
Embedded Systems Design: A Unified

Hardware/Software Introduction

1

Models of Computation

& Specification/Modeling Languages
Cap8_ESD (reduced/modified)

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
2

Outline

• Introduction

• MOC and Specification/Modeling Languages

• Example

• State-based MOC
– FSM(D)

– HCFSM and Statecharts Language

– Program-State Machine (PSM) Model

• Process-based MOC
– Concurrent/Communicating Processes Model

• Communication/Synchronization

• Implementation

– Dataflow Model

• Summary

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
3

Introduction

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
4

• Describing embedded system’s processing behavior

– Can be extremely difficult

• Complexity increasing with increasing IC capacity

– Past: washing machines, small games, etc.

• Hundreds of lines of code

– Today: TV set-top boxes, Cell phone, etc.

• Hundreds of thousands of lines of code

• Desired behavior often not fully understood in beginning

– Many implementation bugs due to description mistakes/omissions

– English (or other natural language) common starting point

• Precise description difficult to impossible

Introduction

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
5

Model of Computations (MoC)

and Specification/Modeling Languages

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
6

MOC and Languages

• How can we (precisely) capture (i.e. specify/model) behavior?
– We may think of languages (C, C++), but computation model is the key

• Common computation models:
– “Sequential” program model (Imperative, Von Neumann)

• Statements, rules for composing statements, semantics for executing them

– Object-oriented model
• For breaking complex software into simpler, well-defined pieces

– State-based models
• For control dominated systems, monitors control inputs, sets control outputs

– Process-based models
• Communicating (Concurrent) process model

– Multiple sequential programs running concurrently

• Dataflow model
– For data dominated systems, transforms input data streams into output streams

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
7

MOC and Languages
MOC vs. languages

• Computation models describe system behavior

– Conceptual notion, e.g., recipe, sequential program

• Languages capture MOC

– Concrete form, e.g., English, C

• Variety of languages can capture one model

– E.g., sequential program model → C,C++, Java

• One language can capture variety of models

– E.g., C++ → sequential program model, object-oriented model, state machine model

• Certain languages better at capturing certain computation models

Models

Languages

Recipe

SpanishEnglish Japanese

Poetry Story Sequent.

program

C++C Java

State

machine

Data-

flow

Recipes vs. English Sequential programs vs. C

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
8

MOC and Languages
Text versus Graphics

• Models versus languages not to be confused with text

versus graphics

– Text and graphics are just two types of languages

• Text: letters, numbers

• Graphics: circles, arrows (plus some letters, numbers)

X = 1;

Y = X + 1;

X = 1

Y = X + 1

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
9

Example

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
10

Introductory example: An elevator controller

• Simple elevator

controller

– Request Resolver

resolves various floor

requests into single

requested floor

– Unit Control moves

elevator to this requested

floor

• Try capturing in C...

“Move the elevator either up or down

to reach the requested floor. Once at

the requested floor, open the door for

at least 10 seconds, and keep it open

until the requested floor changes.

Ensure the door is never open while

moving. Don’t change directions

unless there are no higher requests

when moving up or no lower requests

when moving down…”

Partial English description

buttons

inside

elevator

Unit

Control

b1

down

open

floor

...

Request

Resolver

...

up/down

buttons on

each

floor

b2

bN

up1

up2

dn2

dnN

req

up

System interface

up3

dn3

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
11

Elevator controller using a sequential

program model

“Move the elevator either up or down

to reach the requested floor. Once at

the requested floor, open the door for

at least 10 seconds, and keep it open

until the requested floor changes.

Ensure the door is never open while

moving. Don’t change directions

unless there are no higher requests

when moving up or no lower requests

when moving down…”

Partial English description

buttons

inside

elevator

Unit

Control

b1

down

open

floor

...

Request

Resolver

...

up/down

buttons on

each

floor

b2

bN

up1

up2

dn2

dnN

req

up

System interface

up3

dn3

“Sequential” program model

void UnitControl()

{

up = down = 0; open = 1;

while (1) {

while (req == floor);

open = 0;

if (req > floor) { up = 1;}

else {down = 1;}

while (req != floor);

up = down = 0;

open = 1;

delay(10);

}

}

void RequestResolver()

{

while (1)

...

req = ...

...

}

void main()

{

Call concurrently: (???)

UnitControl() and

RequestResolver()

}

Inputs: int floor; bit b1..bN; up1..upN-1; dn2..dnN;

Outputs: bit up, down, open;

Global variables: int req;

IMPLEMENTATION: main() with infinite loop and

IRQ management (global variables)

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
12

State-based MoC

(control-flow oriented)

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
13

State-based MoC

FSM(D)

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
14

Finite-state machine (FSM) model

• Trying to capture “elevator controller” behavior as sequential
program is a bit awkward

• Instead, we might consider an FSM model, describing the system
as:

– Possible states

• E.g., Idle, GoingUp, GoingDn, DoorOpen

– Possible transitions from one state to another based on input

• E.g., req > floor

– Actions that occur in each state

• E.g., In the GoingUp state, u,d,o,t = 1,0,0,0 (up = 1, down, open, and
timer_start = 0)

• Try it...

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
15

Finite-state machine (FSM) model

Idle

GoingUp

req > floor

req < floor

!(req > floor)

!(timer < 10)

req < floor

DoorOpen

GoingDn

req > floor

u,d,o, t = 1,0,0,0

u,d,o,t = 0,0,1,0

u,d,o,t = 0,1,0,0

u,d,o,t = 0,0,1,1

u is up, d is down, o is open

req == floor

!(req<floor)

timer < 10

t is timer_start

UnitControl process using a state machine

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
16

State machine vs. sequential program model

• Different thought process used with each model

• State machine:

– Encourages designer to think of all possible states and transitions among states

based on all possible input conditions

• Sequential program model:

– Designed to transform data through series of instructions that may be iterated and

conditionally executed

• State machine description excels in many cases

– More natural means of computing in those cases

– Not due to graphical representation (state diagram)

• Would still have same benefits if textual language used (i.e., state table)

• Besides, sequential program model could use graphical representation (i.e., flowchart)

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
17

Capturing state machines in

sequential programming language

• Follow rules (template) for capturing

state machine constructs in equivalent

sequential language constructs

• Used with software (e.g.,C) and

hardware languages (e.g.,VHDL)

• Capturing UnitControl state machine

in C

– Enumerate all states (#define)

– Declare state variable initialized to

initial state (IDLE)

– Single switch statement branches to

current state’s case

– Each case has actions

• up, down, open, timer_start

– Each case checks transition conditions

to determine next state

• if(…) {state = …;}

#define IDLE0

#define GOINGUP1

#define GOINGDN2

#define DOOROPEN3

void UnitControl() {

int state = IDLE;

while (1) {

switch (state) {

IDLE: up=0; down=0; open=1; timer_start=0;

if (req==floor) {state = IDLE;}

if (req > floor) {state = GOINGUP;}

if (req < floor) {state = GOINGDN;}

break;

GOINGUP: up=1; down=0; open=0; timer_start=0;

if (req > floor) {state = GOINGUP;}

if (!(req>floor)) {state = DOOROPEN;}

break;

GOINGDN: up=1; down=0; open=0; timer_start=0;

if (req < floor) {state = GOINGDN;}

if (!(req<floor)) {state = DOOROPEN;}

break;

DOOROPEN: up=0; down=0; open=1; timer_start=1;

if (timer < 10) {state = DOOROPEN;}

if (!(timer<10)){state = IDLE;}
break;

}
}

}

UnitControl state machine in sequential programming language

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
18

State-based MoC

HCFSM and Statecharts Language

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
19

HCFSM and the Statecharts language

• Hierarchical/concurrent state machine model

(HCFSM)

– Extension to state machine model to support

hierarchy and concurrency

– States can be decomposed into another state

machine

• With hierarchy has identical functionality as Without

hierarchy, but has one less transition (z)

• Known as OR-decomposition

– States can execute concurrently

• Known as AND-decomposition

• Statecharts

– Graphical language to capture HCFSM

– timeout: transition with time limit as condition

– history: remember last substate OR-decomposed

state A was in before transitioning to another state B

• Return to saved substate of A when returning from B

instead of initial state

A1 z

B

A2 z

x
y

w

Without hierarchy

A1 z

B

A2

x y

A

w

With hierarchy

C1

C2

x y

C

B

D1

D2

u v

D

Concurrency

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
20

UnitControl with FireMode

• FireMode

– When fire is true, move elevator
to 1st floor and open door

Without hierarchy

Idle

GoingUp

req>floor

req<floor

!(req>floor)

timeout(10)

req<floor

DoorOpen

GoingDn

req>floor

u,d,o = 1,0,0

u,d,o = 0,0,1

u,d,o = 0,1,0

req==floor
!(req<floor)

fire
fire

fire
fire

FireGoingDn

floor>1

u,d,o = 0,1,0

u,d,o = 0,0,1

!fire

FireDrOpen

floor==1

fire

u,d,o = 0,0,1

UnitControl

fire

!fire
FireGoingDn

floor>1

u,d,o = 0,1,0

FireDrOpen

floor==1

fire

FireMode

u,d,o = 0,0,1

With hierarchy

Idle

GoingUp

req>floor

req<floor

!(req>floor)

timeout(10)

req<floor

DoorOpen

GoingDn

req>floor

u,d,o = 1,0,0

u,d,o = 0,0,1

u,d,o = 0,1,0

req==floor
!(req>floor)

u,d,o = 0,0,1

NormalMode

UnitControl

NormalMode

FireMode

fire!fire

UnitControl

ElevatorController

RequestResolver

...

With concurrent RequestResolver

– w/o hierarchy: Getting messy!

– w/ hierarchy: Simple!

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
21

State-based MoC

Program-state machine model (PSM)

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
22

Program-state machine model (PSM):

HCFSM plus sequential program model

• Program-state’s actions can be FSM

or sequential program

– Designer can choose most appropriate

• Stricter hierarchy than HCFSM used in

Statecharts

– SpecCharts/SpecSyn

• extension of VHDL to capture PSM

model

– SpecC

• extension of C to capture PSM model

up = down = 0; open = 1;

while (1) {

while (req == floor);

open = 0;

if (req > floor) { up = 1;}

else {down = 1;}

while (req != floor);

open = 1;

delay(10);

}

}

NormalMode

FireMode

up = 0; down = 1; open = 0;

while (floor > 1);

up = 0; down = 0; open = 1;

fire!fire

UnitControl

ElevatorController

RequestResolver

...

req = ...

...

int req;

• NormalMode and FireMode described as

sequential programs

• Black square originating within FireMode

indicates !fire is a special transition

– Transition from FireMode to NormalMode

only after FireMode completed

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
23

Process-based MoC

(data-flow oriented)

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
24

Process-based MoC

Concurrent/Communicating Processes Model

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
25

Concurrent/Communicating Processes Model

• Describes functionality of system in terms of two or more

concurrently executing subtasks

• Many systems easier to describe with concurrent process model

because inherently multitasking

• E.g., simple example:

– Read two numbers X and Y

– Display “Hello world.” every X seconds

– Display “How are you?” every Y seconds

• More effort would be required with sequential program or state

machine model

Subroutine execution over time

time

ReadX ReadY

PrintHelloWorld

PrintHowAreYou

Simple concurrent process example

ConcurrentProcessExample() {

x = ReadX()

y = ReadY()

Call concurrently:

PrintHelloWorld(x) and

PrintHowAreYou(y)

}

PrintHelloWorld(x) {

while(1) {

print "Hello world."

delay(x);

}

}

PrintHowAreYou(x) {

while(1) {

print "How are you?"

delay(y);

}

}

Sample input and output

Enter X: 1

Enter Y: 2

Hello world. (Time = 1 s)

Hello world. (Time = 2 s)

How are you? (Time = 2 s)

Hello world. (Time = 3 s)

How are you? (Time = 4 s)

Hello world. (Time = 4 s)

...

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
26

Concurrent/Communicating Processes Model

• Consider two examples

having separate tasks running

independently but sharing

data

• Difficult to write system

using sequential program

model

• Concurrent process model

easier

– Separate sequential

programs (processes) for

each task

– Programs communicate

with each other

Heartbeat Monitoring System

B[1..4]

Heart-beat

pulse

Task 1:

Read pulse

If pulse < Lo then

Activate Siren

If pulse > Hi then

Activate Siren

Sleep 1 second

Repeat

Task 2:

If B1/B2 pressed then

Lo = Lo +/– 1

If B3/B4 pressed then

Hi = Hi +/– 1

Sleep 500 ms

Repeat

Set-top Box

Input

Signal

Task 1:

Read Signal

Separate Audio/Video

Send Audio to Task 2

Send Video to Task 3

Repeat

Task 2:

Wait on Task 1

Decode/output Audio

Repeat

Task 3:

Wait on Task 1

Decode/output Video

Repeat

Video

Audio

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
27

Process-based MoC

Concurrent/Communicating Processes Model

Communication/Synchronization

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
28

Process

• A sequential program, typically an infinite loop

– Executes concurrently with other processes

• Communication among processes

– Processes need to communicate data and signals to solve

their computation problem

• Processes that don’t communicate are just independent programs

solving separate problems

– How do we achieve this communication/synchronization?

• Two basic methods

– Shared memory

– Message passing

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
29

Process-based MoC

Concurrent/Communicating Processes Model

Implementation

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
30

Implementation

• Mapping of system’s functionality

onto hardware processors:

– captured using computational

model(s)

– written in some language(s)

• Implementation choice independent

from language(s) choice

• Implementation choice based on

power, size, performance, timing and

cost requirements

• Final implementation tested for

feasibility

– Also serves as blueprint/prototype

for mass manufacturing of final

product

The choice of

computational

model(s) is based

on whether it

allows the designer

to describe the

system.

The choice of

language(s) is

based on whether

it captures the

computational

model(s) used by

the designer.

The choice of

implementation is

based on whether it

meets power, size,

performance and

cost requirements.

Sequent.

program

State

machine

Data-

flow

Concurrent

processes

C/C++Pascal Java VHDL

Implementation A Implementation

B

Implementation

C

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
31

Concurrent/Communicating process model:

implementation

• Can use single and/or general-purpose processors

• (a) Multiple processors, each executing one process

– True multitasking (parallel processing)

– General-purpose processors

• Use programming language like C and compile to

instructions of processor

• Expensive and in most cases not necessary

– Custom single-purpose processors

• More common

• (b) One general-purpose processor running all

processes

– Most processes don’t use 100% of processor time

– Can share processor time and still achieve necessary

execution rates

• (c) Combination of (a) and (b)

– Multiple processes run on one general-purpose

processor while one or more processes run on own

single_purpose processor

Process1

Process2

Process3

Process4

Processor A

Processor B

Processor C

Processor D C
o
m

m
u
n
ic

at
io

n
 B

u
s

(a)

(b)

Process1

Process2

Process3

Process4

General Purpose

Processor

Process1

Process2

Process3

Process4

Processor A

General

Purpose

Processor

C
o
m

m
u
n
ic

at
io

n
 B

u
s

(c)

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
32

Process-based MoC

Dataflow Model

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
33

Dataflow model

• Derivative of concurrent process model

• Nodes represent transformations

– May execute concurrently

• Edges represent flow of tokens (data) from one node to another

– May or may not have token at any given time

• When all of node’s input edges have at least one token, node may

fire

• When node fires, it consumes input tokens processes

transformation and generates output token

• Nodes may fire simultaneously

• Several commercial tools support graphical languages for capture

of dataflow model

– Can automatically translate to concurrent process model for

implementation

– Each node becomes a process

modulate convolve

transform

A B C D

Z

Nodes with more complex

transformations

t1 t2

+ –

*

A B C D

Z

Nodes with arithmetic

transformations

t1 t2

Z = (A + B) * (C - D)

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
34

Synchronous dataflow

• With digital signal-processors (DSPs), data flows at fixed rate

• Multiple tokens consumed and produced per firing

• Synchronous dataflow model takes advantage of this

– Each edge labeled with number of tokens consumed/produced
each firing

– Can statically schedule nodes, so can easily use sequential
program model

• Don’t need real-time operating system and its overhead

• How would you map this model to a sequential programming
language? Try it...

• Algorithms developed for scheduling nodes into “single-
appearance” schedules

– Only one statement needed to call each node’s associated
procedure

• Allows procedure inlining without code explosion, thus reducing
overhead even more

modulate convolve

transform

A B C D

Z

Synchronous dataflow

mt1 ct2

mA mB mC mD

tZ

tt1 tt2

t1 t2

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Organization of computations/communications

within/among the components

* Classification based on implementation with centralized data structures

Shared memory Message passing

Synchronous Asynchronous

Undefined components

(early design phases)

Plain text, (UML) use cases, (UML) Timing Diagrams

(UML) (Message) Sequence Charts

Live Sequence Charts

Communicating Finite State Machines HCFSM

- StateCharts

- (UML) State Diagrams

Synchronous Languages

SDL

Data Flow Scoreboarding +

Tomasulo Algorithm

(Comp.Archict.)

Kahn networks

SDF

Petri Nets C/E nets, P/T nets

(UML Activity Diagrams)

Discrete Events (DE) VHDL*, SystemC*

Verilog*, SystemVerilog*

SpecCharts* (PSM)

SpecSyn* (PSM)

SpecC* (PSM)

Only experimental systems

e.g. Distributed DE in Ptolemy1/Ptolemy2

(http://ptolemy.eecs.berkeley.edu/)

Imperative (Von Neumann) model

+ extensions

C, C++ (MT with libraries)

Java (MT)

C, C++, Java (with libraries)

CSP (OCCAM, Handel-C), ADA

COMMUNICATON

COMPUTATION

http://ptolemy.eecs.berkeley.edu/

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
36

Summary

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
37

Summary

• Computation models are distinct from languages

• Sequential program model is popular

– Most common languages like C support it directly

• State machine models good for control

– Extensions like HCFSM provide additional power

– PSM combines state machines and sequential programs

• Concurrent process model for multi-task systems

– Communication and synchronization methods exist

– Scheduling is critical

• Dataflow model good for signal processing

