

» http://panda.dei.polimi.it/

• ???

– Diamond FPGA (HW/SW)

» C&VHDL (CSP MoC)

» http://www.3l.com/products/3l-diamond

http://www.intel.com/content/www/us/en/cofluent/intel-cofluent-studio.html
http://panda.dei.polimi.it/
http://www.3l.com/products/3l-diamond


17

System-Level Design Flows

• System-Level Generic Flows

– ESL Design

• Calypto CatapultC (HW)

– C, SystemC, HandelC?

» http://calypto.com/en/home

• ???

– Forte Design System Cynthesizer (Cadence Stratus HLS) (HW)

» C, C++, SystemC, HandelC?

» http://www.forteds.com/

– PLDI QuickPlay (HW)

» C-like (KPN-like MoC)

» http://www.quickplay.io/

http://calypto.com/en/home
http://www.forteds.com/
http://www.quickplay.io/


18

System-Level Design Flows

• System-Level Generic Flows

– ESL Design

• PragmaDev (SW & Validation)

– UML-like (Message Sequence Chart) & PSC

» http://www.pragmadev.com/index.html

• ???

– radCASE and radCHECK (SW & Validation)

» UML state diagram (HCFSM MoC) & PSL

» http://www.radcase-ux.com

– Others academic/commercial flows

• e.g. LabVIEW

– See EXTRA folder and the Internet! ☺

http://www.pragmadev.com/index.html
http://www.radcase-ux.com/


19

System-Level Design Flows

• System-Level Specific Flows: DSP, TLC, AUT, …

– A lot of them start from Matlab/Simulink (or similar) system-level

models (Dataflow MoC) built by using also specific block-sets 

belonging to custom libraries

• The Mathworks (HW, SW, HW/SW)

– Matlab/HDL/Simulink/Embedded/PLC Coder

» http://it.mathworks.com/products/?s_tid=gn_ps

– ???

» Synplify DSP di Synopsys (HW)

» http://www.synopsys.com/Archive/AlgorithmicSynthesis/Documents/syn_dsp

_ds.pdf

• Scicos (HW, SW)

– HW: Scicos-HDL

» http://scicoshdl.sourceforge.net/

– SW: Evidence (FlexBoard+ErikaRTOS)

» http://www.evidence.eu.com

http://it.mathworks.com/products/?s_tid=gn_ps
http://www.synopsys.com/Archive/AlgorithmicSynthesis/Documents/syn_dsp_ds.pdf
http://scicoshdl.sourceforge.net/
http://www.evidence.eu.com/


20

System-Level Design Flows

• System-Level Specific Flows: FPGA

– Xilinx (HW, HW/SW)

• C/C++, HDL, OpenCL

– Vitis/Vivado Design Suite

– UltraFast Design Methodology

– Embedded Software and Design Tools (Xilinx&PetaLinux SDK)

– All Programmable Abstractions

» http://www.xilinx.com/products/design-tools.html

– Similar methodologies/tools from the other competitors

• Altera (Intel), Lattice, Microsemi/Actel, …

http://www.xilinx.com/products/design-tools.html


21

HW Design Flow



22

HW Design Flow

• ASIC/PLD

Architecture

Refinement/Definition

ESL

HW/SW

Architecture or

Component Library



23

HW Design Flow

• It is the flow that transform a synthesizable RT 
specification into a digital circuit
– ASIC

• Realization

– PLD

• Configuration

• Each HW flow is ideally decomposed in two phases
– Front-end: logic-level synthesis and optimization

• Loose link with implementation technologies

– Back-end: management of geometric/physycal issues

• Tight link with implementation technologies

– Practically, today, the two phases are even less decoupled



24

• HW Design Flow

– Front-end

V&V



25

HW Design Flow

• Front-end

– Considerations

• All the models used in the front-end are based on a HDL

• Some steps are very critical for ASIC but not needed for PLD

– DFT, BIST, SCAN, ATPG

• Synthesis tools

– ASIC: generics and customized by means of libraries provided by the 

vendors (i.e. the foundries)

» Quite expensive

– PLD: each vendor provides a whole dedicated synthesis environment

» Near for free (apart from complex IP cores)



26

• HW Design Flow

– Back-end

V&V



27

HW Design Flow

• Back-end
– The interface between front-end and back-end is composed of a 

technological netlist, related synthesis libraries, a set of 
constraints, and some timing data

• The netlist is often described by means of a hystorical textual format

– EDIF (Electronic Design Interchange Format)

– ASIC

• The final output is a geometric model for the foundry

– GDS/II (Geometric Data Stream)

– PLD

• Back-end is extremely simplified

– Resources (cells and interconnections) are already existing

– Placement and routing are managed as a mapping problem

» Bitstream



28

SW Design Flow



29

SW Design Flow

Architecture

Refinement/Definition

ESL

HW/SW

Architecture or

Component Library



30

SW Design Flow

• Similar to traditional SW design flow but with some key 

differences

– The possibility of developing applicative SW without an OS

• The programmer should manage a lot of low-levels details (also to 

build and run the executable)

– The possibility of “developing” also the OS

• Mainly a configuration with respect to the applicative requirements 

and the target platform

– See also Extra folder…



31

• SW

Design Flow

OS APP SW



32

• OS

Design Flow



33

SW Design Flow

• OS Design Flow

– Starting from a generic template the goal is to customize the OS 

with respect to the applicative requirements and the platform

• Several Embedded SW IDE provides tools to support this activity

– BSP/PSP development/configuration

» The lowest level SW composed of a set of routine to access HW resources

– Kernel configuration

» Scheduling, Memory Management, IPC, Filesystem, Networking

– Applicative services

» Graphics, HTTP, FTP, etc.



34

SW Design Flow

• OS Design Flow

– After the customization, the OS is then generated in one of the 

following “form factor”

• A set of executable representing the OS binary and a set of OS 

library to be used as a support to develop the applications

– OS bynary, OS library and the application are well distinct

• A single image that integrate all the components

– Approach used for to satisfy critical size/performance requirements



35

• Application

Design Flow



36

SW Design Flow

• Application Design Flow

– The starting point is a set of source files (C, C++, Assembly) that 

represent the application

• Compilation, Assembly, Object files

• Linking (Symbol resolution)

– Stand-alone SW (NO OS)

» It is needed to specify to the linker the memory organization of the different 

parts of the executable (memory map)

– OS

» It is the OS that manage the loading of the code in memory also relocating it 

in memory when/where needed (e.g. ELF format)



37

SW Design Flow

• Application Design Flow

– The linking phase generates an executable

– Next steps are quite standard

• V&V

• Debugging

• Profiling

– Instrumentation

• Stripping

• Application binary



38

• Application

Design Flow



39

SW Design Flow

• Application Design Flow

– The last step is related to the deployment of the final SW

• Linked APP+OS

– The resulting single binary image is uploaded in the memory of the 

system

• OS and App are independent executable files

– OS is loaded in the memory of the system

» There is the need of a file system to load and execute the App


