Introduction to SystemC




Overview

Introduction

SystemC
» Transaction Level Modeling

SystemC
» Main language elements

SystemC
» Basic example

More info...




Introduction




Introduction

¢ The development of a digital electronic system
starts from requirements collection, typically in
natural language, and analysis

e The next step the creation of a system model by
means of a modeling/specification language able to

» Provide an higher level of abstraction to cope with
very complex systems

» Be technology independent but suitable for both HW
and SW

» Allow fast and reasonable accurate Design Space
Exploration (DSE), early V&V (Simulation), and to
reduce the design productivity gap




Introduction

e Classical system-level design flow

C,CHt
— | System Level Model

Manual Conversion

@ VHDL/Verilog

Results w

Rest of Process

Refine




Introduction

¢ SystemC system-level design flow

_>

SystemC Model

Refinement

B4

Rest of Process

-6 -



Introduction

¢ SystemC system-level design flow
|

Software UTF Hardware > SystenV/ Architectural Level
»not synthesizable
Refine »event driven
»abstract communication
TF »abstract data types
Refine

Partiti » Behavioral Level
N ‘x,|/ »synthesizable
Behavioral :f*‘c'GGkEd
»1/O cycle accurate
bstract efine »algorithmic description
abstrac

RTOS RTL w > RT Level
Refine | »synthesizable
/ »clocked

target _ »FSM
| code Netlist ~data path

Fraunhofer . .




Introduction

C++ is not suitable to describe complex HW/SW
systems because it misses

» Model of the time
» Concurrency
» HW data types (e.g. Z)

But C++ is extensible thanks to the OOP power!

In fact SystemC is a C++ library that allows to
overcome the above limitations

» Moreover, the model is directly executable (i.e.
simulatable) since it is “just” a C++ program

e The simulation Kernel is provided by the same library




Introduction

e SystemC library is available for free thanks to the
OSCI (Open SystemC Initiative), an organization
composed of the main players in the EDA domain

» www.accellera.org (ex Www.systemc.org)

e The library has evolved during the time
» SystemC 1.x: RTL and Behavioural modeling (HW)

» SystemC 2.x: System modeling (HW/SW)

e Moreover, there are some specific extensions
- TLM (Transaction Level Modeling)
- AMS (Analog-Mixed Systems)
- SCV (SystemC Verification Library)
- CCI (Configuration, Control and Inspection)



http://www.accellera.org/
http://www.systemc.org/

Introduction

¢ SystemC library architetcure (v2.3.1)

L -
-
=
™
o
o
o
—
g
L=
L' ]
L
LL
=

Application
Written by the End User

User
Libraries

SystemC Core Language

Structural Predefined Utilities Data Types

Elements Channels
Report 4-valued logic type
Modules Signal, clock, FIFO, handling, 4-\ralue.d legic vectors
Ports mutex, semaphore tracing Bit vectors
Exports Finite-precision integers

Interf . . . Limited-precision integers
nieriaces Event-driven Simulation P g

Channels Fixed-point types
Events, processes

Programming Language C++
ISO/IEC Std.14882-2003

= — = (CClstandardization effort is underway

-10 -



Introduction

SystemC library usage

your standard
C/C++ development
environment

header files ( compiler )

—>
o "h“"'“. ( linker )

( debugger )

N Interface
A
% ASIC

source files for system
and test benches

class library
and
simulation kernel

L] m a kEI-

ple Jb.

L] E-Euta = 1 1
E;Ecz,f'-.ca‘t'-““ a.out

i =il




Introduction

¢ Ihe model is executable

» Higher the abstraction level faster the simulation
time

e Several abstraction levels can coexist in the same
model

» Gradual model refinement and continuos V&V
» Unique simulation environment

-12 -



Introduction

e System(C 1.x

» RTL and Behavioural modeling (HW)
e SystemC 2.x

» System modeling (HW/SW)

TLM

TLM e TLM

RTL R

——RTL
I
TL

e (U)TF: (UnTimed) Functional Level
- No time accuracy for computation/communication

e TLM: Transaction Level Modeling

- Abstract structural view for platform design and co-
verification

» TLM APl has been also standardized (TLM 2.0)

e RTL: Register Transfer Level
- Time accuracy for computation/communication

-13 -



SystemC




SystemC

e Iransaction Level Modeling

» The goals are

¢ To model a system by separating computation and
communication modeling of its components

¢ To provide a unique modeling language for description
with different detail levels

¢ To provide a unique modeling language for description
of different model of computation

- The underlying simulation Kernel is Discrete Event based

-15 -



SystemC

e Iransaction Level Modeling

» What is a Transaction?

e It is a data exchange between two components of the
model description
- Examples
» The transfer of data between two stages of a pipeline
» The transfer of words between a processor and a memory

» The transfer of complex data structure between two phases
of data processing

» What vs. How

¢ A transaction models only which data is transferred
(type, value), not in which way the transfer is
performed

-16 -



SystemC

e Iransaction Level Modeling

» In the context of TLM, communications can be also
modeled by introducing different time granularity

e Untimed functional
- Only the data exchange without concept of time

e Bus cycle accurate

- Data exchange with the concept of the time limited to
the granularity needed to to perform an operation on the
bus

e Cycle accurate

- Data exchange with the concept of the time equal to the
clock cycle granularity

-17 -



SystemC

e Iransaction Level Modeling

» Transaction Level vs. Pin Level (RTL)

Pin accurate

data_out=data

reg="1'

Master

Master

outport.write{data)

. Slave
reg="0"
Transaction Level
Channel Slave
= | A | >
e s

A

-18 -




SystemC




SystemC

¢ Main language elements
» Overview
» Data Types
» Interfaces and Channels
» Modules
» Processes
» Hierarchy
» Examples

-20 -



Main language elements

¢ Overview

Module Channel Module

Eve&
Process

|
|
|
| 0
| @ Channel o
| D
|
|

-21-



Main language elements

e Structure of a SystemC model

channels cha nnals
- lt Channel(s) lt
avants eV rlts

process NINND S e )

System
Process Y ‘.':::::::.:, procesa ) ||

Module ' Module

¢ The modeled system is composed of modules

» Module behaviour is described by processes that
communicates by events and/or channels

¢ Inter-module communications is performed by channels

-22 -



Main language elements

¢ Module instances at the same hierarchical level are
connected by means of ports to channels

» Processes are directly connected by channels or event
¢ Modules support hierarchy
» Connections are performed by ports

Module

" 4
(00 Jo @) chumnt @] ance [%—[Iﬁ
{TF——Process ).e Channel % q"—) :i

Module body
Process h Process ) Module instances

concurrent processes




Main language elements

¢ An interface describes the set of methods

accessible by ports

» Interfaces are implemented by channels
» Interface are connected to ports

¢ Channels can be developed independently by
modules (they have to guarantee the interface)

Channel

Port/interface binding ( @I ) I

Ports (1] ) I

Interface @ I /

)

Module

-24 -



Main language elements

¢ Events (sc_event) are the basic synchronization
element

» Processes are executed and their output updated
depending on events

e SystemC library provides a scheduler that manages
process execution

e A process is activated by the events of its sensitivity
list
» Sensitivity list can be
e Static: defined before the simulation start
e Dynamic: defined at runtime
» A process can wait for an event
e wait()

-25-



Main language elements

¢ Data Types

Process

r- - - - - - -----—-—-—-—-——-—-—-—=—-= 1
I I
| Module Channel Module |
I Data types I
| A |
| @ Channel % |
5 Datatypes =5
I Eve& = I
| I
I I

- 26 -



Main language elements

¢ Data Types
» SystemC allow the use of both native C++ data types
and library defined ones

¢ SystemC data types allow a more detailed description
but lead to less performant simulations

» SystemC numeric data types
e Fixed precision
e Arbitrary precision
¢ 4-values logic
e Array of 4-values logic
¢ Fixed point

-27 -



Main language elements

¢ Data Types

» SystemC numeric data types

e SC_uint<>, sc_int<>: signhed and unsigned integers
- User-defined length (max 64 bit)

e SC_biguint<>, sc_bigint<>
- Arbitray length signed and unsigned integers

e sc_logic
- Used to represent a single bit with 4-values logic

> (0%, ‘17, ‘27, ‘X’)

e sc_lv<>: array of sc_logic bit

e sC_fixed<>, sc_ufixed<>: fixed point
- Used to refine floating point data types

-28 -



Main language elements

¢ Interfaces and Channels

Module Channel Module

Eve&

|
|
|
| 0
| @ Channel o
| D
|
|

-29 -



Main language elements

¢ Interfaces

» Interfaces define a set of access methods
e Their implementation is defined by channels

» SystemC provides a set of predefined interfaces
e sc_signal_in_if, sc_signal_out_if, sc_signal_inout_if,
sc_fifo_in_if, sc_fifo_out_if, sc_mutex_if,
sc_semaphore_if
- Each ones defines some virtualmethods
» e.g. write() is defined only in out interfaces

» If a channel implements an interface it has to
implement all the related methods

-30 -



Main language elements

¢ Channels

» Primitive channels (predefined)
e They don’t have a visible internal structure and
cannot access to other primitive channels
- sc_signal, sc_signal_rv
- sc_fifo, sc_mutex
- sc_semaphore, sc_buffer
» Hierarchical channels

e They are like modules and can contain processes
and other channels
- Hierarchical channels lead to less performant simulations

-31-



Main language elements

¢ Modules

Module Channel Module

1ouuey)

|

|

|

|

| @ Channel

I Eve&
: Process

-32 -



Main language elements

¢ Modules

» They are containers defined by an interface (.h) and a
functionality (.cpp)

» A module can be composed of
e Ports
¢ Internal channels
¢ Internal variables
e Processes
¢ Standard C++ methods
e Constructors
¢ Instances of other modules

-33-



Main language elements

¢ Modules
» A module is declared by means of the SC_MODULE macro

SC MODULE ( module name) { It is only a way to hide inheritance
/ / bOdy of module from sc_module class:
} ! class module_name::sc_module...

e Access to a module is perfomed by means of ports (sc_port
class) that are linked to an interface

- Three port types
» |n, Out, Inout

- Complete syntax: sc_port<interface_type, N> port_name;
» N: number of channels that can be connected to the port

-34-



Main language elements

¢ Modules

» A module can declare internal channels used to
e Connect modules at the same hierarchical level
e Connect internal processes

e Connect a process of a module to the port of an internal
module

» A module can declare internal variales
» A module can declare internal methods and processes

e Processes are particular methods that are
“registered” in the consctructor

- This allow the scheduler to properly manage them

-35-



Main language elements

¢ Modules
» A module has a constructor used to create its instance
with the internal data structures
e Inits internal variables and signals
¢ Defined the processes

SC_CTOR (my module) {

SC_METHOD (internal process); //Method Process
sensitive << in p;

internal variable= 1;

}

- 36 -



Main language elements

¢ Modules

» Channels sc_signal, sc_signal_rv, sc_fifo can exploit
special ports to simplify declarations

e sc_signal
- sc_in<T>, sc_out<T>, sc_inout<T>

e sc_signal_rv
- sc_in_rv<T>, sc_out_rv<T>, sc_inout_rv<T>

e sc_fifo

- sc_fifo_in<int>, sc_fifo_out<T>, sc_fifo_inout<T>

-37-



Main language elements

¢ Modules

» To read a value from a port (or internal channel) it is
possible to use the read() method or the = operator

» To write a value to a port (or internal channel) it is
possible to use the write() method or the = operator

e The methods are declared in the .cpp (funcionality) and
acts on a port declared on the .h (interface)

- Interface
» sC_signal<int> data;
» sC_signal<bool> condition;
» int a;

- Functionality
» a=data.read();
» condition.write(a);

- 38 -



Main language elements

e Modules
» Example: interface

SC_MODULE (encode) {

sc_in< bool > clock; //Ports

sc_in< bool > reset;

sc_in< bool > input;

sc_out< sc bv<3> > output;

sc_1lv<8> trellis; //Variables

sc_1v<3> tmp;

sc_1v<8> inputl;

void codeGen(); //Function/method protoype

SC_CTOR (encode) // Constructor

{
SC_CTHREAD (codeGen,clock.pos()) ;
watching (reset.delayed () == true) ;}

};

-39 -



Main language elements

e Modules
» Example: functionality

#include "encode.h"
void encode: :codeGen () {
trell=0x00; //Init
wait () ;
//Neverending loop..
while (true) {
inputl[0]=input.read() ;
trell=((trell)<<1l) |inputl;
tmp[2]=trell[7]*trell[4]*trell[2]*trell[0];
output.write(tmp); //Scrittura uscita
wait () ;}

- 40 -



Main language elements

e Processes

Module Channel Module

Eve&
Process

|
|
|
| 0
| @ Channel o
| D
|
|

-41 -



Main language elements

e Processes
» Events are the basic elements for processes
synchronization
e SC_event event_name;

» An event can be notified

e Immediately: processes sensitive to the event became
ready in the current delta-cycle

- See later for more info about delta-cycle

e Delayed: processes sensitive to the event became ready
in the next delta-cycle

o After a specified time

-42 -



Main language elements

e Processes

» System functionalitites (i.e. the system behaviour)
are described in the processes

e Processes exploit events or channels to comunicate
- They have to be registered in the module constructors

» There are three process types

e SC_METHOD; SC_THREAD; SC_CTHREAD

- SC_METHOD behaves as functions
» After a call they return to the caller
- SC_THREAD and SC_CTHREAD behave like threads

» Thay are called only one time and then they have their
execution flow

-43 -



Main language elements

e Processes

» SC_METHOD (asynchronous function)

¢ Sensible to a set of sighals/events
- Sensitivity list

> e.g.
» sensitive(signall), sensitive<<s1<<s2<<s3
» sentitive_pos<<clk, sensitive_neg<<clk

e Each time it is invoked, the whole function statements
are sequentially executed until the end with O
simulation time

- No wait() allowed inside the function

e Mainly used for RTL modeling

-44 -



Main language elements

e Processes

» SC_THREAD (asynchronous thread)

¢ Sensible to a set of sighals/events
- Sensitivity list

e Each time it is invoked, the function statements before
the first wait() are sequentially executed in O
simulation time

- At the following activation, the execution will restart
from the previous wait() and so on...
» Variables keep their value

¢ Used to model both synchronous and asynchronous
behaviors

- 45 -



Main language elements

e Processes

» SC_CTHREAD (“clocked” synchronous thread)
e It is sensitive only to one front of one clock

¢ Each time it is invoked, the function statements before
the first wait() are sequentially executed in O
simulation time
- At the following activation, the execution will restart
from the previous wait() and so on...
» Variables keep their value

¢ Used to model synchronous behaviors
- WARNING: Deprecated!

- 46 -



Main language elements

Processes

» WAIT() function
e Used only in SC_THREAD and SC_CTHREAD

e Suspend process execution until the next reactivation

- SystemC 1.x
> wait()
» wait(<var_int>) - wait for a number of cycles
- SystemC 2.x
» wait(event)
» wait(el |e2 |e3) - wait for one of the events
> wait(el & e2 & e3) - wait for all the events
» wait(100, SC_NS, el | e2) - wait with time-out

-47 -



Main language elements

e Hierarchy

Module

Channel

_Process jm— >

Event

1ouuey)

Process

- 48 -




Main language elements

e Hierarchy

» By means of modules it is possible to build a
hierarchical structure

e As in VHDL it is possible to connect father-child ports

- There is the need for channels to connect modules at the
same hierarchical level

ex2

- 49 -



Main language elements

Hierarchy
SC_MODULE (ex3) { To create a hierarchy:
sc_port<sc_fifo in if<int> >a; ¢ Create the instance of the
sc_port<sc_fifo out if<int> > b; module
sc_fifo<int> sig; ¢ Init the instance of the
// Instances of exl and ex2 module
exl exl instance; ¢ Make the port binding
ex2 ex2 instance;
// Module Constructor Binding can be:
SC_CTOR (ex3) : ¢ Named
exl instance("exl instance"), e Positional
ex2 instance("ex2 instance")
{

// Named connection for exl
exl instance.m(a);

exl instance.n(sig);

// Positional connection for ex2
ex2 instance(sig, b);

-50 -



Main language elements

e Hierarchy

» The top level is represented by the special function
sc_main() that is called by the simulation kernel at
the beginning of the simulation

e Modules can be instantiated in the same way

» At a given point of main, sc_start() is used to start
the simulation

e SC_start()
- Run until there are events

e SC_start(arg)
- Run for a specified simulation time

-51 -



Main language elements

e Hierarchy

#include
#include
#include
#include

"systemc.h"
"adder.h"

"stimgen.h"
"monitor.h"

int sc _main(int argc, char *argv[ ])

{

// Create fifos with a depth of 10

sc_fifo<int> s1(10), s2(10), s3(10);

// Module instantiations
stimgen stim("stim") ;

stim(sl, s2);
// Adder
adder add("add") ;

add(sl,

// Response Monitor
monitor mon ("mon") ;

s2, s3);

mon.re (s3);

sc_start();

sc_main

al
stimgen

a2

51

s2

S
S

in1
adder
in2 out

-52 -

monitor

53 E;ﬂlﬂ



Main language elements

e Hierarchy: Hierarchical Channels

» Hierarchical Channels are like modules so they can
contain processes, other modules, etc.

e They are very powerful but also complex so they can
affect simulation performance
- e.g.

» to replace a FIFO with a hierarchical channel that acts like
a wrapper for a RTL FIFO description

» to describe the behaviour of a shared bus with arbiter

» ... hier_chan

source hw_fifo sink

sc_signalél
source sink

output sc_fifo @Inpm ‘ output sc_signal@
— — sc_signal @l sc_signal

clk

sc_si
sc_si

na I
gnal I input

-53 -



Main language elements

¢ VHDL vs SystemC

» Very similar for RTL modeling
¢ VHDL not suitable for system-level
e SystemC could be less efficient for synthesis

VHDL SystemC
Hierarchy Entity Module
Communication Signal Signal, Channel
Functionality Process Process
TestBench Object orientation
System Level Channel, interface, event,
abstract data types,...
1/0 Simple file I/0 | C++ I/0 capabilities

-54 -



Main language elements

¢ VHDL vs SystemC: RTLD FF

library ieee;
use ieee.std logic 1164.all;
entity dffa is

port ( clock in std logic;

reget in std logic;

din : in std logic;

dout : out std logic);
end dffa;

architecture rtl of dffa is
begin
process (regset, clock)
begin
if reset = ‘1’ then
dout <= '0';
elsif clock’event and clock = '1°7
dout == din;
end if:;
end process;
end rtl:

then

// dffa.h
#include "systemc.h"

SC MODULE (dffa)
sc_in<bools> clock;
sc_in<bools> reset;
sc in<bool= din;
go out<bool> dout;

void do ffal()

{

if (reset) |
dout = false;

} else if (clock.event())
dout = din;

}
}i

SC_CTOR(dffa)

{

SC METHOD (do ffa) ;
sensitive (reset) ;
sensitive pos (clock);

}
bi

{

- 55 -




SystemC




Basic example

¢ Overview

main.cpp

Stimulus

Response
Generato aaer Monitor

| f ]

stimigen.cpp addar.cpp mionitor.cpp

stimgen.h manitor_h

Al
I

-57 -



Basic example

¢ Simulation model

// header file adder.h

typadef int T ADD; main.cpp
SC_MODULE (adder) { -
// Input ports . a
zc_port<zec_fifo in if<T ADD> > inl; Stimulus Adder m— - re HESp?nse
zc¢_port<zc_fifo_in if<T_ADD> > in2; Generato Monitor
32 ]
// Output ports ’/:\ f /:\

zc¢_port<zc_fifo _out_ if<T ADD> > in2;

// Consztructor

SC_CTOR(adder) {
SC_THREAD (main) ;

}
stimgen.cpp\\ monitor.cpp
// Functicnality of the proces:z \
void main(); — T _ -
— | stimgen.h — | monitor.h
T - ¥
I _— — _—

—

main.cpp

- 58 -



Basic example

¢ Simulation model

// Implementation file adder.cpp
#include “zsystemc.h”
#include “adder.h”

volid adder::main()

{

while (true) {
out=->write(inl->read() + inZ->read()):;

// azszign a run-time to proceszs
wait (10, SC_NS);

main.cpp
_ almm =
Sy aacer [ —re] Fpebere
A a2 p= - f

-

Ty

stimgen.cpp \

— | stimgen.h

adder.cpp

i
O]

monitor.cpp

— | monitor.h

4]
=1
=}
p— [17]
=
=

I

main.cpp

- 59 -




Basic example

¢ Behavioural model

. main.c
// hegder file adder.h PP
typedef sc_int«<8>» T ADD; ) af -
Stimulus Response
Adder & - e .
8C_MODULE (adder) { Generato Monitor
// Clock introduced A2 = —-—
gc_in clk clk; -"':‘- ’ f':".
f/ Imput ports
go_in<T ADD» iml: ST R T ———
go_in<T ADDM» in2;

f{ Output port
gc_out<T_ ADD> out;

J/ Comstructor
BC_CTOR (addsx) {
8C_CTHREAD (main, clk.pos()):

stimgen.cpp ~ monitor.cpp

1

// Punctionality of the proceas
void main();:

- 60 -




Basic example

¢ Behavioural model

main.cpp
// Implementation file adder.cc
finclude "systemc.h"™ G = —
#include “adder.h” Stimulus Adder m_ . Response
void adder::main() Generato ” Monitor
{ FE p— _—
/M dimitiali=zation "l;‘\ f "lflll"L

T ADD _ inl 0:
T ADD _ ind 0:
T ADD _ out = 0;

out.write|__ _out);
wait():

stimgen.cpp

ff infinite loop MOnitor.cpp I

while(1l) {
inl = inl.read(); stimgen.h monitor.
_ inZ = inZ.read(};
_out = __iml + __ in2;
out.write( out);

wait():

-61 -



Basic example
RTL model

// haadar filae addar.h

typedef sc_int<8> T_ADD; mﬂln cpp

8C_MODULE (adder) { _L
/f Clock introduced ai -
gc_in_clk clk; Stimulus Adder m_ Hesponse
{/ Input ports Generato "] Monitor
gc_in<T_ADD:> inl; A2l -
go_in<T ADD> in2; ,.-"'“-., f ,"("‘\
f{ Output port | |

ff intermal signal
gc_sgignal<T ADD> sum;

ff Comnstructor -

8c_CTOR{adder) { sumgen.cpp
BC_METHOD | add) ;
gensitive << inl << in3;
BC_METHOD | reg) ;
pengitive pos << clk;

monitor.cpp

¥

ff Punctiomality of the process
void add():
vold reg():

- 62 -




Basic example
RTL model

// Implemantation file addar.cc

#include "systemc.h”™
#include "adder.h”™

vold adder::add() maln'cpp
{
T ADD __ inl inl.read(): al = —
T ADD __ in2 in2.read(): Stimulus m_ Response
Generato Adder "% Monitor
sum.write| _ inl + __ inZ }: A2 e —
} AN f AN
I I
{

out . .write| sum };

}

stimgen.cpp

monitor.cpp I

atimgen.h meonitor_h

main.cpp

-63 -




Screenshot

File Edit Marker GoTo )llew thlons ﬂmdow I:lelp
PEEFCEREEE R , Eh |
— - ~
10 o
19 1 1 1 1 1 1 1 1 1 1 1 1 ‘
E
olk 0 ilJ
B inl{0:7) 8 HENEEEIE EENERENE
B In2(0:7) B b | F | & [ B | & ] & ] 8 [ & |8
B out(0:7) 14 0 [ & | & | & | ® | *w [ 12 [#
SustenT (TN? Version 1,0 -— for 12 2000 12:57:11
ALL RICHTS RESERNED
Copyright (c) L388-2000 by Syncpsus, Inc. o
WARNING: Defzult tine step (1 &) iz uzed for MIF tracing, 3
: — ==& ints 0 an2: O outy 0 KL ED —
R | 21K ink? 9 32: 0 ok ¢ <O
' R init L in2: 1 okt O £ Qi
| Feady. ints 2 3nZ: 2 ks 2 €4C B:
inl: 3 1n2: 3 outr 4 <4 @4
iy 4 1n2: 4 out; 6 << @:5
inty 5 in2; S out; 8 K< G:8
inl: B in2: € out; 10 {08 027
int: 7 inZ: 7 out: 12 <{CR:§
inl: 8 in2: O outl 14 <4< B34
suncpaws 1983,10 vaves -wi1f dune.ou
Wawsforn Viewer Yersion 1899,05
Copyright (c> 1390-1339 by Symipsys, Inc.
ALL RICHTS RESERVED
This progrer is srogrietard and confidential information
of Suncpzus. Inc. end woy be usad and dizclesed only oz u
adhorized ina  licenss aarcesnent controlling such wee -
a disclozure, l
; Fraunhofer
hG IIS-A, 2001 2l

- 64 -



More info...

e Official site

» www.accellera.org (ex www.systemc.org)
e SystemC 2.3.1

e http://www.accellera.org/downloads/standards/system
C

» One of the available online free tutorial
e https://www.doulos.com/knowhow/systemc/
» A good book

e SystemC: From the Ground Up
- Second Edition Springer - 2009

» A world to be discovered...

e www.soclib.fr
- Tutorial: https://www.soclib.fr/appliance/

- 65 -



