
Introduction to SystemC

- 2 -

Overview

Introduction

SystemC

Transaction Level Modeling

SystemC

Main language elements

SystemC

Basic example

More info…

Introduction

- 4 -

Introduction

The development of a digital electronic system
starts from requirements collection, typically in
natural language, and analysis

The next step the creation of a system model by
means of a modeling/specification language able to

Provide an higher level of abstraction to cope with
very complex systems

Be technology independent but suitable for both HW
and SW

Allow fast and reasonable accurate Design Space
Exploration (DSE), early V&V (Simulation), and to
reduce the design productivity gap

- 5 -

Introduction

Classical system-level design flow

- 6 -

Introduction

SystemC system-level design flow

- 7 -

Introduction

SystemC system-level design flow

- 8 -

Introduction

C++ is not suitable to describe complex HW/SW

systems because it misses

Model of the time

Concurrency

HW data types (e.g. Z)

But C++ is extensible thanks to the OOP power!

In fact SystemC is a C++ library that allows to

overcome the above limitations

Moreover, the model is directly executable (i.e.

simulatable) since it is “just” a C++ program

The simulation Kernel is provided by the same library

- 9 -

Introduction

SystemC library is available for free thanks to the
OSCI (Open SystemC Initiative), an organization
composed of the main players in the EDA domain

www.accellera.org (ex www.systemc.org)

The library has evolved during the time

SystemC 1.x: RTL and Behavioural modeling (HW)

SystemC 2.x: System modeling (HW/SW)

Moreover, there are some specific extensions
– TLM (Transaction Level Modeling)

– AMS (Analog-Mixed Systems)

– SCV (SystemC Verification Library)

– CCI (Configuration, Control and Inspection)

http://www.accellera.org/
http://www.systemc.org/

- 10 -

Introduction

SystemC library architetcure (v2.3.1)

- 11 -

Introduction

SystemC library usage

- 12 -

Introduction

The model is executable

Higher the abstraction level faster the simulation

time

Several abstraction levels can coexist in the same

model

Gradual model refinement and continuos V&V

Unique simulation environment

- 13 -

Introduction

SystemC 1.x

RTL and Behavioural modeling (HW)

SystemC 2.x

System modeling (HW/SW)

(U)TF: (UnTimed) Functional Level

– No time accuracy for computation/communication

TLM: Transaction Level Modeling

– Abstract structural view for platform design and co-

verification

» TLM API has been also standardized (TLM 2.0)

RTL: Register Transfer Level

– Time accuracy for computation/communication

SystemC

Transaction Level Model

- 15 -

SystemC

Transaction Level Modeling

The goals are

To model a system by separating computation and

communication modeling of its components

To provide a unique modeling language for description

with different detail levels

To provide a unique modeling language for description

of different model of computation

– The underlying simulation Kernel is Discrete Event based

- 16 -

SystemC

Transaction Level Modeling

What is a Transaction?

It is a data exchange between two components of the

model description

– Examples

» The transfer of data between two stages of a pipeline

» The transfer of words between a processor and a memory

» The transfer of complex data structure between two phases

of data processing

What vs. How

A transaction models only which data is transferred

(type, value), not in which way the transfer is

performed

- 17 -

SystemC

Transaction Level Modeling

In the context of TLM, communications can be also

modeled by introducing different time granularity

Untimed functional

– Only the data exchange without concept of time

Bus cycle accurate

– Data exchange with the concept of the time limited to

the granularity needed to to perform an operation on the

bus

Cycle accurate

– Data exchange with the concept of the time equal to the

clock cycle granularity

- 18 -

SystemC

Transaction Level Modeling

Transaction Level vs. Pin Level (RTL)

SystemC

Main language elements

- 20 -

SystemC

Main language elements

Overview

Data Types

Interfaces and Channels

Modules

Processes

Hierarchy

Examples

- 21 -

Main language elements

Module ModuleChannel

Channel

C
h
a
n
n
e
l

Process

Process Process

Overview

Event

Event

- 22 -

Main language elements

Structure of a SystemC model

The modeled system is composed of modules

Module behaviour is described by processes that
communicates by events and/or channels

Inter-module communications is performed by channels

- 23 -

Main language elements

Module instances at the same hierarchical level are

connected by means of ports to channels

Processes are directly connected by channels or event

Modules support hierarchy

Connections are performed by ports

- 24 -

Main language elements

An interface describes the set of methods

accessible by ports

Interfaces are implemented by channels

Interface are connected to ports

Channels can be developed independently by

modules (they have to guarantee the interface)

- 25 -

Main language elements

Events (sc_event) are the basic synchronization
element

Processes are executed and their output updated
depending on events

SystemC library provides a scheduler that manages
process execution

A process is activated by the events of its sensitivity
list

Sensitivity list can be

Static: defined before the simulation start

Dynamic: defined at runtime

A process can wait for an event

wait()

- 26 -

Main language elements

Data Types

Data types

Data typesData types

Module ModuleChannel

Channel

C
h
a
n
n
e
l

Process

Process Process
Event

Event

- 27 -

Main language elements

Data Types

SystemC allow the use of both native C++ data types

and library defined ones

SystemC data types allow a more detailed description

but lead to less performant simulations

SystemC numeric data types

Fixed precision

Arbitrary precision

4-values logic

Array of 4-values logic

Fixed point

- 28 -

Main language elements

Data Types

SystemC numeric data types

sc_uint<>, sc_int<>: signed and unsigned integers

– User-defined length (max 64 bit)

sc_biguint<>, sc_bigint<>

– Arbitray length signed and unsigned integers

sc_logic

– Used to represent a single bit with 4-values logic

» (‘0’, ‘1’, ‘Z’, ‘X’)

sc_lv<>: array of sc_logic bit

sc_fixed<>, sc_ufixed<>: fixed point

– Used to refine floating point data types

- 29 -

Main language elements

Interfaces and Channels

Module ModuleChannel

Channel

C
h
a
n
n
e
l

Process

Process Process
Event

Event

- 30 -

Main language elements

Interfaces

Interfaces define a set of access methods

Their implementation is defined by channels

SystemC provides a set of predefined interfaces

sc_signal_in_if, sc_signal_out_if, sc_signal_inout_if,

sc_fifo_in_if, sc_fifo_out_if, sc_mutex_if,

sc_semaphore_if

– Each ones defines some virtualmethods

» e.g. write() is defined only in out interfaces

If a channel implements an interface it has to

implement all the related methods

- 31 -

Main language elements

Channels

Primitive channels (predefined)

They don’t have a visible internal structure and

cannot access to other primitive channels

– sc_signal, sc_signal_rv

– sc_fifo, sc_mutex

– sc_semaphore, sc_buffer

Hierarchical channels

They are like modules and can contain processes

and other channels

– Hierarchical channels lead to less performant simulations

- 32 -

Main language elements

Modules

Module ModuleChannel

Channel

C
h
a
n
n
e
l

Process

Process Process
Event

Event

- 33 -

Main language elements

Modules

They are containers defined by an interface (.h) and a

functionality (.cpp)

A module can be composed of

Ports

Internal channels

Internal variables

Processes

Standard C++ methods

Constructors

Instances of other modules

- 34 -

Main language elements

Modules

A module is declared by means of the SC_MODULE macro

SC_MODULE (module_name) {

// body of module

};

Access to a module is perfomed by means of ports (sc_port
class) that are linked to an interface

– Three port types

» In, Out, Inout

– Complete syntax: sc_port<interface_type, N> port_name;

» N: number of channels that can be connected to the port

It is only a way to hide inheritance

from sc_module class:

class module_name::sc_module…

- 35 -

Main language elements

Modules

A module can declare internal channels used to

Connect modules at the same hierarchical level

Connect internal processes

Connect a process of a module to the port of an internal

module

A module can declare internal variales

A module can declare internal methods and processes

Processes are particular methods that are

“registered” in the consctructor

– This allow the scheduler to properly manage them

- 36 -

Main language elements

Modules

A module has a constructor used to create its instance

with the internal data structures

Inits internal variables and signals

Defined the processes

SC_CTOR(my_module) {

SC_METHOD(internal_process); //Method Process

sensitive << in_p;

internal_variable= 1;

}

- 37 -

Main language elements

Modules

Channels sc_signal, sc_signal_rv, sc_fifo can exploit

special ports to simplify declarations

sc_signal

– sc_in<T>, sc_out<T>, sc_inout<T>

sc_signal_rv

– sc_in_rv<T>, sc_out_rv<T>, sc_inout_rv<T>

sc_fifo

– sc_fifo_in<int>, sc_fifo_out<T>, sc_fifo_inout<T>

- 38 -

Main language elements

Modules

To read a value from a port (or internal channel) it is

possible to use the read() method or the = operator

To write a value to a port (or internal channel) it is

possible to use the write() method or the = operator

The methods are declared in the .cpp (funcionality) and

acts on a port declared on the .h (interface)

– Interface

» sc_signal<int> data;

» sc_signal<bool> condition;

» int a;

– Functionality

» a=data.read();

» condition.write(a);

- 39 -

Main language elements

Modules

Example: interface

SC_MODULE(encode){

sc_in< bool > clock; //Ports

sc_in< bool > reset;

sc_in< bool > input;

sc_out< sc_bv<3> > output;

sc_lv<8> trellis; //Variables

sc_lv<3> tmp;

sc_lv<8> input1;

void codeGen(); //Function/method protoype

SC_CTOR(encode) // Constructor

{

SC_CTHREAD(codeGen,clock.pos());

watching(reset.delayed() == true);}

};

- 40 -

Main language elements

Modules
Example: functionality

#include "encode.h"

void encode::codeGen(){

trell=0x00; //Init

wait();

//Neverending loop…

while(true){

input1[0]=input.read();

trell=((trell)<<1)|input1;

tmp[2]=trell[7]^trell[4]^trell[2]^trell[0];

output.write(tmp); //Scrittura uscita

wait();}

}

- 41 -

Main language elements

Processes

Module ModuleChannel

Channel

C
h
a
n
n
e
l

Process

Process Process
Event

Event

- 42 -

Main language elements

Processes

Events are the basic elements for processes

synchronization

sc_event event_name;

An event can be notified

Immediately: processes sensitive to the event became

ready in the current delta-cycle

– See later for more info about delta-cycle

Delayed: processes sensitive to the event became ready

in the next delta-cycle

After a specified time

- 43 -

Main language elements

Processes

System functionalitites (i.e. the system behaviour)

are described in the processes

Processes exploit events or channels to comunicate

– They have to be registered in the module constructors

There are three process types

SC_METHOD; SC_THREAD; SC_CTHREAD

– SC_METHOD behaves as functions

» After a call they return to the caller

– SC_THREAD and SC_CTHREAD behave like threads

» Thay are called only one time and then they have their

execution flow

- 44 -

Main language elements

Processes

SC_METHOD (asynchronous function)

Sensible to a set of signals/events

– Sensitivity list

» e.g.

» sensitive(signal1), sensitive<<s1<<s2<<s3

» sentitive_pos<<clk, sensitive_neg<<clk

Each time it is invoked, the whole function statements

are sequentially executed until the end with 0

simulation time

– No wait() allowed inside the function

Mainly used for RTL modeling

- 45 -

Main language elements

Processes

SC_THREAD (asynchronous thread)

Sensible to a set of signals/events

– Sensitivity list

Each time it is invoked, the function statements before

the first wait() are sequentially executed in 0

simulation time

– At the following activation, the execution will restart

from the previous wait() and so on…

» Variables keep their value

Used to model both synchronous and asynchronous

behaviors

- 46 -

Main language elements

Processes

SC_CTHREAD (“clocked” synchronous thread)

It is sensitive only to one front of one clock

Each time it is invoked, the function statements before

the first wait() are sequentially executed in 0

simulation time

– At the following activation, the execution will restart

from the previous wait() and so on…

» Variables keep their value

Used to model synchronous behaviors

– WARNING: Deprecated!

- 47 -

Main language elements

Processes

WAIT() function

Used only in SC_THREAD and SC_CTHREAD

Suspend process execution until the next reactivation

– SystemC 1.x

» wait()

» wait(<var_int>) – wait for a number of cycles

– SystemC 2.x

» wait(event)

» wait(e1 |e2 |e3) – wait for one of the events

» wait(e1 & e2 & e3) – wait for all the events

» wait(100, SC_NS, e1 | e2) – wait with time-out

- 48 -

Main language elements

Module Channel
C
h
a
n
n
e
l

Process

Process Process

Hierarchy

Event

- 49 -

Main language elements

Hierarchy

By means of modules it is possible to build a

hierarchical structure

As in VHDL it is possible to connect father-child ports

– There is the need for channels to connect modules at the

same hierarchical level

- 50 -

Main language elements
Hierarchy

SC_MODULE(ex3){

sc_port<sc_fifo_in_if<int> >a;

sc_port<sc_fifo_out_if<int> > b;

sc_fifo<int> sig;

// Instances of ex1 and ex2

ex1 ex1_instance;

ex2 ex2_instance;

// Module Constructor

SC_CTOR(ex3):

ex1_instance("ex1_instance"),

ex2_instance("ex2_instance")

{

// Named connection for ex1

ex1_instance.m(a);

ex1_instance.n(sig);

// Positional connection for ex2

ex2_instance(sig, b);

}

};

To create a hierarchy:

Create the instance of the
module

Init the instance of the
module

Make the port binding

Binding can be:

Named

Positional

- 51 -

Main language elements

Hierarchy

The top level is represented by the special function

sc_main() that is called by the simulation kernel at

the beginning of the simulation

Modules can be instantiated in the same way

At a given point of main, sc_start() is used to start

the simulation

sc_start()

– Run until there are events

sc_start(arg)

– Run for a specified simulation time

- 52 -

Main language elements

Hierarchy
#include "systemc.h"

#include "adder.h"

#include "stimgen.h"

#include "monitor.h"

int sc_main(int argc, char *argv[])

{

// Create fifos with a depth of 10

sc_fifo<int> s1(10), s2(10), s3(10);

// Module instantiations

stimgen stim("stim");

stim(s1, s2);

// Adder

adder add("add");

add(s1, s2, s3);

// Response Monitor

monitor mon ("mon");

mon.re(s3);

…

sc_start();

}

- 53 -

Main language elements

Hierarchy: Hierarchical Channels

Hierarchical Channels are like modules so they can

contain processes, other modules, etc.

They are very powerful but also complex so they can

affect simulation performance

– e.g.

» to replace a FIFO with a hierarchical channel that acts like

a wrapper for a RTL FIFO description

» to describe the behaviour of a shared bus with arbiter

» …

- 54 -

Main language elements

VHDL vs SystemC

Very similar for RTL modeling

VHDL not suitable for system-level

SystemC could be less efficient for synthesis

VHDL SystemC

Hierarchy Entity Module

Communication Signal Signal, Channel

Functionality Process Process

TestBench Object orientation

System Level Channel, interface, event,

abstract data types,…

I/O Simple file I/O C++ I/O capabilities

- 55 -

Main language elements

VHDL vs SystemC: RTL D FF

SystemC

Basic Example

- 57 -

Basic example

Overview

- 58 -

Basic example

Simulation model

- 59 -

Basic example

Simulation model

- 60 -

Basic example

Behavioural model

- 61 -

Basic example

Behavioural model

- 62 -

Basic example
RTL model

- 63 -

Basic example
RTL model

- 64 -

Screenshot

- 65 -

More info…

Official site

www.accellera.org (ex www.systemc.org)

SystemC 2.3.1

http://www.accellera.org/downloads/standards/system
c

One of the available online free tutorial

https://www.doulos.com/knowhow/systemc/

A good book

SystemC: From the Ground Up

– Second Edition Springer - 2009

A world to be discovered…

www.soclib.fr

– Tutorial: https://www.soclib.fr/appliance/

