
Chapter 2: Basics Of Developing For Embedded 
Systems 
2.1 Introduction 
Chapter 1 states that one characteristic of embedded systems is the cross-platform development 
methodology. The primary components in the development environment are the host system, the 
target embedded system, and potentially many connectivity solutions available between the host 
and the target embedded system, as shown in Figure 2.1. 

 
Figure 2.1: Typical cross-platform development environment.  

The essential development tools offered by the host system are the cross compiler, linker, and 
source-level debugger. The target embedded system might offer a dynamic loader, a link loader, 
a monitor, and a debug agent. A set of connections might be available between the host and the 
target system. These connections are used for downloading program images from the host 
system to the target system. These connections can also be used for transmitting debugger 
information between the host debugger and the target debug agent. 

Programs including the system software, the real-time operating system (RTOS), the kernel, and 
the application code must be developed first, compiled into object code, and linked together into 
an executable image. Programmers writing applications that execute in the same environment as 
used for development, called native development, do not need to be concerned with how an 
executable image is loaded into memory and how execution control is transferred to the 
application. Embedded developers doing cross-platform development, however, are required to 
understand the target system fully, how to store the program image on the target embedded 
system, how and where to load the program image during runtime, and how to develop and 
debug the system iteratively. Each of these aspects can impact how the code is developed, 
compiled, and most importantly linked.  

The areas of focus in this chapter are 
§ the ELF object file format, 
§ the linker and linker command file, and 
§ mapping the executable image onto the target embedded system. 

This chapter does not provide full coverage on each tool, such as the compiler and the linker, nor 
does this chapter fully describe a specific object file format. Instead, this chapter focuses on 
providing in-depth coverage on the aspects of each tool and the object file format that are most 
relevant to embedded system development. The goal is to offer the embedded developer 
practical insights on how the components relate to one another. Knowing the big picture allows an 
embedded developer to put it all together and ask the specific questions if and when necessary. 
 



2.2 Overview of Linkers and the Linking Process 
Figure 2.2 illustrates how different tools take various input files and generate appropriate output 
files to ultimately be used in building an executable image. 

 
Figure 2.2: Creating an image file for the target system.  

The developer writes the program in the C/C++ source files and header files. Some parts of the 
program can be written in assembly language and are produced in the corresponding assembly 
source files. The developer creates a makefile for the make utility to facilitate an environment 
that can easily track the file modifications and invoke the compiler and the assembler to rebuild 
the source files when necessary. From these source files, the compiler and the assembler 
produce object files that contain both machine binary code and program data. The archive utility 
concatenates a collection of object files to form a library. The linker takes these object files as 
input and produces either an executable image or an object file that can be used for additional 
linking with other object files. The linker command file instructs the linker on how to combine the 
object files and where to place the binary code and data in the target embedded system.  

The main function of the linker is to combine multiple object files into a larger relocatable object 
file, a shared object file, or a final executable image. In a typical program, a section of code in one 
source file can reference variables defined in another source file. A function in one source file can 
call a function in another source file. The global variables and non-static functions are commonly 
referred to as global symbols. In source files, these symbols have various names, for example, a 
global variable called foo_bar or a global function called func_a. In the final executable binary 
image, a symbol refers to an address location in memory. The content of this memory location is 
either data for variables or executable code for functions.  

The compiler creates a symbol table containing the symbol name to address mappings as part of 
the object file it produces. When creating relocatable output, the compiler generates the address 



that, for each symbol, is relative to the file being compiled. Consequently, these addresses are 
generated with respect to offset 0. The symbol table contains the global symbols defined in the 
file being compiled, as well as the external symbols referenced in the file that the linker needs to 
resolve. The linking process performed by the linker involves symbol resolution and symbol 
relocation.  

Symbol resolution is the process in which the linker goes through each object file and determines, 
for the object file, in which (other) object file or files the external symbols are defined. Sometimes 
the linker must process the list of object files multiple times while trying to resolve all of the 
external symbols. When external symbols are defined in a static library, the linker copies the 
object files from the library and writes them into the final image.  

Symbol relocation is the process in which the linker maps a symbol reference to its definition. The 
linker modifies the machine code of the linked object files so that code references to the symbols 
reflect the actual addresses assigned to these symbols. For many symbols, the relative offsets 
change after multiple object files are merged. Symbol relocation requires code modification 
because the linker adjusts the machine code referencing these symbols to reflect their finalized 
addresses. The relocation table tells the linker where in the program code to apply the relocation 
action. Each entry in the relocation table contains a reference to the symbol table. Using this 
reference, the linker can retrieve the actual address of the symbol and apply it to the program 
location as specified by the relocation entry. It is possible for the relocation table to contain both 
the address of the symbol and the information on the relocation entry. In this case, there is no 
reference between the relocation table and the symbol table. 

Figure 2.3 illustrates these two concepts in a simplified view and serves as an example for the 
following discussions. 

 
Figure 2.3: Relationship between the symbol table and the relocation table.  

For an executable image, all external symbols must be resolved so that each symbol has an 
absolute memory address because an executable image is ready for execution. The exception to 
this rule is that those symbols defined in shared libraries may still contain relative addresses, 
which are resolved at runtime (dynamic linking).  

A relocatable object file may contain unresolved external symbols. Similar to a library, a linker-
reproduced relocatable object file is a concatenation of multiple object files with one main 
difference—the file is partially resolved and is used for further linking with other object files to 
create an executable image or a shared object file. A shared object file has dual purposes. It can 
be used to link with other shared object files or relocatable object modules, or it can be used as 
an executable image with dynamic linking. 
 



2.3 Executable and Linking Format 
Typically an object file contains 
§ general information about the object file, such as file size, binary code and data size, and 

source file name from which it was created, 
§ machine-architecture-specific binary instructions and data 
§ symbol table and the symbol relocation table, and 
§ debug information, which the debugger uses. 

The manner in which this information is organized in the object file is the object file format. The 
idea behind a standard object file format is to allow development tools which might be produced 
by different vendors-such as a compiler, assembler, linker, and debugger that conform to the 
well-defined standard-to interoperate with each other.  

This interoperability means a developer can choose a compiler from vendor A to produce object 
code used to form a final executable image by a linker from vendor B. This concept gives the end 
developer great flexibility in choice for development tools because the developer can select a tool 
based on its functional strength rather than its vendor.  

Two common object file formats are the common object file format (COFF) and the executable 
and linking format (ELF). These file formats are incompatible with each other; therefore, be sure 
to select the tools, including the debugger, that recognize the format chosen for development.  

We focus our discussion on ELF because it supersedes COFF. Understanding the object file 
format allows the embedded developer to map an executable image into the target embedded 
system for static storage, as well as for runtime loading and execution. To do so, we need to 
discuss the specifics of ELF, as well as how it relates to the linker. 

Using the ELF object file format, the compiler organizes the compiled program into various 
system-defined, as well as user-defined, content groupings called sections. The program's binary 
instructions, binary data, symbol table, relocation table, and debug information are organized and 
contained in various sections. Each section has a type. Content is placed into a section if the 
section type matches the type of the content being stored. 

A section also contains important information such as the load address and the run address. The 
concept of load address versus run address is important because the run address and the load 
address can be different in embedded systems. This knowledge can also be helpful in 
understanding embedded system loader and link loader concepts introduced in Chapter 3. 

Chapter 1 discusses the idea that embedded systems typically have some form of ROM for non-
volatile storage and that the software for an embedded system can be stored in ROM. Modifiable 
data must reside in RAM. Programs that require fast execution speed also execute out of RAM. 
Commonly therefore, a small program in ROM, called a loader, copies the initialized variables into 
RAM, transfers the program code into RAM, and begins program execution out of RAM. This 
physical ROM storage address is referred to as the section's load address. The section's run 
address refers to the location where the section is at the time of execution. For example, if a 
section is copied into RAM for execution, the section's run address refers to an address in RAM, 
which is the destination address of the loader copy operation. The linker uses the program's run 
address for symbol resolutions.  

The ELF file format has two different interpretations, as shown in Figure 2.4. The linker interprets 
the file as a linkable module described by the section header table, while the loader interprets the 
file as an executable module described by the program header table. 



 
Figure 2.4: Executable and linking format.  

Listing 2.1 shows both the section header and the program header, as represented in C 
programming structures. We describe the relevant fields during the course of this discussion. 
Listing 2.1: Section header and program header.  
 

Section header  Program header 

typedef struct {  
§ Elf32_Word sh_name;  

§ Elf32_Word sh_type;  

§ Elf32_Word sh_flags;  

§ Elf32_Addr sh_addr;  

§ Elf32_Off sh_offset;  

§ Elf32_Word sh_size;  

§ Elf32_Word sh_link;  

§ Elf32_Word sh_info;  

§ Elf32_Word sh_addralign;  

§ Elf32_Word sh_entsize;  
} Elf32_Shdr;  

typedef struct {  
§ Elf32_Word p_type;  

§ Elf32_Off p_offset;  

§ Elf32_Addr p_vaddr;  

§ Elf32_Addr p_paddr;  

§ Elf32_Word p_filesz;  

§ Elf32_Word p_memsz;  

§ Elf32_Word p_flags;  

§ Elf32_Word p_align;  
} Elf32_Phdr;  

 
 

A section header table is an array of section header structures describing the sections of an 
object file. A program header table is an array of program header structures describing a loadable 
segment of an image that allows the loader to prepare the image for execution. Program headers 
are applied only to executable images and shared object files.  

One of the fields in the section header structure is sh_type, which specifies the type of a 
section. Table 2.1 lists some section types.  
Table 2.1: Section types.  

NULL  Inactive header without a section. 

PROGBITS  Code or initialized data. 



SYMTAB  Symbol table for static linking. 

STRTAB  String table. 

RELA/REL  Relocation entries. 

HASH  Run-time symbol hash table.  

DYNAMIC  Information used for dynamic linking. 

NOBITS  Uninitialized data. 

DYNSYM  Symbol table for dynamic linking.  

The sh_flags field in the section header specifies the attribute of a section. Table 2.2 lists some 
of these attributes.  
Table 2.2: Section attributes.  

WRITE  Section contains writeable data. 

ALLOC  Section contains allocated data. 

EXECINSTR  Section contains executable instructions.  

Some common system-created default sections with predefined names for the PROGBITS are 
.text, .sdata, .data, .sbss, and .bss. Program code and constant data are contained in the 
.text section. This section is read-only because code and constant data are not expected to 
change during the lifetime of the program execution. The .sbss and .bss sections contain 
uninitialized data. The .sbss section stores small data, which is the data such as variables with 
sizes that fit into a specific size. This size limit is architecture-dependent. The result is that the 
compiler and the assembler can generate smaller and more efficient code to access these data 
items. The .sdata and .data sections contain initialized data items. The small data concept 
described for .sbss applies to .sdata. A .text section with executable code has the EXECINSTR 
attribute. The .sdata and .data sections have the WRITE attribute. The .sbss and .bss 
sections have both the WRITE and the ALLOC attributes.  

Other common system-defined sections are .symtab containing the symbol table, .strtab 
containing the string table for the program symbols, .shstrtab containing the string table for the 
section names, and .relaname containing the relocation information for the section named 
name. We have discussed the role of the symbol table (SYMTAB) previously. In Figure 2.3, the 
symbol name is shown as part of the symbol table. In practice, each entry in the symbol table 
contains a reference to the string table (STRTAB) where the character representation of the name 
is stored. 

The developer can define custom sections by invoking the linker command .section. For 
example, where the source files states  

.section my_section 

the linker creates a new section called my_section. The reasons for creating custom named 
sections are explained shortly. 

The sh_addr is the address where the program section should reside in the target memory. The 
p_paddr is the address where the program segment should reside in the target memory. The 
sh_addr and the p_paddr fields refer to the load addresses. The loader uses the load address 
field from the section header as the starting address for the image transfer from non-volatile 
memory to RAM. 



For many embedded applications, the run address is the same as the load address. These 
embedded applications are directly downloaded into the target system memory for immediate 
execution without the need for any code or data transfer from one memory type or location to 
another. This practice is common during the development phase. We revisit this topic in Chapter 
3, which covers the topic of image transfer from the host system to the target system. 
 
2.4 Mapping Executable Images into Target Embedded Systems 
After multiple source files (C/C++ and assembly files) have been compiled and assembled into 
ELF object files, the linker must combine these object files and merge the sections from the 
different object files into program segments. This process creates a single executable image for 
the target embedded system. The embedded developer uses linker commands (called linker 
directives) to control how the linker combines the sections and allocates the segments into the 
target system. The linker directives are kept in the linker command file. The ultimate goal of 
creating a linker command file is for the embedded developer to map the executable image into 
the target system accurately and efficiently. 

2.4.1 Linker Command File 

The format of the linker command file, as well as the linker directives, vary from linker to linker. It 
is best to consult the programmer’s reference manual from the vendor for specific linker 
commands, syntaxes, and extensions. Some common directives, however, are found among the 
majority of the available linkers used for building embedded applications. Two of the more 
common directives supported by most linkers are MEMORY and SECTION. 

The MEMORY directive can be used to describe the target system’s memory map. The memory 
map lists the different types of memory (such as RAM, ROM, and flash) that are present on the 
target system, along with the ranges of addresses that can be accessed for storing and running 
an executable image. An embedded developer needs to be familiar with the addressable physical 
memory on a target system before creating a linker command file. One of the best ways to do this 
process, other than having direct access to the hardware engineering team that built the target 
system, is to look at the target system’s schematics, as shown in Figure 2.5, and the hardware 
documentation. Typically, the hardware documentation describes the target system’s memory 
map.  

 
Figure 2.5: Simplified schematic and memory map for a target system.  

The linker combines input sections having the same name into a single output section with that 
name by default. The developer-created, custom-named sections appear in the object file as 
independent sections. Sometimes developers might want to change this default linker behavior of 
only coalescing sections with the same name. The embedded developer might also need to 
instruct the linker on where to map the sections, in other words, what addresses should the linker 
use when performing symbol resolutions. The embedded developer can use the SECTION 
directive to achieve these goals.  



The MEMORY directive defines the types of physical memory present on the target system and the 
address range occupied by each physical memory block, as specified in the following generalized 
syntax  
MEMORY { 
    area-name : org = start-address, len = number-of-bytes 
   … 
} 

In the example shown in Figure 2.5, three physical blocks of memory are present:  
§ a ROM chip mapped to address space location 0, with 32 bytes, 
§ some flash memory mapped to address space location 0x40, with 4,096 bytes, and 
§ a block of RAM that starts at origin 0x10000, with 65,536 bytes. 

Translating this memory map into the MEMORY directive is shown in Listing 2.2. The named areas 
are ROM, FLASH, and RAM. 
Listing 2.2: Memory map.  
 

MEMORY { 
      ROM: origin = 0x0000h, length = 0x0020h 
      FLASH: origin = 0x0040h, length = 0x1000h 
      RAM: origin = 0x1000h, length = 0x10000h 
} 
 
 

The SECTION directive tells the linker which input sections are to be combined into which output 
section, which output sections are to be grouped together and allocated in contiguous memory, 
and where to place each section, as well as other information. A general notation of the SECTION 
command is shown in Listing 2.3. 
Listing 2.3: SECTION command.  
 

SECTION { 
      output-section-name : { contents } > area-name  
      … 
      GROUP { 
              [ALIGN(expression)] 
             section-definition 
             … 
      } > area-name 
} 
 
 

The example shown in Figure 2.6 contains three default sections (.text, .data, and .bss), as 
well as two developer-specified sections (loader and my_section), contained in two object 
files generated by a compiler or assembler (file1.o and file2.o). Translating this example 
into the MEMORY directive is shown in Listing 2.4. 



 
Figure 2.6: Combining input sections into an executable image.  
Listing 2.4: Example code.  
 

SECTION { 
       .text : 
       { 
              my_section 
              *(.text) 
       } 
       loader : > FLASH 
       GROUP ALIGN (4) : 
       { 
              .text, 
              .data : {} 
              .bss  : {} 
     } >RAM 
} 
 
 

The SECTION command in the linker command file instructs the linker to combine the input 
section named my_section and the default .text sections from all object files into the final 
output .text section. The loader section is placed into flash memory. The sections .text, 
.data, and .bss are grouped together and allocated in contiguous physical RAM memory 
aligned on the 4-byte boundary, as shown in Figure 2.7. 



 
Figure 2.7: Mapping an executable image into the target system.  

Tips on section allocation include the following: 
§ allocate sections according to size to fully use available memory, and 
§ examine the nature of the underlying physical memory, the attributes, and the purpose of 

a section to determine which physical memory is best suited for allocation.  

2.4.2 Mapping Executable Images 

Various reasons exist why an embedded developer might want to define custom sections, as well 
as to map these sections into different target memory areas as shown in the last example. The 
following sections list some of these reasons.  

Module Upgradeability 
Chapter 1 discusses the storage options and upgradability of software on embedded systems. 
Software can be easily upgraded when stored in non-volatile memory devices, such as flash 
devices. It is possible to upgrade the software dynamically while the system is still running. 
Upgrading the software can involve downloading the new program image over either a serial line 
or a network and then re-programming the flash memory. The loader in the example could be 
such an application. The initial version of the loader might be capable of transferring an image 
from ROM to RAM. A newer version of the loader might be capable of transferring an image from 
the host over the serial connection to RAM. Therefore, the loader code and data section would be 
created in a custom loader section. The entire section then would be programmed into the flash 
memory for easy upgradeability in the future.  

Memory Size Limitation 
The target system usually has different types of physical memory, but each is limited in size. At 
times, it is impossible to fit all of the code and data into one type of memory, for example, the 
SDRAM. Because SDRAM has faster access time than DRAM, it is always desirable to map code 
and data into it. The available physical SDRAM might not be large enough to fit everything, but 
plenty of DRAM is available in the system. Therefore, the strategy is to divide the program into 
multiple sections and have some sections allocated into the SDARM, while the rest is mapped 



into the DRAM. For example, an often-used function along with a frequently searched lookup 
table might be mapped to the SDRAM. The remaining code and data is allocated into the DRAM.  

Data Protection 
Programs usually have various types of constants, such as integer constants and string 
constants. Sometimes these constants are kept in ROM to avoid accidental modification. In this 
case, these constants are part of a special data section, which is allocated into ROM.  

2.4.3 Example in Practice 

Consider an example system containing 256 bytes of ROM, 16KB of flash memory, and two 
blocks of RAM. RAMB0 is 128KB of SDRAM, and RAMB1 is 2MB of DRAM. An embedded 
application with a number of sections, as listed in Table 2.3, needs to be mapped into this target 
system. 
Table 2.3: Example embedded application with sections.  

Sections  Size  Attribute¹ Description 

_loader  10KB  RD  Contains the loader code 

_wflash  2KB  RD  Contains the flash memory 
programmer 

.rodata  128 bytes  RD  Contains non-volatile default 
initialization parameters and data, 
such as copyright information 

.sbss  10KB  R/W  Contains uninitialized data less than 
64KB (e.g., global variables) 

.sdata  2KB  R/W  Contains initialized data less than 
64KB 

.bss  128KB  R/W  Contains uninitialized data larger 
than 64KB 

.data  512KB  R/W  Contains initialized data larger than 
64KB 

_monitor  54KB  RD  Contains the monitor code 

.text  512KB  RD  Contains other program code 

1. RD = read only; R/W = readable and writeable 

One possible allocation is shown in Listing 2.5; it considers why an embedded engineer might 
want greater section allocation control. 
Listing 2.5: Possible section allocation.  
 

MEMORY { 
      ROM: origin = 0x00000h, length = 0x000100h 
      FLASH: origin = 0x00110h, length = 0x004000h  
      RAMB0: origin = 0x05000h, length = 0x020000h 
      RAMB1: origin = 0x25000h, length = 0x200000h 
} 



SECTION { 
      .rodata : > ROM 
      _loader : > FLASH 
      _wflash : > FLASH 
      _monitor : > RAMB0 
      .sbss (ALIGN 4) : > RAMB0 
      .sdata (ALIGN 4) : > RAMB0 
      .text : > RAMB1 
      .bss (ALIGN 4) : > RAMB1 
      .data (ALIGN 4) : > RAMB1 
} 
 
 

This program allocation is shown in Figure 2.8 (page 34). The section allocation strategies 
applied include the following: 
§ The .rodata section contains system initialization parameters. Most likely these default 

values never change; therefore, allocate this section to ROM. 
§ The loader program is usually part of the system program that executes at startup. The 

_loader and the _wflash sections are allocated into flash memory because the loader 
code can be updated with new versions that understand more object formats. You need the 
flash memory programmer for this purpose, which can also be updated. Therefore, section 
_wflash is allocated into the flash memory as well.  

§ The embedded programmer interacts with the monitor program to probe system 
execution states and help debug application code; therefore, it should be responsive to user 
commands. SDRAM is faster than DRAM, with shorter access time. Therefore, section 
_monitor is allocated into RAMB0.  

§ RAMB0 still has space left to accommodate both sections .sbss and .sdata. The 
allocation strategy for these two sections is to use the leftover fast memory fully. 

§ The remaining sections (.text, .bss, and .data) are allocated into RAMB1, which is 
the only memory that can accommodate all of these large sections. 

 
Figure 2.8: Mapping an executable image into the target system.  

 



2.5 Points to Remember 
Some points to remember include the following: 
§ The linker performs symbol resolution and symbol relocation. 
§ An embedded programmer must understand the exact memory layout of the target 

system towards which development is aimed. 
§ An executable target image is comprised of multiple program sections. 
§ The programmer can describe the physical memory, such as its size and its mapping 

address, to the linker using the linker command file. The programmer can also instruct the 
linker on combining input sections into output sections and placing the output program 
sections using the linker command file. 

§ Each program section can reside in different types of physical memory, based on how the 
section is used. Program code (or .text section) can stay in ROM, flash, and RAM during 
execution. Program data (or .data section) must stay in RAM during execution. 

 



Chapter 3: Embedded System Initialization 
3.1 Introduction 
It takes just minutes for a developer to compile and run a “Hello World!” application on a non-
embedded system. On the other hand, for an embedded developer, the task is not so trivial. It 
might take days before seeing a successful result. This process can be a frustrating experience 
for a developer new to embedded system development. 

Booting the target system, whether a third-party evaluation board or a custom design, can be a 
mystery to many newcomers. Indeed, it is daunting to pick up a programmer’s reference manual 
for the target board and pore over tables of memory addresses and registers or to review the 
hardware component interconnection diagrams, wondering what it all means, what to do with the 
information (some of which makes little sense), and how to relate the information to running an 
image on the target system. 

Questions to resolve at this stage are 
§ how to load the image onto the target system, 
§ where in memory to load the image, 
§ how to initiate program execution, and 
§ how the program produces recognizable output.  

We answer these questions in this chapter and hopefully reduce frustration by demystifying the 
booting and initialization process of embedded systems. 

Chapter 2 discusses constructing an executable image with multiple program sections according 
to the target system memory layout. After the final image is successfully built and residing on the 
host system, the next step is to execute it on the target.  

The focus of this chapter is 
§ image transfer from the host to the target system, 
§ the embedded monitor and debug agent, 
§ the target system loader, 
§ the embedded system booting process, 
§ various initialization procedures, and 
§ an introduction to BDM and JTAG interfaces.  
 
3.2 Target System Tools and Image Transfer 
An executable image built for a target embedded system can be transferred from the host 
development system onto the target, which is called loading the image, by: 
§ Programming the entire image into the EEPROM or flash memory. 
§ Downloading the image over either a serial (typically RS-232) or network connection. 

This process requires the presence of a data transfer utility program on the host system, as 
well as the presence of a target loader, an embedded monitor, or a target debug agent on 
the target system. 

§ Downloading the image through either a JTAG or BDM interface (discussed in section 
3.5).  

These approaches are the most common, and this list is by no means comprehensive. Some of 
the possible host-to-target connectivity solutions are shown in Figure 2.1. Figure 3.1 exemplifies a 
target embedded system. We refer to the ELF image format (introduced in Chapter 2) exclusively 
throughout this chapter. 



 
Figure 3.1: View of the target embedded system.  

The embedded software for the final product is commonly stored in either ROM or the flash 
memory. The entire executable image is burned into the ROM or flash memory using special 
equipment. If ROM is used, the ROM chip is set into its socket on the target board. For 
embedded system boards that have both ROM and flash memory, the next step is to set the 
necessary jumpers. Jumpers are the part of the target board's wiring that controls which memory 
chip the processor uses to start executing its first set of instructions upon reboot. For example, if 
the image is stored in the flash memory and the jumpers are set to use the flash memory, the 
processor fetches its first instruction from the starting address where the flash is mapped. 
Therefore, set the jumpers appropriately according to the image storage.  

This final production method, however, is impractical during the development stage because 
developers construct software in incremental steps with high frequency. The process is 
interactive in that a portion of the code is written, debugged, and tested, and the entire process 
then repeats for the new code. Reprogramming the EEPROM or the flash memory each time the 
code changes due to bugs or code addition is time consuming. The methods for downloading the 
image over a serial or a network connection or for downloading the image through a JTAG or 
BDM interface solve this problem by transferring the image directly into the target system's RAM 
memory.  

3.2.1 Embedded Loader 

A common approach taken at the early development phase is to write a loader program for the 
target side, which is called the loader, and use the loader to download the image from the host 
system. In the scenario shown in Figure 3.1, the loader has a small memory footprint, so it 
typically can be programmed into a ROM chip. A data transfer utility resides on the host system 
side. The loader works in conjunction with its host utility counterpart to perform the image 
transfer. 

After the loader is written, it is programmed into the ROM. Part of the same ROM chip is occupied 
by the boot image. At a minimum, this boot image (typically written by a hardware engineer) 
consists of the code that executes on system power up. This code initializes the target hardware, 
such as the memory system and the physical RAM, into a known state. In other words, the boot 
image prepares the system to execute the loader. The loader begins execution after this boot 
image completes the necessary initialization work.  

For this transfer method to work, a data transfer protocol, as well as the communication 
parameters, must be agreed upon between the host utility and the target loader. The data transfer 
protocol refers to the transfer rules. For example, a transfer protocol might be that the image 
transfer request should be initiated from the loader to the host utility; in which case, the host utility 
sends out the image file size followed by the actual image, and the loader sends an 
acknowledgement to the host utility upon completion. Data transfer rate, such as the baud rate for 



the serial connection, and per packet size are examples of communication parameters. The 
loader and the utility program operate as a unit, which is often capable of using more than one 
type of connection. At a minimum, the transfer takes place over the serial connection. More 
sophisticated loaders can download images over the network, for example, over the Ethernet 
using protocols such as the Trivial File Transfer Protocol (TFTP) or the File Transfer Protocol 
(FTP). In this case, the host utility program is either the TFTP server or the FTP server 
respectively. 

Both proprietary and well-known transfer protocols can be applied in either the serial or the 
network connection, but more commonly proprietary protocols are used with a serial connection.  

The loader downloads the image directly into the RAM memory. The loader needs to understand 
the object file format (for example, the ELF format) because, as discussed in Chapter 2, the 
object file contains information such as the load address, which the loader uses for section 
placement.  

The loader transfers control to the downloaded image after the transfer completes. A loader with 
flash programming capability can also transfer the image into the flash memory. In that case, the 
board jumpers must be set appropriately so that the processor executes out of flash memory after 
the image download completes. 

A loader can be part of the final application program, and it can perform other functions in 
addition to downloading images, as discussed in more detail later in this chapter.  

3.2.2 Embedded Monitor 

An alternative to the boot image plus loader approach is to use an embedded monitor. A monitor 
is an embedded software application commonly provided by the target system manufacturer for 
its evaluation boards. The monitor enables developers to examine and debug the target system 
at run time. Similar to the boot image, the monitor is executed on power up and performs system 
initialization such as  
§ initializing the required peripheral devices, for example, the serial interface and the 

system timer chip for memory refresh, at a minimum, 
§ initializing the memory system for downloading the image, and 
§ initializing the interrupt controller and installing default interrupt handlers. 

The monitor has a well-defined user interface accessible through a terminal emulation program 
over the serial interface. The monitor defines a set of commands allowing the developer to 
§ download the image, 
§ read from and write to system memory locations, 
§ read and write system registers,  
§ set and clear different types of breakpoints, 
§ single-step instructions, and 
§ reset the system. 

The way in which the monitor downloads the image from the host system over the serial or 
network connection is similar to how the loader does it. The monitor is capable of downloading 
the image into either the RAM memory or the flash memory. In essence, the monitor has both the 
boot image and the loader functionalities incorporated but with the added interactive debug 
capability. The monitor is still present while the newly downloaded image executes. A special 
keystroke on the host system, for example, CTRL+D, interrupts the program execution and 
reactivates the monitor user interface so the developer can conduct interactive debugging 
activities.  

The monitor is generally developed by the hardware engineers and is also used by the hardware 
engineers to perform both system device diagnostics and low-level code debugging. Some 



manufactures give the monitor source code to their customers. In that case, the code can be 
extracted and modified to work with a custom-designed target board.  

3.2.3 Target Debug Agent 

The target debug agent functions much like the monitor does but with one added feature: the 
target agent gives the host debugger enough information to provide visual source-level debug 
capability. Again, an agreed-upon communication protocol must be established between the host 
debugger and the target agent. The host debugger is something that the host tools vendor offers. 
Sometimes a RTOS vendor offers a host-based debugger simply because the debug agent is an 
integral part of the RTOS. The host debugger vendor works closely with the RTOS vendor to 
provide a fully compatible tool. The debug agent has built-in knowledge of the RTOS objects and 
services, which allows the developer to explore such objects and services fully and visually. 
 
3.3 Target Boot Scenarios 
We have described the software components involved in transferring images from the host to the 
target. In this section, we describe the details of the loading process itself and how control is 
transferred to the newly acquired image.  

Embedded processors, after they are powered on, fetch and execute code from a predefined and 
hard-wired address offset. The code contained at this memory location is called the reset vector. 
The reset vector is usually a jump instruction into another part of the memory space where the 
real initialization code is found. The reason for jumping to another part of memory is to keep the 
reset vector small. The reset vector belongs to a small range of memory space reserved by the 
system for special purposes. The reset vector, as well as the system boot startup code, must be 
in permanent storage. Because of this issue, the system startup code, called the bootstrap code, 
resides in the system ROM, the on-board flash memory, or other types of non-volatile memory 
devices. We will revisit the loader program from the system-bootstrapping perspective. In the 
discussions to follow, the loader refers to the code that performs system bootstrapping, image 
downloading, and initialization. 

The concepts are best explained through an example. In this example, assume an embedded 
loader has been developed and programmed into the on-board flash memory. Also, assume that 
the target image contains various program sections. Each section has a designated location in 
the memory map. The reset vector is contained in a small ROM, which is mapped to location 
0x0h of the address space. The ROM contains some essential initial values required by the 
processor on reset. These values are the reset vector, the initial stack pointer, and the usable 
RAM address.  

In the example shown in Figure 3.2, the reset vector is a jump instruction to memory location 
0x00040h; the reset vector transfers program control to the instruction at this address. Startup 
initialization code begins at this flash memory address. This system initialization code contains, 
among other things, the target image loader program and the default system exception vectors. 
The system exception vectors point to instructions that reside in the flash memory. See Chapter 
10 for detailed discussions on interrupts, exceptions, and exception vectors and handlers.  



 
Figure 3.2: Example bootstrap overview.  

The first part of the system bootstrap process is putting the system into a known state. The 
processor registers are set with appropriate default values. The stack pointer is set with the value 
found in the ROM. The loader disables the system interrupts because the system is not yet 
prepared to handle the interrupts. The loader also initializes the RAM memory and possibly the 
on-processor caches. At this point, the loader performs limited hardware diagnostics on those 
devices needed for its operation. 

As discussed in Chapter 2, program execution is faster in RAM than if the executable code runs 
directly out of the flash memory. To this end, the loader optionally can copy the code from the 
flash memory into the RAM. Because of this capability, a program section can have both a load 
address and a run address. The load address is the address in which the program sections 
reside, while the run address is the address to which the loader program copies the program 
sections and prepares it for execution. Enabling runtime debugging is another main reason for a 
program to execute out of the RAM. For example, the debugger must be able to modify the 
runtime code in order to insert breakpoints. 

An executable image contains initialized and uninitialized data sections. These sections are both 
readable and writeable. These sections must reside in RAM and therefore are copied out of the 
flash memory into RAM as part of system initialization. The initialized data sections (.data and 
.sdata) contain the initial values for the global and static variables. The content of these 
sections, therefore, is part of the final executable image and is transferred verbatim by the loader. 
On the other hand, the content for the uninitialized data sections .bss and .sbss) is empty. The 
linker reserves space for these sections in the memory map. The allocation information for these 
sections, such as the section size and the section run address, is part of the section header. It is 
the loader’s job to retrieve this information from the section header and allocate the same amount 
of memory in RAM during the loading process. The loader places these sections into RAM 
according to the section’s run address.  

An executable image is likely to have constants. Constant data is part of the .const section, 
which is read-only. Therefore, it is possible to keep the .const section in read-only memory 
during program execution. Frequently accessed constants, such as lookup tables, should be 
transferred into RAM for performance gain.  



The next step in the boot process is for the loader program to initialize the system devices. Only 
the necessary devices that the loader requires are initialized at this stage. In other words, a 
needed device is initialized to the extent that a required subset of the device capabilities and 
features are enabled and operational. In the majority of cases, these devices are part of the I/O 
system; therefore, these devices are fully initialized when the downloaded image performs I/O 
system initialization as part of the startup sequence. 

Now the loader program is ready to transfer the application image to the target system. The 
application image contains the RTOS, the kernel, and the application code written by the 
embedded developer. The application image can come from two places: 
§ the read-only memory devices on the target, or 
§ the host development system. 

We describe three common image execution scenarios: 
§ execute from ROM while using RAM for data, 
§ execute from RAM after being copied from ROM, and 
§ execute from RAM after being downloaded from a host system. 

In the discussions to follow, the term ROM refers to read-only memory devices in general. 

3.3.1 Executing from ROM Using RAM for Data 

Some embedded devices have such limited memory resources that the program image executes 
directly out of the ROM. Sometimes the board vendor provides the boot ROM, and the code in 
the boot ROM does not copy instructions out to RAM for execution. In these cases, however, the 
data sections must still reside in RAM. Figure 3.3 shows this boot scenario. 

 
Figure 3.3: Boot sequence for an image running from ROM.  

Two CPU registers are of concern: the Instruction Pointer (IP) register and the Stack Pointer (SP) 
register. The IP points to the next instruction (code in the .text section) that the CPU must 
execute, while the SP points to the next free address in the stack. The C programming language 
uses the stack to pass function parameters during function invocation. The stack is created from 
a space in RAM, and the system stack pointer registers must be set appropriately at start up. 

The boot sequence for an image running from ROM is as follows: 



1. The CPU’s IP is hardwired to execute the first instruction in memory (the reset vector). 
2. The reset vector jumps to the first instruction of the .text section of the boot image. The 

.text section remains in ROM; the CPU uses the IP to execute .text. The code 
initializes the memory system, including the RAM. 

3. The .data section of the boot image is copied into RAM because it is both readable and 
writeable. 

4. Space is reserved in RAM for the .bss section of the boot image because it is both 
readable and writeable. There is nothing to transfer because the content for the .bss 
section is empty. 

5. Stack space is reserved in RAM. 
6. The CPU’s SP register is set to point to the beginning of the newly created stack. At this 

point, the boot completes. The CPU continues to execute the code in the .text section 
until it is complete or until the system is shut down. 

Note that the boot image is not in the ELF format but contains binary machine code ready for 
execution. The boot image is created in the ELF format. The EEPROM programmer software, 
however, removes the ELF-specific data, such as the program header table and the section 
header table, when programming the boot image into the ROM, so that it is ready for execution 
upon processor reset.  

The boot image needs to keep internal information in its program, which is critical to initializing 
the data sections, because the section header table is not present. As shown in Figure 3.3, the 
.data section is copied into RAM in its entirety. Therefore, the boot image must know the 
starting address of its data section and how big the data section is. One approach to this issue is 
to insert two special labels into the .data section: one label placed at the section’s beginning 
and the other placed at the end. Special assembly code is written to retrieve the addresses of 
these labels. These are the load addresses of the labels. The linker reference manual should 
contain the specific program code syntax and link commander file syntax used for retrieving the 
load address of a symbol. The difference between these two addresses is the size of the section. 
A similar approach is taken for the .bss section.  

If the .text section is copied into RAM, two dummy functions can be defined. These dummy 
functions do nothing other than return from function. One function is placed at the beginning of 
the .text section, while the other is placed at the end. This reason is one why an embedded 
developer might create custom sections and instruct the linker on where to place a section, as 
well as how to combine the various sections into a single output section through the linker 
command file.  

3.3.2 Executing from RAM after Image Transfer from ROM 

In the second boot scenario, the boot loader transfers an application image from ROM to RAM for 
execution. The large application image is stored in ROM in a compressed form to reduce the 
storage space required. The loader must decompress this image before it can initialize the 
sections of that image. Depending on the compression algorithm used and whether enough 
space is left in the ROM, some state information produced from the compression work can be 
stored to simplify image decompression. The loader needs a work area in RAM for the 
decompression process. It is common and good practice to perform checksum calculations over 
the boot image to ensure the image integrity before loading and execution.  

The first six steps are identical to the previous boot scenario. After completing those steps, the 
process continues as follows: 

7. The compressed application image is copied from ROM to RAM. 

8–10. Initialization steps that are part of the decompression procedure are completed. 



11. The loader transfers control to the image. This is done by “jumping” to the beginning address 
of the initialized image using a processor-specific “jump” instruction. This “jump” instruction 
effectively sets a new value into the instruction pointer. 

12. As shown in Figure 3.4, the memory area that the loader program occupies is recycled. 
Specifically, the stack pointer is reinitialized (see the dotted line) to point to this area, so it can be 
used as the stack for the new program. The decompression work area is also recycled into the 
available memory space implicitly. 

 
Figure 3.4: Boot sequence for an image executing from RAM after transfer from ROM.  

Note that the loader program is still available for use because it is stored in ROM. Making the 
loader available for later use is often intentional on the designer’s part. Imagine a situation in 
which the loader program has a built-in monitor. As mentioned earlier, part of the monitor startup 
sequence is to install default interrupt handlers. This issue is extremely important because during 
the development phase the program under construction is incomplete and is being constantly 
updated. As such, this program might not be able to handle certain system interrupts and 
exceptions. It is beneficial to have the monitor conduct default processing in such cases. For 
example, a program avoids processing memory access exceptions by not installing an exception 
handler for it. In this case, the monitor takes control of the system when the program execution 
triggers such an exception, for example, when the program crashes. The developer then gets the 
opportunity to debug and back-trace the execution sequence through the monitor inter- face. As 
indicated earlier, a monitor allows the developer to modify the processor registers. Therefore, as 
soon as the bug is uncovered and a new program image is built, the developer can set the 
instruction pointer register to the starting address of the loader program in ROM, effectively 
transferring control to the loader. The result is that the loader begins to download the new image 
and reinitializes the entire system without having to power cycle on the system.  

Similarly, another benefit of running the loader out of the ROM is to prevent a program that is 
behaving badly from corrupting its code in systems without protection from the MMU. 

In this example, the loader image is in an executable machine code format. The application 
image is in the ELF format but has been compressed through an algorithm that works 
independently of the object file format. The application image is in the ELF format so that the 
loader can be written as a generic utility, able to load many application program images. If the 



application image is in the ELF format, the loader program can extract the necessary information 
from the image for initialization.  

3.3.3 Executing from RAM after Image Transfer from Host 

In the third boot scenario, the target debug agent transfers an application image from the host 
system into RAM for execution. This practice is typical during the later development phases when 
the majority of the device drivers have been fully implemented and debugged. The system can 
handle interrupts and exceptions correctly. At this stage, the target system facilitates a stable 
environment for further application development, allowing the embedded developer to focus on 
application design and implementation rather than the low-level hardware details. 

The debug agent is RTOS-aware and understands RTOS objects and services. The debug agent 
can communicate with a host debugger and transfer target images through the host debugger. 
The debug agent can also function as a standalone monitor. The developer can access the 
command line interface for the target debug agent through a simple terminal program over the 
serial link. The developer can issue commands over the command line interface to instruct the 
debug agent on the target image’s location on the host system and to initiate the transfer. 

The debug agent downloads the image into a temporary area in RAM first. After the download is 
complete and the image integrity verified, the debug agent initializes the image according to the 
information presented in the program section header table. This boot scenario is shown in Figure 
3.5. 

 
Figure 3.5: Boot sequence for an image executing from RAM after transfer from the host system.  

The first six steps are identical to the initial boot scenario. After completing those steps, the 
process continues as follows: 

7. The application image is downloaded from the host development system. 

8. The image integrity is verified. 



9. The image is decompressed if necessary. 

10–12. The debug agent loads the image sections into their respective run addresses in RAM. 

13. The debug agent transfers control to the download image. 

There is a good reason why the memory area used by the debug agent is not recycled. In this 
example, the downloaded image contains an RTOS, which is introduced in Chapter 4. One of the 
core components of a RTOS is a scheduler, which facilitates the simultaneous existence and 
execution of multiple programs, called tasks or threads. The scheduler can save the execution 
state information of the debug agent and revive the agent later. Thus, the debug agent can 
continue to communicate with the host debugger while the downloaded image executes, 
providing interactive, visual, source-level debugging. 
 
3.4 Target System Software Initialization Sequence 
The target image referred to repeatedly in the last section is a combination of sophisticated 
software components and modules as shown in Figure 3.6. The software components include the 
following: the board support package (BSP), which contains a full spectrum of drivers for the 
system hardware components and devices; the RTOS, which provides basic services, such as 
resource synchronization services, I/O services, and scheduling services needed by the 
embedded applications; and the other components, which provide additional services, such as file 
system services and network services. 

 
Figure 3.6: Software components of a target image.  

These software components perform full system initialization after the target image gains control 
from the loading program. 

Assuming the target image is structured as shown in Figure 3.6, then Figure 3.7 illustrates the 
steps required to initialize most target systems. The main stages are 
§ hardware initialization, 
§ RTOS initialization, and 
§ application initialization. 

Note that these steps are not all that are required to initialize the target system. Rather, this 
summary provides a high-level example from which to learn. Each stage is discussed more 
thoroughly in the following sections.  



3.4.1 Hardware Initialization 

The previous sections described aspects of steps 1 and 2 in Figure 3.7 in which a boot image 
executes after the CPU begins executing instructions from the reset vector. Typically at this 
stage, the minimum hardware initialization required to get the boot image to execute is 
performed, which includes: 

1. starting execution at the reset vector 
2. putting the processor into a known state by setting the appropriate registers: 

§ getting the processor type 
§ getting or setting the CPU’s clock speed  

3. disabling interrupts and caches 
4. initializing memory controller, memory chips, and cache units: 

§ getting the start addresses for memory 
§ getting the size of memory 
§ performing preliminary memory tests, if required 

 
Figure 3.7: The software initialization process.  

After the boot sequence initializes the CPU and memory, the boot sequence copies and 
decompresses, if necessary, the sections of code that need to run. It also copies and 
decompresses its data into RAM.  

Most of the early initialization code is in low-level assembly language that is specific to the target 
system’s CPU architecture. Later-stage initialization code might be written in a higher-level 
programming language, such as C.  



As the boot code executes, the code calls the appropriate functions to initialize other hardware 
components, if present, on the target system. Eventually, all devices on the target board are 
initialized (as shown in step 3 of Figure 3.7). These might include the following: 
§ setting up execution handlers; 
§ initializing interrupt handlers; 
§ initializing bus interfaces, such as VME, PCI, and USB; and 
§ initializing board peripherals such as serial, LAN, and SCSI. 

Most embedded systems developers consider steps 1 and 2 in Figure 3.7 as the initial boot 
sequence, and steps 1 to 3 as the BSP initialization phase. Steps 1 to 3 are also called the 
hardware initialization stage.  

Writing a BSP for a particular target system is not trivial. The developer must have a good 
understanding of the underlying hardware components. Along with understanding the target 
system’s block diagrams, data flow, memory map, and interrupt map, the developer must also 
know the assembly language for the target system’s microprocessor. 

Developers can save a great deal of time and effort by using sample BSPs if they come with the 
target evaluation board or from the RTOS vendor. Typically, the microprocessor registers that a 
developer needs to program are listed in these BSPs, along with the sequence in which to work 
with them to properly initialize target-system hardware.  

A completed BSP initialization phase has initialized all of the target-system hardware and has 
provided a set of function calls that upper layers of software (for example, the RTOS) can use to 
communicate with the hardware components of the target system.  

3.4.2 RTOS Initialization 

Step 4 of Figure 3.7 begins the RTOS software initialization. Key things that can happen in steps 
4 to 6 include:  

1. initializing the RTOS 
2. initializing different RTOS objects and services, if present (usually controlled with a user-

configurable header file): 
§ task objects 
§ semaphore objects 
§ message-queue objects 
§ timer services 
§ interrupt services 
§ memory-management services  

3. creating necessary stacks for RTOS 
4. initializing additional RTOS extensions, such as: 

§ TCP/IP stack 
§ file systems 

5. starting the RTOS and its initial tasks 

The components of an RTOS (for example, tasks, semaphores, and message queues) are 
discussed in more detail in later chapters of this book. For now, note that the RTOS abstracts the 
application code from the hardware and provides software objects and services that facilitate 
embedded-systems application development.  

3.4.3 Application Software Initialization 

After the RTOS is initialized and running with the required components, control is transferred to a 
user-defined application. This transfer takes place when the RTOS code calls a predefined 
function (that is RTOS dependent) which is implemented by the user-defined application. At this 
point, the RTOS services are available. This application also goes through initialization, during 



which all necessary objects, services, data structures, variables, and other constructs are 
declared and implemented. For a simple, user application such as the “hello world” application, all 
the work can be done in this function. This user-defined application (maybe the “hello world” 
application) might finally produce its impressive output. On the other hand, for a complex 
application, it will create task or tasks to perform the work. These application-created tasks will 
execute once the kernel scheduler runs. The kernel scheduler runs when this control-transfer 
function exits. 
3.5 On-Chip Debugging 
Many silicon vendors recognize the need for built-in microprocessor debugging, called on-chip 
debugging (OCD). BDM and JTAG are two types of OCD solutions that allow direct access and 
control over the microprocessor and system resources without needing software debug agents on 
the target or expensive in-circuit emulators. As shown in Figure 3.1, the embedded processor 
with OCD capability provides an external interface. The developer can use the external interface 
to download code, read or write processor registers, modify system memory, and command the 
processor to execute one instruction and halt, thus facilitating single-step debugging. Depending 
on the selected processor, it might be possible to disable the on-chip peripherals while OCD is in 
effect. It might also be possible to gain a near real-time view of the executing system state. OCD 
is used to solve the chicken-and-egg problem often encountered at the beginning development 
stage-if the monitor is the tool for debugging a running program, what debugs the monitor while 
it's developed? The powerful debug capabilities offered by the OCD combined with the quick 
turnaround time required to set up the connection means that software engineers find OCD 
solutions invaluable when writing hardware initialization code, low-level drivers, and even 
applications.  

JTAG stands for Joint Test Action Group, which was founded by electronics manufacturers to 
develop a new and cost-effective test solution. The result, produced by the JTAG consortium, is 
sanctioned by the IEEE1149.1 standard. 

BDM stands for background debug mode. It refers to the microprocessor debug inter- face 
introduced by Motorola and found on its processor chips. The term also describes the non-
intrusive nature (on the executing system) of the debug method provided by the OCD solutions.  

An OCD solution is comprised of both hardware and software. Special hardware devices, called 
personality modules, are built for the specific processor type and are required to connect between 
the OCD interface on the target system and the host development system. The interface on the 
target system is usually an 8- or 10-pin connector. The host side of the connection can be the 
parallel port, the serial port, or the network interface. The OCD-aware host debugger displays 
system state information, such as the contents of the processor registers, the system memory 
dump, and the current executing instruction. The host debugger provides the interface between 
the embedded software developer and the target processor and its resources. 
 
3.6 Points to Remember  
Some points to remember include the following: 
§ Developers have many choices for downloading an executable image to a target system. 

They can use target-monitor-based, debug-agent-based, or hardware-assisted connections. 
§ The boot ROM can contain a boot image, loader image, monitor image, debug agent, or 

even executable image. 
§ Hardware-assisted connections are ideal, both when first initializing a physical target 

system as well as later, for programming the final executable image into ROM or flash 
memory. 

§ Some of the different ways to boot a target system include running an image out of ROM, 
running an image out of RAM after copying it from ROM, and running an image out of RAM 
after downloading it from a host. 



§ A system typically undergoes three distinct initialization stages: hardware initialization, 
OS initialization (RTOS), and application initialization. 

§ After the target system is initialized, application developers can use this platform to 
download, test, and debug applications that use an underlying RTOS. 

 



Chapter 9: Other RTOS Services 
9.1 Introduction  
A good real-time embedded operating system avoids implementing the kernel as a large, 
monolithic program. The kernel is developed instead as a micro-kernel. The goal of the micro-
kernel design approach is to reduce essential kernel services into a small set and to provide a 
framework in which other optional kernel services can be implemented as independent modules. 
These modules can be placed outside the kernel. Some of these modules are part of special 
server tasks. This structured approach makes it possible to extend the kernel by adding additional 
services or to modify existing services without affecting users. This level of implementation 
flexibility is highly desirable. The resulting benefit is increased system configurability because 
each embedded application requires a specific set of system services with respect to its 
characteristics. This combination can be quite different from application to application.  

The micro-kernel provides core services, including task-related services, the scheduler service, 
and synchronization primitives. This chapter discusses other common building blocks, as shown 
in Figure 9.1.  

 
Figure 9.1: Overview.  
 
9.2 Other Building Blocks  
These other common building blocks make up the additional kernel services that are part of 
various embedded applications. The other building blocks include the following:  
§ TCP/IP protocol stack,  
§ file system component,  
§ remote procedure call component,  
§ command shell,  
§ target debut agent, and  
§ other components.  

9.2.1 TCP/IP Protocol Stack  

The network protocol stacks and components, as illustrated in Figure 9.2, provide useful system 
services to an embedded application in a networked environment. The TCP/IP protocol stack 



provides transport services to both higher layer, well-known protocols, including Simple Network 
Management Protocol (SNMP), Network File System (NFS), and Telnet, and to user-defined 
protocols. The transport service can be either reliable connection-oriented service over the TCP 
protocol or unreliable connectionless service over the UDP protocol. The TCP/IP protocol stack 
can operate over various types of physical connections and networks, including Ethernet, Frame 
Relay, ATM, and ISDN networks using different frame encapsulation protocols, including the 
point-to-point protocol. It is common to find the transport services offered through standard 
Berkeley socket interfaces.  

 
Figure 9.2: TCP/IP protocol stack component.  

9.2.2 File System Component  

The file system component, as illustrated in Figure 9.3, provides efficient access to both local and 
network mass storage devices. These storage devices include but are not limited to CD-ROM, 
tape, floppy disk, hard disk, and flash memory devices. The file system component structures the 
storage device into supported formats for writing information to and for accessing information 
from the storage device. For example, CD-ROMs are formatted and managed according to ISO 
9660 standard file system specifications; floppy disks and hard disks are formatted and managed 
according to MS-DOS FAT file system conventions and specifications; NFS allows local 
applications to access files on remote systems as an NFS client. Files located on an NFS server 
are treated exactly as though they were on a local disk. Because NFS is a protocol, not a file 
system format, local applications can access any format files supported by the NFS server. File 
system components found in some real-time RTOS provide high-speed proprietary file systems in 
place of common storage devices.  



 
Figure 9.3: File system component.  

9.2.3 Remote Procedure Call Component  

The remote procedure call (RPC) component allows for distributed computing. The RPC server 
offers services to external systems as remotely callable procedures. A remote RPC client can 
invoke these procedures over the network using the RPC protocol. To use a service provided by 
an RPC server, a client application calls routines, known as stubs, provided by the RPC client 
residing on the local machine.  

The RPC client in turn invokes remote procedure calls residing in the RPC server on behalf of the 
calling application. The primary goal of RPC is to make remote procedure calls transparent to 
applications invoking the local call stubs. To the client application, calling a stub appears no 
different from calling a local procedure. The RPC client and server can run on top of different 
operating systems, as well as different types of hardware. As an example of such transparency, 
note that NFS relies directly upon RPC calls to support the illusion that all files are local to the 
client machine.  

To hide both the server remoteness, as well as platform differences from the client application, 
data that flows between the two computing systems in the RPC call must be translated to and 
from a common format. External data representation (XDR) is a method that represents data in 
an OS- and machine-independent manner. The RPC client translates data passed in as 
procedure parameters into XDR format before making the remote procedure call. The RPC server 
translates the XDR data into machine-specific data format upon receipt of the procedure call 
request. The decoded data is then passed to the actual procedure to be invoked on the server 
machine. This procedure's output data is formatted into XDR when returning it to the RPC client. 
The RPC concept is illustrated in Figure 9.4.  



 
Figure 9.4: Remote procedure calls.  

9.2.4 Command Shell  
The command shell , also called the command interpreter , is an interactive component that 
provides an interface between the user and the real-time operating system. The user can invoke 
commands, such as ping , ls , loader , and route through the shell. The shell interprets 
these commands and makes corresponding calls into RTOS routines. These routines can be in 
the form of loadable program images, dynamically created programs (dynamic tasks), or direct 
system function calls if supported by the RTOS. The programmer can experiment with different 
global system calls if the command shell supports this feature. With this feature, the shell can 
become a great learning tool for the RTOS in which it executes, as illustrated in Figure 9.5.  

 
Figure 9.5: RTOS command shell.  

Some command shell implementations provide a programming interface. A programmer can 
extend the shell's functionality by writing additional commands or functions using the shell's 
application program interface (API). The shell is usually accessed from the host system using a 
terminal emulation program over a serial interface. It is possible to access the shell over the 
network, but this feature is highly implementation-dependent. The shell becomes a good 
debugging tool when it supports available debug agent commands. A host debugger is not 
always available and can be tedious to set up. On the other hand, the programmer can 
immediately begin debugging when a debug agent is present on the target system, as well as a 
command shell.  

9.2.5 Target Debug Agent  

Every good RTOS provides a target debug agent. Through either the target shell component or a 
simple serial connection, the debug agent offers the programmer a rich set of debug commands 
or capabilities. The debug agent allows the programmer to set up both execution and data access 



break points. In addition, the programmer can use the debug agent to examine and modify 
system memory, system registers, and system objects, such as tasks, semaphores, and 
message queues. The host debugger can provide source-level debug capability by interacting 
with the target debug agent. With a host debugger, the user can debug the target system without 
having to understand the native debug agent commands. The target debug agent commands are 
mapped into host debugger commands that are more descriptive and easier to understand. Using 
an established debug protocol, the host debugger sends the user-issued debug commands to the 
target debug agent over the serial cable or the Ethernet network. The target debug agent acts on 
the commands and sends the results back to the host debugger. The host debugger displays the 
results in its user-friendly debug interface. The debug protocol is specific to the host debugger 
and its supported debug agent. Be sure to check the host debugging tools against the supported 
RTOS debug agents before making a purchase.  

9.2.6 Other Components  

What has been presented so far is a very small set of components commonly found in available 
RTOS. Other service components include the SNMP component. The target system can be 
remotely managed over the network by using SNMP. The standard I/O library provides a common 
interface to write to and read from system I/O devices. The standard system library provides 
common interfaces to applications for memory functions and string manipulation functions. These 
library components make it straightforward to port applications written for other operating systems 
as long as they use standard interfaces. The possible services components that an RTOS can 
provide are limited only by imagination. The more an embedded RTOS matures the more 
components and options it provides to the developer. These components enable powerful 
embedded applications programming, while at the same time save overall development costs. 
Therefore, choose the RTOS wisely.  
 
9.3 Component Configuration  
The available system memory in many embedded systems is limited. Therefore, only the 
necessary service components are selected into the final application image. Frequently 
programmers ask how to configure a service component into an embedded application. In a 
simplified view, the selection and consequently the configuration of service components are 
accomplished through a set of system configuration files. Look for these files in the RTOS 
development environment to gain a better understanding of available components and applicable 
configuration parameters.  

The first level of configuration is done in a component inclusion header file. For example, call it 
sys_comp.h , as shown in Listing 9.1.  
Listing 9.1: The sys_comp.h inclusion header file.  
 

#define INCLUDE_TCPIP       1 
#define INCLUDE_FILE_SYS    0 
#define INCLUDE_SHELL       1 
#define INCLUDE_DBG_AGENT   1 
 
 

In this example, the target image includes the TCP/IP protocol stack, the command shell, and the 
debug agent. The file system is excluded because the sample target system does not have a 
mass storage device. The programmer selects the desired components through sys_comp.h.  

The second level of configuration is done in a component-specific configuration file, sometimes 
called the component description file. For example, the TCP/IP component configuration file could 



be called net_conf.h, and the debug agent configuration file might be called the dbg_conf.h. 
The component-specific configuration file contains the user-configurable, component-specific 
operating parameters. These parameters contain default values. Listing 9.2 uses net_conf.h.  
Listing 9.2: The net_conf.h configuration file.  
 

#define NUM_PKT_BUFS       100 
#define NUM_SOCKETS         20 
#define NUM_ROUTES          35 
#define NUM_NICS            40 
 
 

In this example, four user-configurable parameters are present: the number of packet buffers to 
be allocated for transmitting and receiving network packets; the number of sockets to be allocated 
for the applications; the number of routing entries to be created in the routing table used for 
forwarding packets; and the number of network interface data structures to be allocated for 
installing network devices. Each parameter contains a default value, and the programmer is 
allowed to change the value of any parameter present in the configuration file. These parameters 
are applicable only to the TCP/IP protocol stack component.  

Component-specific parameters must be passed to the component during the initialization phase. 
The component parameters are set into a data structure called the component configuration 
table. The configuration table is passed into the component initialization routine. This level is the 
third configuration level. Listing 9.3 shows the configuration file named net_conf.c , which 
continues to use the network component as the example.  
Listing 9.3: The net_conf.c configuration file.  
 

#include "sys_comp.h" 
#include "net_conf.h" 
 
#if (INCLUDE_TCPIP) 
struct net_conf_parms  params; 
params.num_pkt_bufs = NUM_PKT_BUFS; 
params.num_sockets  = NUM_SOCKETS; 
params.num_routes   = NUM_ROUTES; 
params.num_NICS     = NUM_NICS; 
 
tcpip_init(&params); 
 
#endif  
 
 

The components are pre-built and archived. The function tcpip_init is part of the component. 
If INCLUDE_TCPIP is defined as 1 at the time the application is built, the call to this function 
triggers the linker to link the component into the final executable image. At this point, the TCP/IP 
protocol stack is included and fully configured.  



Obviously, the examples presented here are simple, but the concepts vary little in real systems. 
Manual configuration, however, can be tedious when it is required to wading through directories 
and files to get to the configuration files. When the configuration file does not offer enough or 
clear documentation on the configuration parameters, the process is even harder. Some host 
development tools offer an interactive and visual alternative to manual component configuration. 
The visual component configuration tool allows the programmer to select the offered components 
visually. The configurable parameters are also laid out visually and are easily editable. The 
outputs of the configuration tool are automatically generated files similar to sys_comp.h and 
net_conf.h. Any modification completed through the configuration tool regenerates these files.  
 
9.4 Points to Remember  
Some points to remember include the following:  
§ Micro-kernel design promotes a framework in which additional service components can 

be developed to extend the kernel's functionalities easily.  
§ Debug agents allow programmers to debug every piece of code running on target 

systems.  
§ Developers should choose a host debugger that understands many different RTOS 

debug agents.  
§ Components can be included and configured through a set of system configuration files.  
§ Developers should only include the necessary components to safeguard memory 

efficiency.  
 




