

Embedded System Course 2021-22

C4µC
C/C++ Programming for Microcontrollers

Lecturers: Ing. Marco Santic
- -

 marco.santic@univaq.it

mailto:marco.santic@univaq.it

C4µC

● Comm. Interfaces
● I2C

● UART

● SPI

● Examples

● Other peripherals
● ADC

● GPIO bitbanging

● Examples

● Introduction
● Atmega328P

● Toolchain

● IDE

● Examples

● C language recap

● Basic functionalities
● GPIO

● Timers

● Interrupt

● Examples

C4µC - Basic functionalities

● µController block diagram:

CPU

Memory:
 - ROM
- RAM

- EEPROM

Digital Input Output
(GPIO)

Timers subsystem

Analog to Digital
Converters

Serial Input Output
(ex. UART, I2C, SPI)

PWM

Other dev./periph.

● Devices/peripherals implement some basic functionalities
● CPU needs to communicate with (interface to) those

devices/peripherals
What is the difference between a device and a peripheral??

C4µC - Basic functionalities

● To interface with devices, you have seen:
● Interfacing:

– Port-based I/O
– Bus-based I/O (addr., data, ctrl. Registers)

● Memory Mapped I/O (accessible using common instructions)
● Standard I/O (+1 pin, access via special instr. IN, OUT)

● And to be aware of "some new data":
– Polling
– Interrupt

● Let's move to our reference µC...

C4µC - Basic functionalities

● µC AVR Atmega328 block diagram

From Atmega328P datasheet (p.13)

C4µC - Basic functionalities

● Datasheet reports all information about:
● General architecture
● Devices' characteristics
● Power management
● Pin description and configuration
● ... (a lot more)

Datasheet
is a friend
of yours!!!

Page 27 (about Status Register):
When addressing I/O Registers as data space using LD and ST instructions, the provided offset must be used.
When using the I/O specific commands IN and OUT,...

Page 35 (about SRAM Data Memory):
... device is a complex microcontroller with more peripheral units than can be supported within the 64 locations
reserved in the Opcode for the IN and OUT instructions. For the Extended I/O space,...

Page 155 (about Timer/Counter):
The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) containing the upper
eight bits of the counter, and Counter Low (TCNT1L) containing the lower eight bits...

C4µC - Basic functionalities

● Hereafter a top-down approach will be used to
explore the microcontroller:

● See an example in the IDE
● Inspect the code
● Run through the source files
● Find something "nice"
● Correlate it with datasheet information
● (Sometimes explore the ASM)

C4µC - Basic functionalities

● Hereafter a top-down approach will be used to
explore the microcontroller:

● See an example in the IDE
● Inspect the code
● Run through the source files
● Find something "nice"
● Correlate it with datasheet information
● (Sometimes explore the ASM)

C4µC - GPIO

● Open the Arduino IDE

● Set the board and the communication port

– Menu Tools --> Board --> (Uno, Nano, ...)

– Menu Tools --> Port --> (COM*, /dev/ttyACM*, ...)
● Load Blink example

– Menu File --> Examples --> Basics --> Blink

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

C4µC - GPIO

● To drive the blinkin' LED we are using a PIN (D13, that is not pin 13 of
Arduino board)

● If we have a look at the schematic...

● It is called D13

● It is connected to pin 16 of the
Arduino board

● It corresponds to pin 17 of µC...

● ...and its (I/O) name is PB5

● It is a GPIO pin (on PORT B)

● In the code it is initialized as an OUTPUT

● pinMode(..., ...) is a function of Arduino (IDE) core library

Pay attention to different
pin names in different scopes

C4µC - GPIO

● Go to: <your IDE path>\hardware\arduino\avr\cores\arduino\Arduino.h

● In that header file, it is defined (on line 125, or a bit after...):

void pinMode(uint8_t, uint8_t);

● Go to: <your IDE path>\hardware\arduino\avr\cores\arduino\wiring_digital.c

● In that source file, it is implemented (on lines 31-61):

void pinMode(uint8_t pin, uint8_t mode)
{

uint8_t bit = digitalPinToBitMask(pin);
uint8_t port = digitalPinToPort(pin);
volatile uint8_t *reg, *out;
...
reg = portModeRegister(port);
out = portOutputRegister(port);
...
} else { //mode = OUTPUT

uint8_t oldSREG = SREG;
cli();

*reg |= bit;
SREG = oldSREG;

}
}

← Arduino.h (170)
← Arduino.h (169)

← Arduino.h (175)
← Arduino.h (173)

← … we will see later...

C4µC - GPIO

● In: <your IDE path>\...\Arduino.h (lines 169-175)

#define digitalPinToPort(P) (pgm_read_byte(digital_pin_to_port_PGM + (P)))
#define digitalPinToBitMask(P) (pgm_read_byte(digital_pin_to_bit_mask_PGM +
(P)))
#define digitalPinToTimer(P) (pgm_read_byte(digital_pin_to_timer_PGM + (P)))
#define analogInPinToBit(P) (P)
#define portOutputRegister(P) ((volatile uint8_t *)
(pgm_read_word(port_to_output_PGM + (P))))
#define portInputRegister(P) ((volatile uint8_t *)
(pgm_read_word(port_to_input_PGM + (P))))
#define portModeRegister(P) ((volatile uint8_t *)
(pgm_read_word(port_to_mode_PGM + (P))))

● A lot of other functions (or define)...

● pgm_read_byte (<your IDE path>\hardware\tools\avr\avr\include\avr\pgmspace.h , line 1046)

#define pgm_read_byte(address_short) pgm_read_byte_near(address_short)

● digital_pin_to_port_PGM (<your IDE path>\...\Arduino.h , line 159)

extern const uint8_t PROGMEM digital_pin_to_port_PGM[];

● digital_pin_to_bit_mask_PGM (<your IDE path>\...\Arduino.h , line 161)

extern const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[];

C4µC - GPIO

● Have a look at:
<your IDE path>\hardware\arduino\avr\variants\standard\pins_arduino.h
(lines 134-155)

const uint8_t PROGMEM digital_pin_to_port_PGM[] = {
PD, /* 0 */
PD,
PD,
PD,
PD,
PD,
PD,
PD,
PB, /* 8 */
PB,
PB,
PB,
PB,
PB,
PC, /* 14 */
PC,
PC,
PC,
PC,
PC,

};

← we are using D13... at index 13 there is PB

C4µC - GPIO

● Have a look at:
<your IDE path>\hardware\arduino\avr\variants\standard\pins_arduino.h
(lines 157-178)

const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[] = {
_BV(0), /* 0, port D */
_BV(1),
_BV(2),
_BV(3),
_BV(4),
_BV(5),
_BV(6),
_BV(7),
_BV(0), /* 8, port B */
_BV(1),
_BV(2),
_BV(3),
_BV(4),
_BV(5),
_BV(0), /* 14, port C */
_BV(1),
_BV(2),
_BV(3),
_BV(4),
_BV(5),

};

← we are using D13... at index 13 there is _BV(5)

C4µC - GPIO

● We could explore more, but... stop!
Some considerations:

● We have seen where the core library is
● Without a real IDE with source navigation, it is hard

and time-consuming
● We have understood how to search and how the

inclusion of different header files (for different
platforms) works

● We just had a confirmation of D13 <--> PB5

● Go back to see which registers are used...
... with a little trick

C4µC - GPIO

● Let's use a...

● Serial interface for output
void setup() {
 Serial.begin(115200); while (!Serial);

 uint8_t our_pin = 13;

 uint8_t _bit = digitalPinToBitMask(our_pin);
 uint8_t _port = digitalPinToPort(our_pin);
 volatile uint8_t *reg, *out;

 reg = portModeRegister(_port);
 out = portOutputRegister(_port);

 Serial.print("bit = "); Serial.print((uint16_t)_bit); Serial.print("\n");
 Serial.print("port = "); Serial.print((uint16_t)_port); Serial.print("\n");
 Serial.print("reg = "); Serial.print((uint16_t)reg); Serial.print("\n");
 Serial.print("out = "); Serial.print((uint16_t)out); Serial.print("\n");
}

void loop() {
 // put your main code here, to run repeatedly:

}

The output:
 bit = 32
 port = 2
 reg = 36
 out = 37

C4µC - GPIO

● In: <your IDE path>\...\wiring_digital.c (on lines 31-61):

void pinMode(uint8_t pin, uint8_t mode)
{

uint8_t bit = digitalPinToBitMask(pin);
uint8_t port = digitalPinToPort(pin);
volatile uint8_t *reg, *out;
...
reg = portModeRegister(port);
...
} else { //mode = OUTPUT

uint8_t oldSREG = SREG;
cli();

*reg |= bit;
SREG = oldSREG;

}
}

● So, *reg |= bit; //at address 36 (0x24) set the 5th bit (32 = 2^5)

 bit = 32
 port = 2
 reg = 36
 out = 37

Datasheet,
page 428

C4µC - GPIO

● Register at SRAM address 0x24 is DDRB

● You can read datasheet:

● I/O-Ports overview (p.97)

● Configuring the Pin (p.98)

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in the Register
Description, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits at the PORTx I/O
address, and the PINxn bits at the PINx I/O address.
The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written to '1', Pxn is
configured as an output pin. If DDxn is written to '0', Pxn is configured as an input pin.
...

● Note the example code in the following pages, in the assembly you can
see the use of IN and OUT opcodes to access the register

● Port B Data Direction Register (p.117)

What do you expect from digitalWrite() function???

C4µC - GPIO

● Blink code

● In Arduino.h and wiring_digital.c, you have prototype and implementation of
digitalWrite(), accessing the register PORTB (0x25)

void digitalWrite(uint8_t pin, uint8_t val){
 ...
 uint8_t bit = digitalPinToBitMask(pin);
 uint8_t port = digitalPinToPort(pin);
 volatile uint8_t *out;
 ...
 out = portOutputRegister(port);
 ...
 if (val == LOW) {
 *out &= ~bit; //at address 37 (0x25) clear the 5th bit (32 = 2^5)
 } else {
 *out |= bit; //at address 37 (0x25) set the 5th bit (32 = 2^5)
 }
 ...
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

As before:
 bit = 32
 port = 2
 out = 37

C4µC - GPIO

● We can have the same result rewriting a "purged" code:

// include only avr libraries
#include <avr/io.h>
#include <util/delay.h>

#define BLINK_DELAY_MS 1000

int main(void){
 /* set pin 5 of PORTB for output */
 DDRB |= _BV(DDB5);

 while(1) {
 /* set pin 5 high to turn led on */
 PORTB |= _BV(PORTB5);
 _delay_ms(BLINK_DELAY_MS);

 /* set pin 5 low to turn led off */
 PORTB &= ~_BV(PORTB5);
 _delay_ms(BLINK_DELAY_MS);
 }
 return 0;
}

C4µC - GPIO

● Note that we have done a slight different access to the same
registers:

● In including <avr/io.h>, we have included avr/iom328p.h
// from <avr/iom328p.h>

#define DDRB _SFR_IO8(0x04)
...
#define DDB5 5
...
#define PORTB _SFR_IO8(0x05)
...
#define PORTB5 5

● The explanation is again in the datasheet (p.35), where:
"The five different addressing modes for the data memory cover:..."

● In <avr/srf_defs.h>, we have:
define __SFR_OFFSET 0x20
#define _SFR_IO8(io_addr) ((io_addr) + __SFR_OFFSET)

Which addressing mode is direct and which one indirect??

C4µC - GPIO

● A GPIO can be used, of course, as an INPUT

// Modified: Examples -> Digital -> Button
const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin
int buttonState = 0; // variable for reading the pushbutton status

void setup() {

 pinMode(ledPin, OUTPUT); // init the LED pin as an output
 pinMode(buttonPin, INPUT_PULLUP); // init the pushbutton pin as an inputpulled-up
 // pin HIGH if button is not pressed
}

void loop() {
 buttonState = digitalRead(buttonPin); // read the state of the pushbutton value

 // check if the pushbutton is pressed.
 if (buttonState == LOW) { // If it is, the buttonState is LOW
 digitalWrite(ledPin, HIGH); // turn LED on
 }
 else {
 digitalWrite(ledPin, LOW); // turn LED off
 }
}

Exercise:
do the same using
DDRB, PORTB and …?

C4µC - GPIO

● Variation from the example:

● The pin D2 is not just an INPUT, but a pulled-up input
(INPUT_PULLUP)

● If not shorten to GND by the button press, it is read as HIGH

● The logic of turning on the LED is adapted

USB side

Switch/button
connects:
4th pin (GND)
5th pin (D2)

1st board pin

Datasheet p.97

C4µC - GPIO

● The previous application turns the LED on
when the button is pressed

● But it does only that!!! Let's add some job...

● It's not easy to catch the moment when we can press the button

● Can we wait for the input??

void loop() {

 delay(5000); // Suppose here the micro is working hard

 // check if the pushbutton is pressed.
 if (digitalRead(buttonPin) == LOW) {
 digitalWrite(ledPin, HIGH); // turn LED on
 delay(2000);
 }
 digitalWrite(ledPin, LOW); // turn LED off

 delay(5000); // Still working hard

}

C4µC - GPIO

● A variation with BLOCKING INPUT (our code is blocking)

void loop() {

 delay(5000); // Suppose here the micro is working hard

 digitalWrite(ledPin, HIGH); // a short blink
 delay(200); // to know app
 digitalWrite(ledPin, LOW); // is waiting...

 // wait until the pushbutton is pressed.
 while (digitalRead(buttonPin) == HIGH) {;}

 digitalWrite(ledPin, HIGH); // turn LED on
 delay(2000);
 digitalWrite(ledPin, LOW); // turn LED off

 delay(5000); // Still working hard

}

● This is an example of BLOCKING instruction/device

● Sometime it is needed

● Sometime it is unwanted

It depends on the logic
of your application!!!

C4µC - Timers

● We have used the function delay(int millis)

● What this function is built upon?

● The Atmega328 has 3 timers: 2 x 8bit (TC0, TC2) and 1 x 16bit
(TC1) (they differ in max value before overflowing: 255 or 65535)

● Other than prescaler config., control and counter registers there are
also a set of output compare and input capture registers

● A big part of the datasheet explains the functionalities (Ch.19-22)

You can read the datasheet when you need a low-level control...

● Or trust some info found online:
In the Arduino world timer0 is been used for the timer functions, like
delay(), millis() and micros(). If you change timer0 registers, this
may influence the Arduino timer function. So you should know what
you are doing.

C4µC - Timers

● A schematic of timer 8bit and timer 16bit

C4µC - Timers

● Timer Registers

● You can change the Timer behaviour through the timer register.
The most important timer registers are:

● TCCRx - Timer/Counter Control Register. The prescaler can be
configured here.

● TCNTx - Timer/Counter Register. The actual timer value is stored
here.

● OCRx - Output Compare Register

● ICRx - Input Capture Register (only for 16bit timer)

● TIMSKx - Timer/Counter Interrupt Mask Register. To enable/disable
timer interrupts.

● TIFRx - Timer/Counter Interrupt Flag Register. Indicates a pending
timer interrupt.

C4µC - Timers

● There exists 3rd party libraries for timers...
see: http://playground.arduino.cc/Code/Timer1

● Generic example: clock select and timer frequency

Different clock sources can be selected for each timer independently.
To calculate the timer frequency (for example 2Hz using timer1) you
will need:

● CPU frequency for Arduino: 16Mhz

● maximum timer counter value (255 for 8bit, 65535 for 16bit timer)

● Divide CPU frequency through the choosen prescaler
(16000000 / 256 = 62500)

● Divide result through the desired frequency (62500 / 2Hz = 31250)

● Verify the result against the maximum timer counter value
(31250 <= 65535: success). If fail, choose bigger prescaler.

http://playground.arduino.cc/Code/Timer1

C4µC - Interrupts

● If you need to monitor some changes or to verify if
some data are ready:

● Polling: repetedly read some status

● Interrupts: a mechanism that alerts when something is just happened

● You must have seen (recap part-7 slide 13):

– Fixed interrupt

– Vectored interrupt

– Interrupt address table
● On Atmega328: Interrupt address table (see datasheet p.82)

C4µC - Interrupts

● A total of 24 interrupt:

C4µC - Interrupts

● Let's analise some interrupts
● And let's start from the EXTernal INTerrupt (p.87)

" The External Interrupts are triggered by the INT pins or any of the PCINT "

● The INT pins are on Port D (PD2 and PD3)
(don't be confused by the package pin numbering,
look at the Port name and number)

● They, by the schematic, correspond to D2 and D3

● We have already used D2 for the push button

● Only reading the value, even in blocking mode

● Let's use the interrupt INT0 (on D2) to manage the button

C4µC - Interrupts

● Arduino API style (see https://www.arduino.cc/en/Reference/Interrupts):

const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin
volatile int buttonState = 0; // variable for reading the pushbutton event

void setup() {

 pinMode(ledPin, OUTPUT);
 pinMode(buttonPin, INPUT_PULLUP);
 attachInterrupt(digitalPinToInterrupt(buttonPin), serve_pressed, FALLING);

}

void serve_pressed(){
 buttonState = 1;
}

● The function attachInterrupt takes:

– The interrupt to register to (by the use of internal pin-int f.)
– The service function (serve_pressed, in our case)
– The trigger type (LOW, CHANGE, RISING, FALLING)

https://www.arduino.cc/en/Reference/Interrupts

C4µC - Interrupts

void attachInterrupt(uint8_t interruptNum, void (*userFunc)(void), int mode) {
 if(interruptNum < EXTERNAL_NUM_INTERRUPTS) {
 intFunc[interruptNum] = userFunc;){
 ...

● Note: the service function passed as parameter is:

– A function pointer!

– With parameter and return value void

● In: <your IDE path>\hardware\arduino\avr\cores\arduino\WInterrupts.c,
we have (lines 69-71) the attachInterrupt implementation:

#define CHANGE 1
#define FALLING 2
#define RISING 3
...

● In: <your IDE path>\hardware\arduino\avr\cores\arduino\Arduino.h,
we have (lines 60-62) the definitions for mode:

● See External Interrupt Control Register A (datasheet, p.89)
" The External Interrupt Control Register A contains control bits for interrupt sense control. "

C4µC - Interrupts

● Arduino API style:

void loop() {

 delay(5000); // Suppose here the micro is working hard

 // check if the pushbutton has been pressed.
 if (buttonState == 1) {
 digitalWrite(ledPin, HIGH); // turn LED on
 delay(2000);
 buttonState = 0;
 }
 digitalWrite(ledPin, LOW); // turn LED off

 delay(5000); // Still working hard

}

● When it's time to turn the LED on, only the variable buttonState is
checked; the variable is set in the service function to 1.

● None a buttonPress is miss, even during hard work and without
blocking

C4µC - Interrupts

● Same application, µC style (relating the INT):

#include <avr/interrupt.h>

const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin
volatile int buttonState = 0; // variable for reading the pushbutton event

void setup() {
 pinMode(ledPin, OUTPUT);
 pinMode(buttonPin, INPUT_PULLUP);
 sei(); // Enable global interrupts
 EIMSK |= (1 << INT0); // Enable external interrupt INT0
 EICRA |= (1 << ISC01); // Trigger INT0 on falling edge
 EICRA = (EICRA & ~((1<<ISC01) | (1<<ISC00))) | (FALLING << ISC00);
}

// Interrupt Service Routine attached to INT0 vector
ISR(INT0_vect){
 buttonState = 1;
}

//void loop(){ //UNCHANGED

● Defines of sei() and ISR(<source>_vect) in avr/interrupt.h
see some info: http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html

http://www.nongnu.org/avr-libc/user-manual/group__avr__interrupts.html

C4µC - Interrupts

● LED toggle application, µC style (relating the INT):

#include <avr/interrupt.h>

const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin
volatile int buttonState = 0; // variable for reading the pushbutton event

void setup() {
 pinMode(ledPin, OUTPUT);
 pinMode(buttonPin, INPUT_PULLUP);
 sei(); // Enable global interrupts
 EIMSK |= (1 << INT0); // Enable external interrupt INT0
 EICRA |= (1 << ISC01); // Trigger INT0 on falling edge
 EICRA = (EICRA & ~((1<<ISC01) | (1<<ISC00))) | (FALLING << ISC00);
}

// Interrupt Service Routine attached to INT0 vector
ISR(INT0_vect){
 digitalWrite(13, !digitalRead(13)); // Toggle LED on pin 13
}

void loop(){;} // Do nothing Does it work as
expected???

C4µC - Interrupts

● How many times the pushButton has been pressed?

#include <avr/interrupt.h>

const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin
volatile int buttonState = 0; // variable for reading the pushbutton events

void setup() {
 Serial.begin(115200);
 pinMode(ledPin, OUTPUT);
 pinMode(buttonPin, INPUT_PULLUP);
 sei(); // Enable global interrupts
 EIMSK |= (1 << INT0); // Enable external interrupt INT0
 EICRA |= (1 << ISC01); // Trigger INT0 on falling edge
 EICRA = (EICRA & ~((1<<ISC01) | (1<<ISC00))) | (FALLING << ISC00);
 while(!Serial);
 buttonState = 0;
}

// Interrupt Service Routine attached to INT0 vector
ISR(INT0_vect){
 buttonState += 1; // Count the button pressed
}

● Now we count the button pressed events and want to use serial to
tell us

C4µC - Interrupts

● How many times the pushButton has been pressed?

void loop() {

 delay(2000); // Suppose here the micro is working hard

 // check if the pushbutton has been pressed at least once
 if (buttonState > 0) {
 digitalWrite(ledPin, HIGH); // turn LED on
 delay(2000);
 Serial.print("Pressed "); Serial.print(buttonState); Serial.println();
 buttonState = 0;
 }
 digitalWrite(ledPin, LOW); // turn LED off

 delay(2000); // Still working hard

}

● Open the Serial monitor and...

● There were more that 1 interrupt

Does it work as expected? NO, bouncing!!!

C4µC - Interrupts

● Bouncing phenomenon
● The switch is not an ideal

contact OPEN/CLOSED

● There are more or less
fluctuations in the
signal transition

● That are captured
by the interrupt

● In the image the signal
appears stable after 1.5ms

● It depends on the switch

Need to debounce!!!

C4µC - Interrupts

● Bouncing phenomenon
● The bouncing can be controlled by discrete extra components

(R + C + Buffer or inverter logic) outside the µC

● The bouncing can be controlled via software:

● by the introduction of a delay interval in which INT is disabled
and GPIO re-read

● By the introduction of state variables

– As happened for our long delay (2 s) and buttonState = 0
● There are some examples in Arduino IDE

– Menu File --> Examples --> Digital --> Debounce

– Menu File --> Examples --> Digital --> StateChangeDetection

Have a look at other solutions online!!

C4µC - Interrupts

● Internal interrupts, let's use the timer (Blink LED 2Hz)
// taken from: robotshop.com/letsmakerobots/arduino-101-timers-and-interrupts
#define ledPin 13

void setup() {
 pinMode(ledPin, OUTPUT);

 // initialize timer1
 noInterrupts(); // disable all interrupts
 TCCR1A = 0;
 TCCR1B = 0;
 TCNT1 = 0;
 OCR1A = 31250; // compare match register 16MHz/256/2Hz
 TCCR1B |= (1 << WGM12); // CTC mode = Clear Timer on Compare match
 TCCR1B |= (1 << CS12); // 256 prescaler
 TIMSK1 |= (1 << OCIE1A); // enable timer compare interrupt
 interrupts(); // enable all interrupts
}

ISR(TIMER1_COMPA_vect){ // timer compare interrupt service routine
 digitalWrite(ledPin, digitalRead(ledPin) ^ 1); // toggle LED pin
}

void loop() { ; /* our program here here */ }

● The blink is controlled entirely by the timer and one of its ISR

C4µC - Basic functionalities

● As exercise:
● Try to modify the examples and combine them
● Have a look at: https://playground.arduino.cc/Main/AVR

● Try to use both the "Arduino API style" and the "µC
style"
– Classify your sketches, it will be useful

Some exercices in the exam can be a little
variation of what you have seen today

Any question before the last example?

https://playground.arduino.cc/Main/AVR

C4µC - Vintage example

C4µC - Vintage example

● Dialer disk

● This dialer has three wires:

● Red – common

● Blue – NO, CLOSED during dialing and release

● White – NC, pulse OPENED during release

C4µC - Vintage example

● This dialer has three wires:

● Red – common GND

● Blue – NO, CLOSED during dialing and release D3 - pull-up

● White – NC, pulse OPENED during release D2 – pull-up

● The resulting signal should be something like this:

D3

D2

dialing release

C4µC - Vintage example

● The resulting measured signal is

● Pulse period 100ms (63ms HIGH, 37ms LOW)

● Interval from last pulse falling to dialing ended 12ms

● Timing diagram is useful to trim the app.logic (considerations...)

C4µC - Vintage example

● The most dummy code - setup()
const int pulsePin = 2; // the pusle signal
const int dialingPin = 3; // the dialing signalization
const int ledPin = 13; // the led pin

int dialedDigit = 0;
int numDigits = 0;

void setup() {
 Serial.begin(115200);
 while(!Serial);
 pinMode(ledPin, OUTPUT);
 pinMode(pulsePin, INPUT_PULLUP);
 pinMode(dialingPin, INPUT_PULLUP);
}

C4µC - Vintage example

● The most dummy code - loop()
void loop() {
 dialedDigit = 0;

 while(digitalRead(dialingPin) == HIGH);
 delay(50); // here we are dialing

 while(digitalRead(dialingPin) == LOW){
 while(digitalRead(pulsePin) == LOW);
 digitalWrite(ledPin, HIGH); // turn LED on
 delay(10);
 while(digitalRead(pulsePin) == HIGH);
 digitalWrite(ledPin, LOW); // turn LED off
 delay(20);
 dialedDigit +=1;
 }
 if(dialedDigit>0){
 dialedDigit = dialedDigit % 10;
 numDigits = (numDigits + 1) % 10;
 Serial.print(dialedDigit);
 }
 else dialedDigit = -1;
 if(numDigits == 0) Serial.println();
}

Test it!!

Exercise warning:
possible variations

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49

