
Chapter 2

SPECIFICATIONS AND MODELING

2.1 Requirements

Consistent with the simplified design flow (see fig. 1.6), we will now describe
requirements and approaches for specifying and modeling embedded systems.

Specifications for embedded systems providemodelsof the system under de-
sign (SUD). Models can be defined as follows [Jantsch, 2004]:

Definition: “A model is a simplification of another entity, which can be a phys-
ical thing or another model. The model contains exactly those characteristics
and properties of the modeled entity that are relevant for a given task. A model
is minimal with respect to a task if it does not contain any other characteristics
than those relevant for the task”.

Models are described in languages. Languages should be capable of represent-
ing the following features1:

Hierarchy: Human beings are generally not capable of comprehending
systems containing many objects (states, components) having complex re-
lations with each other. The description of all real-life systems needs more
objects than human beings can understand. Hierarchy (in combination with
abstraction) is a key mechanism helping to solve this dilemma. Hierar-
chies can be introduced such that humans need to handle only a small num-
ber of objects at any time.

There are two kinds of hierarchies:

1Information from the books of Burns et al. [Burns and Wellings, 1990], Berǵe et al. [Berǵe et al., 1995]
and Gajski et al. [Gajski et al., 1994] is used in this list.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

20 EMBEDDED SYSTEM DESIGN

– Behavioral hierarchies: Behavioral hierarchies are hierarchies con-
taining objects necessary to describe the system behavior. States, events
and output signals are examples of such objects.

– Structural hierarchies: Structural hierarchies describe how systems
are composed of physical components.
For example, embedded systems can be comprised of components such
as processors, memories, actuators and sensors. Processors, in turn,
include registers, multiplexers and adders. Multiplexers are composed
of gates.

Component-based design[Sifakis, 2008]: It must be “easy” to derive the
behavior of a system from the behavior of its components. If two com-
ponents are connected, the resulting new behavior should be predictable.
Example: suppose that we add another component (say, some GPS unit) to
a car. The impact of the additional processor on the overall behavior ofthe
system (including busses etc.) should be predictable.

Concurrency: Real-life systems are distributed, concurrent systems com-
posed of components. It is therefore necessary to be able to specify con-
currency conveniently. Unfortunately, human beings are not very good at
understanding concurrent systems and many problems with real systems
are actually a result of an incomplete understanding of possible behaviors
of concurrent systems.

Synchronization and communication:Components must be able to com-
municate and to synchronize. Without communication, components could
not cooperate and we would use each of them in isolation. It must also be
possible to agree on the use of resources. For example, it is necessaryto
express mutual exclusion.

Timing-behavior: Many embedded systems are real-time systems. There-
fore, explicit timing requirements are one of the characteristics of embed-
ded systems. The need for explicit modeling of time is even more obvious
from the term “cyber-physical system”. Time is one of the key dimensions
of physics. Hence, timing requirementsmust be captured in the specifica-
tion of embedded/cyber-physical systems.

However, standard theories in computer science model time only in a very
abstract way. TheO-notation is one of the examples. This notation just re-
flects growth rates of functions. It is frequently used to model run-times of
algorithms, but it fails to describe real execution times. In physics, quanti-
ties have units, but theO-notation does not even have units. So, it would not
distinguish between femtoseconds and centuries. A similar remark applies
to termination properties of algorithms. Standard theories are concerned

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 21

with proving that a certain algorithmeventuallyterminates. For real-time
systems, we need to show that an algorithm terminates in a given amount
of time.

The resulting problems are very clearly formulated in a statement made by
E. Lee: “The lack of timing in the core abstraction (of computer science) is
a flaw, from the perspective of embedded software” [Lee, 2005].

According to Burns and Wellings [Burns and Wellings, 1990], modeling
time must be possible in the following four contexts:

– Techniques for measuringelapsed time:
For many applications it is necessary to check, how much time has
elapsed since some computation was performed. Access to a timer
would provide a mechanism for this.

– Means fordelaying of processesfor a specified time:

Typically, real-time languages provide some delay construct. Unfor-
tunately, typical implementations of embedded systems in software do
not guarantee precise delays. Let us assume that taskT should be de-
layed by some amountδ. Usually, this delay is implemented by chang-
ing taskT ’s state in the operating system from “ready” or “run” to
“suspended”. At the end of this time interval,T ’s state is changed from
“suspended” to “ready”. This does not mean that the task actually exe-
cutes. If some higher priority task is executing or if preemption is not
used, the delayed task will delayed longer thanδ.

– Possibility to specifytimeouts:
There are many situations in which we must wait for a certain event to
occur. However, this event may actually not occur within a given time
interval and we would like to be notified about this. For example, we
might be waiting for a response from some network connection. We
would like to be notified if this response is not received within some
amount of time, sayδ. Real-time languages usually also provide some
timeout construct. Implementations of timeouts frequently come with
the same problems which we mentioned for delays.

– Methods for specifyingdeadlinesandschedules:
For many applications it is necessary to complete certain computations
in a limited amount of time. For example, if the sensors of some car
signal an accident, air-bags must be ignited within about ten millisec-
onds. In this context, we must guarantee that the software will decide
whether or not to ignite the air-bags in that given amount of time. The
air-bags could harm passengers, if they go off too late. Unfortunately,
most languages do not allow to specify timing constraints. If they can

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

22 EMBEDDED SYSTEM DESIGN

be specified at all, they must be specified in separate control files, pop-
up menus etc. But the situation is still bad even if we are able to specify
these constraints: many modern hardware platforms do not have a very
predictable timing behavior. Caches, stalled pipelines, speculative ex-
ecution, task preemption, interrupts etc. may have an impact on the
execution time which is very difficult to predict. Accordingly,timing
analysis(verifying the timing constraints) is a very hard design task.

State-oriented behavior: It was already mentioned in Chapter 1 that au-
tomata provide a good mechanism for modeling reactive systems. There-
fore, the state-oriented behavior provided by automata should be easy to
describe. However, classical automata models are insufficient, since they
cannot model timing and since hierarchy is not supported.

Event-handling: Due to the reactive nature of embedded systems, mecha-
nisms for describing events must exist. Such events may be external events
(caused by the environment) or internal events (caused by components of
the SUD).

Exception-oriented behavior: In many practical systems exceptions do
occur. In order to design dependable systems, it must be possible to de-
scribe actions to handle exceptions easily. It is not acceptable that excep-
tions must be indicated for each and every state (such as in the case of
classical state diagrams). Example: In fig. 2.1, inputk might correspond to
an exception.

m

k

g h
CBA

f

E
ji

D

k
kk

Z
k

Figure 2.1. State diagram with exceptionk

Specifying this exception at each state makes the diagram very complex.
The situation would get worse for larger state diagrams with many transi-
tions. We will later show, how all the transitions can be replaced by a single
one.

Presence of programming elements:Popular programming languages
have proven to be a convenient means of expressing computations that have
to be performed. Hence, programming language elements should be avail-
able in the specification technique used. Classical state diagrams do not
meet this requirement.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 23

Executability: Specifications are not automatically consistent with the
ideas in people’s heads. Executing the specification is a means of plausi-
bility checking. Specifications using programming languages have a clear
advantage in this context.

Support for the design of large systems:There is a trend towards large
and complex embedded software programs. Software technology has found
mechanisms for designing such large systems. For example, object-orien-
tation is one such mechanism. It should be available in the specification
methodology.

Domain-specific support: It would of course be nice if the same speci-
fication technique could be applied to all the different types of embedded
systems, since this would minimize the effort for developing specification
techniques and tool support. However, due to the wide range of application
domains, there is little hope that one language can be used to efficiently
represent specifications in all domains. For example, control-dominated,
data-dominated, centralized and distributed applications-domains can all
benefit from language features dedicated towards those domains.

Readability: Of course, specifications must be readable by human beings.
Otherwise, it would not be feasible to validate whether or not the specifica-
tion meets the real intent of the the persons specifying the SUD. All design
documents should also be machine-readable into order to process them in a
computer. Therefore, specifications should be captured in languages which
are readable by humans and by computers.

Initially, such specifications could use a natural language such as Englishor
Japanese. Even this natural language description should be captured ina de-
sign document, so that the final implementation can be checked against the
original document. However, natural languages are not sufficient for later
design phases, since natural languages lack key requirements for specifi-
cation techniques: it is necessary to check specifications for completeness,
absence of contradictions and it should be possible to derive implementa-
tions from the specification in a systematic way. Natural languages do not
meet these requirements.

Portability and flexibility: Specifications should be independent of spe-
cific hardware platforms so that they can be easily used for a variety of
target platforms. Ideally, changing the hardware platform should have no
impact on the specification. In practice, small changes may have to be tol-
erated.

Termination: It should be feasible to identify processes that will terminate
from the specification. This means that we would like to use specifications

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

24 EMBEDDED SYSTEM DESIGN

for which the halting problem (the problem of figuring out whether or not a
certain algorithm will terminate; see, for example [Sipser, 2006]) is decid-
able.

Support for non-standard I/O-devices: Many embedded systems use
I/O-devices other than those typically found in a PC. It should be possi-
ble to describe inputs and outputs for those devices conveniently.

Non-functional properties: Actual SUDs must exhibit a number of non-
functional properties, such as fault-tolerance, size, extendibility, expected
lifetime, power consumption, weight, disposability, user friendliness, elec-
tromagnetic compatibility (EMC) etc. There is no hope that all these prop-
erties can be defined in a formal way.

Support for the design of dependable systems:Specification techniques
should provide support for designing dependable systems. For example,
specification languages should have unambiguous semantics, facilitate for-
mal verification and be capable of describing security and safety require-
ments.

No obstacles to the generation of efficient implementations:Since em-
bedded systems msut be efficient, no obstacles prohibiting the generation
of efficient realizations should be present in the specification.

Appropriate model of computation (MoC): The von-Neumann model of
sequential execution combined with some communication technique is a
commonly used MoC. However, this model has a number of serious prob-
lems, in particular for embedded system applications. Problems include:

– Facilities for describing timing are lacking.

– Von-Neumann computing is implicitly based on accesses to globally
shared memory (such as in Java). It has to guarantee mutually exclusive
access to shared resources. Otherwise, multi-threaded applications al-
lowing pre-emptions at any time can lead to very unexpected program
behaviors2. Using primitives for ensuring mutually exclusive access
can, however, very easily lead to deadlocks. Possible deadlocks may
be difficult to detect and may remain undetected for many years.
Lee [Lee, 2006] provided a very alarming example in this direction.
Lee studied implementations of a simple observer pattern in Java. For
this pattern, changes of values must be propagated from some producer
to a set of subscribed observers. This is a very frequent pattern in

2Examples are typically provided in courses on operating systems.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 25

embedded systems, but is difficult to implement correctly in a multi-
threaded von-Neumann environment with preemptions. Lee’s code is
a possible implementation of the observer pattern in Java for a multi-
threaded environment:

public synchronized void addListener(listener) {...}

public synchronized void setValue(newvalue) {

myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {

myListeners[i].valueChanged(newvalue)

}

MethodaddListener subscribes new observers, methodsetValue propa-
gates new values to subscribed observers. In general, in a multithreaded
environment, threads can be pre-empted any time, resulting in an abri-
trarily interleaved execution of these threads. Adding observers while
setValue is already active could result in complications, i.e. we would
not know if the new value had reached the new listener. Moreover, the
set of observers constitutes a global data structure of this class. There-
fore, these methods are synchronized in order to avoid changing the set
of observers while values are already partially propagated. This way,
only one of the two methods can be active at a given time. This mutual
exclusion is necessary to prevent unwanted interleavings of the exe-
cution of methods in a multithreaded environment. Why is this code
problematic? It is problematic sincevalueChanged could attempt to
get exclusive access to some resource (say,R). If that resource is allo-
cated to some other method (say,A), then this access is delayed until
A releasesR. If A calls (possibly indirectly)addListener or setValue
before releasingR, then these methods will be in a deadlock:setValue
waits forR, releasingR requiresA to proceed,A cannot proceed before
its call of setValue or addListener is serviced. Hence, we will have a
deadlock.
This example demonstrates the existence of deadlocks resulting from
using multiple threads which can be arbitrarily pre-empted and there-
fore require mutual exclusion for their access to critical resources. Lee
showed [Lee, 2006] that many of the proposed “solutions” of the prob-
lem are problematic themselves. So, even this very simple pattern is
difficult to implement correctly in a multi-threaded von-Neumann en-
vironment. This example demonstrates that concurrency is really diffi-
cult to understand for humans and there may be the risk of oversights,
even after very rigorous code inspections.
Lee came to the drastic conclusion that “nontrivial software written
with threads, semaphores, and mutexes is incomprehensible to humans”

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

26 EMBEDDED SYSTEM DESIGN

and that “threads as a concurrency model are a poor match for embed-
ded systems. ... they work well only ... where best-effort scheduling
policies are sufficient” [Lee, 2005].

The underlying reasons for deadlocks have been studied in detail in
the context of operating systems (see, for example, [Stallings, 2009]).
From this context, it is well-known that four conditions must hold at
run-time to get into a deadlock: mutual exclusion, no pre-emption of
resources, holding resources while waiting for more, and a cyclic de-
pendency between threads. Obviously, all four conditions are met in
the above example. The theory of operating systems provides no gen-
eral way out of this problem. Rare deadlocks may be acceptable for a
PC, but they are clearly unacceptable for a safety-critical system.

We would like to specify SUDs such that we do not have to care about
possible deadlocks. Therefore, it makes sense to study non-von-Neumann
MoCs avoiding this problem. We will study such MoCs from the next
section onwards. It will be shown that the observer pattern can be easily
implemented in other MoCs.

From the list of requirements, it is already obvious that there will not be any
single formal language capable of meeting all these requirements. Therefore,
in practice, we must live with compromises and possibly also with a mixture of
languages (each of which would be appropriate for describing a certaintype of
problems). The choice of the language used for an actual design will depend
on the application domain and the environment in which the design has to be
performed. In the following, we will present a survey of languages thatcan
be used for actual designs. These languages will demonstrate the essential
features of the corresponding model of computation.

2.2 Models of computation

Models of computation (MoCs) describe the mechanism assumed for perform-
ing computations. In the general case, we must consider systems comprising
components. It is now common practice to strictly distinguish between the
computations performed in the components and communication. Accordingly,
MoCs define (see also [Lee, 1999], [Janka, 2002], [Jantsch, 2004], [Jantsch,
2006]):

Componentsand the organization of computations in such components:
Procedures, processes, functions, finite state machines are possible compo-
nents.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 27

Communication protocols: These protocols describe methods for com-
munication between components. Asynchronous message passing and ren-
dez-vous based communication are examples of communication protocols.

Relations between components can be captured in graphs. In such graphs, we
will refer to the computations also as processes or tasks. Accordingly, rela-
tions between these will be captured bytask graphs andprocess networks.
Nodes in the graph represent components performing computations. Com-
putations map input data streams to output data streams. Computations are
sometimes implemented in high-level programming languages. Typical com-
putations contain (possibly non-terminating) iterations. In each cycle of the
iteration, they consume data from their inputs, processes the data received,
and generate data on their output streams. Edges represent relations between
components. We will now introduce these graphs at a more detailed level.

The most obvious relation between computations is their causal dependence:
Many computations can only be executed after other computations have termi-
nated. This dependence is typically captured independence graphs. Fig. 2.2
shows a dependence graph for a set of computations.

T3 4

51

2
T

T

T

T

Figure 2.2. Dependence graph

Definition: A dependence graph is a directed graphG = (V,E), whereV is
the set ofvertices or nodesandE is the set ofedges. E ⊆ V ×V imposes a
relation onV. If (v1,v2) ∈ E, thenv1 is called animmediate predecessorof
v2 andv2 is called animmediate successorof v1. SupposeE∗ is the transitive
closure ofE. If (v1,v2) ∈ E∗, thenv1 is called apredecessorof v2 andv2 is
called asuccessorof v1.

Such dependence graphs form a special case of task graphs. Taskgraphs may
contain more information than modeled in fig. 2.2. For example, task graphs
may include the following extensions of dependence graphs:

1 Timing information: Tasks may have arrival times, deadlines, periods,
and execution times. In order to take these into account while scheduling
computations, it may be useful to include this information in the graphs.
Adopting the notation used in the book by Liu [Liu, 2000], we include pos-
sible execution intervals in fig. 2.3. ComputationsT1 to T3 are assumed to

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

28 EMBEDDED SYSTEM DESIGN

be independent. The first number in brackets is the arrival time, the second
the deadline (execution times are not explicitly shown). For example,T1 is
assumed to be available at time 0 and should be completed no later than at
time 7.

T1 2 3

(3,10](1,8](0,7]

T T

Figure 2.3. Graphs including timing information

Significantly more complex combinations of timing and dependence rela-
tions can exist.

2 Distinction between different types of relationsbetween computations:
Precedence relations just model constraints for possible execution sequen-
ces. At a more detailed level, it may be useful to distinguish between con-
straints for scheduling and communication between computations. Com-
munication can again be described by edges, but additional information
may be available for each of the edges, such as the time of the communica-
tion and the amount of information exchanged. Precedence edges may be
kept as a separate type of edges, since there could be situations in which
computations must execute sequentially even though they do not exchange
information.

In fig. 2.2, input and output (I/O) is not explicitly described. Implicitly it
is assumed that computations without any predecessor in the graph might
be receiving input at some time. Also, they might generate output for the
successor and that this output could be available only after the computa-
tion has terminated. It is often useful to describe input and output more
explicitly. In order to do this, another kind of relation is required. Using
the same symbols as Thoen [Thoen and Catthoor, 2000], we use partially
filled circles for denoting input and output. In fig. 2.4, partially filled circles
identify I/O edges.

T

3 4

2

5

T

T

TT

1

Figure 2.4. Graphs including I/O-nodes and edges

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 29

3 Exclusive access to resources:Computations may be requesting exclusive
access to some resource, for example to some input/output device or some
communication area in memory. Information about necessary exclusive ac-
cess should be taken into account during scheduling. Exploiting this infor-
mation might, for example, be used to avoid the priority inversion problem
(see page 186). Information concerning exclusive access to resources can
be included in the graphs.

4 Periodic schedules:Many computations, especially in digital signal pro-
cessing, are periodic. This means that we must distinguish more carefully
between a task and its execution (the latter is frequently called ajob [Liu,
2000]). Task graphs for such schedules are infinite. Fig. 2.5 shows atask
graph including jobsJn−1 to Jn+1 of a periodic task.

11 n+n− JnJJ

Figure 2.5. Graph including jobs

5 Hierarchical graph nodes: The complexity of the computations denoted
by graph nodes may be quite different. On one hand, specified compu-
tations may be quite involved and contain thousands of lines of program
code. On the other hand, programs can be split into small pieces of code
so that in the extreme case, each of the nodes corresponds only to a single
operation. The level of complexity of graph nodes is also called theirgran-
ularity . Which granularity should be used? There is no universal answer to
this. For some purposes, the granularity should be as large as possible. For
example, if we consider each of the nodes as one process to be scheduled
by the RTOS, it may be wise to work with large nodes in order to minimize
context-switches between different processes. For other purposes, it may
be better to work with nodes modeling just a single operation. For exam-
ple, nodes will must be mapped to hardware or to software. If a certain
operation (such as the frequently used Discrete Cosine Transform, or DCT)
can be mapped to special purpose hardware, then it should not be buried
in a complex node that contains many other operations. It should rather be
modeled as its own node. In order to avoid frequent changes of the gran-
ularity, hierarchical graph nodes are very useful. For example, at a high
hierarchical level, the nodes may denote complex tasks, at a lower level ba-
sic blocks3 and at an even lower level individual arithmetic operations. Fig.

3Basic blocks are code blocks of maximum length not including any branch except possibly at their end and
not being branched into.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

30 EMBEDDED SYSTEM DESIGN

2.6 shows a hierarchical version of the dependence graph in fig. 2.2, using
a rectangle to denote a hierarchical node.

T3 4

51

2
T

T

T

T

Figure 2.6. Hierarchical task graph

As indicated above, MoCs can be classified according to the models of com-
munication (reflected by edges in the task graphs) and the model of computa-
tions within the components (reflected by the nodes in the task graph). In the
following, we will explain prominent examples of such models:

Models of communication:

We distinguish between two communication paradigms:shared memory
andmessage passing. Other communication paradigms exist (e.g. entan-
gled states in quantum mechanics [Bouwmeester et al., 2000]), but are not
considered in this book.

– Shared memory:
For shared memory, communication is carried out by accesses to the
same memory from all components.
Access to shared memory should be protected, unless access is totally
restricted to reads. If writes are involved, exclusive access to the mem-
ory must be guaranteed while components are accessing shared mem-
ories. Segments of program code, for which exclusive access must
be guaranteed, are calledcritical sections. Several mechanisms for
guaranteeing exclusive access to resources have been proposed.These
include semaphores, conditional critical regions and monitors. Refer
to books on operating systems (e.g. Stallings [Stallings, 2009]) for a
description of the different techniques. Shared memory-based commu-
nication can be very fast, but is difficult to implement in multiprocessor
systems if no common memory is physically available.

– Message passing:For message passing, messages are sent and re-
ceived. Message passing can be implemented easily even if no common
memory is available. However, message passing is generally slower
than shared memory based communication. For this kind of communi-
cation, we can distinguish between the following three techniques:

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 31

∗ asynchronous message passing, also callednon-blocking com-
munication : In asynchronous message passing, components com-
municate by sending messages through channels which can buffer
the messages. The sender does not need to wait for the recipient
to be ready to receive the message. In real life, this corresponds
to sending a letter or an e-mail. A potential problem is the fact
that messages may must be stored and that message buffers can
overflow. There are several variations of this scheme, including
communicating finite state machines (see page 52) and data flow
models (see page 58).

∗ synchronous message passingor blocking communication,ren-
dez-vousbased communication: In synchronous message pass-
ing, available components communicate in atomic, instantaneous
actions calledrendez-vous. The component reaching the point of
communication first has to wait until the partner has also reached
its point of communication. In real life, this corresponds to phys-
ical meetings or phone calls. There is no risk of overflows, but
the performance may suffer. Examples of languages following this
model of computation include CSP (see page 100) and ADA (see
page 100).

∗ extendedrendez-vous, remote invocation: In this case, the sender
is allowed to continue only after an acknowledgment has been re-
ceived from the recipient. The recipient does not have to send
this acknowledgment immediately after receiving the message, but
can do some preliminary checking before actually sending the ac-
knowledgment.

Organization of computations within the components:

– Von-Neumann model: This model is based on the sequential execu-
tion of sequences of primitive computations.

– Discrete event model: In this model, there are events carrying a to-
tally ordered time stamp, indicating the time at which the event occurs.
Discrete event simulators typically contain a global event queue sorted
by time. Entries from this queue are processed according to this order.
The disadvantage is that this model relies on a global notion of event
queues, making it difficult to map the semantic model onto parallel im-
plementations. Examples include VHDL (see page 78), SystemC (see
page 94), and Verilog (see page 96).

– Finite state machines (FSMs):This model is based on the notion of
a finite set of states, inputs, outputs, and transitions between states.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

32 EMBEDDED SYSTEM DESIGN

Several of these machines may need to communicate, forming so-called
communicating finite state machines (CFSMs).

– Differential equations: Differential equations are capable of modeling
analog circuits and physical systems. Hence, they can find applications
in cyber-physical system modeling.

Combined models: Actual languages are typically combining a certain
model of communication with an organization of computations within com-
ponents. For example, SDL (see page 52) combines finite state machines
with asynchronous message passing. StateCharts (see page 40) combines
finite state machines with shared memories. ADA (see page 100) and CSP
(see page 100) combine von-Neumann execution with synchronous mes-
sage passing. Fig. 2.7 gives an overview of combined models which we
will consider in this chapter. This figure also includes examples of lan-
guages for most of the MoCs.

Communication/ Shared memory Message passing
Organization of compo-
nents

synchronous asynchronous

Undefined components Plain text or graphics, use cases
(Message) sequence charts

Communicating finite StateCharts SDL
state machines (CF-
SMs)
Data flow (not useful) Kahn networks

SDF
Petri nets C/E nets, P/T nets, ...
Discrete event (DE) VHDL, Verilog (Only experimental systems)
model4 SystemC Distributed DE in Ptolemy
Von-Neumann C, C++, Java C, C++, Java, ... with libraries
model CSP, ADA

Figure 2.7. Overview of MoCs and languages considered

Some MoCs have advantages in certain application areas, while other have
advantages in others. Choosing the “best” MoC for a certain application may
be difficult. Being able to mix MoCs (such as in the Ptolemy framework [Davis
et al., 2001]) can be a way out of this dilemma. Also, models may be translated
from one MoC into another one. Non-von-Neumann models are frequently

4The classification of VHDL, Verilog and SystemC is based on theimplementation of these languages in
simulators. Message passing can be modeled in these languages“on top” of the simulation kernel.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 33

translated into von-Neumann models. The distinction between the different
models is blurring if the translation between them is easy.

Designs starting from non-von-Neumann models are frequently calledmodel-
based designs. The key idea of model-based design is to have some abstract
model of the system under design. Properties of the system can then be studied
at the level of this model, without having to care about software code. Software
code is generated only after the behavior of the model has been studied in
detail and this software is generated automatically. The term “model-based
design” is not precisely defined. It is usually associated with models of control
systems, comprising traditional control system elements such as integrators,
differentiators etc. However, this view seems to be too restricted, since we
could also start with abstract models of consumer systems.

In the following, we will present different MoCs, using existing languages as
examples for demonstrating their features. A related (but shorter) survey is
provided by Edwards [Edwards, 2006]. For a more comprehensive presenta-
tion see [Gomez and Fernandes, 2010].

2.3 Early design phases

The very first ideas about systems are frequently captured in a very informal
way, possibly on paper. Frequently, only descriptions of the SUD in a natu-
ral language such as English or Japanese exist in the early phases of design
projects. They are typically using a very informal style. These descriptions
should be captured in some machine-readable document. They should be en-
coded in the format of some word processor and stored by a tool managing
design documents. A good tool would allow links between the requirements, a
dependence analysis as well as version management.

DOORSR© [IBM, 2010b] exemplifies such a tool.

2.3.1 Use cases

For many applications, it is beneficial to envision potential usages of the SUD.
Such usages are captured inuse cases. Use cases describe possible applications
of the SUD. Different notations for use cases could be used.

Support for a systematic approach to early specification phases is the goal of
the so-called UML standardization effort [Object Management Group (OMG),
2010b], [Fowler and Scott, 1998], [Haugen and Moller-Pedersen, 2006]. UML
stands for “Unified Modeling Language”. UML was designed by leading soft-
ware technology experts and is supported by commercial tools. UML primarily
aims at the support of the software design process. UML provides a standard-
ized form for use cases.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

34 EMBEDDED SYSTEM DESIGN

For use cases, there is neither a precisely specified model of the computations
nor is there a precisely specified model of the communication. It is frequently
argued that this is done intentionally in order to avoid caring about too many
details during the early design phases.

For example, fig. 2.8 shows some use cases for an answering machine5.

User

Welcome+beep+voice mail

 Play next message

Erase last message

Turn answering machine on

Erase all messages

Turn answering machine off

Caller

Figure 2.8. Use case example

Use cases identify different classes of users as well as the applicationsto be
supported by the SUD. In this way, it is possible to capture expectations at a
very high level.

2.3.2 (Message) Sequence Charts

At a slightly more detailed level, we might want to explicitly indicate the se-
quences of messages which must be exchanged between components in order
to implement some use of the SUD.Sequence charts(SCs) -earlier called
message sequence charts(MSCs)- provide a mechanism for this. Sequence
charts use one dimension (usually the vertical dimension) of a 2-dimensional
chart to denote sequences and the second dimension to reflect the different
communication components. SCs describe partial orders between message
transmissions. SCs display a possible behavior of a SUD.

SCs are also standardized in UML. UML 2.0 has extended SCs with elements
allowing a more detailed description than UML 1.0. Fig. 2.9 shows one of the
use cases of the answering machine as an example.

Dashed lines are so-called “life-lines”. Messages are assumed to be ordered
according to their sequence along the life-line. We assume that, in this ex-

5We assume that UML is covered in-depth in a software engineering course included in the curriculum.
Therefore, UML is only briefly discussed in this book.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 35

transmit voice mail
return hand−set

voice mail

welcome send welcome

beep

Calling an answering machine

:Answering machine:Phone:Caller

type numbers

signal call

wait signal pick−up

transmit beep

signal end of call

Figure 2.9. Answering machine in UML

ample, all information is sent in the form of messages. Arrows used in this
diagram denote asynchronous messages. This means several messages can be
sent by a sender without waiting for the receipt to be confirmed. Boxes ontop
of life-lines represent active control at the corresponding component. In the
example, the answering machine is waiting for the user to pick up the phone
within a certain amount of time. If he or she fails to do so, the machine signals
a pick-up itself and sends a welcome message to the caller. The caller is then
supposed to leave a voice-mail message. Alternative sequences (e.g. anearly
termination of the call by the caller or the callee picking up the phone) are not
shown.

Complex control-dependent actions cannot be described by SCs. OtherMoCs
must be used for this. Frequently, certain preconditions must be met for a SC
to apply. Such preconditions, a distinction between sequences which might
happen and those which must happen, as well as other extensions are available
in the so-called Live Sequence Charts [Damm and Harel, 2001].

Time/distance diagrams(TDDs) are a commonly used variant of SCs. In
time/distance diagrams, the vertical dimension reflects real time, not just se-
quence. In some cases, the horizontal dimension also models the real distance
between the components.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

36 EMBEDDED SYSTEM DESIGN

TDDs provide the right means for visualizing schedules of trains or buses.
Fig. 2.10 is an example. This example refers to trains between Amsterdam,
Cologne, Brussels and Paris. Trains can run from either Amsterdam or Cologne
to Paris via Brussels. Aachen is included as an intermediate stop between
Cologne and Brussels. Vertical segments correspond to times spent at stations.
For one of the trains, there is a timing overlap between the trains coming from
Cologne and Amsterdam at Brussels. There is a second train which travels
between Paris and Cologne which is not related to an Amsterdam train.

Cologne

t

ParisBrusselsAmsterdamAachen

Figure 2.10. Time/distance diagram

This example and other examples can be simulated with thelevi simulation
software [Sirocic and Marwedel, 2007d]. A larger, more realistic example
is shown in fig. 2.11. This example [Huerlimann, 2003] describes simulated
Swiss railway traffic in the L̈otschberg area. Slow and fast trains can be distin-
guished by their slope in the graph. This modeling technique is very frequently
used in practice.

One of the key distinctions between the type of diagrams shown in figs. 2.9
and 2.11 is that fig. 2.9 does not include any reference to real time. UML
was initially not designed for real-time applications. UML 2.0 includestiming
diagrams as a special class of diagrams. Such diagrams enable referring to
physical time. Also, certain UML “profiles” (see page 112) allow additional
annotations to refer to time [Martin and M̈uller, 2005], [Müller, 2007].

TDDs are appropriate means for representing typical schedules. However, SCs
and TDDs fail to provide information about necessary synchronization.For
example, in the presented example of fig. 2.10 it is not known whether the tim-
ing overlap at Brussels happens coincidentally or whether some real synchro-
nization for connecting trains is required. Furthermore, permissible deviations
from the presented schedule (min/max timing behavior) can hardly be included
in these charts.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 37

Figure 2.11. Railway traffic displayed by a TDD (courtesy H. Brändli, IVT, ETH Zürich),
c©ETH Zürich

2.4 Communicating finite state machines
(CFSMs)

If we start to represent our SUD at a more detailed level, we need more precise
models. We mentioned at the beginning of this chapter that we need to describe
state-oriented behavior. State diagrams are a classical means of doing this.
Fig. 2.12 (the same as fig. 2.1) shows an example of a classical state diagram,
representing afinite state machine (FSM).

m

k

g h
CBA

f

E
ji

D

k
kk

Z
k

Figure 2.12. State diagram

Circles denote states. We will consider FSMs for which only one of their
states is active. Such FSMs are calleddeterministic FSMs. Edges denote
state transitions. Edge labels represent events. Let us assume that a certain
state of the FSM is active, and that an event happens which corresponds to
one of the out-going edges for the active state. Then, the FSM will change
its state from the currently active state to the one indicated by the edge. FSM

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

38 EMBEDDED SYSTEM DESIGN

may be implicitly clocked. Such FSMs are calledsynchronous FSMs. For
synchronous FSMs, state changes will happen only at clock transitions.FSMs
may also generate output (not shown in fig. 2.12). For more information about
classical FSMs refer to, for example, Kohavi [Kohavi, 1987].

2.4.1 Timed automata

Classical FSMs do not provide information about time. In order to model
time, classical automata have been extended to also include timing informa-
tion. Timed automata are essentially automata extended with real-valued vari-
ables. “The variables model the logical clocks in the system, that are initialized
with zero when the system is started, and then increase synchronously withthe
same rate. Clock constraints i.e. guards on edges are used to restrict thebe-
havior of the automaton. A transition represented by an edge can be taken
when the clocks values satisfy the guard labeled on the edge. Clocks may be
reset to zero when a transition is taken” [Bengtsson and Yi, 2004].

Fig. 2.13 shows an example.

ring

:=0

>=1
>=8<=2

 >=1

:=0

 <=9
 :=0 <=2

 :=0 >=4
 :=0

y
x

y

yy
x

x

x
x

y

y

<=5

y

x
return hand−set

lift−off

wait

talk dead

text
play

start

silent
beeprecordbeep

Figure 2.13. Servicing an incoming line in an answering machine

The answering machine is usually in the initial state on the left. Whenever a
ring signal is received, clockx is reset to 0 and a transition into a waiting state
is made. If the called person lifts off the hand-set, talking can take place until
the hand-set is returned. Otherwise, a transition to stateplay textcan take place
if time has reached a value of 4.

Once the transition took place, a recorded message is played and this phaseis
terminated with a beep. Clocky ensures that this beep lasts at least one time
unit. After the beep, clockx is reset to 0 again and the answering machine is
ready for recording. If time has reached a value of 8 or if the caller remains
silent, the next beep is played. This second beep again lasts at least one time
unit. After the second beep, a transition is made into the final state. In this

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 39

example, transitions are either caused by inputs (such aslift-off) or by so-called
clock constraints.

Clock constraints describe transitions whichcan take place, but they do not
have to. In order to make sure that transitions actually take place, additional
location invariants can be defined. Location invariantsx <= 5, x <= 9 and
y <= 2 are used in the example such that transitions will take place no later
than one time unit after the enabling condition became true. Using two clocks
is for demonstration purposes only; a single clock would be sufficient.

Formally speaking, timed automata can be defined as follows [Bengtsson and
Yi, 2004]:

Let C be a set of real-valued, non-negative variables representing clocks. Let
Σ be a finite alphabet of possible inputs.

Definition: A clock constraint is a conjunctive formula of atomic constraints
of the formx◦n or x−y◦n for x,y∈C,◦ ∈ {≤,<,=,>,≥} andn∈ IN

Note that constantsn used in the constraints must be integers, even though
clocks are real-valued. An extension to rational constants would be easy, since
they could be turned into integers with simple multiplications. LetB(C) be the
set of clock constraints.

Definition [Bengtsson and Yi, 2004]: Atimed automaton is a tuple(S,s0,E, I)
where:

S is a finite set of states.

s0 is the initial state.

E ⊆ S×B(C)×Σ×2C×S is the set of edges.B(C) models the conjunctive
condition which must hold andΣ models the input which is required for
a transition to be enabled. 2C reflects the set of clock variables which are
reset whenever the transition takes place.

I : S→ B(C) is the set of invariants for each of the states.B(C) represents
the invariant which must hold for a particular stateS. This invariant is
described as a conjunctive formula.

This first definition is usually extended to allow parallel compositions of timed
automata. Timed automata having a large number of clocks tend to be difficult
to understand. More details about timed automata can be found, for example,
in papers by Dill et al. [Dill and Alur, 1994] and Bengtsson et al. [Bengtsson
and Yi, 2004].

Timed automata extend classical automata with timing information. However,
many of our requirements for specification techniques are not met by timed

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

40 EMBEDDED SYSTEM DESIGN

automata. In particular, in their standard form, they do no provide hierarchy
and concurrency.

2.4.2 StateCharts: implicit shared memory
communication

StateCharts is presented here as a very prominent example of a language based
on automata and supporting hierarchical models as well as concurrency.It does
include a limited way of specifying timing.

The StateCharts language was introduced by David Harel [Harel, 1987]in
1987 and later described more precisely in [Drusinsky and Harel, 1989]. Ac-
cording to Harel, the name was chosen since it was “the only unused combina-
tion offlow or statewith diagramor chart”.

2.4.2.1 Modeling of hierarchy

StateCharts describes extended FSMs. Due to this, they can be used for mod-
eling state-oriented behavior. The key extension ishierarchy. Hierarchy is
introduced by means ofsuper-states.

Definitions:

States comprising other states are calledsuper-states.

States included in super-states are calledsub-statesof the super-states.

Fig. 2.14 shows a StateCharts example. It is a hierarchical version of fig.2.12.

A

Z
m k

E
j

D
i

C
h

f

S

B
g

Figure 2.14. Hierarchical state diagram

Super-stateS includes statesA,B,C,D and E. Suppose the FSM is in state
Z (we will also callZ to be anactive state). Now, if input m is applied to
the FSM, thenA andS will be the new active states. If the FSM is inS and
inputk is applied, thenZ will be the new active state, regardless of whether the
FSM is in sub-statesA,B,C,D or E of S. In this example, all states contained
in S are non-hierarchical states. In general, sub-states ofS could again be

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 41

super-states consisting of sub-states themselves. Also,whenever a sub-state
of some super-state is active, the super-state is active as well.

Definitions:

Each state which is not composed of other states is called abasic state.

For each basic states, the super states containings are calledancestor
states.

The FSM of fig. 2.14 can only be in one of the sub-states of super-stateS at
any time. Super states of this type are calledOR-super-states6.

In fig. 2.14,k might correspond to an exception for which stateS has to be
left. The example already shows that the hierarchy introduced in StateCharts
enables a compact representation of exceptions.

StateCharts allows hierarchical descriptions of systems in which a system de-
scription comprises descriptions of subsystems which, in turn, may contain
descriptions of subsystems. Thehierarchy of the entire system can repre-
sented by atree. The root of the tree corresponds to the system as a whole,
and all inner nodes correspond to hierarchical descriptions (in the case of Stat-
eCharts called super-nodes). The leaves of the hierarchy are non-hierarchical
descriptions (in the case of StateCharts called basic states).

So far, we have used explicit, direct edges to basic states to indicate the next
state. The disadvantage of that approach is that the internal structure ofsuper-
states cannot be hidden from the environment. However, in a true hierarchical
environment, we should be able to hide the internal structure so that it can
be described later or changed later without affecting the environment. Thisis
possible with other mechanisms for describing the next state.

The first additional mechanism is thedefault state mechanism. It can be used
in super-states to indicate the particular sub-states that will become active if
the super-states become active. In diagrams, default states are identifiedby
edges starting at small filled circles. Fig. 2.15 shows a state diagram using the
default state mechanism. It is equivalent to the diagram in fig. 2.14. Note that
the filled circle does not constitute a state itself.

Another mechanism for specifying next states is thehistory mechanism. With
this mechanism, it is possible to return to the last sub-state that was active
before a super-state was left. The history mechanism is symbolized by a circle
containing the letterH. In order to define the next state for the very initial

6More precisely, they should be called XOR-super-states, since the FSM is ineither A,B,C,D or E. How-
ever, this name is not commonly used in the literature.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

42 EMBEDDED SYSTEM DESIGN

A

Z
m

k

E
j

D
i

C
h

S

f

B
g

Figure 2.15. State diagram using the default state mechanism

transition into a super-state, the history mechanism is frequently combined
with the default mechanism. Fig. 2.16 shows an example.

H

Z

S

m k

E
j

D
i

C
h

B

f

g
A

Figure 2.16. State diagram using the history and the default state mechanism

The behavior of the FSM is now somewhat different. If we inputm while the
system is inZ, then the FSM will enterA if this is the very first time we enterS,
and otherwise it will enter the last state that we were in before leavingS. This
mechanism has many applications. For example, ifk denotes an exception,
we could use inputm to return to the state we were in before the exception.
StatesA,B,C,D andE could also callZ like a procedure. After completing
“procedure”Z, we would return to the calling state.

Fig. 2.16 can also be redrawn as shown in fig. 2.17. In this case, the symbols
for the default and the history mechanism are combined.

S

Z

H
A

g

f

B
h

C
i

D
j

E

k
m

Figure 2.17. Combining the symbols for the history and the default state mechanism

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 43

Specification techniques must also be able to describe concurrency conve-
niently. Towards this end, the StateChart language provides a second class
of super-states, so calledAND-states.

Definition: Super-statesSare calledAND-super-statesif the system contain-
ing Swill be in all of the sub-states ofSwhenever it is inS.

An AND-super-state is included in the answering machine example shown in
fig. 2.18.

(excl. on/off)

answering−machine

off

line−monitoring

ring

Lwait

on

key pressed

done

KprocKwait

key−offkey−on

hangup
(caller)

key−monitoring

Lproc

Figure 2.18. Answering machine

An answering machine normally performs two tasks concurrently: it is moni-
toring the line for incoming calls and the keys for user input. In fig. 2.18, the
corresponding states are calledLwait andKwait. Incoming calls are processed
in stateLproc while the response to pressed keys is generated in stateKproc.
For the time being, we assume that the on/off switch (generating eventskey-off
andkey-on) is decoded separately and pushing it does not result in entering
Kproc. If this switch is pushed, the line monitoring state as well as the key
monitoring state are left and re-entered only if the machine is switched on.
At that time, default statesLwait andKwait are entered. While switched on,
the machine will always be in the line monitoring state as well as in the key
monitoring state.

For AND-super-states, the sub-states entered as a result of some event can be
defined independently. There can be any combination of history, defaultand
explicit transitions. It is crucial to understand thatall sub-states will always be
entered, even if there is just one explicit transition to one of the sub-states.Ac-
cordingly, transitions out of an AND-super-state will always result in leaving
all the sub-states.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

44 EMBEDDED SYSTEM DESIGN

For example, let us modify our answering machine such that the on/off switch,
like all other switches, is decoded in stateKproc (see fig. 2.19).

(excl. on/off)

answering−machine

on

line−monitoring

ring

Lwait Lproc

key−on

key−off

done

key pressed

KprocKwait

hangup
(caller)

off

key−monitoring

Figure 2.19. Answering machine with modified on/off switch processing

If pushing that key is detected inKproc, a transition is made to theoff state.
This transition results in leaving the line-monitoring state as well. Switching
the machine on again results in also entering the line-monitoring state.

AND-super-states provide the key mechanism for describing concurrency. Each
sub-state can be considered a state machine by itself. These machines are com-
municating with each other, formingcommunicating finite state machines
(CFSMs). This term has been used as the title of this section.

Summarizing, we can state the following:States in StateCharts diagrams
are either AND-states, OR-states or basic states.

2.4.2.2 Timers

Due to the requirement to model time in embedded systems, StateCharts also
provides timers. Timers are denoted by the symbol shown in fig. 2.20 (left).

a
timeout20 ms

Figure 2.20. Timer in StateCharts

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 45

After the system has been in the state containing the timer for the specified pe-
riod, a time-out will occur and the system will leave the specified state. Timers
can also be used hierarchically.

Timers can be employed, for example, at the next lower level of the hierarchy
of the answering machine in order to describe the behavior of stateLproc.
Fig. 2.21 shows a possible behavior for that state. The timing specification is
slightly different from the one in fig. 2.13.

4 s

8 s

(callee)

Lproc

lift off talk return dead

beep
timeout

silentrecord
beeptext

play

timeout

Figure 2.21. Servicing the incoming line inLproc

Due to the exception-like transition for hangups by the caller in fig. 2.18, state
Lproc is terminated whenever the caller hangs up. For hangups (returns) by
the callee, the design of stateLproc results in an inconvenience: If the callee
hangs up the phone first, the telephone will be dead (and quiet) until the caller
has also hung up the phone.

StateCharts do include a number of other language elements. For a full de-
scription refer to Harel [Harel, 1987]. A more detailed description of the se-
mantics of StateCharts is described by Drusinsky and Harel [Drusinsky and
Harel, 1989].

2.4.2.3 Edge labels and StateMate semantics

Until now, we have not considered outputs generated by our extended FSMs.
Generated outputs can be specified using edge labels. The general form of an
edge label is “event[condition]/reaction”. All three label parts are optional.
The reaction-part describes the reaction of the FSM to a state transition. Pos-
sible reactions include the generation of events and assignments to variables.
Thecondition-part implies a test of the values of variables or a test of the cur-
rent state of the system. Theevent-part refers to a test of current events. Events
can be generated either internally or externally. Internal events are generated as
a result of some transition and are described inreaction-parts. External events
are usually described in the model environment.

Examples:

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

46 EMBEDDED SYSTEM DESIGN

on-key/ on:=1 (Event-test and variable assignment),

[on=1] (Condition test for a variable value),

off-key[not in Lproc] / on:=0 (Event-test, condition test for a state, variable
assignment. The assignment is performed if the event has occurred and the
condition is true).

The semantics of edge labels can only be explained in the context of the se-
mantics of StateMate [Drusinsky and Harel, 1989], a commercial implementa-
tion of StateCharts. StateMate assumes a step-based execution of StateMate-
descriptions. Each step consists of three phases:

1 In the first phase, the impact of external changes on conditions and events
is evaluated. This includes the evaluation of functions which depend on
external events. This phase does not include any state changes. In our
simple examples, this phase is not actually needed.

2 The next phase is to calculate the set of transitions that should be made in
the current step. Variable assignments are evaluated, but the new valuesare
only assigned to temporary variables.

3 In the third phase, state transitions become effective and variables obtain
their new values.

The separation into phases 2 and 3 is especially important in order to guarantee
a reproducible behavior of StateMate models. Consider the StateMate model
of fig. 2.22.

01

swap

/a:= ; b:=

e/b:=ae/a:=b

Figure 2.22. Mutually dependent assignments

In the second phase, new values fora andb are stored in temporary variables,
saya’ and b’. In the final phase, temporary variables are copied into the user-
defined variables:

phase 2: a’:=b; b’:=a;

phase 3: a:=a’; b:=b’

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 47

As a result, the values of the two variables will be swapped each time an event
e happens. This behavior corresponds to that of two cross-coupled registers
(one for each variable) connected to the same clock (see fig. 2.23) and reflects
the operation of a clocked finite state machine including those two registers7.

DD

clock

a b

Figure 2.23. Cross-coupled D-type registers

Without the separation into phases, the same value would be assigned to both
variables. The result would depend on the sequence in which the assignments
were performed. The separation into (at least) two phases is quite typical for
languages that try to reflect the operation of synchronous hardware.We will
find the same separation in VHDL (see page 94).

Due to the separation, the results do not depend on the order in which parts
of the model are executed by the simulation. This property is extremely im-
portant. Otherwise, there could be simulation runs generating different results,
all of which would be considered correct. This could be very confusingin all
design procedures. This is not what we expect from the simulation of a real
circuit with a fixed behavior.

There are different names for this property:

Kahn [Kahn, 1974] calls this propertydeterminate.

In other papers, this property is calleddeterministic. However, this term is
employed with different meanings:

– This term is used to denote non-deterministic finite state machines,
FSMs which can be in several states at the same time [Hopcroft et al.,
2006].

– Languages may have non-deterministic operators. For these operators,
different behaviors are legal implementations.

– Many authors consider systems to be non-deterministic if their behav-
ior depends on some input not known before run-time.

7We adopt IEEE standard schematic symbols [IEEE, 1991] for gates and registers for all the schematics in
this book. The symbols in fig. 2.23 denote clocked D-type registers. We continue denoting multiplexers,
arithmetic units and memories by shape symbols, due to their widespread use in technical documentation.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

48 EMBEDDED SYSTEM DESIGN

– In the sense Kahn uses the term “determinate”.

In this book, we prefer to reduce possible confusion by following Kahn8. Note
that StateMate models can be determinate only if there are no other reasons
for an undefined behavior. For example, conflicts between transitions maybe
allowed (see fig. 2.24).

(a)

x x<20 >10

(b)

A

A

Figure 2.24. Conflicting StateCharts transitions

Consider fig. 2.24 (a). If eventA takes place while the system is in the left
state, we will must figure out, which transition will take place. If these conflicts
would be resolved arbitrarily, then we would have a non-determinate behavior.
Typically, priorities are defined such that this type of a conflict is eliminated.

Now, consider fig. 2.24 (b). There will be a conflict forx=15. Such conflicts
are difficult to detect. Achieving a determinate behavior requires the absence
of conflicts that are resolved in an arbitrary manner.

Note that there may be cases in which we would like to describe non-determi-
nate behavior (e.g. if we have a choice to read from two inputs). In such acase,
we would typically like to explicitly indicate that this choice can be taken at
run-time (see theselect statement of ADA on page 102).

Implementations of hierarchical state charts other than StateMate typically
do not exhibit determinate behavior. These implementations correspond to a
software-oriented view onto hierarchical state charts. In such implementations,
choices are usually not explicitly described.

The three phases are assumed to be executed for eachstep. Steps are assumed
to be executed each time events or variables have changed. The executionof
a StateCharts model consists of the execution of a sequence of steps (seefig.
2.25), each step consisting of three phases.

The set of all values of variables, together with the set of events generated
(and the current time) is defined as thestatus9 of a StateMate model. After

8In earlier versions of the book, we used the term “deterministic” together with an additional explanation.
9We would normally use the term “state” instead of “status”. However, the term “state” has a different
meaning in StateMate.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 49

3 phases3 phases3 phases

StepStepStep StatusStatusStatusStatus

Figure 2.25. Steps during the execution of a StateMate model

executing the third phase, a new status is obtained. The notion of steps allows
us to define the semantics ofeventsmore precisely. Events are generated, as
mentioned, either internally or externally.The visibility of events is limited
to the step following the one in which they are generated.Thus, events
behave like single bit values which are stored in permanently enabled registers
at one clock transition and have an effect on the values stored at the next clock
transition. They do not live forever.

Variables, in contrast, retain their values, until they are reassigned. According
to StateMate semantics, new values of variables are visible to all parts of the
model from the step following the step in which the assignment was made on-
wards. That means, StateMate semantics implies that new values of variables
are propagated to all parts of a model between two steps. StateMate implic-
itly assumes abroadcast mechanism for updates on variables. This means
that StateCharts or StateMate can be implemented easily for shared memory-
based platforms but are less appropriate for message passing and distributed
systems. These languages essentially assume shared memory-based commu-
nication, even though this is not explicitly stated. For distributed systems, it
will be very difficult to update all variables between two steps. Due to this
broadcast mechanism, StateMate is not an appropriate language for modeling
distributed systems.

2.4.2.4 Evaluation and extensions

StateCharts’ main application domain is that of local, control-dominated sys-
tems. The capability of nesting hierarchies at arbitrary levels, with a free choice
of AND- and OR-states, is a key advantage of StateCharts. Another advan-
tage is that the semantics of StateMate is defined at a sufficient level of detail
[Drusinsky and Harel, 1989]. Furthermore, there are quite a number ofcom-
mercial tools based on StateCharts. StateMate [IBM, 2010a] and StateFlow
[MathWorks, 2010] are examples of commercial tools based on StateCharts.
Many of them are capable of translating StateCharts into equivalent descrip-
tions in C or VHDL (see page 78). From VHDL, hardware can be generated
using synthesis tools. Therefore, StateCharts-based tools provide a complete
path from StateCharts-based specifications down to hardware. Generated C

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

50 EMBEDDED SYSTEM DESIGN

programs can be compiled and executed. Hence, a path to software-based re-
alizations also exists.

Unfortunately, the efficiency of the automatic translation is sometimes a con-
cern. For example, we could map sub-states of AND-states to UNIX-pro-
cesses. This would hardly lead to efficient implementations on small proces-
sors. The productivity gain from object-oriented programming is not avail-
able in StateCharts, since it is not object-oriented. Furthermore, the broadcast
mechanism makes it less appropriate for distributed systems. StateCharts do
not comprise program constructs for describing complex computation and can-
not describe hardware structures or non-functional behavior.

Commercial implementations of StateCharts typically provide some mecha-
nisms for removing the limitations of the model. For example, C code can
be used to represent program constructs andmodule chartsof StateMate can
represent hardware structures.

StateCharts allows timeouts. There is no straightforward way of specifying
other timing requirements.

UML includes a variation of StateCharts and hence allows modeling state ma-
chines. In UML, these diagrams are calledstate diagrams in version 1 of
UML and state machine diagramsfrom version 2.0 onwards. Unfortunately,
the semantics of state machine diagrams in UML is different from StateMate:
the three simulation phases are not included.

2.4.3 Synchronous languages

2.4.3.1 Motivation

Describing complex SUDs in terms of state machine diagrams is difficult. Such
diagrams cannot express complex computations. Standard programming lan-
guages can express complex computations, but the sequence of executing sev-
eral threads may be unpredictable. In a multi-threaded environment with pre-
emptive scheduling there can be many different interleavings of the different
computations. Understanding all possible behaviors of such concurrent sys-
tems is difficult. A key reason for this is that, in general, many different exe-
cution orders are feasible, i.e. the execution order is not specified. Theorder
of execution may well affect the result. The resulting non-determinate be-
havior can have a number of negative consequences, such as, for example,
problems with verifying a certain design. For distributed systems with in-
dependent clocks, determinate behavior is difficult to achieve. However, for
non-distributed systems, we can try to avoid the problems of unnecessary non-
determinate semantics.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 51

For synchronous languages, finite state machines and programming languages
are merged into one model. Synchronous languages can express complexcom-
putations, but the underlying execution model is that of finite automata. They
describe concurrently operating automata. Determinate behavior is achieved
by the following key feature: “... when automata are composed in parallel,
a transition of the product is made of the “simultaneous” transitions of all of
them” [Halbwachs, 1998]. This means: we do not have to consider all the
different sequences of state changes of the automata that would be possible if
each of them had its own clock. Instead, we can assume the presence of asingle
global clock. Each clock tick, all inputs are considered, new outputs andstates
are calculated and then the transitions are made. This requires a fast broadcast
mechanism for all parts of the model. This idealistic view of concurrency has
the advantage of guaranteeingdeterminate behavior. This is a restriction if
compared to the general communicating finite state machines (CFSM) model,
in which each FSM can have its own clock. Synchronous languages reflect the
principles of operation in synchronous hardware and also the semantics found
in control languages such as IEC 60848 [IEC, 2002] and STEP 7 [Siemens,
2010]. See Potop-Butucaru et al. [Potop-Butucaru et al., 2006] for a survey on
synchronous languages.

2.4.3.2 Examples of synchronous languages: Esterel, Lustre
and SCADE

Guaranteeing a determinate behavior for all language features has beena de-
sign goal for the synchronous languages Esterel [Esterel Technologies Inc.,
2010] [Boussinot and de Simone, 1991] and Lustre [Halbwachs et al., 1991].

Esterel is a reactive language: when activated with an input event, Esterel mod-
els react by producing an output event. Esterel is a synchronous language: all
reactions are assumed to be completed in zero time and it is sufficient to ana-
lyze the behavior at discrete moments in time. This idealized model avoids all
discussions about overlapping time ranges and about events that arrive while
the previous reaction has not been completed. Like other concurrent languages,
Esterel has a parallelism operator, written||. Similar to StateCharts, communi-
cation is based on a broadcast mechanism. In contrast to StateCharts, however,
communication is instantaneous. Instantaneous in this context means “within
the same clock cycle”. This means that all signals generated in a particular
clock cycle are also seen by the others parts of the model in the same clock cy-
cle and these other parts, if sensitive to the generated signals, react in thesame
clock cycle. Several rounds of evaluations may be required until a stablestate
is reached. The propagation of values during the same macroscopic instant of
time corresponds to the generation of a next status for the same moment in time
in StateCharts, except that the broadcast is now instantaneous and not delayed

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

52 EMBEDDED SYSTEM DESIGN

until the next round of evaluations like in StateMate. For more and updated in-
formation about Esterel, refer to the Esterel home page [Esterel Technologies
Inc., 2010].

Esterel and Lustre use different syntactic techniques to denote CFSMs.Es-
terel appears as a kind of imperative language, whereas Lustre looks more
like a data flow language (see page 58 for a description of data flow). Sync-
Charts is a graphical version of Esterel. In all three cases, semantics are ex-
plained by the closely-related underlying CFSMs. The commercial grahical
language SCADE [Esterel Technologies, 2010] combines elements of all three
languages. SCADE is used for a number of safety-critical software compo-
nents, for example by Airbus.

Due to the three simulation phases in StateMate, StateMate has the key at-
tributes of synchronous languages and it is determinate. According to Halb-
wachs, “StateMate is almost a synchronous language and the only feature miss-
ing in StateMate is the instantaneous broadcast” [Halbwachs, 2008].

2.4.4 SDL: A case of message passing

2.4.4.1 Features of the language

StateCharts is not appropriate for modeling distributed communicating finite
state machines. For distributed systems, message passing is the better com-
munication paradigm. Therefore, we will now present a second example ofa
language based on communication finite state machines, an example based on
asynchronous message passing.

This language is called SDL (specification and description language). SDL
was designed for distributed applications. It dates back to the early seventies.
Formal semantics have been available since the late eighties. The language
was standardized by the ITU (International Telecommunication Union). The
first standards document is the Z.100 Recommendation published in 1980, with
updates in 1984, 1988, 1992 (SDL-92), 1996 and 1999. Relevant versions of
the standard include SDL-88, SDL-92 and SDL-2000 [SDL Forum Society,
2010].

Many users prefer graphical specification languages while others prefer tex-
tual ones. SDL pleases both types of users since it provides textual as well
as graphical formats. Processes are the basic elements of SDL. Processes rep-
resent components modeled as extended finite state machines. Extensions in-
clude operations on data. Fig. 2.26 shows the graphical symbols used in the
graphical representation of SDL.

As an example, we will consider how the state diagram in fig. 2.27 can be rep-
resented in SDL. Fig. 2.27 is the same as fig. 2.15, except that output has been

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 53

input

identifies initial state state

output

Figure 2.26. Symbols used in the graphical form of SDL

k

h/x

f/v

g/w
A B C

/yi
D

j/z
E

Figure 2.27. FSM to be described in SDL

added, stateZ has been deleted, and the effect of signalk has been changed.
Fig. 2.28 contains the corresponding graphical SDL representation. Obviously,
the representation is equivalent to the state diagram of fig. 2.27.

Process P1

A

k

A

v

f

ED

j

z

ED

y

i

CB

h

x

CB

w

g

A

Figure 2.28. SDL-representation of fig. 2.27

As an extension to FSMs, SDL processes can perform operations on data. Vari-
ables can be declared locally for processes. Their type can either be pre-defined
or defined in the SDL description itself. SDL supports abstract data types
(ADTs). The syntax for declarations and operations is similar to that in other
languages. Fig. 2.29 shows how declarations, assignments and decisionscan
be represented in SDL.

SDL also contains programming language elements such as procedures. Pro-
cedure calls can also be represented graphically. Object-oriented features be-
came available with version SDL-1992 of the language and were extended with
SDL-2000.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

54 EMBEDDED SYSTEM DESIGN

Counter := Counter + 3;DCL
Counter Integer;
 Date String;

(1:10) (11:30) ELSE

Counter

Figure 2.29. Declarations, assignments and decisions in SDL

Extended FSMs are just the basic elements of SDL descriptions. In general,
SDL descriptions will consist of a set of interacting processes, or FSMs. Pro-
cesses can send signals to other processes. Semantics of interprocesscom-
munication in SDL is based on asynchronous message passing and conceptu-
ally implemented throughfirst-in first-out(FIFO)-queuesassociated with pro-
cesses. There is exactly one queue per process. Signals sent to a particular
process will be placed into the corresponding FIFO-queue (see fig. 2.30).

process 1

process 2

process 3

Figure 2.30. SDL interprocess communication

Each process is assumed to fetch the next available entry from the FIFO queue
and check whether it matches one of the inputs described for the currentstate.
If it does, the corresponding state transition takes place and output is generated.
The entry from the FIFO-queue is ignored if it does not match any of the listed
inputs (unless the so-called SAVE-mechanism is used). FIFO-queues are con-
ceptually thought of as being of infinite length. This means: in the description
of the semantics of SDL models, FIFO-overflow is never considered. In actual
systems, however, infinite FIFO-queues cannot be implemented. They mustbe
of finite length. This is one of the problems of SDL: in order to derive realiza-

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 55

tions from specifications, safe upper bounds on the length of the FIFO-queues
must be proven.

Process interaction diagrams can be used for visualizing which of the pro-
cesses are communicating with each other. Process interaction diagrams in-
cludechannelsused for sending and receiving signals. In the case of SDL,
the term “signal” denotes inputs and outputs of modeled automata. Process
interaction diagrams are special cases ofblock diagrams (see below).

Example: Fig. 2.31 shows a process interaction diagramB1 with channelsSw1
andSw2. Brackets include the names of signals propagated along a certain
channel.

BLOCK B1

Sw1

Sw2
Signal A.B;

[A,B]

[A]

process P1 process P2

Figure 2.31. Process interaction diagram

There are three ways of indicating the recipient of signals:

1 Through process identifiers:by using identifiers of recipient processes in
the graphical output symbol (see fig. 2.32 (left)).

TO OFFSPRING
Counter

VIA Sw1
Counter

Figure 2.32. Describing signal recipients

Actually, the number of processes does not even need to be fixed at com-
pile time, since processes can be generated dynamically at run-time.OFF-
SPRING represents identifiers of child processes generated dynamically by
a process.

2 Explicitly: by indicating the channel name (see fig. 2.32 (right)).Sw1 is
the name of a channel.

3 Implicitly: if signal names imply the channel names, those channels are
used. Example: for fig. 2.31, signalB will implicitly always be communi-
cated via channelSw1.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

56 EMBEDDED SYSTEM DESIGN

No process can be defined within any other (processes cannot be nested). How-
ever, they can be grouped hierarchically into so-calledblocks. Blocks at the
highest hierarchy level are calledsystems. Process interaction diagramsare
one level above the leaves of the hierarchical description.B1 can be used
within intermediate level blocks (such as withinB in fig. 2.33).

B1

C3

C2

Block B

C4
B2

Figure 2.33. SDL block

At the highest level in the hierarchy, we have the system (see fig. 2.34).A
system will not have any channels at its boundary if the environment is also
modeled as a block.

C

System S

AB
C’

Figure 2.34. SDL system

Fig. 2.35 shows the hierarchy modeled by block diagrams 2.31, 2.33 and 2.34.
Process interaction diagrams are next to theleavesof the hierarchical descrip-
tion, while system descriptions represent theirroot. Some of the restrictions of
modeling hierarchy are removed in version SDL-2000 of the language. With
SDL-2000, the descriptive power of blocks and processes is harmonized and
replaced by a generalagentconcept.

P1 P2

B2B1

BA C

S

.......

...

Figure 2.35. SDL hierarchy

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 57

In order to support the modeling of time, SDL includestimers. Timers can
be declared locally for processes. They can be set and reset using SET and
RESET primitives, respectively. Fig. 2.36 shows the use of a timerT. The
diagram corresponds to that of fig. 2.28, with the exceptions that timerT is
set to the current time plusp during the transition from stateD to E. For the
transition fromE to A we now have a timeout ofp time units. If these time
units have elapsed before signalf has arrived, a transition to stateA is taken
without generating output signalv.

Timer T;

AA

v

f

ED

j

ED

y

i

CB

h

x

EB

w

g

A

Process S

set(now+p,T)

T

RESET(T)

Figure 2.36. Using timerT

SDL can be used, for example, to describe protocol stacks found in computer
networks. Fig. 2.37 shows three processors connected through a router. Com-
munication between processors and the router is based on FIFOs.

C2
C3

C1

Processor A Router Processor B Processor C

System

Figure 2.37. Small computer network described in SDL

The processors as well as the router implement layered protocols (see fig.
2.38).

Each layer describes communication at a more abstract level. The behaviorof
each layer is typically modeled as a finite state machine. The detailed descrip-
tion of these FSMs depends on the network protocol and can be quite complex.
Typically, this behavior includes checking and handling of error conditions,
and sorting and forwarding of information packages.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

58 EMBEDDED SYSTEM DESIGN

layer−1

layer−2

Block Router

.....

layer−n

.....

layer−n

.....

layer−n

layer−1 layer−1layer−1

Block Processor A Block Processor B Block Processor C

Figure 2.38. Protocol stacks represented in SDL

Available tools for SDL include interfaces to UML (see page 111), and SCs
(see page 34). A comprehensive list of tools is available from the SDL forum
[SDL Forum Society, 2009].

Estelle is another language which was designed to describe communication
protocols. Similar to SDL, Estelle assumes communication via channels and
FIFO-buffers. Attempts to unify Estelle and SDL failed.

2.4.4.2 Evaluation of SDL

SDL is excellent for distributed applications and has been used, for example,
for specifying ISDN. SDL is not necessarily determinate (the order, in which
signals arriving at some FIFO at the same time are processed, is not speci-
fied). Reliable implementations require the knowledge of a upper bound on
the length of the FIFOs. This upper bound may be difficult to compute. The
timer concept is sufficient for soft deadlines, but not for hard ones.Hierarchies
are not supported in the same way as in StateCharts. There is no full program-
ming support (but recent revisions of the standard have started to change this)
and no description of non-functional properties.

2.5 Data flow

2.5.1 Scope

Data flow is a very “natural” way of describing real life applications. Data
flow models reflect the way in which data flows from component to component
[Edwards, 2001]. Each component transforms the data in one way or theother.
The following is a possible definition of data flow [Wikipedia, 2010]:

Definition: Data flow modeling “is the process of identifying, modeling and
documenting how data moves around an information system. Data flow mod-
eling examines processes (activities that transform data from one form to an-

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 59

other), data stores (the holding areas for data), external entities (what sends
data into a system or receives data from a system), data flows (routes by which
data can flow)”.

A data flow program is specified by a directed graph where the nodes (ver-
tices), calledactors, represent computations and the arcs represent commu-
nication channels. The computation performed by each actor is assumed to
be functional, that is, based on the input values only. Each process in a data
flow graph is decomposed into a sequence of firings, which are atomic actions.
Each firing produces and consumes tokens.

For example, fig. 2.39 describes the flow of data in a video-on-demand system
[Ko and Koo, 1996].

Address

Customer

List

Customer
Queue

Admission
control

Scheduler

File System

Storage
Subsystem

Net Viewers

Viewers

Video Data
Video
Data

Viewer Commands

Storage
Control

Network

Network

Interface

Figure 2.39. Video-on-demand system

For unrestricted data flow, it is difficult to prove requested system properties.
Therefore, restricted models are commonly used.

2.5.2 Kahn process networks

Kahn process networks (KPN) [Kahn, 1974] are a special case of data flow
models. Like other data flow models, KPNs consist of nodes and edges. Nodes
correspond to computations performed by some program or task. KPN graphs,
like all data flow graphs, show computations to be performed and their de-
pendence, but not the order in which the computations must be performed (in
contrast to specifications in von-Neumann languages such as C). Edgesimply
communication via channels containing potentially infinite FIFOs. Computa-
tion times and communication times may vary, but communication is guaran-
teed to happen within a finite amount of time. Writes are never non-blocking,
since the FIFOs are assumed to be as large as needed. Reads must specify a

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

60 EMBEDDED SYSTEM DESIGN

single channel to be read from. A node cannot check whether data is available
before attempting a read. A process cannot wait for data for more than oneport
at a time. Read operations block whenever an attempt is made to read from an
empty FIFO queue. Only a single process is allowed to read from a certain
queue and only a single process is allowed to write into a queue. So, if out-
put data has to be sent to more than a single process, duplication of data must
be done inside processes. There is no other way for communication between
processes except through FIFO-queues.

In the following example,p1 andp2 are incrementing and decrementing the
value received from the partner:

process p1(in int u, out int v){

int i;

i = 0;

for (;;) {

send (i,v);

i = wait (u);

i = i-1;

}}

process p2(in int v, out int u){

int i;

for (;;) {

i = wait (v);

i = i+1;

send (i,u);

}}

Fig. 2.40 shows a graphical representation of this KPN.

p1

FIFO

FIFO v

u

p2

Figure 2.40. Graphical representation of KPN

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 61

Obviously, we do not really need the FIFOs in this example, since messages
cannot accumulate in the channels. This example and other examples can be
simulated with thelevi simulation software [Sirocic and Marwedel, 2007b].

The restrictions are resulting in thekey beauty of KPNs: the order in which
a node is reading data from its channels is fixed by the sequence of read op-
erations and does not depend on the order in which producers are transmitting
data over the channels. This means that the sequence of operations is inde-
pendent of the speed of the nodes producing data.For a given set of input
data, KPNs will always generate the same results, independently of the
speed of the nodes.This property is important, for example, for simulations:
it does not matter how fast we are simulating the KPN, the result will always
be the same. In particular, the result does not depend on using hardware ac-
celerators for some of the nodes and a distributed execution will give the same
result as a centralized one. This property has been called “determinate” and
we are following this use. SDL-like conflicts at FIFOs do not exist. Due to this
nice property, KPNs are frequently used as an internal representationwithin a
design flow.

Sometimes, KPNs are extended with a “merge”-operator (corresponding to
ADA’s select statement, see page 102). This operation allows for queuing
reads with a list of channels at the same time and waiting for channels to gen-
erate data. Such an operator introduces a non-determinate behavior: theorder
of processing inputs is not specified if both inputs arrive at the same time. This
extension is useful in practice, but it destroys the key beauty of KPNs.

In general, Kahn processes require scheduling at run-time, since it is difficult
to predict their precise behavior over time. These problems result from thefact
that we do not make any assumptions regarding the speed of the channels and
the nodes. The question of whether or not finite-length FIFOs are sufficient
for an actual KPN model is undecidable in the general case. Nevertheless,
execution times are actually unknown during early design phases and therefore
this model is very adequate. Useful scheduling algorithms exist [Kienhuis
et al., 2000]. For KPNs, the number of processes is fixed, i.e. it does not
change at run-time.

2.5.3 Synchronous data flow

Scheduling becomes significantly easier and questions regarding buffersizes
can decidably be answered if we impose restrictions on the timing of nodes
and channels. Synchronous data flow (SDF) [Lee and Messerschmitt, 1987] is
such a model.

SDF can best be introduced by referring to its graphical notation. Fig. 2.41
(left) shows a synchronous data flow graph. The graph is a directed graph,

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

62 EMBEDDED SYSTEM DESIGN

nodesA andB denote computations* and+. Inputs to SDF graphs are assumed
to consist of an infinite stream of samples. Nodes can start their computations
when their inputs are available. Edges must be used whenever there is a data
dependency between any two nodes.

A B

*
1

1

+1

1

1
A B

*
1

1

+1 1

D
1

Figure 2.41. Graphical representations of synchronous data flow

For each execution, the computation in a node is called a firing. For each fir-
ing, a number of tokens, representing data, is consumed and produced.In syn-
chronous data flow, the number of tokens produced or consumed in one firing
is constant. Constant edge labels denote the corresponding numbers of tokens.
These constants facilitate the modeling ofmulti-rate signal processing appli-
cations, applications for which certain signals are generated at frequencies that
are multiples of other frequencies. For example, in a TV set, some computa-
tions might be performed at a rate of 100 Hz while others are performed at a
rate of 50 Hz. In general, the number of tokens sent to an edge must be equal
to the number of tokens consumed. Letns be the number of tokens produced
by some sender per firing, and letfs be the corresponding rate. Letnr be the
corresponding number of tokens consumed per firing at the receiver,and let fr
be the corresponding rate. Then, we must have

ns∗ fs = nr ∗ fr (2.1)

This situation is also visualized in fig. 2.42. The FIFO is needed for buffering
if ns 6= nr . In contrast to Kahn process networks, the size can be computed
easily.

f rs nn
FIFO

rfs

Figure 2.42. Multi-rate SDF model

The termsynchronousdata flow reflects the fact that tokens are consumed
from the incoming arcs in a synchronous manner (all at the same instant in
time). The termasynchronousmessage passing reflects the fact that tokens

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 63

can be buffered using FIFOs. The property of producing and consuming a
constant number of tokens makes it possible to determine execution order and
memory requirements at compile time. Hence, complex run-time scheduling
of executions is avoided. SDF graphs may include delays, denoted by the
symbol D on an edge (see fig. 2.41 (right)). SDF graphs can be translated
into periodic schedules for mono- as well as for multi-processor systems (see
e.g. [Pino and Lee, 1995]). A legal schedule for the simple example of fig.
2.41 would consist of the sequence(A, B) (repeated forever). A sequence(A,
A, B) (A executed twice as many times asB) would be illegal, since it would
accumulate an infinite number of tokens on the implicit FIFO buffer between
A andB.

SDF is very useful, for example, in modeling multimedia systems. In this case,
each token would correspond to audio or video information, such as an audio
sample or a video frame. The observer pattern, mentioned as a problem for
modeling with von-Neumann languages on page 25, can be easily implemented
correctly in SDF (see fig. 2.43). There is no risk of deadlocks. However, SDF
does not allow adding new observers at run-time.

A

1

1

1

B3

B2

B1

Figure 2.43. Observer pattern in SDF

SDF models are determinate, but they are not appropriate for modeling control
flow, such as branches etc. Several extensions and variations of SDFmodels
have been proposed (see, for example Stuijk [Stuijk, 2007]):

For example, we can havemodescorresponding to states of an associated
finite state machine. For each of the modes, a different SDF graph could be
relevant. Certain events could then cause transitions between these modes.

Homogeneous synchronous data flow (HSDF) graphs are a special case
of SDF graphs. For HSDF graphs, the number of token consumed and
produced per firing is always 1.

For cyclo-static data flow (CSDF), the number of tokens produced and con-
sumed per firing can vary over time, but has to be periodic.

Complex SUDs including control flow must be modeled using more general
computational graph structures.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

64 EMBEDDED SYSTEM DESIGN

2.5.4 Simulink

Computational graph structures are also frequently used in control engineering.
For this domain, the Simulink toolbox of MATLAB [The MathWorks Inc.,
2010], [Tewari, 2001] is very popular. MATLAB is a modeling and simulation
tool based on mathematical models including, for example, partial differential
equations. Fig. 2.44 shows an example of a Simulink model [Marian and Ma,
2007].

teta103

sticks

control

elevator

1

Saturation

1.1235

Gain6

pitch_net

4

1

stick_com

elev_com

teta_com

sticks

stick_cmd

Vc_sens
ineg_rst

5

6

2

speed_com

From

[A]
air_speed_net

Speed_com

Vc_sens

vc_cmd

[A]

gototeta_com_select

teta0

teta10

teta0

not_teta

pitch_mode

teta_in

Figure 2.44. Simulink model

The amplifier and the saturation component on the right demonstrate the inclu-
sion of analog modeling. In the general case, the “schematic” could contain
symbols denoting analog components such as integrators, differentiators.The
switch in the center indicates that Simulink also allows some control flow mod-
eling.

The graphical representation is intuitive and allows control engineers to focus
on the control function, without caring about the code necessary to implement
the function. The graphical symbols suggest that analog circuits are used as
traditional components in control designs. A key goal is to synthesize software
from such models. This approach is typically associated with the termmodel-
based design, but there is no precise definition for this term.

Semantics of Simulink model reflect the simulation on a digital computer and
the behavior may be similar to that of analog circuits, but possibly not quite the
same. What is actually the semantics of a Simulink model? Marian and Ma
[Marian and Ma, 2007] describe the semantics as follows: “Simulink uses an
idealized timing model for block (node) execution and communication. Both
happen infinitely fast at exact points in simulated time. Thereafter, simulated

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 65

time is advanced by exact time steps. All values on edges are constant in
between time steps. This means that we execute the model time step after
time step. For each step, we compute the function of the nodes (in zero time)
and propagate the new values to connected inputs. This explanation does not
specify the distance between time steps. Also, it does not immediately tell us
how to implement the system in software, since even slowly varying outputs
may be recomputed frequently.

This approach is appropriate for modeling physical systems such as carsor
trains at a high level and then simulating the behavior of these systems. Also,
digital signal processing systems can be conveniently modeled with MATLAB
and Simulink. In order to generate implementations, MATLAB/Simulink mod-
els first must be translated into a language supported by software or hardware
design systems, such as C or VHDL.

Components in Simulink models provide a special case ofactors. We can
assume that actors are waiting for input and perform their operation onceall
required inputs have arrived. SDF is another case of actor-based languages. In
actor-based languages, there is no need to pass control to these actors, like in
von-Neumann languages.

2.6 Petri nets

2.6.1 Introduction

Very comprehensive descriptions of control flow are feasible with computa-
tional graphs known as Petri nets. Actually, Petri nets modelonly control and
control dependencies. Modeling data as well requires extensions of Petri nets.
Petri nets focus on the modeling of causal dependencies.

In 1962, Carl Adam Petri published his method for modeling causal dependen-
cies, which became known as Petri nets. Petri nets do not assume any global
synchronization and are therefore especially suited for modeling distributed
systems.

Conditions, eventsand aflow relation are the key elements of Petri nets.
Conditions are either satisfied or not satisfied. Events can happen. The flow
relation describes the conditions that must be met before events can happen
and it also describes the conditions that become true if events happen.

Graphical notations for Petri nets typically use circles to denote conditions and
boxes to denote events. Arrows represent flow relations. Fig. 2.45 shows a first
example.

This example describes mutual exclusion for trains at a railroad track that must
be used in both directions. A token is used to prevent collisions of trains going

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

66 EMBEDDED SYSTEM DESIGN

from the left

to go right

to the right
train leaving tracktrain entering track

train wanting train going
to the right

train going
to the left

single−laned

track available

Figure 2.45. Single track railroad segment

into opposite directions. In the Petri net representation, that token is symbol-
ized by a condition in the center of the model. A partially filled circle (a circle
containing a second, filled circle) denotes the situation in which the condition
is met (this means: the track is available). When a train wants to go to the right
(also denoted by a partially filled circle in fig. 2.45), the two conditions that
are necessary for the event “train entering track from the left” are met. We call
these two conditionspreconditions. If the preconditions of an event are met,
it can happen. As a result of that event happening, the token is no longer avail-
able and there is no train waiting to enter the track. Hence, the preconditions
are no longer met and the partially filled circles disappear (see fig. 2.46).

to go right
train wanting

from the left
train entering track train leaving track

to the right

track available

to the left
train going

to the right
train going

Figure 2.46. Using resource “track”

However, there is now a train going on that track from the left to the right and
thus the corresponding condition is met (see fig. 2.46). A condition which is
met after an event happened is called apostcondition. In general, an event
can happen only if all its preconditions are true (or met). If it happens, the
preconditions are no longer met and the postconditions become valid. Arrows

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 67

identify those conditions which are preconditions of an event and those that
are postconditions of an event. Continuing with our example, we see that a
train leaving the track will return the token to the condition at the center of the
model (see fig. 2.47).

to go right
train wanting

from the left
train entering track train leaving track

to the right

track available

to the left
train going

to the right
train going

Figure 2.47. Freeing resource “track”

If there are two trains competing for the single-track segment (see fig. 2.48),
only one of them can enter.

to go right
train wanting

from the left
train entering track train leaving track

to the right

track available

to the left
train going

to the right
train going

Figure 2.48. Conflict for resource “track”

In such situations, the next transition to be fired is non-deterministically cho-
sen. Analyses of the net must consider all possible firing sequences. For Petri
nets, we are intentionally modeling non-determinism.

A key advantage of Petri nets is that they can be the basis for formal proofs
about system properties and that there are standardized ways of generating
such proofs. In order to enable such proofs, we need a more formal definition
of Petri nets. We will consider three classes of Petri nets: condition/event nets,
place/transitions nets, and predicate transition nets.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

68 EMBEDDED SYSTEM DESIGN

2.6.2 Condition/event nets

Condition/event nets are the first class of Petri nets that we will define more
formally.

Definition: N = (C,E,F) is called anet, iff the following holds:

1 C andE are disjoint sets.

2 F ⊆ (E×C)∪ (C×E) is a binary relation, called flow relation.

The setC is called conditions and the setE is called events.

Definition: Let N be a net and letx∈ (C∪E). Then,

1 •x := {y|yFx,y∈ (C∪E)} is called thepre-setof x. If x denotes an event,
•x is also called the set ofpreconditionsof x.

2 x• := {y|xFy,y∈ (C∪E)} is called thepost-setof x. If x denotes an event,
x• is also called the set ofpostconditionsof x.

The terms preconditions and postconditions are preferred if these sets actually
denote conditions∈C, that is, ifx∈ E.

Definition: Let (c,e) ∈C×E.

1 (c,e) is called aloop, if cFe∧eFc.

2 N is calledpure, if F does not contain any loops (see fig. 2.49, left).

Definition: A net is calledsimple if no two transitionst1 andt2 have the same
set of pre- and postconditions.

Figure 2.49. Nets which are not pure (left) and not simple (center and right)

Simple nets with no isolated elements meeting some additional restrictions are
calledcondition/event nets. Condition/event nets are a special case of bipar-
tite graphs (graphs with two disjoint sets of nodes). We will not discuss those
additional restrictions in detail since we will consider more general classesof
nets in the following.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 69

2.6.3 Place/transition nets

For condition/event nets, there is at most one token per condition. For many
applications, it is useful to remove this restriction and to allow more tokens
per conditions. Nets allowing more than one token per condition are called
place/transition nets. Places correspond to what we so far called conditions and
transitions correspond to what we so far called events. The number of tokens
per place is called amarking . Mathematically, a marking is a mapping from
the set of places to the set of natural numbers extended by a special symbol ω
denoting infinity.

Let IN0 denote the natural numbers including 0. Then, formally speaking,
place/transition nets can be defined as follows:

Definition: (P,T,F,K,W,M0) is called a place/transition net⇐⇒

1 N = (P,T,F) is a net with placesp∈ P, transitionst ∈ T, and flow relation
F .

2 MappingK : P→ (IN0∪{ω})\{0} denotes the capacity of places (ω sym-
bolizes infinite capacity).

3 MappingW : F → (IN0\{0}) denotes the weight of graph edges.

4 MappingM0 : P→ IN0∪{ω} represents the initial marking of places.

Edge weights affect the number of tokens that are required before transitions
can happen and also identify the number of tokens that are generated if a certain
transition takes place. LetM(p) denote a current marking of placep∈ P and
let M′(p) denote a marking after some transitiont ∈ T took place. The weight
of edges belonging to preconditions represents the number of tokens thatare
removed from places in the precondition set. Accordingly, the weight of edges
belonging to the postconditions represents the number of tokens that are added
to the places in the postcondition set. Formally, markingM′ is computed as
follows:

M′(p) =















M(p)−W(p, t), if p∈ •t \ t•

M(p)+W(t, p), if p∈ t• \ •t
M(p)−W(p, t)+W(t, p), if p∈ •t ∩ t•

M(p) otherwise

Fig. 2.50 shows an example of how transitiont j affects the current marking.

By default, unlabeled edges are considered to have a weight of 1 and unlabeled
places are considered to have unlimited capacityω.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

70 EMBEDDED SYSTEM DESIGN

1
ttj

3
2

1
2

1

3
2

1
2

j

Figure 2.50. Generation of a new marking

We now need to explain the two conditions that must be met before a transition
t ∈ T can take place:

for all placesp in the precondition set, the number of tokens must at least
be equal to the weight of the edge fromp to t and

for all placesp in the postcondition set, the capacity must be large enough
to accommodate the new tokens whicht will generate.

Transitions meeting these two conditions are calledM-activated. Formally,
this can be defined as follows:

Definition: Transitiont ∈ T is said to be M-activated⇐⇒

(∀p∈ •t : M(p) ≥W(p, t))∧ (∀p′ ∈ t• : M(p′)+W(t, p′) ≤ K(p′))

Activated transitions can happen, but they do not need to. If several transi-
tions are activated, the sequence in which they happen is not deterministically
defined.

The impact of a firing transitiont on the number of tokens can be represented
conveniently by a vectort associated witht. t is defined as follows:

t(p) =















−W(p, t), if p∈ •t \ t•

+W(t, p), if p∈ t• \ •t
−W(p, t)+W(t, p), if p∈ •t ∩ t•

0 otherwise

The new numberM′ of tokens, resulting from the firing of transitiont, can be
computed for all placesp as follows:

M′(p) = M(p)+ t(p)

Using “+” to denote vector addition, we can rewrite this equation as follows:

M′ = M + t

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 71

The set of all vectorst form an incidence matrixN. N contains vectorst as
columns.

N : P×T → ZZ; ∀t ∈ T : N(p, t) = t(p)

It is possible to formally prove system properties by using matrixN. For exam-
ple, we are able to compute sets of places, for which firing transitions will not
change the overall number of tokens [Reisig, 1985]. Such sets are called place
invariants. Let us initially consider a single transitiont j in order to find such
invariants. Let us search for setsR⊆ P of places such that the total number of
tokens does not change ift j fires. The following must hold for such sets:

∑
p∈R

t j(p) = 0 (2.2)

Fig. 2.51 shows a transition for which the total number of tokens does not
change if it fires.

1

tj
3 2

Figure 2.51. Transition with a constant number of tokens

We are now introducing the characteristic vectorcR of some setR of places:

cR(p) =

{

1 iff p∈ R
0 iff p 6∈ R

With this definition, we can rewrite equation 2.2 as:

∑
p∈R

t j(p) = ∑
p∈P

t j(p)∗cR(p) = t j ·cR = 0 (2.3)

· denotes the scalar product. Now, we search for sets of places such that firings
of any transition will not change the total number of tokens. This means that
equation 2.3 must hold for all transitionst j :

t1 ·cR = 0

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

72 EMBEDDED SYSTEM DESIGN

t2 ·cR = 0 (2.4)

...

tn ·cR = 0

Equations 2.4 can be combined into the following equation by using the trans-
posed incidence matrixNT :

NTcR = 0 (2.5)

Equation 2.5 represents a system of linear, homogeneous equations. Matrix
N represents edge weights of our Petri nets. We are looking for solution vec-
torscR for this system of equations. Solutions must be characteristic vectors.
Therefore, their components must be 1 or 0 (integer weights can be accepted
if we use weighted sums of tokens). This is more complex than solving sys-
tems of linear equations with real-valued solution vectors. Nevertheless, it is
possible to obtain information by solving equation 2.5. Using this proof tech-
nique, we can for example show that we are correctly implementing mutually
exclusive access to shared resources.

Let us now consider a larger example: We are again considering the synchro-
nization of trains. In particular, we are trying to model high-speed Thalys trains
traveling between Amsterdam, Cologne, Brussels and Paris. Segments of the
train run independently from Amsterdam and Cologne to Brussels. There,the
segments get connected and then they run to Paris. On the way back from
Paris, they get disconnected at Brussels again. We assume that Thalys trains
must synchronize with some other train at Paris. The corresponding Petri net
is shown in fig. 2.52.

Places 3 and 10 model trains waiting at Cologne and Amsterdam, respectively.
Transitions 2 and 9 model trains driving from these cities to Brussels. After
their arrival at Brussels, places 2 and 9 contain tokens. Transition 1 denotes
connecting the two trains. The cup symbolizes the driver of one of the trains,
who will have a break at Brussels while the other driver is continuing on to
Paris. Transition 5 models synchronization with other trains at theGare du
Nord station of Paris. These other trains connectGare du Nord with some other
station (we have usedGare de Lyon as an example, even though the situation
at Paris is somewhat more complex). Of course, Thalys trains do not use steam
engines; they are just easier to visualize than modern high speed trains. Fig.
2.53 shows matrixNT for this example.

For example, line 2 indicates that firingt2 will increase the number of tokens
on p2 by 1 and decrease the number of tokens onp3 by 1. Using techniques

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 73

Gare du Nord

9

8

4

9 2 3

1

5

5

6

6

1

2

7

7

8

11 13

10

310

12

Gare de Lyon

Disconnecting

4

Brussels

Connecting

CologneAmsterdam

Paris

Figure 2.52. Model of Thalys trains running between Amsterdam, Cologne, Brussels, and
Paris

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

t1 1 -1 -1 1
t2 1 -1
t3 1 -1
t4 1 -1 1
t5 1 -1 -1 1
t6 -1 1
t7 1 -1
t8 1 -1
t9 1 -1
t10 1 -1 -1

Figure 2.53. NT for the Thalys example

from linear algebra, we are able to show that the following four vectors are
solutions for this system of linear equations:

cR,1 = (1,1,1,1,1,1,0,0,0,0,0,0,0)

cR,2 = (1,0,0,0,1,1,0,0,1,1,1,0,0)

cR,3 = (0,0,0,0,0,0,0,0,1,1,0,0,1)

cR,4 = (0,0,0,0,0,0,1,1,0,0,0,1,0)

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

74 EMBEDDED SYSTEM DESIGN

These vectors correspond to the places along the track for trains from Cologne,
to the places along the track for trains from Amsterdam, to the places along the
path for drivers of trains from Amsterdam, and to the places along the track
within Paris, respectively. Therefore, we are able to show that the number of
trains and drivers along these tracks is constant (something which we actually
expect). This example demonstrates that place invariants provide us with a
standardized technique for proving properties about systems.

2.6.4 Predicate/transition nets

Condition/event nets as well as place/transition nets can quickly become very
large for large examples. A reduction of the size of the nets is frequently
possible with predicate/transition nets. We will demonstrate this, using the so-
called “dining philosophers problem” as an example. The problem is based on
the assumption that a set of philosophers is dining at a round table. In front
of each philosopher, there is a plate containing spaghetti. Between each ofthe
plates, there is just one fork (see fig. 2.54). Each philosopher is either eating
or thinking. Eating philosophers need their two adjacent forks for that, sothey
can only eat if their neighbors are not eating.

Figure 2.54. The dining philosophers problem

This situation can be modeled as a condition/event net, as shown in fig. 2.55.
Conditionst j correspond to the thinking states, conditionsej correspond to the
eating states, and conditionsf j represent available forks.

Considering the small size of the problem, this net is already very large. The
size of this net can be reduced by using predicate/transition nets. Fig. 2.56is a
model of the same problem as a predicate/transition net.

With predicate/transition nets, tokens have an identity and can be distinguished
from each other10. We use this in fig. 2.56 in order to distinguish between the
three different philosophersp1 to p3 and to identify fork f3. Furthermore,

10We could also think of adding acolor to each of the tokens.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 75

3

2

1

3

2

1

1

e

f

f

f

t

t

t

e

e

2

3

Figure 2.55. Place/transition net model of the dining philosophers problem

3
p

e

l(x)
r(x)

l(x)

x

u

x

r(x)

x

v

x

f

t

3f

1
p

2
p

Figure 2.56. Predicate/transition net model of the dining philosophers problem

edges can be labeled with variables and functions. In the example, we use
variables to represent the identity of philosophers and functionsl(x) andr(x)
to denote the left and right forks of philosopherx, respectively. These two forks
are required as a precondition for transitionu and returned as a postcondition
by transitionv. Note that this model can be easily extended to the case ofn> 3
philosophers. We just need to add more tokens. In contrast to the net in fig.
2.55, the structure of the net does not have to be changed.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

76 EMBEDDED SYSTEM DESIGN

2.6.5 Evaluation

The key advantage of Petri nets is their power for modeling causal depen-
dencies. Standard Petri nets have no notion of time and all decisions can be
taken locally, by just analyzing transitions and their pre- and post-conditions.
Therefore, they can be used for modeling geographically distributed systems.
Furthermore, there is a strong theoretical foundation for Petri nets, simplifying
formal proofs of system properties. Petri nets are not necessarily determinate:
different firing sequences can lead to different results. The descriptive power
of Petri nets encompasses that of other MoCs, including finite state machines.

In certain contexts, their strength is also their weakness. If time is to be explic-
itly modeled, standard Petri nets cannot be used. Furthermore, standardPetri
nets have no notion of hierarchy and no programming language elements, let
alone object oriented features. In general, it is difficult to represent data.

There are extended versions of Petri nets avoiding the mentioned weaknesses.
However, there is no universal extended version of Petri nets meeting all re-
quirements mentioned at the beginning of this chapter. Nevertheless, due to
the increasing amount of distributed computing, Petri nets became more pop-
ular than they were initially.

UML includes extended Petri nets calledactivity diagrams. Extensions in-
clude symbols denoting decisions (just like in ordinary flow charts). The place-
ment of symbols is somewhat similar to SDL. Fig. 2.57 shows an example.

The example shows the procedure to be followed during a standardization pro-
cess. Forks and joins of control correspond to transitions in Petri nets and they
use the symbols (horizontal bars) that were initially used for Petri nets as well.
The diamond at the bottom shows the symbol used for decisions. Activities can
be organized into “swim-lanes” (areas between vertical dotted lines) suchthat
the different responsibilities and the documents exchanged can be visualized.
It is interesting to note how a technique like Petri nets was initially certainly
not a mainstream technique. Decades after its invention, it has become a fre-
quently applied technique due to its inclusion in UML.

2.7 Discrete event based languages

The discrete event-based model of computation is based on the idea of sim-
ulating the generation of events and the processing of events over time. In
this model, we are using a queue of future events. These events are sorted
by the time at which they should be processed. Semantics is defined by re-
moving the events concerning the current time from the queue, performing the
corresponding actions, possibly entering new events into the queue. Time is

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 77

activity

adopted
Specification

Evaluate initial

[final proposal]
Specification

[Issued]
RFP

............

[initial proposal]

Issue RFP

recommend
Vote to

[if YES] [if NO]

Evaluate final
submissions

Finalize
specification

Collaborate with
other submitters submissions

control flow

object flow

input value

co
nd

iti
on

al
 th

re
ad

start activity

fork of control

branch

guard

Submit specifi−

join & fork
of control

Specification

logy specification
Develop techno−

cation draft

[optional]

Begin

Figure 2.57. Activity diagram [Kobryn, 2001]

advanced whenever no action exists, which should be performed at the current
time.

Hardware description languages (HDLs) are designed to model hardware. They
are typically based on the discrete event model. We will use HDLs as a promi-
nent example of discrete event modeling. The focus will be on the hardware
description language VHDL, and we will briefly cover other HDLs as well.

A key distinction between common software languages and hardware descrip-
tion languages is the need to model time in HDLs. Another distinction comes
from the requirement to describe concurrency among different hardware com-
ponents.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

78 EMBEDDED SYSTEM DESIGN

2.7.1 VHDL

2.7.1.1 Introduction

VHDL is a prominent example of HDLs. VHDL usesprocessesfor modeling
concurrency. Each process models one component of the potentially concur-
rent hardware. For simple hardware components, a single process may be
sufficient. More complex components may need several processes for model-
ing their operations. Processes communicate throughsignals. Signals roughly
correspond to physical connections (wires).

The origin of VHDL can be traced back to the eighties of the last century.
At that time, most design systems used graphical HDLs. The most common
building block was the gate. However, in addition to using graphical HDLs,
we can also use textual HDLs. The strength of textual languages is that they
can easily represent complex computations including variables, loops, function
parameters and recursion. Accordingly, when digital systems became more
complex in the eighties, textual HDLs almost completely replaced graphical
HDLs. Textual HDLs were initially a research topic at universities. See Mer-
met et al. [Mermet et al., 1998] for a survey of languages designed in Europe
in the eighties. MIMOLA was one of these languages and the author of this
book contributed to its design and applications [Marwedel and Schenk, 1993],
[Marwedel, 2008b]. Textual languages became popular when VHDL and its
competitor Verilog (see page 96) were introduced.

VHDL was designed in the context of the VHSIC program of the Department
of Defense (DoD) in the US. VHSIC stands forvery high speed integrated cir-
cuits11. Initially, the design of VHDL (VHSIC hardware description language)
was done by three companies: IBM, Intermetrics and Texas Instruments. A
first version of VHDL was published in 1984. Later, VHDL became an IEEE
standard, called IEEE 1076. The first IEEE version was standardizedin 1987;
updates were designed in 1992, in 1997, in 2002 and in 2006 [Lewis et al.,
2007]. VHDL-AMS allows modeling analog and mixed-signal systems by in-
cluding differential equations in the language. The design of VHDL used ADA
(see page 100) as the starting point, since both languages were designedfor the
DoD. Since ADA is based on PASCAL, VHDL has some of the syntactical fla-
vor of PASCAL. However, the syntax of VHDL is much more complex and it
is necessary not to get distracted by the syntax. In the current book, we will just
focus on some concepts of VHDL which are useful also in other languages. A
full description of VHDL is beyond the scope of this book. The standard is
available from IEEE (see, for example, [IEEE, 2002]).

11The design of the Internet was also part of the VHSIC program.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 79

2.7.1.2 Entities and architectures

VHDL, like all other HDLs, includes the necessary support for modeling con-
current operation of hardware components. Hardware components are mod-
eled by so-calleddesign entitiesor VHDL entities . Entities containprocesses
used to model concurrency. According to the VHDL grammar, design entities
are composed of two types of ingredients: anentity declaration and one (or
several)architectures (see fig. 2.58).

Architecture 1 Architecture 2 Architecture 3

Entity declaration

....

Figure 2.58. An entity consists of an entity declaration and architectures

For each entity, the most recently analyzed architecture will be used by default.
Using other architectures can be specified. Architectures may contain several
processes.

We will discuss a full adder as an example. Full adders have three input ports
and two output ports (see fig. 2.59).

full_adder
a

b

carry_in

sum

carry_out

Figure 2.59. Full-adder and its interface signals

An entity declaration corresponding to fig. 2.59 is the following:

entity full adder is -- entity declaration

port (a, b, carry in: in Bit; -- input ports

sum, carry out: out Bit); -- output ports

end full adder;

Two hyphens (--) are starting a comments. They extend until the the end of
the line. Architectures consist of architecture headers and architectural bodies.
We can distinguish between different styles of bodies, in particular between
structural and behavioral bodies. We will show how the two are different using
the full adder as an example. Behavioral bodies include just enough informa-
tion to compute output signals from input signals and the local state (if any),
including the timing behavior of the outputs. The following is an example of
this (<= denotes assignments to signals):

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

80 EMBEDDED SYSTEM DESIGN

architecture behavior of full adder is -- architecture

begin

sum <= (a xor b) xor carry in after 10 Ns;

carry out <= (a and b) or (a and carry in) or

(b and carry in) after 10 Ns;

end behavior;

VHDL-based simulators are capable of displaying output signal waveforms
resulting from stimuli applied to the inputs of the full adder described above.

In contrast, structural bodies describe the way entities are composed of simpler
entities. For example, the full adder can be modeled as an entity consisting of
three components (see fig. 2.60). These components are calledi1 to i3 and are
of typehalf adder or or gate.

full_adder

a
b y

x

carry_in sum

z
carry_out

half_adder

half_adder

i1:

i2:
gate
or_
i3:

Figure 2.60. Schematic describing structural body of the full adder

In the 1987 version of VHDL, these components must be declared in a so-
called component declaration. This declaration is very similar (and it serves
the same purpose) as forward declarations in other languages. This declaration
provides the necessary information about the component even if the full de-
scription of that component is not yet stored in the VHDL database (this may
happen in the case of so-called top-down designs). From the 1992 version of
VHDL onwards, such declarations are not required if the relevant components
are already stored in the component database.

Connections between local component and entity ports are described inport
maps. The following VHDL code represents the structural body shown in fig.
2.60:

architecture structure of full adder is -- architecture head

component half adder

port (in1, in2: in Bit; carry: out Bit;

sum: out Bit);

end component;

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 81

component or gate

port (in1, in2: in Bit; o: out Bit);

end component;

signal x, y, z: Bit; -- local signals

begin -- port map section

i1: half adder -- introduction of half adder i1

port map (a, b, x, y); -- connections between ports

i2: half adder port map (y, carry in, z, sum);

i3: or gate port map (x, z, carry out);

end structure;

2.7.1.3 Multi-valued logic and IEEE 1164

In this book, we are restricting ourselves to embedded systems implemented
with binary logic. Nevertheless, it may be advisable or necessary to use more
than two values for modeling such systems. For example, our systems might
contain electrical signals of different strengths and it may be necessaryto com-
pute the strength and the logic level resulting from a connection of two or more
sources of electrical signals. In the following, we will therefore distinguish be-
tween theleveland thestrength of asignal. While the former is an abstraction
of the signal voltage, the latter is an abstraction of the impedance (resistance)of
the voltage source. We will be using discrete sets of signal values representing
the signal level and the strength.Using discrete sets of strengths avoids the
problems of having to solve Kirchhoff’s equations and enables us to avoid
analog models used in electrical engineering.We will also model unknown
electrical signals by special signal values.

In practice, electronic design systems use a variety of value sets. Some systems
allow only two, while others allow 9 or 46. The overall goal of developing
discrete value sets is to avoid the problems of solving network equations (e.g.
Kirchoff’s laws) and still model existing systems with sufficient precision. In
the following, we will present a systematic technique for building up value
sets and for relating these to each other. We will use the strength of electrical
signals as the key parameter for distinguishing between various value sets.A
systematic way of building up value sets, called CSA-theory, was presentedby
Hayes [Hayes, 1982]. We will later show how the standard value set used for
most cases of VHDL-based modeling can be derived as a special case.

1 signal strength (Two logic values)

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

82 EMBEDDED SYSTEM DESIGN

In the simplest case, we will start with just two logic values, called’0’ and’1’.
These two values are considered to be of the same strength. This means: if two
wires connect values’0’ and’1’, we will not know anything about the resulting
signal level.

A single signal strength may be sufficient if no two wires carrying values’0’
and ’1’ are connected and no signals of different strength meet at a particular
node of electronic circuits.

2 signal strengths (Three and four logic values)

In many circuits, there may be instances in which a certain electrical signal is
not actively driven by any output. This may be the case, when a certain wire is
not connected to ground, the supply voltage or any circuit node.

For example, systems may contain open-collector outputs (see fig. 2.61, left).
If the “pull-down” transistorPD is non-conducting, the output is effectively
disconnected. For the tristate outputs (see fig. 2.61, right), anenable signal of
’0’ will generate a’0’ at the outputs of the and-gates (denoted by&), and will
make both transistors non-conducting. As a result, outputA will be discon-
nected12. Hence, using appropriate input signals, such outputs can be effec-
tively disconnected from a wire.

&

&

VDD

GROUNDGROUND

VDD

A

f

f

enable = ’0’ −> A disconnected

PD

enable

Input = ’0’ −> A disconnected

Input

Output A

PD

Figure 2.61. Outputs that can be effectively disconnected from a wire

Obviously, the signal strength of disconnected outputs is the smallest strength
that we can think of. In particular, the signal strength ofZ is smaller than that
of ’0’ and ’1’. Furthermore, the signal level of such an output is unknown. This
combination of signal strength and signal value is represented by a logic value
called’Z’. If a signal of value’Z’ is connected to another signal, that other signal
will always dominate. For example, if two tristate outputs are connected to the

12In practice, pull-up transistors may be depletion transistors and the tri-state outputs may be inverting.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 83

same bus and if one output contributes a value of’Z’, the resulting value on the
bus will always be the value contributed by the second output (see fig. 2.62).

&

& &

&

GROUND

VDD

PD

’Z’ −> bus

PD’

enable=’0’ enable’=’1’

f

f f’

f’

Figure 2.62. Right output dominates bus

In VHDL, each output is associated with a so-called signaldriver . Computing
the value resulting from the contributions of multiple drivers to the same sig-
nal is calledresolution and resulting values are computed by functions called
resolution functions.

In most cases, three-valued logic sets{’0’,’1’,’Z’} are extended by a fourth value
called’X’. ’X’ represents an unknown signal level of the same strength as’0’ or
’1’. More precisely, we are using’X’ to represent unknown values of signals
that can be either’0’ or ’1’ or some voltage representing neither’0’ nor ’1’13.

The resolution that is required if multiple drivers get connected can be com-
puted very easily, if we make use of a partial order among the four signal values
’0’, ’1’, ’Z’, and’X’. The partial order is depicted in theHasse diagramin fig.
2.63.

’X’

’Z’

’1’’0’

Figure 2.63. Partial order for value set{’0’, ’1’, ’Z’, ’X’}

Edges in this figure reflect the domination of signal values. Edges define a
relation>. If a > b, thena dominatesb. ’0’ and’1’ dominate’Z’. ’X’ dominates
all other signal values. Based on the relation>, we define a relation≥. a≥ b
holds iff a > b or a = b.

13There are other interpretations of’X’, but the one presented above is the most useful one in our context.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

84 EMBEDDED SYSTEM DESIGN

We define an operationsupon two signals, which returns thesupremum of
the two signal values. The supremumc of the two valuesa andb is the weak-
est value for whichc ≥ a and c ≥ b holds. For example,sup (’Z’, ’0’)=’0’,
sup(’Z’,’1’)=’1’ etc. The interesting observation is that resolution functions
should compute thesupfunction according to the above definition.

3 signal strengths (Seven signal values)

In many circuits, two signal strengths are not sufficient. A common case that
requires more values is the use of depletion transistors (see fig. 2.64).

PDf

GROUND

VDD

transistor
depletion

A

Figure 2.64. Output using depletion transistor

The effect of the depletion transistor is similar to that of a resistor providing a
low conductance path to the supply voltageVDD. The depletion transistor as
well as the “pull-down transistor”PD act as drivers for nodeA of the circuit
and the signal value at nodeA can be computed using resolution. The pull-
down transistor provides a driver value of’0’ or ’Z’, depending upon the input
to PD. The depletion transistor provides a signal value, which is weaker than’0’
and’1’. Its signal level corresponds to the signal level of’1’. We represent the
value contributed by the depletion transistor by’H’, and we call it a “weak logic
one”. Similarity, there can be weak logic zeros, represented by’L’. The value
resulting from the possible connection between’H’ and ’L’ is called a “weak
logic undefined”, denoted as’W’. As a result, we have three signal strengths
and seven logic values{’0’, ’1’, ’L’, ’H’, ’W’, ’X’, ’Z’}. Resolution can again be
based on a partial order among these seven values. The corresponding partial
order is shown in fig. 2.65.

This order also defines an operationsupreturning the weakest value at least as
strong as the two arguments. For example,sup(’H’,’0’) = ’0’, sup(’H’,’Z’) = ’H’,
sup(’H’,’L’) = ’W’.

’0’ and ’L’ represent the same signal levels, but a different strength. The same
holds for the pairs’1’ and’H’. Devices increasing the signal strength are called
amplifiers, devices reducing the signal strength are calledattenuators.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 85

’1’

’L’ ’H’

’Z’

medium strength

weakest

strongest

’W’

’X’

’0’

Figure 2.65. Partial order for value set{’0’, ’1’, ’L’, ’H’, ’W’, ’X’, ’Z’}

Ten signal values (4 signal strengths)

In some cases, three signal strengths are not sufficient. For example, there
are circuits using charges stored on wires. Such wires are charged to levels
corresponding to’0’ or ’1’ during some phases of the operation of the electronic
circuit. This stored charge can control the (high impedance) inputs of some
transistors. However, if these wires get connected to even the weakestsignal
source (except’Z’), they loose their charge and the signal value from that source
dominates.

For example, in fig. 2.66, we are driving a bus from a specialized output. The
bus has a high capacitive loadC. While functionf is still ’0’, we setφ to ’1’,
charging capacitorC. Then we setφ to ’0’. If the real value of functionf be-
comes known and it turns out to be’1’, we discharge the bus. The key reason
for using pre-charging is that charging a bus using an output such as the one
shown in fig. 2.64 is a slow process, since the resistance of depletion transistors
is large. Discharging through regular pull-down transistorsPD is a much faster
process.

PD

GROUND

f

VDD

C

Bus

φ

Figure 2.66. Pre-charging a bus

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

86 EMBEDDED SYSTEM DESIGN

In order to model such cases, we need signal values which are weakerthan’H’
and ’L’, but stronger than’Z’. We call such values “very weak signal values”
and denote them by’h’ and’l’. The corresponding very weak unknown value is
denoted by’w’. As a result, we obtain ten signal values{’0’, ’1’, ’L’, ’H’, ’l’, ’h’,
’X’, ’W’, ’w’, ’Z’}. Using the signal strength, we can again define a partial order
among these values (see fig. 2.67).

’l’ ’h’

’Z’

’0’ ’1’

’w’
pre−charged

weakest

medium strength

strongest

’H’’L’

’W’

’X’

Figure 2.67. Partial order for value set{’0’, ’1’, ’Z’, ’X’, ’H’, ’L’, ’W’, ’h’, ’l’, ’w’}

Five signal strengths

So far, we have ignored power supply signals. These are stronger than the
strongest signals we have considered so far. Signal value sets taking power
supply signals into account have resulted in the definition of 46-valued value
sets [Coelho, 1989]. However, such models are not very popular.

IEEE 1164

In VHDL, there is no predefined number of signal values, except for some
basic support for two-valued logic. Instead, the used value sets can bedefined
in VHDL itself and different VHDL models can use different value sets.

However, portability of models would suffer in a very severe manner if this
capability of VHDL was applied in this way. In order to simplify exchanging
VHDL models, a standard value set was defined and standardized by the IEEE.
This standard is called IEEE 1164 and is employed in many system models.
IEEE 1164 has nine values:{’0’, ’1’, ’L’, ’H’, ’X’, ’W’, ’Z’, ’U’, ’-’}. The first seven
values correspond to the seven signal values described above.’U’ denotes an
uninitialized value. It is used by simulators for signals that have not been
explicitly defined.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 87

’-’ denotes theinput don’t care . This value needs some explanation. Fre-
quently, hardware description languages are used for describing Boolean func-
tions. The VHDLselect statement is a very convenient means for doing that.
Theselect statement corresponds toswitch andcase statements found in other
languages and its meaning is different from theselect statement in ADA (see
page 102).

Example: Suppose that we would like to represent the Boolean function

f (a,b,c) = ab+bc

Furthermore, suppose thatf should be undefined for the case ofa= b= c=’0’.
A very convenient way of specifying this function would be the following:

f <= select a & b & c -- & denotes concatenation

’1’ when "10-" -- corresponds to first term

’1’ when "-11" -- corresponds to second term

’X’ when "000"

This way, functions given above could be easily translated into VHDL. Unfor-
tunately, theselect statement denotes something completely different. Since
IEEE 1164 is just one of a large number of possible value sets, it does not
include any knowledge about the “meaning” of’-’. Whenever VHDL tools
evaluate select statements such as the one above, they check if the selecting
expression (a & b & c in the case above) is equal to the values in thewhen
clauses. In particular, they check if e.g.a & b & c is equal to"10-". In this
context,’-’ behaves like any other value: VHDL systems check ifc has a value
of ’-’. Since’-’ is never assigned to any of the variables, these tests will never
be true. Therefore, ’-’ is of limited benefit. The non-availability of convenient
input don’t care values is the price that one has to pay for the flexibility of
defining value sets in VHDL itself14.

The nice property of the general discussion on pages 81 to 86 is the following:
it allows us to immediately draw conclusions about the modeling power of
IEEE 1164. The IEEE standard is based on the 7-valued value set described
on page 84 and, therefore, is capable of modeling circuits containing depletion
transistors. It is, however, not capable of modeling charge storage15.

14This problem was corrected in VHDL 2006 [Lewis et al., 2007].
15As an exception, if the capability of modeling depletion transistors or pull-up resistors is not needed, one
could interpret weak values as stored charges. This is, however, not very practical since pull-up resistors
are found in most actual systems.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

88 EMBEDDED SYSTEM DESIGN

2.7.1.4 VHDL processes and assignments

VHDL treats components described above as processes. The syntax used
above is just a shorthand for processes. The general syntax for processes is
as follows:

label : -- optional

process

declarations-- optional

begin

statements-- optional

end process ;

Assignments are special cases of statements. In VHDL, there are two kindsof
assignments:

Variable assignments: The syntax of variable assignments is

variable:= expression

Whenever control reaches such an assignment, the expression is computed
and assigned to the variable. Such assignments behave like assignments in
common programming languages.

Signal assignments: Signals and signal assignments are introduced in an
attempt to model electrical signals in real hardware systems. Signals asso-
ciate values with instances in time. In VHDL, such a mapping from time to
values is represented bywaveforms. Waveforms are computed from signal
assignments. The syntax of signal assignments is

signal<= expression;

signal<= transport expressionafter delay;

signal<= expressionafter delay;

signal<= reject time inertial expressionafter delay;

Whenever control reaches such an assignment, the expression is computed
and used to extend predicted future values of the waveform. In order to
compute future values,simulators are assumed to include a queue of
events to happen later than the current simulated time. This queue is
sorted by the time, at which future events (e.g. updates of signals) should
happen. Executing a signal assignment results in the creation of entries in
this queue. Each entry contains a time for executing the event, the affected
signal and the value to be assigned. For signal assignments not containing
any after clause (first syntactical form), the entry will contain the current

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 89

simulation time as the time at which this assignment has to be performed.
In this case, the change will take place after an infinitesimally small amount
of time, calledδ-delay (see below). This allows us to update signals without
changing macroscopic time.

For signal assignments containing atransport prefix (second syntactical
form), the update of the signal will be delayed by the specified amount.
This form of the assignment is following the so-calledtransport delay
model. This model is based on the behavior of simple wires: wires are (as a
first order of approximation) delaying signals. Even short pulses propagate
along wires. The transport delay model can be used for logic circuits, even
though its main application is to model wires. Suppose that we model a
simple or-gate using a transport delay signal assignment:

c <= transport a or b after 10 ns;

Such a model would propagate even short pulses (see fig. 2.68).

a

10 20 30 40 50 60 70 80 t [ns]

Pulse of 5 ns

c

b

Figure 2.68. Gate modeled with transport delay

Transport delay signal assignments will delete all entries in the queue cor-
responding to the time of the computed update or later times (if we first
execute an assignment with a rather large delay and then execute an assign-
ment with a smaller delay, then the entry resulting from the first assignment
will be deleted).

For signal assignments containing anafter clause, but notransport clause,
inertial delay is assumed. The inertial delay model reflects the fact that
real circuits come with some “inertia”. This means that short spikes will
be suppressed. For the third syntactical form of the signal assignment, all
signals changes which are shorter than the specified delay are suppressed.
For the fourth form, all signal changes which are shorter than the indicated
amount are removed from the predicted waveform. Suppose that we model
a simple or-gate using inertial delay:

c <= a or b after 10 ns;

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

90 EMBEDDED SYSTEM DESIGN

a

10 20 30 40 50 60 70 80 [ns]t

No pulse of 5 ns

c

b

Figure 2.69. Gate modeled with inertial delay

For such a model, short spikes would be suppressed (see fig. 2.69).

The implementation of inertial delay relies on the removal of entries in the
predicted waveform. The subtle rules for removals are not repeated here.

In addition to assignments, processes may containwait statements. Such state-
ments can be used to suspend a process. There are the following kinds ofwait
statements:

wait on signal list; suspend until one of the signals in the list changes;

wait until condition; suspend untilconditionis met, e.g.a = ’1’;

wait for duration; suspend for a specified period of time;

wait ; suspend indefinitely.

As an alternative to explicitwait statements, a list of signals can be added to
the process header. In that case, the process is activated wheneverone of the
signals in that list changes its value. Example: The following model of an and-
gate will execute its body once and will restart from the beginning every time
one of the inputs changes its value:

process (x, y) begin

prod <= x AND y ;

end process ;

This model is equivalent to

process begin

prod <= x AND y ;

wait on x,y;

end process ;

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 91

2.7.1.5 The VHDL simulation cycle

According to the original standards document [IEEE, 1997], the execution of a
VHDL model is described as follows:“The execution of a model consists of an
initialization phasefollowed by therepetitive execution of process statements
in the description of that model. Each such repetition is said to be asimulation
cycle. In each cycle, the values of all signals in the description are computed.
If as a result of this computation an event occurs on a given signal, process
statements that are sensitive to that signal will resume and will be executed as
part of the simulation cycle.”

The initialization phase takes signal initializations into account and executes
each process once. It is described in the standards as follows16:

“At the beginning of initialization, the current time, Tc is assumed to be 0 ns.
The initialization phase consists of the following steps:17

The driving value and the effective value of each explicitly declared signal
are computed, and the current value of the signal is set to the effective
value. This value is assumed to have been the value of the signal for an
infinite length of time prior to the start of the simulation. ...

Each ... process in the model is executed until it suspends. ...

The time of the next simulation cycle (which in this case is the first simula-
tion cycle), Tn is calculated according to the rules of step f of the simulation
cycle, below.”

Each simulation cycle starts with setting the current time to the next time at
which changes must be considered. This timeTn was either computed during
the initialization or during the last execution of the simulation cycle. Simu-
lation terminates when the current time reaches its maximum,TIME′HIGH.
According to the original document, the simulation cycle is described as fol-
lows: “A simulation cycle consists of the following steps:

a) The current time, Tc is set equal to Tn. Simulation is complete when Tn =
TIME′HIGH and there are no active drivers or process resumptions at Tn.

b) Each active explicit signal in the model is updated. (Events may occur as a
result.)” ...

16We leave out the discussion of implicitly declared signals and so-called postponed processes introduced
in the 1997 version of VHDL.
17In order not to get lost in the amount of details provided by thestandard, some of its sections (indicated
by “...”) are omitted in the citation.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

92 EMBEDDED SYSTEM DESIGN

This phrase from the document refers to the fact that in the cycle preceding
the current cycle, new future values for some of the signals have been com-
puted. IfTc corresponds to the time at which these values become valid,
they are now assigned. Note that new values of signals are never immedi-
ately assigned while executing a simulation cycle. They are not assigned
before the next simulation cycle, at the earliest. Signals that change their
value generate so-called events which, in-turn, may enable the execution of
processes that are sensitive to that signal.

c) “For each process P, if P is currently sensitive to a signal S and if an event
has occurred on S in this simulation cycle, then P resumes.

d) Each ... process that has resumed in the current simulation cycle is executed
until it suspends.

e) The time of the next simulation cycle, Tn is determined by setting it to the
earliest of

1 TIME’HIGH (This is the end of simulation time).

2 The next time at which a driver becomes active(this is the next instance
in time, at which a driver specifies a new value),or

3 The next time at which a process resumes(this time is determined by
wait for statements).

If Tn = Tc, then the next simulation cycle (if any) will be a delta cycle.”

The iterative nature of simulation cycles is shown in fig. 2.70.

Evaluate processesAssign new values to signals

Future values for signal drivers

Activate all processes sensitive to signal changes

Start of simulation

Figure 2.70. VHDL simulation cycles

Delta (δ) simulation cycles have been the source of many discussions. Their
purpose is to introduce a infinitesimally small delay even in cases in which the
user did not specify any. As an example, we will show the effect of thesecycles
using a flip-flop as an example. Fig. 2.71 shows the schematic of the flip-flop.

The flip-flop is modeled in VHDL as follows:

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 93

>1

>1 nQ

Q
R

S

Figure 2.71. RS-Flipflop

entity RS Flipflop is

port (R: in BIT; -- reset

S: in BIT; -- set

Q: inout BIT; -- output

nQ: inout BIT; -- Q-bar

);

end RS Flipflop;

architecture one of RS Flipflop is

begin

process : (R,S,Q,nQ)

begin

Q <= R nor nQ;

nQ <= S nor Q;

end process ;

end one;

PortsQ andnQ must be of modeinout since they are also read internally, which
would not be possible if they were of modeout. Fig. 2.72 shows the simulation
times at which signals are updated for this model. During each cycle, updates
are propagated through one of the gates. Simulation terminates after threeδ
cycles. The last cycle does not change anything, sinceQ is already 0.

< 0ns 0ns 0ns+δ 0ns+2∗δ 0ns+3∗δ
R 0 1 1 1 1
S 0 0 0 0 0
Q 1 1 0 0 0

nQ 0 0 0 1 1

Figure 2.72. δ cycles for RS-flip-flop

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

94 EMBEDDED SYSTEM DESIGN

δ cycles correspond to an infinitesimally small unit of time, which will always
exist in reality.δ cycles ensure that simulation respects causality.

The results do not depend on the order in which parts of the model are exe-
cuted by the simulation. This feature is enabled by the separation between the
computation of new values for signals and their actual assignment. In a model
containing the lines

a <= b;

b <= a;

signalsa andb will always be swapped. If the assignments were performed
immediately, the result would depend on the order in which we execute the as-
signments (see also page 46).VHDL models are therefore determinate. This
is what we expect from the simulation of a real circuit with a fixed behavior.

There can be arbitrarily manyδ cycles before the current timeTc is advanced.
This possibility of infinite loops can be confusing. One of the options of avoid-
ing this possibility would be to disallow zero delays, which we used in our
model of the flip-flop.

The propagation of values using signals also allows an easy implementation
of the observer pattern (see page 25). In contrast to SDF, the number of ob-
servers can vary, depending on the number of processes waiting for changes
on a signal.

What is the communication model behind VHDL? The description of the se-
mantics of VHDL relies heavily on asingle, centralizedqueue of future events,
storing values of all signals in the future. The purpose of this queue isnot to
implement asynchronous message passing. Rather, this queue is supposed to
be accessed by the simulation kernel, one entry at a time, in a non-distributed
fashion. Attempts to perform distributed VHDL simulations are typically suf-
fering from a poor performance. All modeled components can access values
of signals and variables which are in their scope without any message-based
communication. Therefore, we tend towards associating VHDL with a shared
memory based implementation of the communication. However, FIFO-based
message passing could be implemented in VHDL on top of the VHDL simula-
tor as well.

2.7.2 SystemC

Due to the trend of implementing more and more functionality in software,
a growing number of embedded systems includes a mixture of hardware and
software. Most of the embedded system software is specified in C. For exam-
ple, embedded systems implement standards such as MPEG 1/2/4 or decoders
for mobile phone standards such as GSM or UMTS. The standards are fre-

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 95

quently available in the form of “reference implementations”, consisting of
C programs not optimized for speed but providing the required functional-
ity. The disadvantage of design methodologies based on VHDL or Verilog is
the fact that these standards must be rewritten in order to generate hardware.
Furthermore, simulating hardware and software together requires interfacing
software and hardware simulators. Typically, this involves a loss of simulation
efficiency and inconsistent user interfaces. Also, designers must learn several
languages.

Therefore, there has been a search for techniques for representing hardware
structures in software languages. Some fundamental problems must be solved
before hardware can be modeled with software languages:

Concurrency, as it is found in hardware, has to be modeled in software.

There has to be a representation for simulationtime.

Multiple-valued logic and resolution as described earlier must be sup-
ported.

Thedeterminate behaviorof almost all useful hardware circuits must be
guaranteed.

SystemCTM [SystemC, 2010], [Open SystemC Initiative, 2005] is a C++ class
library designed to solve these problems. With SystemC, specifications can be
written in C or C++, making appropriate references to the class libraries.

SystemC comprises a notion of processes executed concurrently. Simulation
semantics are similar to VHDL, including the presence of delta cycles. The
execution of these processes is controlled via sensitivity lists and calls towait
primitives. The sensitivity list concept of VHDL has been extended to also
include dynamic sensitivity lists.

SystemC includes a model of time. Earlier SystemC 1.0 used floating point
numbers to denote time. In the current standard, an integer model of time is
preferred. SystemC also supports physical units such as picoseconds, nanosec-
onds, microseconds etc.

SystemC data types include all common hardware types: four-valued logic (’0’,
’1’, ’X’ and’Z’) and bitvectors of different lengths are supported. Writing digital
signal processing applications is simplified due to the availability of fixed-point
data types.

Determinate behavior (see page 47) is not guaranteed in general, unlessa cer-
tain modeling style is used. Using a command line option, the simulator can
be directed to run processes in different orders. This way, the user can check
if the simulation results depend on the sequence in which the processes are

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

96 EMBEDDED SYSTEM DESIGN

executed. However, for models of realistic complexity, only the presence of
non-determinate behavior can be proved, not its absence.

Reusing hardware components in different contexts is simplified by the sepa-
ration of computation and communication. SystemC provides channels, ports
and interfaces as abstract components for communication. The introductionof
these mechanisms facilitate so-called transaction-level modeling, as defined by
Grötker et al. [Gr̈otker et al., 2002]:

Definition: “Transaction-level modeling(TLM) is a high-level approach to
modeling digital systems where details of communication among modules are
separated from the details of the implementation of functional units or of the
communication architecture. Communication mechanisms such as buses or FI-
FOs are modeled as channels, and are presented to modules using SystemC in-
terface classes. Transaction requests take place by calling interface functions
of these channel models, which encapsulate low-level details of the information
exchange. At the transaction level, the emphasis is more on the functionality
of the data transfers - what data are transferred to and from what locations-
and less on their actual implementation, that is, on the actual protocol used
for data transfer. This approach makes it easier for the system-level designer
to experiment, for example, with different bus architectures (all supporting a
common abstract interface) without having to recode models that interactwith
any of the buses, provided these models interact with the bus through the com-
mon interface.”

SystemC has the potential for replacing existing VHDL-based design flows.
Hardware synthesis starting from SystemC has become available [Herreraet al.,
2003a], [Herrera et al., 2003b]. Methodology and applications for SystemC-
based design are described in a book on that topic [Müller et al., 2003]. Sys-
temC has been standardized as IEEE standard 1666-2005 [Open SystemCIni-
tiative, 2005].

2.7.3 Verilog and SystemVerilog

Verilog is another hardware description language. Initially it was a propri-
etary language, but it was later standardized as IEEE standard 1364, with ver-
sions called IEEE standard 1364-1995 (Verilog version 1.0) and IEEE standard
1364-2001 (Verilog 2.0). Some features of Verilog are quite similar to VHDL.
Just like in VHDL, designs are described as a set of connected design entities,
and design entities can be described behaviorally. Also, processes areused
to model concurrency of hardware components. Just like in VHDL, bitvec-
tors and time units are supported. There are, however, some areas in which
Verilog is less flexible and focuses more on comfortable built-in features. For
example, standard Verilog does not include the flexible mechanisms for defin-

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 97

ing enumerated types such as the ones defined in the IEEE 1164 standard.
However, support for four-valued logic is built into the Verilog language, and
the standard IEEE 1364 also provides multiple valued logic with 8 different
signal strengths. Multiple-valued logic is more tightly integrated into Verilog
than into VHDL. The Verilog logic system also provides more features for
transistor-level descriptions. However, VHDL is more flexible. For example,
VHDL allows hardware entities to be instantiated in loops. This can be used to
generate a structural description for, e.g.n-bit adders without having to specify
n adders and their interconnections manually.

Verilog has a similar number of users as VHDL. While VHDL is more popular
in Europe, Verilog is more popular in the US.

Verilog versions 3.0 and 3.1 are also known as SystemVerilog. They include
numerous extensions to Verilog 2.0. These extensions include [Accellera Inc.,
2003], [Sutherland, 2003]:

additional language elements for modeling behavior,

C data types such asint and type definition facilities such astypedef and
struct,

definition of interfaces of hardware components as separate entities,

standardized mechanism for calling C/C++ functions and, to some extend,
to call built-in Verilog functions from C,

significantly enhanced features for describing an environment (called test-
bench) for the hardware under design (called CUD), and for using thetest-
bench to verify the CUD by simulation,

classes known from object-oriented programming for use within testben-
ches,

dynamic process creation,

standardized interprocess communication and synchronization, including
semaphores,

automatic memory allocation and deallocation,

language features that provide a standardized interface to formal verifica-
tion (see page 201).

Due to the capability of interfacing with C and C++, interfacing to SystemC
models is also possible. Improved facilities for simulation- as well as for for-
mal verification-based design validation and the possible interfacing to Sys-
temC will potentially create a very good acceptance. Recently, Verilog and

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

98 EMBEDDED SYSTEM DESIGN

SystemVerilog have been merged into one standard, IEEE 1800-2009 [IEEE,
2009].

2.7.4 SpecC

The SpecC language [Gajski et al., 2000] is based on the clear separation be-
tween communication and computation that should be used for modeling em-
bedded systems. This separation paves the way for re-using componentsin
different contexts and enablesplug-and-playfor system components. SpecC
models systems as hierarchical networks of behaviors communicating through
channels. SpecC descriptions consist of behaviors, channels and interfaces.
Behaviors include ports, locally instantiated components, private variablesand
functions and a publicmain function. Channels encapsulate communication.
They include variables and functions, which are used for the definition ofa
communication protocol. Interfaces are linking behaviors and channels to-
gether. They declare the communication protocols which are defined in a chan-
nel.

SpecC can model hierarchies with nested behaviors. Fig. 2.73 [Gajski etal.,
2000] shows a componentB including sub-componentsb1 andb2.

c2L R

c1

p1 p2 p3p1 p2 p3

b1 b2

p2p1B

Figure 2.73. Structural hierarchy of SpecC example

The sub-components are communicating through integerc1 and through chan-
nelc2. The structural hierarchy includesb1 andb2 as the leaves.b1 andb2 are
executed concurrently, denoted by the keywordpar in SpecC. This structural
hierarchy is described in the following SpecC model.

interface L {void Write(int x); };

interface R {int Read(void); };

channel C implements L,R

{int Data; bool Valid;

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 99

void Write(int x) {Data=x; Valid=true;}

int Read (void)

{while (!Valid) waitfor (10); return (Data);} }

behavior B1(in int p1, L p2, in int p3)

{void main (void) {/* ...*/ p2.Write(p1);} };

behavior B2 (out int p1, R p2, out int p3)

{void main(void) {/*...*/ p3=p2.Read(); } };

behavior B(in int p1, out int p2)

{int c1; C c2; B1 b1(p1, c2, c1); B2 b2(c1, c2, p2);

void main (void)

{par {b1.main(); b2.main();}}

};

Note that the interface protocol implemented in channelC, consisting of meth-
ods for read and write operations, can be changed without changing behaviors
B1 andB2. For example, communication can be bit-serial or parallel and the
choice does not affect the models ofB1 andB2. This is a necessary feature for
IP-reuse.

In order to simplify designs containing software and hardware components, the
syntax of SpecC is based on C and C++. In fact, SpecC models are translated
into C++ for simulation.

At the specification level, SpecC can model any kind of communication and
typically uses message passing. The implementation of simulators is neverthe-
less typically based on a non-distributed system. The communication model of
SpecC has inspired communication in SystemC 2.0.

2.8 Von-Neumann languages

The sequential execution of von-Neumann languages is their common char-
acteristic. Also, such languages allow an almost unrestricted access to global
variables. Model-based design using CFSMs and computational graphs isvery
appropriate for embedded system design. Nevertheless, the use of standard
von-Neumann languages is still widespread. Therefore, we cannot ignore these
languages.

However, the distinction between KPNs and properly restricted von-Neumann
languages is blurring. For KPNs, we do also have sequential execution of the
code for each of the nodes. We are still keeping the distinction between KPN
and von-Neumann languages since for KPNs, the emphasis of modeling is on

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

100 EMBEDDED SYSTEM DESIGN

the communication and details of the execution within the nodes are irrelevant.
For the first two languages covered in this section, communication is still built
into the languages, whereas for the remaining languages, focus is on the com-
putations and communication can be replaced by selecting different libraries.

2.8.1 CSP

CSP (communicating sequential processes) [Hoare, 1985] is one of the first
languages comprising mechanisms for interprocess communication. Commu-
nication is based on channels.

Example:
process A process B

.....

var a .. var b ...

a := 3; ...

c!a; -- output to channel c c?b; -- input from channel c

end ; end ;

Both processes will wait for the other process to arrive at the input or output
statement. This is a case ofrendez-vous-based orblocking communication.

CSP is determinate, since it relies on the commitment to wait for input from a
particular channel, like in Kahn process networks.

CSP has laid the foundation for the OCCAM language that was proposed as
a programming language of thetransputer [Thiébaut, 1995]. The focus on
communication channels has been picked up again in the design of the XS1
processor [XMOS Ltd., 2010].

2.8.2 ADA

During the eighties of the last century, the Department of Defense (DoD) in
the US realized that the dependability and maintainability of the software in
its military equipment could soon become a major source of problems, un-
less some strict policy was enforced. It was decided that all software should be
written in the same real-time language. Requirements for such a language were
formulated. No existing language met the requirements and, consequently, the
design of a new one was started. The language which was finally acceptedwas
based on PASCAL. It was called ADA (after Ada Lovelace, who can be con-
sidered being the first (female) programmer). ADA’95 [Kempe, 1995], [Burns
and Wellings, 2001] is an object-oriented extension of the original standard.

One of the interesting features of ADA is the ability to have nested declara-
tions of processes (called tasks in ADA). Tasks are started whenever control

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 101

passes into the scope in which they are declared. The following is an example
(according to Burns et al. [Burns and Wellings, 1990]):

procedure example1 is

task a;

task b;

task body a is

-- local declarations for a

begin

-- statements for a

end a;

task body b is

-- local declarations for b

begin

-- statements for b

end b;

begin

-- Tasks a and b will start before the 1st statement of example1

end ;

The communication concept of ADA is another key concept. It is based on
therendez-vousparadigm. Whenever two tasks want to exchange information,
the task reaching the “meeting point” first has to wait until its partner has also
reached a corresponding point of control. Syntactically, proceduresare used
for describing communication. Procedures which can be called from other
tasks must be identified by the keywordentry. Example [Burns and Wellings,
1990]:

task screen out is

entry call (val : character; x, y : integer);

end screen out;

Task screen out includes a procedure namedcall which can be called from
other processes. Some other task can call this procedure by prefixing itwith
the name of the task:

screen out.call(’Z’,10,20);

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

102 EMBEDDED SYSTEM DESIGN

The calling task has to wait until the called task has reached a point of control,
at which it accepts calls from other tasks. This point of control is indicatedby
the keywordaccept:

task body screen out is

...

begin

accept call (val : character; x, y : integer) do

...

end call;

...

end screen out;

Obviously, taskscreen out may be waiting for several calls at the same time.
The ADA select -statement provides this capability. Example:

task screen output is

entry call ch(val:character; x, y: integer);

entry call int(z, x, y: integer);

end screen out;

task body screen output is

...

select

accept call ch ... do ...

end call ch;

or

accept call int ... do ..

end call int;

end select ; ...

In this case, taskscreen out will be waiting until eithercall ch or call int are
called.

Due to the presence of theselect-statement, ADA is not determinate. ADA
has been the preferred language for military equipment produced in the West-
ern hemisphere for some time. Recently produced information about ADA is
available from a web sites (see, for example [Kempe Software Capital Enter-
prises (KSCE), 2010]).

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 103

2.8.3 Java

For Java, communication can be selected by choosing between different li-
braries. Computation is strictly sequential.

Java was designed as a platform-independent language. It can be executed
on any machine for which an interpreter of the internal byte-code represen-
tation of Java-programs is available. This byte-code representation is a very
compact representation, which requires less memory space than a standard bi-
nary machine code representation. Obviously, this is a potential advantagein
system-on-a-chip applications, where memory space is limited.

Also, Java was designed as a safe language. Many potentially dangerous fea-
tures of C or C++ (like pointer arithmetic) are not available in Java. Hence,
Java meets the safety requirements for specification languages for embedded
systems. Java supports exception handling, simplifying recovery in case of
run-time errors. There is no danger of memory leakages due to missing mem-
ory deallocation, since Java provides automatic garbage collection. This fea-
ture avoids potential problems in applications that must run for months or even
years without ever being restarted. Java also meets the requirement to support
concurrency since it includes threads (light-weight processes).

In addition, Java applications can be implemented quite fast, since Java sup-
ports object orientation and since Java development systems come with pow-
erful libraries.

However, standard Java is not really designed for real-time systems and anum-
ber of characteristics which would make it a real-time programming language
are missing:

The size of Java run-time libraries has to be added to the size of the ap-
plication itself. These run-time libraries can be quite large. Consequently,
only really large applications benefit from the compact representation of
the application itself.

For many embedded applications, direct control over I/O devices is neces-
sary (see page 24). For safety reasons, no direct control over I/Odevices is
available in standard Java.

Automatic garbage collection requires some computing time. In standard
Java, the instance in time at which automatic garbage collection is started
cannot be predicted. Hence, the worst case execution time is very difficult
to predict. Only extremely conservative estimates can be made.

Java does not specify the order in which threads are executed if several
threads are ready to run. As a result, worst-case execution time estimates
must be even more conservative.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

104 EMBEDDED SYSTEM DESIGN

Proposals for solving the problems were made by Nilsen [Nilsen, 1998]. Pro-
posals include hardware-supported garbage-collection, replacementof the run-
time scheduler and tagging of some of the memory segments.

Currently (in 2010) relevant Java programming environments include the Java
Enterprise Edition (J2EE), the Java Standard Edition (J2SE), the Java Micro
Edition (J2ME), and CardJava [Sun, 2010]. CardJava is a stripped-down ver-
sion of Java with emphasis on security for SmartCard applications. J2ME is
the relevant Java environment for all other types of embedded systems. Two
library profiles have been defined for J2ME: CDC and CLDC. CLDC is used
for mobile phones, using the so-called MIDP 1.0/2.0 as its standard for the ap-
plication programming interface (API). CDC is used, for example, for TV sets
and powerful mobile phones. Currently relevant sources for Java real-time pro-
gramming include book by Wellings [Wellings, 2004], Dibble [Dibble, 2008]
and Bruno [Bruno and Bollella, 2009] as well as web sites [Java Community
Process, 2002] and [Anonymous, 2010b].

2.8.4 Pearl and Chill

Pearl [Deutsches Institut für Normung, 1997] was designed for industrial con-
trol applications. It does include a large repertoire of language elements for
controlling processes and referring to time. It requires an underlying real-
time operating system. Pearl has been very popular in Europe and a large
number of industrial control projects has been implemented in Pearl. Pearl
supports semaphores which can be used to protect communication based on
shared buffers.

Chill [Winkler, 2002] was designed for telephone exchange stations. Itwas
standardized by the CCITT and used in telecommunication equipment. Chill
is a kind of extended PASCAL.

2.8.5 Communication libraries

Standard von-Neumann languages do not come with built-in communication
primitives. However, communication can be provided by libraries. There is a
trend towards supporting communication within some local system as well as
communication over longer distances. The use of internet protocols is becom-
ing more popular. Libraries will be described in more detail in the section on
system software (see page 193).

2.9 Levels of hardware modeling

In practice, designers start design cycles at various levels of abstraction. In
some cases, these are high levels describing the overall behavior of the system

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 105

to be designed. In other cases, the design process starts with the specification
of electrical circuits at lower levels of abstraction. For each of the levels,a
variety of languages exists, and some languages cover various levels. In the
following, we will describe a set of possible levels. Some lower end levels
are presented here for context reasons. Specifications should not start at those
levels. The following is a list of frequently used names and attributes of levels:

System level models:The term system level is not clearly defined. It is
used here to denote the entire embedded system and the system into which
information processing is embedded (“the product”), and possibly also the
environment (the physical input to the system, reflecting e.g. the roads,
weather conditions etc.). Obviously, such models include mechanical as
well as information processing aspects and it may be difficult to find ap-
propriate simulators. Possible solutions include VHDL-AMS (the analog
extension to VHDL), SystemC or MATLAB. MATLAB and VHDL-AMS
support modeling partial differential equations, which is a key requirement
for modeling mechanical systems. It is a challenge to model information
processing parts of the system in such a way that the simulation model
can also be used for the synthesis of the embedded system. If this is not
possible, error-prone manual translations between different models maybe
needed.

Algorithmic level: At this level, we are simulating the algorithms that we
intend to use within the embedded system. For example, we might be sim-
ulating MPEG video encoding algorithms in order to evaluate the resulting
video quality. For such simulations, no reference is made to processors or
instruction sets.

Data types may still allow a higher precision than the final implementation.
For example, MPEG standards use double precision floating point numbers.
The final embedded system will hardly include such data types. If data
types have been selected such that every bit corresponds to exactly one bit
in the final implementation, the model is said to bebit-true . Translating
non-bit-true into bit-true models should be done with tool support (see page
284).

Models at this level may consist of single processes or of sets of cooperating
processes.

Instruction set level: In this case, algorithms have already been compiled
for the instruction set of the processor(s) to be used. Simulations at this
level allow counting the executed number of instructions. There are several
variations of the instruction set level:

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

106 EMBEDDED SYSTEM DESIGN

– In a coarse-grained model, only the effect of the instructions is sim-
ulated and their timing is not considered. The information available
in assembly reference manuals (instruction set architecture (ISA)) is
sufficient for defining such models.

– Transaction level modeling: In transaction level modeling, transac-
tions, such as bus reads and writes, and communication between differ-
ent components is modeled. Transaction level modeling includes less
details than cycle-true modeling (see below), enabling significantly su-
perior simulation speeds [Clouard et al., 2003].

– In a more fine-grained model, we might havecycle-true instruction
set simulation. In this case, the exact number of clock cycles required
to run an application can be computed. Defining cycle-true models re-
quires a detailed knowledge about processor hardware in order to cor-
rectly model, for example, pipeline stalls, resource hazards and mem-
ory wait cycles.

Register-transfer level (RTL): At this level, we model all the components
at the register-transfer level, including arithmetic/logic units (ALUs), regis-
ters, memories, muxes and decoders. Models at this level are always cycle-
true. Automatic synthesis from such models is not a major challenge.

Gate-level models:In this case, models contain gates as the basic compo-
nents. Gate-level models provide accurate information about signal tran-
sition probabilities and can therefore also be used for power estimations.
Also delay calculations can be more precise than for the RTL. However,
typically no information about the length of wires and hence no informa-
tion about capacitances is available. Hence, delay and power consumption
calculations are still estimates.

The term “gate-level model” is sometimes also employed in situations in
which gates are only used to denote Boolean functions. Gates in such a
model do not necessarily represent physical gates; we are only considering
the behavior of the gates, not the fact that they also represent physical com-
ponents. More precisely, such models should be called “Boolean function
models”18, but this term is not frequently used.

Switch-level models: Switch level models use switches (transistors) as
their basic components. Switch level models use digital values models
(refer to page 81 for a description of possible value sets). In contrastto
gate-level models, switch level models are capable of reflecting bidirec-
tional transfer of information.

18These models could be represented with binary decision diagrams (BDDs) [Wegener, 2000].

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 107

Circuit-level models: Circuit theory and its components (current and volt-
age sources, resistors, capacitances, inductances, and frequentlypossible
macro-models of semiconductors) form the basis of simulations at this
level. Simulations involve partial differential equations. These equations
are linear if and only if the behavior of semiconductors is linearized (ap-
proximated). The most frequently used simulator at this level is SPICE
[Vladimirescu, 1987] and its variants.

Layout models: Layout models reflect the actual circuit layout. Such mod-
els includegeometric information. Layout models cannot be simulated
directly, since the geometric information does not directly provide infor-
mation about the behavior. Behavior can be deduced by correlating the
layout model with a behavioral description at a higher level or by extract-
ing circuits from the layout, using knowledge about the representation of
circuit components at the layout level. In a typical design flow, the length of
wires and the corresponding capacitances are extracted from the layout and
back-annotatedto descriptions at higher levels. This way, more precision
can be gained for delay and power estimations.

Process and device models:At even lower levels, we can model fabri-
cation processes. Using information from such models, we can compute
parameters (gains, capacitances etc) for devices (transistors).

2.10 Comparison of models of computation

2.10.1 Criteria

Models of computation can be compared according to several criteria. For
example, Stuijk [Stuijk, 2007] compares MoCs according to the following cri-
teria:

Expressivenessandsuccinctnessindicate, which systems can be modeled
and how compact the are.

Analyzability relates to the availability of scheduling algorithms and the
need for run-time support.

The implementation efficiency is influenced by the required scheduling
policy and the code size.

Fig. 2.74 classifies data flow models according to these criteria.

This figure reflects the fact that Kahn process networks are expressive: they
are Turing-complete, meaning that any problem which can be computed on a
Turing machine can also be computed in a KPN. Turing machines are used

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

108 EMBEDDED SYSTEM DESIGN

Homogeneous SDF (HSDF)

Expressiveness and succinctness

Analyzability Implementation efficiency

Kahn process networks
SDF

Figure 2.74. Comparison between data flow models

as the standard model of universal computers [Herken, 1995]. However, ter-
mination properties and upper bounds on buffer sizes of KPNs are difficult to
analyze. SDF graphs, on the other hand, are not Turing-complete. Theun-
derlying reason is that they cannot model control flow. However, deadlock
properties and upper bounds on buffer sizes of SDF graphs are easier to ana-
lyze. Homogeneous SDF (HSDF) graphs (graphs for which all rates are equal
to one) are even less expressive, but also easier to analyze.

We could also compare MoCs with respect to the type of processes supported:

Thenumber of processescan be eitherstatic or dynamic. A static number
of processes simplifies the implementation and is sufficient if each process
models a piece of hardware and if we do not consider “hot-plugging” (dy-
namically changing the hardware architecture). Otherwise, dynamic pro-
cess creation (and death) should be supported.

Processes can either be staticallynestedor all declared at the same level.
For example, StateCharts allows nested process declarations while SDL
(see page 52) does not. Nesting provides encapsulation of concerns.

Different techniques forprocess creationexist. Process creation can result
from an elaboration of the process declaration in the source code, through
the fork and join mechanism (supported for example in Unix), and also
through explicit process creation calls.

The expressiveness of different data flow oriented models of computation is
also shown in fig. 2.75 [Basten, 2008]. MoCs not discussed in this book are
indicated by dashed lines.

Kahn process networks areTuring complete. This means that any computa-
tion which can be performed by a Turing machine can also be performed by

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 109

HSDF

KPN

CSDF

SDF

Figure 2.75. Expressiveness of data flow models

Kahn process networks. Turing machines are the standard referencefor evalu-
ating the computability in computer science. In contrast, cyclo-static data flow
(CSDF, see page 63) is not Turing complete.

None of the MoCs and languages presented so far meets all the requirements
for specification languages for embedded systems. Fig. 2.76 presents anover-
view over some of the key properties of some of the languages.

Behavioral Structural Programming Exceptions Dynamic
Hierarchy Hierarchy Language Supported Process

Language Elements Creation
StateCharts + - - + -
VHDL + + + - -
SpecCharts + - + + -
SDL +- +- +- - +
Petri nets - - - - +
Java + - + + +
SpecC + + + + +
SystemC + + + + +
ADA + - + + +

Figure 2.76. Language comparison

Interestingly, Spec and SystemC meet all listed requirements. However, some
other requirements (like a precise specification of deadlines etc) is not in-
cluded. It is not very likely that a single MoC or language will ever meet all
requirements, since some of the requirements are essentially conflicting. A lan-
guage supporting hard real-time requirements well may be inconvenient to use
for less strict real-time requirements. A language appropriate for distributed
control-dominated applications may be poor for local data-flow dominated ap-

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

110 EMBEDDED SYSTEM DESIGN

plications. Hence, we can expect that we will have to live with compromises
and possibly with mixed models.

Which compromises are actually used in practice? In practice, assembly lan-
guage programming was very common in the early years of embedded systems
programming. Programs were small enough to handle the complexity of prob-
lems in assembly languages. The next step is the use of C or derivatives ofC.
Due to the ever increasing complexity of embedded system software (see page
xi), higher level languages are to follow the introduction of C. Object oriented
languages and SDL are languages which provide the next level of abstraction.
Also, languages like UML are required to capture specifications at an early
design stage. In practice, these languages can be used like shown in fig.2.77.

VHDL

Net list

hardware

(RT−) UML or equivalent

SDL

C−programs

Assembly programs

Objectcode

(RT−) UML or equivalent

(RT−) Java

Objectcode

Figure 2.77. Using various languages in combination

According to fig. 2.77, languages like SDL or StateCharts can be translated
into C. These C descriptions are then compiled. Starting with SDL or State-
Chart also opens the way to implementing the functionality in hardware, if
translators from these languages to VHDL are provided. Both C and VHDL
will certainly survive as intermediate languages for many years. Java does not
need intermediate steps but does also benefit from good translation concepts to
assembly languages. In a similar way, translations between various graphsare
feasible. For example, SDF graphs can be translated into a subclass of Petri
nets [Stuijk, 2007]. Also, they correspond to a subclass of thecomputation
graph model proposed by Karp and Miller [Karp and Miller, 1966]. Linking
the various models of computation is facilitated by formal techniques [Chen
et al., 2007].

Several languages for embedded system design are covered in a bookedited
by M. Radetzki [Radetzki, 2009]. Popovici et al. [Popovici et al., 2010] use a
combination of Simulink and SystemC.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 111

2.10.2 UML

UMLTM is a language including diagrams reflecting several MoCs. Fig. 2.78
classifies the UML diagrams mentioned so far with respect to our table of
MoCs.

Communication/ Shared memory Message passing
Components synchronous asynchronous

Undefined components Use cases
Sequence charts, timing diagrams

Finite state machines State diagrams - -
Data flow (not useful) Data flow diagrams
Petri nets (not useful) Activity charts
Distributed event model - -
Von-Neumann model - -

Figure 2.78. Models of computation available in UML

This figure shows how UML covers several models of computation, with a
focus on early design phases. Semantics of communication is typically impre-
cisely defined. Therefore, our classification cannot be precise in this respect.
In addition to the diagrams already mentioned, the following diagrams can be
modeled:

Deployment diagrams: These diagrams are important for embedded sys-
tems: they describe the “execution architecture” of systems (hardware or
software nodes).

Package diagrams: Package diagrams represent the partitioning of soft-
ware into software packages. They are similar to module charts in State-
Mate.

Class diagrams: These diagrams describe inheritance relations of object
classes.

Communication diagram (calledCollaboration diagrams in UML 1.x):
These graphs represent classes, relations between classes, and messages
that are exchanged between them.

Component diagrams: They represent the components used in applica-
tions or systems.

Object diagrams, interaction overview diagrams, composite structure
diagrams: This list consists of three types of diagrams which are less fre-
quently used. Some of them may actually be special cases of other types of
diagrams.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

112 EMBEDDED SYSTEM DESIGN

Available tools provide some consistency checking between the different dia-
gram types. Complete checking, however, seems to be impossible. One reason
for this is that the semantics of UML initially was left undefined. It has been
argued that this was done intentionally, since one does not like to bother about
the precise semantics during the early phases of the design. As a consequence,
precise, executable specifications can only be obtained if UML is combined
with some other, executable language. Available design tools have combined
UML with SDL [IBM, 2009] and C++. There are, however, also some first
attempts to define the semantics of UML.

Version 1.4 of UML was not designed for embedded systems. Therefore, it
lacks a number of features required for modeling embedded systems (see page
19). In particular, the following features are missing [McLaughlin and Moore,
1998]:

the partitioning of software into tasks and processes cannot be modeled,

timing behavior cannot be described at all,

the presence of essential hardware components cannot be described.

Due to the increasing amount of software in embedded systems, UML is gain-
ing importance for embedded systems as well. Hence, several proposals for
UML extensions to support real-time applications have been made [McLaugh-
lin and Moore, 1998], [Douglass, 2000]. These extensions have been consid-
ered during the design of UML 2.0. UML 2.0 includes 13 diagram types (up
from nine in UML 1.4) [Ambler, 2003]. Special profiles are taking the require-
ments of real-time systems into account [Martin and Müller, 2005], [Müller,
2007]. Profiles include class diagrams with constraints, icons, diagram sym-
bols, and some (partial) semantics. There are UML profiles for [Müller, 2007]:

Schedulability, Performance, and Time Specification (SPT) [Object Man-
agement Group (OMG), 2005b],

Testing [Object Management Group (OMG), 2010a],

Quality of Service (QoS) and Fault Tolerance [Object Management Group
(OMG), 2010a],

a Systems Modeling Language called SysML [Object Management Group
(OMG), 2008],

Modeling and Analysis of Real-Time Embedded Systems (MARTE), [Ob-
ject Management Group (OMG), 2009]

UML and SystemC interoperability [Riccobene et al., 2005],

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 113

The SPRINT profile for reuse of intellectual property (IP) [Sprint Consor-
tium, 2008].

Using such profiles, we can -for example- attach timing information to se-
quence charts. However, profiles may be incompatible. Also, UML has been
designed for modeling and frequently leaves too many semantical issues open
to allow automatic synthesis of implementations [Müller, 2007].

2.10.3 Ptolemy II

The Ptolemy project [Davis et al., 2001] focuses on modeling, simulation, and
design of heterogeneous systems. Emphasis is on embedded systems that mix
different technologies and, accordingly, also MoCs. For example, analog and
digital electronics, hardware and software, and electrical and mechanical de-
vices can be described. Ptolemy supports different types of applications, in-
cluding signal processing, control applications, sequential decision making,
and user interfaces. Special attention is paid to the generation of embedded
software. The idea is to generate this software from the MoC which is most
appropriate for a certain application. Version 2 of Ptolemy (Ptolemy II) sup-
ports the following MoCs and corresponding domains (see also page 31):

1 Communicating sequential processes (CSP).

2 Continuous time (CT): This model is appropriate for mechanical systems
and analog circuits. It is supported through a set of extensible differential
equation solvers.

3 Discrete event model (DE): this is the model used by many simulators, e.g.
VHDL simulators.

4 Distributed discrete events (DDE). Discrete event systems are difficult to
simulate in parallel, due to the inherent centralized queue of future events.
Attempts to distribute this data structure have not been very successful so
far. Therefore, this special (experimental) domain is introduced. Semantics
can be defined such that distributed simulation becomes more efficient than
in the DE model.

5 Finite state machines (FSM).

6 Process networks (PN), using Kahn process networks (see page 59).

7 Synchronous dataflow (SDF).

8 Synchronous/reactive (SR) MoC. This model uses discrete time, but signals
do not need to have a value at every clock tick. Esterel (see page 51) isa
language following this style of modeling.

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

114 EMBEDDED SYSTEM DESIGN

This list clearly shows the focus on different models of computation in the
Ptolemy project.

2.11 Assignments

1 Prepare a list of up to 6 requirements for specification languages for em-
bedded systems!

2 Suppose the StateCharts in fig. 2.79 model is given.

H

T

a b

c

d
f

e

Z

X

Y

R SH

Q

P

gh

M N

Figure 2.79. StateCharts example

Also, suppose that we have the following sequence of input events:b c f h
g h e a b c. In the diagram in fig. 2.80, mark all the states the StateCharts
model will be in after a particular input has been applied! Note thatH
denotes the history mechanism.

M N P Q R S T X Y Z
(Reset) v
b
c
f
h
g
h
e
a
b
c

Figure 2.80. States of the StateCharts example

3 Are StateCharts determinate models if we follow the StateMate semantics?
Please explain your answer!

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

Specifications and Modeling 115

4 Which three types of Petri nets did we discuss in this book?

5 One of the types of Petri nets allows several non-distinguishable tokensper
place. Which components are used in a mathematical model of such nets?
Hint: N=(P,)

6 How does a compact model of the dining philosopher’s problem look like?

7 CSA theory leads to 2, 3 and 4 logic strengths, corresponding to 4, 7 and10
logic values. How many strengths and values are we using in IEEE 1164?
Please show the partial order among the values of IEEE 1164 in a diagram!
Which of the values of IEEE 1164 are not included in the partial order and
what is the meaning of these values?

8 Which of the following circuits can be modeled with IEEE 1164: comple-
mentary CMOS outputs, outputs with a depletion transistor, open collector
outputs, tristate outputs, pre-charging on buses (if depletion transistors are
used as well)?

9 Suppose that a bus as shown in fig. 2.81 is given. Rectangles containingan
&-sign denote AND-gates.

2

enaena

VDD

GROUND

PD2

PU2PU1

PD1

&

&

&

&

bus

f 1

f

1

1

f

f

2

2

Figure 2.81. Bus driven by tri-state outputs

Which of the IEEE 1164 values will be on the bus if both enable inputs are
set to ’0’ (ena1 = ena2=’0’)? Which of the IEEE 1164 values will be on
the bus ifena1=’0’, ena2=’1’ and f 2=’1’?

10 Simulate trains between Paris, Brussels, Amsterdam and Cologne, using
the levi simulation software [Sirocic and Marwedel, 2007d]! Modify the
examples included with the software such that two independent tracks exist
between any two stations and demonstrate an (arbitrary) schedule involving
10 trains!

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

116 EMBEDDED SYSTEM DESIGN

11 Simulate a Kahn process network computing Fibonacci numbers, using the
levi simulation software [Sirocic and Marwedel, 2007b].

12 Which of the following languages are using asynchronous message passing
communication: StateCharts, SDL, VHDL, CSP, Petri nets?

13 Which of the following languages use a broadcast mechanism for updating
variables: StateCharts, SDL, Petri nets?

14 Which of the following diagram types are supported by UML: Sequence
charts, record charts, Y-charts, use cases, activity diagrams, circuit dia-
grams?

Draft of July 7, 2010;c©P. Marwedel;
COPYING VERY STRICTLY PROHIBITED!

