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34.1 Introduction

The field of design automation (DA) technology, also commonly called computer-aided design (CAD) or
computer-aided engineering (CAE), involves developing computer programs to conduct portions of product
design and manufacturing on behalf of the designer. Competitive pressures to produce more efficiently new
generations of products having improved function and performance are motivating the growing importance
of DA. The increasing complexities of microelectronic technology, shown in Fig. 34.1, illustrate the importance
of relegating portions of product development to computer automation [Barbe, 1980].

Advances in microelectronic technology enable over 1 million devices to be manufactured on an integrated
circuit that is smaller than a postage stamp; yet the ability to exploit this capability remains a challenge. Manual
design techniques are unable to keep pace with product design cycle demands and are being replaced by
automated design techniques [Saprio, 1986; Dillinger, 1988].

Figure 34.2 summarizes the historical development of DA technology. DA computer programs are often
simply called applications or tools. DA efforts started in the early 1960s as academic research projects and captive
industrial programs; these efforts focused on tools for physical and logical design. Follow-on developments
extended logic simulation to more-detailed circuit and device simulation and more-abstract functional simula-
tion. Starting in the mid to late 1970s, new areas of test and synthesis emerged and vendors started offering
commercial DA products. Today, the electronic design automation (EDA) industry is an international business
with a well-established and expanding technical base [Trimberger, 1990]. EDA will be examined by presenting
an overview of the following areas:

• Design entry,
• Synthesis,
• Verification,
• Physical design, and
• Test.
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34.2 Design Entry

Design entry, also called design capture, is the process of communicating with a DA system. In short, design
entry is how an engineer “talks” to a DA application and/or system.

Any sort of communication is composed of two elements: language and mechanism. Language provides
common semantics; mechanism provides a means by which to convey the common semantics. For example,
people communicate via a language, such as English or German, and a mechanism, such as a telephone or
electronic mail. For design, a digital system can be described in many ways, involving different perspectives or
abstractions. An abstraction defines at a particular level of detail the behavior or semantics of a digital system,
i.e., how the outputs respond to the inputs. Fig. 34.3 illustrates several popular levels of abstractions. Moving
from the lower left to the upper right, the level of abstraction generally increases, meaning that physical models
are the most detailed and specification models are the least detailed. The trend toward higher levels of design
entry abstraction supports the need to address greater levels of complexity [Peterson, 1981].

The physical level of abstraction involves geometric information that defines electrical devices and their
interconnection. Geometric information includes the shape of objects and how objects are placed relative to
each other. For example, Fig. 34.4 shows the geometric shapes defining a simple complementary metal-oxide
semiconductor (CMOS) inverter. The shapes denote different materials, such as aluminum and polysilicon,
and connections, called contacts or vias.

FIGURE 34.1 Microelectronic technology complexity.

FIGURE 34.2 DA technology development.
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Design entry mechanisms for physical information involve tex-
tual and graphical techniques. With textual techniques, geometric
shape and placement are described via an artwork description
language, such as Caltech Intermediate Form (CIF) or Electronic
Design Intermediate Form (EDIF). With graphical techniques,
geometric shape and placement are described by rendering the
objects on a display terminal.

The electrical level abstracts physical information into corre-
sponding electrical devices, such as capacitors, transistors, and
resistors. Electrical information includes device behavior in
terms of terminal current and voltage relationships. Device behavior may also be defined in terms of manu-
facturing parameters. Fig. 34.5 shows the electrical symbols denoting a CMOS inverter.

The logical level abstracts electrical information into corresponding logical elements, such as and gates, or
gates, and inverters. Logical information includes truth table and/or characteristic-switching algebra equations
and active-level designations. Fig. 34.6 shows the logical symbol for a CMOS inverter. Notice how the amount
of information decreases as the level of abstraction increases.

FIGURE 34.3 DA abstractions.

FIGURE 34.5 Electrical abstraction.

FIGURE 34.6 Logical abstraction.

FIGURE 34.4 Physical abstraction.
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Design entry mechanisms for electrical and logical abstractions are collectively called schematic capture
techniques. Schematic capture defines hierarchical structures, commonly called netlists, of components. A
designer creates instances of components supplied from a library of predefined components and connects
component pins or ports via wires [Douglas-Young, 1988; Pechet, 1991].

The functional level abstracts logical elements into corresponding computational units, such as registers,
multiplexers, and arithmetic logic units (ALUs). The architectural level abstracts functional information into
computational algorithms or paradigms. Examples of common computational paradigms are listed below:

• State diagrams,
• Petri nets,
• Control/data flow graphs,
• Function tables,
• Spreadsheets, and 
• Binary decision diagrams.

These higher levels of abstraction support a more expressive, “higher-bandwidth” communication interface
between engineers and DA programs. Engineers can focus their creative, cognitive skills on concept and
behavior, rather than on the complexities of detailed implementation. Associated design entry mechanisms
typically use hardware description languages with a combination of textual and graphic techniques [Birtwistle
and Subrahmanyan, 1988].
 Figure 34.7 shows an example of a simple state diagram. The state diagram defines three states, denoted by
circles. State-to-state transitions are denoted by labeled arcs; state transitions depend on the present state and
the input X. The output, Z, per state is given within each state. Since the output is dependent on only the
present state, the digital system is classified as a Moore finite state machine. If the output is dependent on the
present state and input, then the digital system is classified as a Mealy finite state machine.

A hardware description language model written in VHDL of the Moore finite state machine is given in
Fig. 34.8. The VHDL model, called a design entity, uses a “data flow” description style to describe the state
machine [Dewey, 1983, 1992, 1997]. The entity statement defines the interface, i.e., the ports. The ports include
two input signals, X and CLK, and an output signal Z. The ports are of type BIT, which specifies that the signals
may only carry the values 0 or 1. The architecture statement defines the input/output transform via two
concurrent signal assignment statements. The internal signal STATE holds the finite state information and is
driven by a guarded, conditional concurrent signal assignment statement that executes when the associated
block expression

(CLK=’1’ and not CLK’STABLE)

is true, which is only on the rising edge of the signal CLK. STABLE is a predefined attribute of the signal CLK;
CLK’STABLE is true if CLK has not changed value. Thus, if “not CLK’STABLE” is true, meaning that CLK has

FIGURE 34.7 State diagram.
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just changed value, and “CLK=’1’,” then a rising transition has occurred on CLK. The output signal Z is driven
by a nonguarded, selected concurrent signal assignment statement that executes any time STATE changes value.

34.3 Synthesis

Figure 34.9 shows that the synthesis task generally follows
the design entry task. After describing the desired system
via design entry, synthesis DA programs are invoked to
assist generating the required detailed design.

Synthesis translates or transforms a design from one level
of abstraction to another, more-detailed level of abstraction.
The more-detailed level of abstraction may be only an inter-
mediate step in the entire design process, or it may be the
final implementation. Synthesis programs that yield a final
implementation are sometimes called silicon compilers
because the programs generate sufficient detail to proceed directly to silicon fabrication [Ayres, 1983; Gajski, 1988].

Like design abstractions, synthesis techniques can be hierarchically categorized, as shown in Fig. 34.10. The
higher levels of synthesis offer the advantage of less complexity, but also the disadvantage of less control over
the final design.

Algorithmic synthesis, also called behavioral synthesis, addresses “multicycle” behavior, which means behavior
that spans more than one control step. A control step equates to a clock cycle of a synchronous, sequential digital
system, i.e., a state in a finite-state machine controller or a microprogram step in a microprogrammed controller.

-- entity statement
entity MOORE_MACHINE is
  port (X, CLK : in BIT;   Z : out BIT);
end MOORE_MACHINE;

-- architecture statement
architecture FSM of MOORE_MACHINE is
   type STATE_TYPE is (A, B, C);
   signal STATE : STATE_TYPE := A;
begin
  NEXT_STATE: 
  block (CLK=’1’ and not CLK’STABLE)
  begin
      -- guarded conditional concurrent signal assignment statement
      STATE <= guarded B when (STATE=A and X=’1’) else
                                        C when (STATE=B and X=’0’) else
                                        A when (STATE=C) else
                                        STATE;
  end block NEXT_STATE;
  -- unguarded selected concurrent signal assignment statement
  with STATE select
     Z <= ‘0’ when A,
              ‘0’ when B,
              ‘1’ when C;
end FSM;

FIGURE 34.8 VHDL model.

FIGURE 34.9 Design process — synthesis.
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Algorithmic synthesis typically accepts sequential design descriptions that define an input/output transform,
but provide little information about the parallelism of the final design [Camposano and Wolfe, 1991; Gajski
et al., 1992].

Partitioning decomposes the design description into smaller behaviors. Partitioning is an example of a high-
level transformation. High-level transformations include common software programming compiler optimiza-
tions, such as loop unrolling, subprogram in-line expansion, constant propagation, and common subexpression
elimination.

Resource allocation associates behaviors with hardware computational units, and scheduling determines the
order in which behaviors execute. Behaviors that are mutually exclusive can potentially share computational
resources. Allocation is performed using a variety of graph clique covering or node coloring algorithms.
Allocation and scheduling are interdependent, and different synthesis strategies perform allocation and sched-
uling different ways. Sometimes scheduling is performed first, followed by allocation; sometimes allocation is
performed first, followed by scheduling; and sometimes allocation and scheduling are interleaved.

Scheduling assigns computational units to control steps, thereby determining which behaviors execute in
which clock cycles. At one extreme, all computational units can be assigned to a single control step, exploiting
maximum concurrency. At the other extreme, computational units can be assigned to individual control steps,
exploiting maximum sequentiality. Several popular scheduling algorithms are listed below:

• As-soon-as-possible (ASAP),

• As-late-as-possible (ALAP),

• List scheduling,

• Force-directed scheduling, and

• Control step splitting/merging.

ASAP and ALAP scheduling algorithms order computational units based on data dependencies. List scheduling
is based on ASAP and ALAP scheduling, but considers additional, more-global constraints, such as maximum
number of control steps. Force-directed scheduling computes the probabilities of computational units being
assigned to control steps and attempts to evenly distribute computation activity among all control steps. Control
step splitting starts with all computational units assigned to one control step and generates a schedule by
splitting the computational units into multiple control steps. Control step merging starts with all computational
units assigned to individual control steps and generates a schedule by merging or combining units and steps
[Paulin and Knight, 1989; Camposano and Wolfe, 1991].

Register transfer synthesis takes as input the results of algorithmic synthesis and addresses “per-cycle”
behavior, which means the behavior during one clock cycle. Register transfer synthesis selects logic to realize
the hardware computational units generated during algorithmic synthesis, such as realizing an addition oper-
ation with a carry–save adder or realizing addition and subtraction operations with an arithmetic logic unit.

FIGURE 34.10 Taxonomy of synthesis techniques.
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Data that must be retained across multiple clock cycles are identified, and registers are allocated to hold the
data. Finally, finite-state machine synthesis involves state minimization and state assignment. State minimization
seeks to eliminate redundant or equivalent states, and state assignment assigns binary encodings for states to
minimize combinational logic [Brayton et al., 1992; Sasao, 1993].

Logic synthesis optimizes the logic generated by register transfer synthesis and maps the optimized logic
operations onto physical gates supported by the target fabrication technology. Technology mapping considers
the foundry cell library and associated electrical restrictions, such as fan-in/fan-out limitations.

34.4 Verification

Figure 34.11 shows that the verification task generally follows the synthesis task. The verification task checks
the correctness of the function and performance of a design to ensure that an intermediate or final design
faithfully realizes the initial, desired specification. Three major types of verification are listed below:

• Timing analysis,

• Simulation, and

• Emulation.

Timing Analysis

Timing analysis checks that the overall design satisfies
operating speed requirements and that individual sig-
nals within a design satisfy transition requirements.
Common signal transition requirements, also called
timing hazards, include rise and fall times, propagation
delays, clock periods, race conditions, glitch detection,
and setup and hold times. For instance, setup and hold
times specify relationships between data and control
signals to ensure that memory devices (level-sensitive
latches or edge-sensitive flip-flops) correctly and reli-
ably store desired data. The data signal carrying the
information to be stored in the memory device must
be stable for a period equal to the setup time prior to
the control signal transition to ensure that the correct value is sensed by the memory device. Also, the data
signal must be stable for a period equal to the hold time after the control signal transition to ensure that the
memory device has enough time to store the sensed value.

Another class of timing transition requirements, commonly called signal integrity checks, include reflections,
crosstalk, ground bounce, and electromagnetic interference. Signal integrity checks are typically required for
high-speed designs operating at clock frequencies above 75 MHz. At such high frequencies, the transmission
line behavior of wires must be analyzed. A wire should be properly terminated, i.e., connected, to a port having
an impedance matching the wire characteristic impedance to prevent signal reflections. Signal reflections are
portions of an emanating signal that “bounce back” from the destination to the source. Signal reflections reduce
the power of the emanating signal and can damage the source. Crosstalk refers to unwanted reactive coupling
between physically adjacent signals, providing a connection between signals that are supposed to be electrically
isolated. Ground bounce is another signal integrity problem. Since all conductive material has a finite
impedance, a ground signal network does not in practice offer the exact same electrical potential throughout
an entire design. These potential differences are usually negligible because the distributive impedance of the
ground signal network is small compared with other finite-component impedances. However, when many
signals switch value simultaneously, a substantial current can flow through the ground signal network. High
intermittent currents yield proportionately high intermittent potential drops, i.e., ground bounces, which can

FIGURE 34.11 Design process — verification.
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cause unwanted circuit behavior. Finally, electromagnetic interference refers to signal harmonics radiating from
design components and interconnects. This harmonic radiation may interfere with other electronic equipment
or may exceed applicable environmental safety regulatory limits [McHaney, 1991].

Timing analysis can be performed dynamically or statically. Dynamic timing analysis exercises the design
via simulation or emulation for a period of time with a set of input stimuli and records the timing behavior.
Static timing analysis does not exercise the design via simulation or emulation. Rather, static analysis records
timing behavior based on the timing behavior, e.g., propagation delay, of the design components and their
interconnection.

Static timing analysis techniques are primarily block oriented or path oriented. Block-oriented timing analysis
generates design input (also called primary input) to design output (also called primary output), and propa-
gation delays by analyzing the design “stage-by-stage” and by summing up the individual stage delays. All
devices driven by primary inputs constitute stage 1, all devices driven by the outputs of stage 1 constitute
stage 2, and so on. Starting with the first stage, all devices associated with a stage are annotated with worst-
case delays. A worst-case delay is the propagation delay of the device plus the delay of the last input to arrive
at the device, i.e., the signal path with the longest delay leading up to the device inputs. For example, the device
labeled “H” in stage 3 in Fig. 34.12 is annotated with the worst-case delay of 13, representing the device
propagation delay of 4 and the delay of the last input to arrive through devices “B” and “C” of 9 [McWilliams
and Widdoes, 1978]. When the devices associated with the last stage, i.e., the devices driving the primary
outputs, are processed, the accumulated worst-case delays record the longest delay from primary inputs to
primary outputs, also call the critical paths. The critical path for each primary output is highlighted in Fig. 34.12.

Path-oriented timing analysis generates primary input to primary output propagation delays by traversing
all possible signal paths one at a time. Thus, finding the critical path via path-oriented timing analysis is
equivalent to finding the longest path through a directed acyclic graph, where devices are graph vertices and
interconnections are graph edges [Sasiki et al., 1978].

To account for realistic variances in component timing due to manufacturing tolerances, aging, or environ-
mental effects, timing analysis often provides stochastic or statistical checking capabilities. Statistical timing
analysis uses random-number generators based on empirically observed probabilistic distributions to determine
component timing behavior. Thus, statistical timing analysis describes design performance and the likelihood
of the design performance.

Simulation

Simulation exercises a design over a period of time by applying a series of input stimuli and generating the
associated output responses. The general event-driven, also called schedule-driven, simulation algorithm is
diagrammed in Fig. 34.13. An event is a change in signal value. Simulation starts by initializing the design;

FIGURE 34.12 Block-oriented static timing analysis.
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initial values are assigned to all signals. Initial values include starting values and pending values that constitute
future events. Simulation time is advanced to the next pending event(s), signals are updated, and sensitized
models are evaluated [Pooch, 1993]. The process of evaluating the sensitized models yields new, potentially
different, values for signals, i.e., a new set of pending events. These new events are added to the list of pending
events, time is advanced to the next pending event(s), and the simulation algorithm repeats. Each pass through
the loop in Fig. 34.13 of evaluating sensitized models at a particular time step is called a simulation cycle.
Simulation ends when the design yields no further activity, i.e., when there are no more pending events to
process.

Logic simulation is computationally intensive for large, complex designs. As an example, consider simulating
1 s of a 200K-gate, 20-MHz processor design. By assuming that, on average, only 10% of the total 200K gates
are active or sensitized on each processor clock cycle, Eq. 34.1 shows that simulating 1 s of actual processor
time equates to 400 billion events.

(34.1)

Assuming that, on average, a simulation program executes 50 computer instructions per event on a computer
capable of processing 50 million instructions per second (MIP), Eq. 34.1 also shows that processing 400 billion
events requires 140 h or just short of 6 days. Fig. 34.14 shows how simulation computation generally scales
with design complexity.

To address the growing computational demands of simulation, several simulation acceleration techniques
have been introduced. Schedule-driven simulation, explained above, can be accelerated by removing layers of
interpretation and running a simulation as a native executable image; such an approach is called complied,
scheduled-driven simulation.

As an alternative to schedule-driven simulation, cycle-driven simulation avoids the overhead of event queue
processing by evaluating all devices at regular intervals of time. Cycle-driven simulation is efficient when a
design exhibits a high degree of concurrency, i.e., when a large percentage of the devices are active per simulation
cycle. Based on the staging of devices, devices are rank-ordered to determine the order in which they are evaluated
at each time step to ensure the correct causal behavior yielding the proper ordering of events. For functional
verification, logic devices are often assigned zero-delay and memory devices are assigned unit-delay. Thus, any
number of stages of logic devices may execute between system clock periods. 

In another simulation acceleration technique, message-driven simulation, also called parallel or distributed
simulation, device execution is divided among several processors and the device simulations communicate

FIGURE 34.13 General event-driven simulation algorithm.

400 billion  events 20 million  clock  cycles ( ) 200K  gates ( ) 10%  activity ( ) =

140  h 400 billion  events ( ) 50  instructions
event

-----------------------------------
 

è ø
æ ö 50 million  instructions

s
------------------------------------------------------

 
è ø
æ ö 

=

© 2000 by CRC Press LLC



  

event activity via messages. Messages are communicated using conservative or optimistic strategies. Optimistic
message-passing strategies, such as 

 

time warp

 

 and 

 

lazy cancellation,

 

 make assumptions about future event activity
to advance local device simulation. If the assumptions are correct, the processors operate more independently
and better exploit parallel computation. However, if the assumptions are incorrect, then local device simulations
may be forced to “roll back” to synchronize local device simulations [Bryant, 1979; Chandy and Misra, 1981].

Schedule-driven, cycle-driven, and message-driven simulations are software-based simulation acceleration
techniques. Simulation can also be accelerated by relegating certain simulation activities to dedicated hardware.
For example, 

 

hardware modelers

 

 can be attached to software simulators to accelerate the activity of device
evaluation. As the name implies, hardware modeling uses actual hardware devices instead of software models
to obtain stimulus/response information. Using actual hardware devices reduces the expense of generating and
maintaining software models and provides an environment to support application software development.
However, it is sometimes difficult for a slave hardware modeler to preserve accurate real-time device operating
response characteristics within a master non-real-time software simulation environment. For example, some
hardware devices may not be able to retain state information between invocations, so the hardware modeler
must save the history of previous inputs and reapply them to bring the hardware device to the correct state to
apply a new input.

Another technique for addressing the growing computational demands of simulation is via simulation
engines. A simulation engine can be viewed as an extension of the simulation acceleration technique of hardware
modeling. With a hardware modeler, the simulation algorithm executes in software and component evaluation
executes in dedicated hardware. With a simulation engine, the simulation algorithm 

 

and

 

 component evaluation
execute in dedicated hardware. Simulation engines are typically two to three orders of magnitude faster than
software simulation [Takasaki et al., 1989].

 

Analog Simulation

 

Analog simulation involves time-domain analyses and frequency-domain analyses, which are generally con-
ducted using some form of direct current (DC) simulation, diagrammed in Fig. 34.15. DC simulation deter-
mines the quiescent or steady-state operating point for a circuit, specifying 

 

node voltages

 

, 

 

branch

 

 currents,
input/output resistances, element sensitivities, and input/output gains [Chua and Lin, 1975; Nagel, 1975]. 

Several popular equation formulation schemes are summarized in Table 34.1. Equation formulation schemes
generate a set of linear equations denoting relationships between circuit voltages and currents; these relation-
ships are based on the physical principle of the conservation of energy expressed via 

 

Kirchoff ’s current law

 

(KCL), 

 

Kirchoff ’s voltage law

 

 (KVL), and branch constitutive relationships (BCRs). A circuit having 

 

N

 

 nodes
and 

 

B

 

 branches possesses 2

 

B

 

 independent variables defining 

 

B

 

 branch voltages and 

 

B

 

 branch currents. These

 

FIGURE 34.14

 

Simulation requirements.
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variables are governed by 2

 

B

 

 linearly independent equations composed of 

 

N

 

 – 1 KCL equations, 

 

B

 

 – 

 

N

 

 + 1 KVL
equations, and 

 

B

 

 BCR equations [Hachtel et al., 1971; Ho et al., 1975].
Equation-ordering schemes augment equation formulation schemes by reorganizing, modifying, and scaling

the equations to improve the efficiency and/or accuracy of the subsequent equation solution scheme. More
specifically, equation-ordering schemes seek to improve the “diagonal dominance” structure of the coefficient
matrix by maximizing the number of “off-diagonal” zeros. Popular equation-ordering schemes include pivoting
and row ordering (Markowitz) [Zlatev, 1980].

Finally, equation solution schemes determine the values for the independent variables that comply with the
governing equations. There are basically two types of equation solution schemes: explicit and implicit. Explicit
solution schemes, such as Gaussian elimination and/or LU factorization, determine independent variable values
using closed-form, deterministic techniques. Implicit solution schemes, such as Gauss–Jacobi and Gauss–Seidel,
determine independent variable values using iterative, nondeterministic techniques.

 

Emulation

 

Emulation, also called 

 

computer-aided prototyping

 

, verifies a design by realizing the design in “preproduction”
hardware and exercising the hardware. The term 

 

preproduction

 

 hardware means nonoptimized hardware
providing the correct functional behavior, but not necessarily the correct performance. That is, emulation
hardware may be slower, require more area, or dissipate more power than production hardware. At present,
preproduction hardware commonly involves some form of 

 

programmable logic devices

 

 

 

(PLDs), typically field-
programmable 

 

gate arrays (FPGAs). PLDs provide generic combinational and sequential digital system logic
that can be programmed to realize a wide variety of designs [Walters, 1991].

Emulation offers the advantage of providing prototype hardware early in the design cycle to check for errors
or inconsistencies in initial functional specifications. Problems can be isolated and design modifications can
be easily accommodated by reprogramming the logic devices. Emulation can support functional verification
at computational rates much greater than conventional simulation. However, emulation does not generally
support performance verification because, as explained above, prototype hardware typically does not operate
at production clock rates.

FIGURE 34.15 DC simulation.

TABLE 34.1 Common Circuit Equation Formulation Schemes

Equation Formulation Schemes Desired Unknowns

Nodal analysis Node voltages
Modified nodal analysis Node voltages

Dependent source currents
Independent voltage source currents

Sparse tableau analysis Node voltages
Branch currents
Branch voltages

Reduced tableau analysis Node voltages
Branch currents

Tree analysis Tree branch voltages
Link analysis Link branch currents
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34.5 Physical Design

Figure 34.16 shows that the physical design task generally follows the verification task. Having validated the
function and performance of the detailed design during verification, physical design realizes the detailed design
by translating logic into actual hardware. Physical design involves placement, routing, artwork generation, rules
checking, and back annotation [Sait and Youseff, 1995].

Placement transforms a logical hierarchy into a physical hierarchy by defining how hardware elements are
oriented and arranged relative to each other. Placement determines the overall size, i.e., area, a digital system
will occupy. Two popular placement algorithms are mincut and simulated annealing. Mincut placement tech-
niques group highly connected cells into clusters. Then, the clusters are sorted and arranged according to user-
supplied priorities. Simulated annealing conducts a series of trial-and-error experiments by pseudorandomly
moving cells and evaluating the resulting placements, again according to user-supplied priorities.

Routing defines the wires that establish the required port-to-port connections. Routing is often performed
in two stages: global and local. Global routing assigns networks to major wiring regions, called tracks; local
routing defines the actual wiring for each network within its assigned track. Two common classes of routing
algorithms are channel and maze. Channel routing connects ports abutting the same track. Maze routing, also
called switch-box routing, connects ports abutting different channels. Routing considers a variety of metrics,
including timing skew, wire length, number of vias, and number of jogs (corners) [Spinks, 1985; Preas et al.,
1988].

Rules checking verifies that the final layout of geometric shapes and their orientation complies with logical,
electrical, and physical constraints. Logical rules verify that the implementation realizes the desired digital
system. Electrical rules verify conformance to loading, noise margins, and fan-in/fan-out connectivity constraints.
Finally, physical rules verify conformance to dimensional, spacing, and alignment constraints [Hollis, 1987].

34.6 Test

Figure 34.17 shows that test follows physical design. After physical design, the digital system is manufactured
and test checks the resulting hardware for correct function and performance. Thus, the primary objective of
test is to detect a faulty device by applying input test stimuli and observing expected results [Buckroyd, 1989;
Weyerer and Goldemund, 1992].

The test task is difficult because designs are growing in complexity; more components provide more oppor-
tunity for manufacturing defects. Test is also challenged by new microelectronic fabrication processes. These
new processes support higher levels of integration that provide fewer access points to probe internal electrical
nodes and new failure modes that provide more opportunity for manufacturing defects.

FIGURE 34.16 Design process — physical design.
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Fault Modeling

What is a fault? A fault is a manufacturing or aging defect that causes a device to operate incorrectly or to fail.
A sample listing of common integrated circuit physical faults are given below:

• Wiring faults,

• Dielectric faults, 

• Threshold faults, and 

• Soft faults.

Wiring faults are unwanted opens and shorts. Two wires or networks that should be electrically connected, but
are not connected constitute an open. Two wires or networks that should not be electrically connected, but are
connected constitute a short. Wiring faults can be caused by manufacturing defects, such as metallization and
etching problems, or aging defects, such as corrosion and electromigration. Dielectric faults are electrical
isolation defects that can be caused by masking defects, chemical impurities, material imperfections, or
electrostatic discharge. Threshold faults occur when the turn-on and turn-off voltage potentials of electrical
devices exceed allowed ranges. Soft faults occur when radiation exposure temporarily changes electrical charge
distributions. Such changes can alter circuit voltage potentials, which can, in turn, change logical values, also
called dropping bits. Radiation effects are called “soft” faults because the hardware is not permanently damaged
[Zobrist, 1993].

To simplify the task of fault testing, the physical faults described above are translated into logical faults.
Typically, a single logical fault covers several physical faults. A popular logical fault model is the single stuck
line (SSL) fault model. The single stuck line fault model supports faults that denote wires permanently set to
a logic 0, “stuck-at-0,” or a logic 1, “stuck-at-1.” Building on the single stuck line fault model, the multiple stuck
line (MSL) fault model supports faults where multiple wires are stuck-at-0/stuck-at-1. Stuck fault models do
not address all physical faults because not all physical faults result in signal lines permanently set to low or high
voltages, i.e., stuck-at-0 or stuck-at-1 logic faults. Thus, other fault models have been developed to address
specific failure mechanisms. For example, the bridging fault model addresses electrical shorts that cause
unwanted coupling or spurious feedback loops.

FIGURE 34.17 Design process — test.
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Fault Testing

Once the physical faults that may cause device malfunction have been identified and categorized and how the
physical faults relate to logical faults has been determined, the next task is to develop tests to detect these faults.
When the tests are generated by a computer program, this activity is called automatic test program generation
(ATPG). Examples of fault testing techniques are listed below:

• Stuck-at techniques,

• Scan techniques,

• Signature techniques,

• Coding techniques, and

• Electrical monitoring techniques.

Basic stuck-at fault testing techniques address combinational digital systems. Three of the most popular
stuck-at fault testing techniques are the D algorithm, the Path-Oriented Decision Making (Podem) algorithm,
and the Fan algorithm. These algorithms first identify a circuit fault, e.g., stuck-at-0 or stuck-at-1, and then
try to generate an input stimulus that detects the fault and makes the fault visible at an output. Detecting a
fault is called fault sensitization and making a fault visible is called fault propagation. To illustrate this process,
consider the simple combinational design in Fig. 34.18 [Goel, 1981; Fujiwara and Shimono, 1983].

The combinational digital design is defective because a
manufacturing defect has caused the output of the top
and gate to be permanently tied to ground, i.e., stuck-at-
0, using a positive logic convention. To sensitize the fault,
the inputs A and B should both be set to 1, which should
force the top and gate output to a 1 for a good circuit. To
propagate the fault, the inputs C and D should both be
set to 0, which should force the xor gate output to 1, again
for a good circuit. Thus, if A = 1, B = 1, C = 0, and D = 0
in Fig. 34.18, then a good circuit would yield a 1, but the
defective circuit yields a 0, which detects the stuck-at-0
fault at the top and gate output.

Sequential ATP generation is more difficult than combinational ATPG because exercising or sensitizing a
particular circuit path to detect the presence of a possible manufacturing fault may require a sequence of input
test vectors. One technique for testing sequential digital systems is scan fault testing. Scan fault testing is an
example of design for testability (DFT) because it modifies or constrains a design in a manner that facilitates
fault testing. Scan techniques impose a logic design discipline that connects all state registers into one or more
chains to form “scan rings,” as shown in Fig. 34.19 [Eichelberger and Williams, 1977].

During normal device operation, the scan rings are disabled and the registers serve as conventional memory
(state) storage elements. During test operation, the scan rings are enabled and stimulus test vectors are shifted
into the memory elements to set the state of the digital system. The digital system is exercised for one clock
cycle and then the results are shifted out of the scan ring to record the response.

A variation of scan DFT, called boundary scan, has been defined for testing integrated circuits on printed
circuit boards (PCBs). Advancements in PCB manufacturing, such as fine-lead components, surface mount
assembly, and multichip modules, have yielded high-density boards with fewer access points to probe individual
pins. These PCBs are difficult to test. As the name implies, boundary scan imposes a design discipline for PCB
components to enable the input/output pins of the components to be connected into scan chains. As an example,
Fig. 34.20 shows a simple PCB containing two integrated circuits configured for boundary scan. Each integrated
circuit contains scan registers between its input/output pins and its core logic to enable the PCB test bus to
control and observe the behavior of individual integrated circuits [Parker, 1989]. 

Another DFT technique is signature analysis, also called built-in self-test (BIST). Signature testing techniques
use additional logic, typically linear feedback shift registers, to generate automatically pseudorandom test
vectors. The output responses are compressed into a single vector and compared with a known good vector. If
the output response vector does not exactly match the known good vector, then the design is considered faulty.

FIGURE 34.18 Combinational logic stuck-at fault
testing.
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Matching the output response vector and a known good vector does not guarantee correct hardware; however,
if enough pseudorandom test vectors are exercised, then the chances are acceptably small of obtaining a false
positive result. Signature analysis is often used to test memories [Agrawal et al., 1993].

Coding test techniques encode signal information so that errors can be detected and possibly corrected.
Although often implemented in software, coding techniques can also be implemented in hardware. For example,
a simple coding technique called parity checking is often implemented in hardware. Parity checking adds an
extra bit to multibit data. The parity bit is set such that the total number of logic 1s in the multibit data and
parity bit is either an even number (even parity) or an odd number (odd parity). An error has occurred if an
even-parity-encoded signal contains an odd number of logic 1s or if an odd-parity-encoded signal contains an
even number of logic 1s. Coding techniques are used extensively to detect and correct transmission errors on
system buses and networks, storage errors in system memory, and computational errors in processors [Peterson
and Weldon, 1972].

Finally, electrical monitoring testing techniques, also called current/voltage testing, rely on the simple obser-
vation that an out-of-range current or voltage often indicates a defective or bad part. Possibly a short or open
is present causing a particular input/output signal to have the wrong voltage or current. Current testing, or Iddq

testing, is particularly useful for digital systems using CMOS integrated circuit technology. Normally, CMOS
circuits have very low static or quiescent currents. However, physical faults, such as gate oxide defects, can
increase static current by several orders of magnitude. Such a substantial change in static current is straight-
forward to detect. The principal advantages of current testing are that the tests are simple and the fault models
address detailed transistor-level defects. However, current testing requires that enough time be allotted between
input stimuli to allow the circuit to reach a static state, which slows testing down and causes problems with
circuits that cannot be tested at scaled clock rates.

FIGURE 34.19 Scan-based DFT.

FIGURE 34.20 Boundary scan.
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34.7 Summary

DA technology offers the potential of serving as a powerful fulcrum in leveraging the skills of a designer against
the growing demands of electronic system design and manufacturing. DA programs help to relieve the designer
of the burden of tedious, repetitive tasks that can be labor-intensive and error prone.

DA technology can be broken down into several topical areas, such as design entry, synthesis, verification,
physical design, and test. Each topical area has developed an extensive body of knowledge and experience. 

Design entry defines a desired specification. Synthesis refines the initial design specification into a detailed
design ready for implementation. Verification checks that the detailed design faithfully realizes the desired
specification. Physical design defines the implementation, i.e., the actual hardware. Finally, test checks that the
manufactured part is functionally and parametrically correct. 

Defining Terms

Bipolar: Type of semiconductor transistor that involves both minority and majority carrier conduction
mechanisms.

BiCMOS: Bipolar/complementary metal-oxide semiconductor. A logic family and form of microelectronic
fabrication.

Branch: A circuit element between two nodes. Branch current is the current through the branch. Branch
voltage is the potential difference between the nodes. The relationship between the branch current and
voltage is defined by the branch constitutive relationship.

Capacitor: Two-terminal electronic device governed by the branch constitutive relationship, Charge = Capac-
itance ´ Voltage.

CMOS: Complementary metal-oxide semiconductor. A logic family and form of microelectronic fabrication.
Data Flow: Nonprocedural modeling style in which the textual order that statements are written has no bearing

on the order in which they execute.
Design automation: Computer programs that assist engineers in performing digital system development.
Design entry: Area of DA addressing modeling analog and digital electronic systems. Design entry uses a

hierarchy of models involving physical, electrical, logical, functional, and architectural abstractions.
Electromigration: Gradual erosion of metal due to excessive currents.
Fan-in/fan-out: Fan-in defines the maximum number of logic elements that may drive another logic element.

Fan-out defines the maximum number of logic elements a logic element may drive.
Finite state machine: Sequential digital system. A finite state machine is classified as either Moore and Mealy.
Gate array: Application-specific integrated circuit implementation technique that realizes a digital system by

programming the metal interconnect of a prefabricated array of gates.
Gate oxide: Dielectric insulating material between the gate and source/drain terminals of a MOS transistor.
Ground bounce: Transient condition when the potential of a ground network varies appreciably from its

uniform static value.
Integrated circuit: Electronic circuit manufactured on a monolithic piece of semiconductor material, typically

silicon.
Kirchoff ’s current law: The amount of current entering a circuit node equals the amount of current leaving

a circuit node.
Kirchoff ’s voltage law: Any closed loop of circuit branch voltages sums to zero.
Masking defects: Defects in masking plate patterns used for integrated circuit lithography that result in errant

material composition and/or placement.
Multichip modules: Multiple integrated circuits interconnected on a monolithic substrate.
Netlist: Collection of wires that are electrically connected to each other.
NMOS: N-type metal-oxide semiconductor. A logic family and form of microelectronic fabrication.
Node voltage: Potential of a circuit node relative to ground potential.
Programmable logic devices (PLDs): Generic logic devices that can be programmed to realize specific digital

systems. PLDs include programmable logic arrays, programmable array logic, memories, and field-pro-
grammable gate arrays.
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Resistor: Two-terminal electronic device governed by the branch constitutive relationship, Voltage = Resistance ´
Current.

Silicon compilation: Synthesis application that generates final physical design ready for silicon fabrication.
Simulation: Computer program that examines the dynamic semantics of a model of a digital system by applying

a series of inputs and generating the corresponding outputs. Major types of simulation include schedule
driven, cycle driven, and message driven.

Skew: Timing difference between two events that are supposed to occur simultaneously.
Standard cell: Application-specific integrated circuit implementation technique that realizes a digital system

using a library of predefined (standard) logic cells.
Synthesis: Computer program that helps generate a digital/analog system design by transforming a high-level

model of abstract behavior into a lower-level model of more-detailed behavior.
Test: Area of EDA that addresses detecting faulty hardware. Test involves stuck-at, scan, signature, coding, and

monitoring techniques.
Timing analysis: Verifies timing behavior of electronic system including rise time, fall time, setup time, hold

time, glitch detection, clock periods, race conditions, reflections, and cross talk.
Transistor: Electronic device that enables a small voltage and/or current to control a larger voltage and/or

current. For analog systems, transistors serves as amplifiers. For digital systems, transistors serve as
switches.

Verification: Area of EDA that addresses validating designs for correct function and expected performance.
Verification involves timing analysis, simulation, emulation, and formal proofs.

VHDL: Hardware description language used as an international standard for communicating electronic systems
information.

Via: Connection or contact between two materials that are otherwise electrically isolated.

Related Topics
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