

Embedded System Course 2021-22

C4µC
C/C++ Programming for Microcontrollers

Lecturer: Ing. Marco Santic
- -

 marco.santic@univaq.it

mailto:marco.santic@univaq.it

C4µC

● Comm. Interfaces
● I2C

● UART

● SPI

● Examples

● Other peripherals
● ADC

● GPIO bitbanging

● Examples

● Introduction
● Atmega328P

● Toolchain

● IDE

● Examples

● C language recap

● Basic functionalities
● GPIO

● Timers

● Interrupt

● Examples

C4µC - U(S)ART

● Serial communication interfaces:
● U(S)ART:

– HW device available on Atmega328
● Full duplex
● Synch – asynch
● Hi resolution baudrate generator
● Data-bit 5 to 9, stop bit 1-2
● Parity generator
● Frame error detection
● INT: Tx complete, TX dataReg empty, Rx complete

C4µC - U(S)ART

● Block diagram
● Regs:

– UCSRnA
– UCSRnB
– UCSRnC
– UBRRn
– UDRn (Tx e Rx)

TxDn, RxDn, XCKn,...
Where are the other lines of RS-232?

NOTE: do not confuse UART and RS-232...

C4µC - U(S)ART

● Arduino Nano v3 pinout

USB

UART is avaiable because there are a UART-USB converter (board side)
 and the proper driver installed (host-side) → Serial port (COMn, ttyUSBn)

C4µC - U(S)ART

● General frame format

Test with oscilloscope!?

C4µC - U(S)ART

● UART settings: commonly used 8N1

● It means: 8 (data bits), None (parity), 1 (stop bit)
● Baudrate consideration (9600: what it means?)

● 9600 bit/s @ 8N1 -> (1+8+1 = 10bit per TxByte)
● 960 Byte/s effective data rate

● Control flow considerations (Sw,Hw)

● How transmitter and receiver agree when and who is
ready? (Xon-Xoff, RTS, CTS,...)

● Device Tx and Rx buffers ... are enought?

– Overrun and underrun conditions

C4µC - U(S)ART

● USART init
#define FOSC 1843200 // Clock Speed
#define BAUD 9600
#define MYUBRR FOSC/16/BAUD-1
int main(void){
 ...
 USART_Init(MYUBRR)
 ...
}

//NOTE "=" and not "|=" or "&="
void USART_Init(unsigned int ubrr){
 /*Set baud rate */
 UBRR0H = (unsigned char)(ubrr>>8);
 UBRR0L = (unsigned char)ubrr;
 /*Enable receiver and transmitter */
 UCSR0B = (1<<RXEN0)|(1<<TXEN0);
 /* Set frame format: 8data, 1stop bit */
 UCSR0C = (3<<UCSZ00);
}

Code from datasheet

C4µC - U(S)ART

● USART transmit and receive

void USART_Transmit(unsigned char data){
 /* Wait for empty transmit buffer */
 while (!(UCSR0A & (1<<UDRE)))
 ;
 /* Put data into buffer, sends the data */
 UDR0 = data;
}

unsigned char USART_Receive(void)
{
 /* Wait for data to be received */
 while (!(UCSR0A & (1<<RXC0)))
 ;
 /* Get and return received data from buffer */
 return UDR0;
}

Code from datasheet

C4µC - U(S)ART

● UART bare EXAMPLE: sketch_c4uc_6.1_uart_datasheet
#include <avr/io.h>
#include <util/delay.h>

#define FOSC 16000000L // Clock Speed
#define BAUD 9600
#define MYUBRR FOSC/16/BAUD-1 //See table 24-1 datasheet p.227

void USART_Init(unsigned int ubrr);
void USART_Transmit(unsigned char data);
unsigned char USART_Receive(void);
bool USART_Overrun(void);
bool USART_ClearOverrun(void);

uint8_t test = 1;

int main(void){

 DDRB |= _BV(DDB5); // Led
 USART_Init(MYUBRR);
 unsigned char msg[] = "Hello UART!";
 unsigned char msg2[] = "You wrote ";
 uint8_t msg_len = 11;
 uint8_t msg2_len = 10;

Added 2 functions to control
overrun condition

Note variable: test = 1

C4µC - U(S)ART

● UART bare EXAMPLE: sketch_c4uc_6.1_uart_datasheet
 unsigned char input = 0;

 bool overrunOccurred = 0;

 switch(test){
 case 1:
 for(uint8_t i=0; i<msg_len;i++){
 USART_Transmit(msg[i]);
 }
 break;
 case 2:
 while(1){
 input = USART_Receive();
 USART_Transmit(input);
 }
 break;

Test 1 just sends hello message

Test 2 receives a char and sends
it back, it is an echo

C4µC - U(S)ART

● UART bare EXAMPLE: sketch_c4uc_6.1_uart_datasheet
 default:
 while(1){
 input = USART_Receive();

 if(USART_Overrun()) overrunOccurred = 1;
 if(input == 'c') overrunOccurred = USART_ClearOverrun();

 if (overrunOccurred){ PORTB |= _BV(PORTB5);}
 else { PORTB &= ~_BV(PORTB5);}

 for(uint8_t i = 0; i< msg2_len; i++){
 USART_Transmit(msg2[i]);
 }
 USART_Transmit(input);
 USART_Transmit(0x0A); //0x0A = 10 = '\n'
 }
 }
}

Test 3 receives a char and sends
it back after a “You wrote “ message

C4µC - U(S)ART

● If we send a character in the serial monitor ("1")...

● we will see back: "You wrote 1"
● If we send 3 characters in the serial monitor ("123")...

● we will see back: "You wrote 1"

 "You wrote 2"
 "You wrote 3"

● If we send a sequence of 5 characters ("12345")

● We will see that we have lost some chars
● And that the LED on the board is on

We have an overrun situation

C4µC - U(S)ART

● The two functions we have added are:
bool USART_Overrun(void){
 return (bool) (UCSR0A & (1<<DOR0));
}

bool USART_ClearOverrun(void){
 unsigned char dummy;
 UCSR0A &= ~(1<<DOR0); //clear overrun flag, needed?!?!
 while (UCSR0A & (1<<RXC0)) dummy = UDR0; //flushing the buffer
 return 0;
}

The receive buffer has only 2 bytes!!!

● With the first we verify if an overrun occurred

● Read datasheet at p.245:
Bit 3 – DOR0:
Data OverRun This bit is set if a Data OverRun condition is detected. A Data OverRun
occurs when the receive buffer is full (two characters), it is a new character waiting in
the Receive Shift Register, and a new start bit is detected. This bit is valid until the
receive buffer (UDR0) is read. Always set this bit to zero when writing to UCSR0A.

C4µC - U(S)ART

● This is what happens:

● 1st byte ("1") is received and read, it starts the transmission of messages

● 2nd and 3rd are received and are in buffer, 4th is received and is in shift register

● 5th byte's start bit sets DOR0 flag (overrun) and 5th byte overrides 4th in shift
register

C4µC - U(S)ART

● U(S)ART summary:

● We have seen a lot of examples using serial comms also
in previous lessons

● The implementation in the Arduino API of Serial keeps us
in a "safe user zone"

● We have seen the registers involved in UART comms
● When we need to use a UART at lower level, we need to

take into account the hardware logic and limitations

Questions?

Ex.: try to discover out the buffering mechanism in API impl. of Serial

● When also software buffer is not enough, we need to apply
flow control (RTS, CTS, ...)

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16

