
University of L’Aquila
Embedded Systems

2020/2021

Teacher:
Dott.Ric. Ing Luigi Pomante

Contributor:
Fausto D’Antonio

Gabriella D’Andrea
(gabriella.dandrea@graduate.univaq.it)

HOMELAB 𝜇𝐶 8051 ISS/HDL

Contents	
1. Introduction: Micro Controller Intel 8051 _____________________________________ 4

1.1. Specifications ___ 4
1.2. Instruction Set Architecture (I.S.A.) ___ 5
1.3. I8051 Tools and Miscellanea ___ 6

1.3.1. I8051 Toolchains ___ 6
1.3.2. Dalton Project Facilities __ 6
1.3.3. Hex Format __ 8

2. Setting Up the Environment ___ 10
2.1. Software Requirements for Homelab execution _________________________________ 10
2.2. Preparing material ___ 11
2.3. Compilers Tools ___ 12

2.3.1. SDCC __ 12
2.3.2. Keil ___ 14

2.4. Tools for Simulation __ 15
2.4.1. Tools for Sw Simulation: Building ISASim ___ 15
2.4.2. Tools for Hw Simulation: Building Hex2Rom __ 18

3. Compile for Intel 8051 ___ 19
3.1. Program example __ 19

3.1.1. SDCC and Keil includes __ 20
3.1.2. Expected results ___ 20

3.2. SDCC compiler in action ___ 20
3.2.1. Build with plain SDCC ___ 20
3.2.2. Build with SDCC flags ___ 22

3.3. Keil compiler in action __ 24
Keil output issue __ 29

4. Software simulation ___ 30
4.1. Running ISASim ___ 31

4.1.1. Running ISASim on Linux __ 31
4.1.2. Running ISASim on Windows ___ 32
4.1.3. ISASim debug information report ___ 32

4.2. Software Simulation results comparison _______________________________________ 32
5. Hardware simulation __ 36

5.1. Running Hex2Rom ___ 36
5.1.1. Running Hex2Rom on Linux __ 36

5.2. Creating Vivado project for I8051 model _______________________________________ 36
5.2.1. Perform Vivado Hardware Simulation __ 39

5.3. ROM memory generation (by using Hex2Rom) __________________________________ 41
5.4. Hardware simulation results comparison ______________________________________ 41

6. Conclusions __ 44

C/C++code	simulation	for		
𝜇𝐶	Intel	8051	

Homelab purpose is to build a development environment for Intel 8051 microcontroller and to use
simulation techniques in order to verify the functionality and efficiency of developed software.

This Homelab proposes first to compile a C program, then to perform both software and hardware
simulations. Software simulation will use an ISS, while the hardware simulation will use a VHDL model.

Figure 1 – Homelab workflow

In this tutorial we will first learn how to build a .c file for 8051. Various tools will be proposed and
compared, executable file will be produced in hex format.

Once executable .hex is obtained, you can simulate its execution through the use of an ISS.
.hex executable also allows to produce a ROM image in vhdl format; its inclusion in VHDL model description
you will be allowed to perform a complete hardware simulation.

Homelab purpose, rather than learn i8051 simulation process flow, is to apply the process itself to
whatever function or program.

While this document is a guide through the i8051 simulation flow with respect to a toy example, each
student will be asked to apply the same flow to one different function of its choice.

The function shall be of medium/low difficulty, similar in complexity and computational weight to the
example proposed here in the document and/or the one proposed during the i8051 homelab class.

In the following, while describing homelab development, you will find five different sections named
Group/Student shall. In each of those sections, are described the steps a student or a group of students
shall to take in order to learn homelab notions.
It is worth to notice that last Group/Student shall section contains the real homelab assignment.

At last, please consider that some information you will find in this document, such as URLs, are valid at the
time of writing but may change in time.

1. Introduction:	Micro	Controller	Intel	8051	
From Wikipedia (http://it.wikipedia.org/wiki), for Intel 8051 entry:

The	Intel	MCS-51	(commonly	termed	8051)	is	a	Harvard	architecture,	complex	instruction	set	
computing	(CISC)	instruction	set,	single	chip	microcontroller	(µC)	series	developed	by	Intel	in	
1980	for	use	in	embedded	systems.[1]	Intel's	original	versions	were	popular	in	the	1980s	and	
early	1990s	and	enhanced	binary	compatible	derivatives	remain	popular	today.	
	
The	family	was	continued	in	1996	with	the	enhanced	8-bit	MCS-151	and	the	8/16/32-bit	MCS-251	
family	of	binary	compatible	microcontrollers.[2]	While	Intel	no	longer	manufactures	the	MCS-51,	
MCS-151	and	MCS-251	family,	enhanced	binary	compatible	derivatives	made	by	numerous	
vendors	remain	popular	today.	Some	derivatives	integrate	a	digital	signal	processor	(DSP).	
Beyond	these	physical	devices,	several	companies	also	offer	MCS-51	derivatives	as	IP	cores	for	use	
in	field-programmable	gate	array	(FPGA)	or	application-specific	integrated	circuit	(ASIC)	
designs.	

1.1. Specifications	
An 8-bit CPU is the core of the Intel 8051 microcontroller. Harvard Architecture is the architectural model
adopted by the microcontroller; therefore, it parts data against instruction by the use of two memories and
two buses; indeed 8051 presents a non-volatile PROM memory, which contains program instruction, and a
RAM memory, which contains data. Furthermore, it presents an 8-bit Data Bus and a 16-bit Address Bus.
I8051 registers are 8-bit registers. ALU works with 8-bit words and makes use of an accumulator register.
Intel 8051 communicates with four I/O 8-bit ports.

Figure 2 - Intel 8051 microarchitecture

1.2. Instruction	Set	Architecture	(I.S.A.)	
Instruction set groups its instructions into five distinct groups: arithmetic instructions, control instructions;
logic instructions; single bit operations and finally data transfer instructions.
Note that the generic operation OP can be declined with several kinds of parameters: OP (A, Rn), OP (A,
direct), OP (A, @Ri), OP (A, #data) where Rn is the name of a register, direct indicates a memory position, Ri
is a pointer to a position, #data is a given data.
For an exhaustive list of instructions, please refer to https://it.wikipedia.org/wiki/Intel_8051. Below some
of them.

1.2.1. Arithmetic	instruction	
Mnemonics Description Bytes Cycles

ADD A,Rn Sum A to content of Rn register 1 12
ADDC A,Rn Sum A to content of Rn register and CY 1 12
SUBB A,Rn Subtract to A the content of Rn register and CY 1 12
INC A Unitary increment of A 1 12
DEC A Unitary decrement of A 1 12
INC DPTR Unitary increment of DPTR register 1 24
MUL AB Multiply A content for B 1 48
DIV AB Divide A per B; quotient in A e rest in B 1 48

1.2.2. Control	instruction	
Mnemonics Description Bytes Cycles

ACALL addr11 Executes routine in a 2K segment 2 24
LCALL addr16 Executes routine 3 24
RET Stop routine execution 1 24
AJMP addr11 Jump to specified address in a 2K segmento 2 24
LJMP addr16 Jump to specified address 3 24
SJMP rel Jump to [rel] successive position of Program Counter 2 24
JMP @A+DPTR Jump to PC position pointed by A plus DPTR content 1 24
JZ rel Jump to [rel] position if A content is zero 2 24
NOP No operation 1 12

1.2.3. Logic	Instruction	
Mnemonics Description Bytes Cycles
ANL A,Rn Logic AND between A and Rn register content 1 12
ORL A,Rn Logic OR between A Rn register content 1 12
XRL A,Rn Logic EX-OR between A Rn register content 1 12
CLR A Put all A bits to zero 1 12
CPL A Invert all A bits (1-Complement) 1 12
RL A 1 step left shift A bits 1 12
SWAP A Swap two accumulator nibbles 1 12

1.2.4. Single	bit	operation	instructions	
Mnemonics Description Bytes Cycles

CLR C Set CY flag to 0 1 12
CLR bit Set [bit] address bit to 0 2 12
SETB C Set CY flag to 1 1 12
SETB bit Set [bit] address bit to 1 2 12
CPL C Invert CY flag 1 12
ANL C,bit Logic AND between CY and [bit] address bit 2 24
ORL C,bit Logic OR between CY and [bit] address bit 2 24
MOV C,bit Copy carry bit in bit address 2 12

1.2.5. Data	transfer	instructions	

Mnemonics Description Bytes Cycles
MOV A,Rn Copy A content in Rn register 1 12
PUSH direct Copy in position pointed from SP the content of direct position and increment Stack 2 24
POP direct Copy in position pointed from SP the content of direct position and decrement Stack 2 24
XCH A,Rn Swap A content with Rn 1 12

1.3. I8051	Tools	and	Miscellanea	

1.3.1. I8051	Toolchains	

8051 Compilers’ market is extensive; there are open source compilers and compilers for payment. Both
have their strengths and weaknesses.
One of the most advertised products is MikroC PRO for 8051, it can be found at
http://www.mikroe.com/mikroc/8051/. This software is available as a free trial or as a full version at the
cost of $249.
An open source compiler is SDCC (Small Device C Compiler), whose website is http://sdcc.sourceforge.net/,
is a completely free software that well suits our needs.
Another compiler for payment is Keil, it is used within the μVision IDE which is specifically designed for the
compiler. Refer to the website http://www.keil.com/C51/. This software is not open source, but user is
allowed to use some of its functionalities for free, without a current license it can still compile as long as
code not exceeds 2Kbytes of object code.

SDCC	compiler	

From SDCC manual:

SDCC	(Small	Device	C	Compiler)	is	free	open	source,	retargettable,	optimizing	standard	(ISO	C90,	
ISO	C99,	ISO	C11)	C	compiler	suite	by	Sandeep	Dutta	designed	for	8	bit	Microprocessors.	[…]	The	
entire	source	code	for	the	compiler	is	distributed	under	GPL.		
SDCC	uses	a	modified	version	of	ASXXXX	&	ASLINK,	free	open	source	retargetable	assembler	&	
linker.	SDCC	has	extensive	language	extensions	suitable	for	utilizing	various	microcontrollers	and	
underlying	hardware.	

And more:

SDCC	is	not	just	a	compiler,	but	a	collection	of	tools	by	various	developers.	These	include	linkers,	
assemblers,	simulators	and	other	components.	

Keil	compiler	
From Keil compiler official website http://www.keil.com/, the product description:

Keil	C51	is	the	industry-standard	toolchain	for	all	8051-compatible	devices,	it	supports	classic	
8051,	Dallas	390,	NXP	MX,	extended	8051	variants,	and	C251	devices.	The	µVision	IDE/Debugger	
integrates	complete	device	simulation,	interfaces	to	many	target	debug	adapters,	and	provides	
various	monitor	debug	solutions.
	

1.3.2. Dalton	Project	Facilities	
There are several ways to simulate the execution of a program compiled on a hardware platform. Among
them there are two categories: the software approach by ISS (Instruction Set Simulator) and the hardware
approach using VHDL description (VHSIC Hardware Description Language).

The University of California developed a project centred on 8051 microprocessor, project provides a
number of tools and examples useful for simulating C code on Intel 8051 microprocessor. The project name
is Dalton developed by the Dept. of computer Science of the University of California.
The online project reference is http://www.ann.ece.ufl.edu/i8051/. It offers an ISS written in C ++ language
for the Intel 8051 and a VHDL model of the processor.

To make best use of the VHDL model, it also provides a program to transform the Intel 8051 compiled code
in VHDL memory ROM module containing instructions of the compiled code. Thus, it allows hardware
simulation of C code; it even allows to synthesize the microcontroller 8051 with the compiled program
loaded in the ROM.
From project website:

We	developed	a	VHDL	synthesizable	model	of	the	8051	and	a	C++	based	8051	instruction-set	
simulator	[…],	on	which	we've	based	some	research	directions.	One	of	those	directions	is	a	tuning	
environment	[…],	to	assist	a	designer	who	wants	to	modify	the	8051	architecture	to	be	more	
power	efficient	for	a	particular	program.	

Software	simulation:	Instruction	Set	Simulator	(ISS)	
From wikipedia (http://en.wikipedia.org/wiki), at Instruction Set Simulator page:

An	instruction	set	simulator	(ISS)	is	a	simulation	model,	usually	coded	in	a	high-level	
programming	language,	which	mimics	the	behavior	of	a	mainframe	or	microprocessor	by	
"reading"	instructions	and	maintaining	internal	variables	which	represent	the	processor's	
registers.	

Dalton Project’s Instruction Set Simulator (ISS) source code consists of the following files:

• Main.cc,
• i8051.cc,
• i8051.h.

From Dalton Project website:

The	high	level	simulator	for	the	Intel	8051,	written	in	C++,	allows	a	user	to	simulate	simple	
programs	written	for	the	8051.	The	simulator	provides	statistics	on	instructions	executed,	
instructions	executed	per	second,	execution	cycles	required	by	the	8051,	and	average	instructions	
per	second	for	an	8051	executing	the	same	program.	

ISS source code files are downloadable at Dalton Project website
(http://www.cs.ucr.edu/~dalton/i8051/i8051sim/) or in ISS folder provided within material of this homelab.

In order to execute the program you have to compile these files and then you will able to run the
executable file from Command Line Interface (CLI).
Refer to section 2.4.1 for ISASim building procedure.

Hardware	Simulation	(VHDL)	
From wikipedia (http://en.wikipedia.org/wiki), at VHDL item:

VHDL	(VHSIC	Hardware	Description	Language)	is	a	hardware	description	language	used	in	
electronic	design	automation	to	describe	digital	and	mixed-signal	systems	such	as	field-
programmable	gate	arrays	and	integrated	circuits.	VHDL	can	also	be	used	as	a	general	purpose	
parallel	programming	language.	

VHDL (Very high speed integrated circuits Hardware Description Language) Intel 8051 microprocessor
description provided by Dalton Project is composed by many files, each describes a specific hardware
component.

Figure 3 – VHDL model files

From project website:

The	Intel	8051	is	an	8-bit	micro-controller.	This	micro-controller	is	capable	of	addressing	64K	of	
program	and	64K	of	data	memory.	The	implementation	[…]	is	written	in	Synthesizable	VHDL	(at	
least	by	Synopsys	and	Xilinx,)	and	models	the	actual	Intel	implementation	rather	closely,	e.g.,	it	is	
100%	instruction	compatible.		

VHDL ROM memory component (modelled by i8051_rom.vhd file) is filled and configured with the program
instructions; when started up the microprocessor will execute those instructions. By configuring this
component accordingly to program willing to execute, we need a process/program to fill the rom with
desired instructions.
To obtain ROM .vhd file filled with instructions accordingly to .hex file, Dalton project provides i8051_mkr.c
program. i8051_mkr.c needs to be compiled in order to get an executable program which is runnable from
Command Line Interface and allow to create i8051_rom.vhd file from .hex executable.

1.3.3. Hex	Format	
Hex is an Intel format that formats low-level hardware instructions in hexadecimal format. From Wikipedia
(https://en.wikipedia.org/wiki/Intel_HEX) at Intel Hex item:

Intel	HEX	is	a	file	format	that	conveys	binary	information	in	ASCII	text	form.	It	is	commonly	used	
for	programming	microcontrollers,	EPROMs,	and	other	types	of	programmable	logic	devices.	In	a	
typical	application,	a	compiler	or	assembler	converts	a	program's	source	code	(such	as	in	C	or	
assembly	language)	to	machine	code	and	outputs	it	into	a	HEX	file.	The	HEX	file	is	then	imported	
by	a	programmer	to	"burn"	the	machine	code	into	a	ROM,	or	is	transferred	to	the	target	system	
for	loading	and	execution.		

Despite instructions are hexdecimally coded, characters sequences are hardly comprehensible for a human
being. Nonetheless, instructions are structured such that they are easier to be understand.
In Figure 4, the pattern of hex format instructions.

Pos
1 Pos 2-3 Pos 4-7 Pos 8-9 Pos 10-? Pos10 +

Value(Pos2-3)
: 10 0003 00 7F2F7E0BEF6E6015EFD39E4008C3EF9E EC
: 10 0013 00 FFF58080EFC3EE9FFEF59080E78FA080 11
: 02 0023 00 FE22 BB
: 03 0000 00 020025 D6
: 0C 0025 00 787FE4F6D8FD758107020003 37
: 00 0000 01 FF

Positions 1 : record start
Positions 2-3: record length
Positions 4-7: data address. May acquire a value between 0000 – FFFF.
Positions 8-9: data type
Positions 10-?: data field
Position10 + Value(Pos2-3): checksum

Figure 4 – Intel Hex format

2. Setting	Up	the	Environment	

Group/Student	Shall	#1:	Prepare	its	own	environment	

• Align student environment to Software Requirements; look at section 2.1.
• Create and fill directory tree as described in section 2.22.
• Build ISASim tool as described in section 2.4.1

o Follow steps into Building ISASim: fixing code section
o Build ISASim without debug option and with debug option

• Build Hex2Rom tool as described in section 2.4.2

2.1. Software	Requirements	for	Homelab	execution		

Homelab, proposed in this document, uses third party software; it has been developed for Linux platform.
Below the list of required software; before perform homelab assure tools/software availability on your
platform. Other software will be introduced during Homelab development.

g++	installation	
g++ is th linux compiler for c++ source code files.
In order to build a c++ program, g++ is required to be installed.

Check whether g++ is already installed.
Open terminal and type:

> g++ -v

If it is not installed you will receive the following:

Figure 5 – g++ not installed

Then to install gcc, type:

> sudo apt-get install g++
Insert password if/when requested.
Then prompt shows something like:

Figure 6 – g++ Installation

Then check g++ installation by typing again:
> g++ -v

Now you will see:

Figure 7 – g++ Installation check

gcc	update	

Check gcc version by typing
> gcc -v

If gcc version is lower than online update (4.9.4 at time of writing), perform following commands in order
to update the software. Insert password when requested1.

> sudo add-apt-repository ppa:ubuntu-toolchain-r/test
> sudo apt-get update
> sudo apt-get upgrade
> sudo apt-get dist-upgrade

Vivado	Xilinx	
Hardware simulation will be performed by usage of Xilinx software suite. Official description, from Xilinx
site, is:

The	Vivado®	Design	Suite	offers	a	new	approach	for	ultra	high	productivity	with	next	generation	
C/C++	and	IP-based	design	with	the	new	HLx	editions	including	HL	System	Edition,	HL	Design	
Edition	and	HL	WebPACK™	Edition.	
The	new	HLx	editions	supply	design	teams	with	the	tools	and	methodology	needed	to	leverage	C-
based	design	and	optimized	reuse,	IP	sub-system	reuse,	integration	automation	and	accelerated	
design	closure.	When	coupled	with	the	UltraFast™	High-Level	Productivity	Design	Methodology	
Guide,	this	unique	combination	is	proven	to	accelerate	productivity	by	enabling	designers	to	work	
at	a	high	level	of	abstraction	while	facilitating	design	reuse.	
	
	

The suite consists of, among others, a development environment for hardware description in VHDL and
VERILOG; which allows to simulate and analyse described hardware behavior.
The software version is freely downloadable from URL: http://www.xilinx.com/products/design-
tools/vivado/vivado-webpack.html.

2.2. Preparing	material	

In order to proficiently perform the actions proposed in this document, you will need to fulfil following
conditions and prepare files needed in the homelab actions.

Create ~/workspaces/i8051/ directory:

> cd ~/
> mkdir workspaces
> cd workspaces
> mkdir i8051

Access on your desktop and create the material folder which will contain all the files we will use for this
homelab.

> cd ~/Desktop/
> mkdir material

Then create ISS, VHDL and Hex2Rom folders:

> cd ~/material/
> mkdir ISS
> mkdir VHDL
> mkdir Hex2Rom

In ~/Desktop/material/ISS place Main.cc, i8051.cc and i8051.h files, which you can download from
http://www.cs.ucr.edu/~dalton/i8051/i8051sim/.

In ~/Desktop/material/VHDL place i8051_all.vhd, i8051_all.vhd, i8051_alu.vhd, i8051_ctr.vhd,
i8051_dbg.vhd, i8051_dec.vhd, i8051_lib.vhd, i8051_ram.vhd, i8051_rom.vhd, i8051_tsb.vhd and
i8051_xrm.vhd files, which you can download from http://www.cs.ucr.edu/~dalton/i8051/i8051syn/.

In ~/Desktop/material/Hex2Rom place i8051_mkr.c file, which you can download from
http://www.cs.ucr.edu/~dalton/i8051/i8051syn/.

Figure 8 – Material Preparation

If the files are not anymore available from web sources pointed above, then look at the 02_Material folder
provided within the homelab; there you will find mentioned files.

2.3. Compilers	Tools	

2.3.1. SDCC		
As already mentioned, SDCC compiler’s site is http://sdcc.sourceforge.net/index.php; here you can find
compiler’s manual and have access to download section as shown in Figure 9.

Figure 9 – SDCC website

Linux	Installation	
For SDCC installation on Linux based environments see the following steps.

Move (cut and paste) your SDCC object file (already decompressed) on your Desktop.
Open terminal and access Desktop folder.

> cd ~/Desktop
Login as root, provide root password when requested1:

> sudo su
Check sdcc-3.6.0 by typing

> ll ./sdcc-3.6.0
	

	

Figure 10 – SDCC permissions check	

	
If you find out that the owner is root then you will need to change owner and permissions to all files and
subdirectories contained in ./sdcc-3.6.0.

Type and execute command:	

> chown –R user2 ./sdcc-3.6.0

Now grant full permission by typing	

> chmod 0777 –R user ./sdcc-3.6.0
Usually this is not a good way to proceed but it will grant full access to SDCC capabilities.

1 Remember: user passsword set in Errore. L'origine riferimento non è stata trovata. is sim8051. If you are using giacomo’s virtual machine

then password is aswasw
2user is just a placeholder that student shall substitute with the name of the linux environment user. In pictures the user name is sim8051.

Now copy all sdcc-3.6.0 content into /usr/local/ with following commands:	

> cd sdcc-3.6.0
> cp -r * /usr/local	

Now consider that SDCC linux release is available only for 32 bit environment.
If you have a 64 bit linux environment the quickest solution is to install 32bit compatibility libraries.
You can do this by following commands:

> sudo dpkg --add-architecture i386
> sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386

To check whether SDCC installation was successful type:

> sdcc -v
If the installation was successful, command should return:

Figure 11 – SDCC successfull installation

Disconnect from root login
> exit

2.3.2. Keil	
To freely download compiler from the web, open Keil website and get through the download page
https://www.keil.com/download/product/.

Figure 12 – Keil download page

Keil compiler is a tool developed for the only Windows environment. It is possible to use Keil on Linux
through the wine (https://www.winehq.org/). Once wine is installed you can install the Keil four version
(actual is five) also on Linux environment, this helps in order to have a single environment provided with all
necessary tools.

Wine	
Wine software is available for Linux systems, not for Windows.

Wine	enables	Linux,	Mac,	FreeBSD,	and	Solaris	users	to	run	Windows	applications	without	a	copy	
of	Microsoft	Windows	

Installation procedures are available at: https://wiki.winehq.org/Ubuntu.

Keil	Installation	

Click on C51 item and proceed with registration until download executable file C51vXXX.exe and the
uav4.pdf manual. .exe file. C51vXXX.exe allows to install both compiler and IDE.
Please, before proceed, consider that registration procedure ask for personal information such as phone
and mail. Those info will be used from Italian Keil’s satellites companies to contact registered user.

Let’s start C51vXXX.exe downloaded file, a wizard will come up to guide through software installation. In
Figure 13 are the snapshots for steps to be taken.

Figure 13 – Keil installation wizard

2.4. Tools	for	Simulation	

2.4.1. Tools	for	Sw	Simulation:	Building	ISASim	
To get Instruction Set program available for execution, it needs to compile ISS source code; there are many
ways to do that. The one we propose builds ISASim with the command line interface (CLI); see Building
ISASim: using Command Line Interface.

Building	ISASim:	fixing	code		
Before build, is necessary to update and modify some code details.

ISS code was developed before official C++ standard was modified, indeed this update impacted on C++
compiler. Furthermore, different C++ compiler implementation may have some different interpretation of
some code details. The needs to apply changes to code is almost natural.
To build ISS with last c++ compilers, code require following changes.
With reference to ISS folder in ~/Desktop/material/ISS, a first change has to be done on the header file
i8051.h. Add at line 25 the instruction using namespace std;.

22
23
24
25
26

//#define DETAIL
[…]

22
23
24
25
26

//#define DETAIL
[…]

using namespace std;

Code 1 – i8051.h header file modifications

Then modify main.cc file, including cstdlib library, add following code line #include <cstdlib>; as shown in
Code 2.

14
15
16
17
18

#include <iostream>
#include <signal.h>
#include "i8051.h"

14
15
16
17
18

#include <cstdlib>
#include <iostream>
#include <signal.h>
#include "i8051.h"

Code 2 – main.cc main file modifications

Save changes.

ISS is not provided with a mechanism that allows to understand when simulated program ends, and
consequently ISS is not able to automatically stop the program execution.
Methods to end automatically a program are various. Here, one of the simplest but certainly not the most
elegant.

In I8051.h file, consider the statement commented reported in Code 3.

//#define PROGRAM_COMPLETION ((unsigned char)RAM[P1] == 0x7F)

Code 3 – PROGRAM_COMPLETION variable

It means that ISASim terminates the program when P1 register assume 0x7F value (127 in decimal). This
condition forces programmers to be sure that simulated programs never set register P1 to the 127 value,
otherwise simulation would terminate immediately and improperly.
This instruction defines termination program condition. Such approach allows to trivially terminate
programs, but precludes the possibility to set register P1 to 127 during the program execution. This
restriction may exceed our will.

Following statement set a program completion condition, it states that all of the four registers have to be
set to 0x0.

#define PROGRAM_COMPLETION (((unsigned char)RAM[P0] == 0x0) && ((unsigned char)RAM[P1]
== 0x0) && ((unsigned char)RAM[P2] == 0x0) && ((unsigned char)RAM[P3] == 0x0))

Code 4 – Modified PROGRAM_COMPLETION variable

Remove the statement reported in Code 3, with the one in Code 4 – Modified PROGRAM_COMPLETION
variable.

This approach has the advantage to maintain the program flow under programmer control, but contrarily
forces to terminate the program with four assignments. These assignments affect the number of
instructions executed and, we will see, the information that ISASim provides.

Building	ISASim:	using	Command	Line	Interface	
We need two different configuration for ISASim executable, we will build it two times with different option.

In i8051 workspace folder, create a new subfolder with ISASim name.

> cd ~/workspaces/i8051/
> mkdir isasim

Move into isasim folder:
 > cd isasim/
create src and inc subfolders

> mkdir src
> mkdir inc

create Release and ReleaseForDebugging subfolders
> mkdir Release
> mkdir ReleaseForDebugging

Copy all .cc files from Dalton Project ISS into isasim/src/.

> cp ~/Desktop/material/ISS/*.cc ./src/	
Copy all .cc files from Dalton Project ISS into isasim/src/.

> cp ~/Desktop/material/ISS/*.h ./inc/

ISS source code files are downloadable at Dalton Project website
(http://www.cs.ucr.edu/~dalton/i8051/i8051sim/) or in ISS folder provided within material of this homelab.

Building	Release	configuration	
Execute following commands:

	
> g++ -I "./inc" -O3 -Wall -c -o "./Release/i8051.o" "./src/i8051.cc"
> g++ -I "./inc" -O3 -Wall -c -o "./Release/main.o" "./src/main.cc"
> g++ -I "./inc" -o "./Release/ISASim" ./Release/*.o

ISASim source code composes of two .cc files: main.cc and i8051.cc. We will compile them separetly and
then link them togheter.
First of all compile and assemble i80151.cc file, with the following command:

> g++ -I "./inc" -O3 -Wall -c -o "./Release/i8051.o" "./src/i8051.cc"

The command uses g++ compiler, builds "./src/i8051.cc" by using following flags:

• -I "./inc"
Search for .h files into ./inc subfolder (subfolder path refers to directory where g++ is called).

• -O3
Set the maximum level of optimization.

• -Wall
Display all warnings.

• -c
Compile and assemble but do not link the input file.

• -o "./Release/i8051.o"
Place output i8051.o file in ./Release folder.

Similarily, compile and assemble main.cc file:

> g++ -I "./inc" -O3 -Wall -c -o "./Release/main.o" "./src/main.cc"

Link obtained object files with the following:

> g++ -I "./inc" -o "./Release/ISASim" ./Release/i8051.o ./Release/main.o

Building	ReleaseForDebugging	configuration	

Compile and assemble i80151.cc file, with the following command:

> g++ -I "./inc" -O3 -Wall -c -o "./ReleaseForDebugging/i8051.o"
 -DDEBUG -DDEBUG_PC -DDETAIL "./src/i8051.cc"

Similarily, compile and assemble main.cc file:
> g++ -I "./inc" -O3 -Wall -c -o "./ReleaseForDebugging/main.o"
 -DDEBUG -DDEBUG_PC -DDETAIL "./src/main.cc"

Link obtained object files with the following:

> g++ -I "./inc" -o "./ReleaseForDebugging/ISASim" -DDEBUG -DDEBUG_PC
 -DDETAIL ./ReleaseForDebugging/i8051.o ./ReleaseForDebugging/main.o

You can enable the production of debugging information as a simulation output, by defining DEBUG,
DEBUG_PC and DETAIL macros.
Flags -DDEBUG -DDEBUG_PC -DDETAIL allows you to define those Macros during building phase.
Alternatively, you can remove comments at 20, 21 and 22 lines in i8051.h file as follows, then build without
-DDEBUG -DDEBUG_PC –DDETAIL flags:

20
21
22

//#define DEBUG
//#define DEBUG_PC
//#define DETAIL

20
21
22

#define DEBUG
#define DEBUG_PC
#define DETAIL

Code 5 – ISASim debug, condition enabling

2.4.2. Tools	for	Hw	Simulation:	Building		Hex2Rom	
Hex2Rom application may be acquired by build i8051_mkr.c file. Dalton project about it:

Program	to	convert	an	Intel	8051	HEX	file	into	a	ROM	model,	i.e.,	generates	i8051_rom.vhd.	You	
will	need	to	compile	this	C/C++	file,	say,	gcc	-Wall	i8051_mkr.c,	then	run	it	with	your	HEX	file	as	a	
command	line	argument	to	it,	e.g.,	a.out	myfile.hex.	

Building	Hex2Rom:	using	Command	Line	Interface		
We need only one configuration for Hex2Rom executable.

In i8051 workspace folder, create a new subfolder with Hex2Rom name.

> cd ~/workspaces/i8051/
> mkdir hex2rom

Move into isasim folder:
 > cd hex2rom/
create src and subfolders

> mkdir src
create Release subfolder

> mkdir Release
> mkdir ReleaseForDebugging

Copy all files from Dalton Project Hex2Rom into src/.

> cp ~/Desktop/material/Hex2Rom/i8051_mkr.c ./src/	

Compile the program with the following line:

> gcc -O3 -Wall -o "./Release/Hex2Rom.o" "./src/i8051_mkr.c"
 	

3. Compile	for	Intel	8051	
In this section we propose a procedure to compile a program in order to obtain .hex format executable file.

Group/Student	shall	#2:	Experiment	building	opportunities		

• Prepare directory tree in order to perform building phase.
o Create a directory in ~/workspaces/i8051/ named divmulSDCC
o Create an empty file in ~/workspaces/i8051/divmulSDCC/ named divmul.c
o Copy the divmul program source code into divmul.c file.
o Apply change to divmul code, according to modification proposed in 3.1
o Create two more directories in ~/workspaces/i8051/ named divmulSDCCRefined and

divmulKeil
o Copy previously created and edited divmul.c file from ~/workspaces/i8051/divmulSDCC

into ~/workspaces/i8051/divmulSDCCRefined and ~/workspaces/i8051/divmulKeil
• In ~/workspaces/i8051/divmulSDCC/ apply steps for building divmul proposed in 3.2.1
• In ~/workspaces/i8051/divmulSDCCRefined/ apply steps for building divmul proposed in 3.2.2
• In ~/workspaces/i8051/divmulKeil/ apply steps for building divmul proposed in 3.3

o Create an empty file in ~/workspaces/i8051/divmulKeil/ named divmul.hex.
o Copy divmu.hex Windows file content (created in 3.3’s steps) in divmul.hex linux file.

3.1. Program	example	
Dalton project, in addition to ISS and VHDL model, provides a set of program examples useful for testing
their products. Each example provided consists in a .c language file and its relative .hex executable file.
We put our attention on divmul program example, it executes integer division between two numbers.
Source code is in Code 6.

/*---*/
#include <reg51.h> // To use within KEIL compiler
//#include <8051.h> // To use within SDCC compiler
/*---*/
void main() {
 unsigned x = 134;
 unsigned y = 1;
 unsigned q, r, p, i;
 for(i=0; i<12; i++) {
 y++;
 }
 q = x / y;
 r = x % y;
 p = q * y + r;
 P0 = q;
 P0 = r;
 P0 = p;
 while(1);
}

Code 6 – Source divmul program

Code realizes integer division between 134 and 13.
x variable value is 134, it is divided by y. y, starting from 1, is incremented for 12 times in a for loop. Then
quotient q, the rest r and is verified that dividend is equal to sum of the rest and the product of divisor and
quotient.

Some changes are proposed to source code in Code 6.
Change the way divmul uses registers, by enabling the usage of those that are not used (P1, P2 e P3), such
that it will be possible to see and simulate all output ports working.
Is possible to access to I/O ports in the same way as done for registers; by using constants P0, P1, P2 and P3
we can drive device output ports.

Change output port assignment:

 P0 = q;
 P0 = r;
 P0 = p;

 P0 = q;
 P1 = y;
 P2 = r;
 P3 = p;

Code 7 – New output port assignment for divmul.

Before while(1) instruction add following condition:

P0 = 0;
P1 = 0;

P P2 = 0;
P P3 = 0;

Code 8 – Program Completion condition

When simulation will run in CLI, it will stop before the while(1) instruction, and will avoid the need to
interrupt and close the execution by typing ctrl+c input combination.

3.1.1. SDCC	and	Keil	includes	
Depending on compilation toolchain, we need to include different files.
SDCC and Keil compilers provide header files which define constants to model microcontroller’s physical
aspects, such as memory and registers addresses.

E.g. reg51.h (for Keil) and 8051.h (for SDCC) defines P0 variable and its value to 0x80 which respond to the
P0 port register address.
SDCC compiler provide and uses i8051.h header file, while Keil provide and use reg51.h.
It means that when we will compile using sdcc we will include i8051.h header file. While, when we use Keil
we will include reg51.h file.

3.1.2. Expected	results	
x and y initial values are 134 and 1 respectively, y variable is incremented by 1 for 12 times reaching value
y=13.

Expected results are:

𝑞 = !
"
= 10 = 0𝑥0𝐴 = 1010;

𝑟 = 𝑥	%	𝑦 = 4 = 0𝑥04 = 0100;

𝑝 = 𝑞 ∗ 𝑦 + 𝑟 = 134 = 0𝑥86 = 10000110. 	

3.2. SDCC	compiler	in	action	
As already mentioned we will use open source compiler to get the hex file.

3.2.1. Build	with	plain	SDCC	
The compiler can be used from CLI (Command Line Interface) with the following command:

> sdcc sourcefile.c

To verify if it is working, we can get a complete list of available options by typing the command sdcc in the
terminal, or equivalently sdcc --help, getting the list in Figure 14 – Help for SDCC command.

Figure 14 – Help for SDCC command

Move into ~/workspaces/i8051/divmul/ where you have divmul.c files.

> cd ~/workspaces/i8051/divmul/

Open divmul.c file and find instruction #include <reg51.h>. Substitute with #include <8051.h>.

Figure 15 – Header file substitution

Save changes and quit the editor.
Execute compilation command:

> sdcc divmul.c	

Among others, build command generates divmul.ihx file, it is the final output in hexadecimal Intel. From it
we can obtain divmul.hex, as is the executable result of compile process.
To better understand differences between divmul.ihx and divmul.hex files, we can refer to SDCC manual:

[…] the Intel Hex file which is generated by SDCC might include lines of varying length and the
addresses within the file are not guaranteed to be strictly ascending. If your toolchain or a
bootloader does not like this you can use the tool packihx which is part of the SDCC distribution,

The .ihx file is not so different from the .hex file except for arrangement and structure; in other words
packihx tool rearrange ihx file contents accordingly to hex format specifications. To use the tool, and thus
obtain the file divmul.hex, type command:

> packihx sourcefile.ihx > destinationfile.hex

Figure 16 – SDCC building process

Compare divmul.ihx and divmul.hex. The content of the two files is almost the same.
Below, in Figure 17, a section of divmul.ihx and divmul.hex files; coloring highlights similarities and shows
how divmul.hex is ordered and organized with respect to divmul.ihx.

divmul.ihx

:03000000020006F5
:03005F0002000399
:0300030002006296
:200062007E017F007C0C7D000EBE00010F1CBCFF011DEC4D70F28E088F09900086C007C044
:20008200061200DAAC82AD83D006D0078E088F09900086C007C006C005C004120120AA82A8

[…]
:04005B00D8FCD9FAFA
:0D00060075810912016DE58260030200039F
:04016D007582002275
:00000001FF

divmul.hex

:03000000020006F5
:03005F0002000399
:0300030002006296
:100062007E017F007C0C7D000EBE00010F1CBCFFD8
:10007200011DEC4D70F28E088F09900086C007C0FA
:10008200061200DAAC82AD83D006D0078E088F0943
:10009200900086C007C006C005C004120120AA82D3

[…]
:04005B00D8FCD9FAFA
:0D00060075810912016DE58260030200039F
:04016D007582002275
:00000001FF

Figure 17 - .hex and .ihx comparison

3.2.2. Build	with	SDCC	flags	
We compiled divmul.c file using the basic SDCC compiler’s settings. Compiler has options that allow to
refine the output hex file such that it mostly fits the hardware device where executable is supposed to run.
SDCC is a compiler capable of generating the .hex executable for various devices with different features, it
is flexible enough to adapt to the needs of each of these. For example, is possible to define the family of the
hardware device for which to compile.
We compile code for Intel 8051 microprocessor, whose family is Intel MCS 51. SDCC compiler, support this
family and uses it as the default one. In addition it supports among others, families Zilog Z80, Z80
GameBoy, Microchip PIC 14-bit.

You can specify for which family to compile by adding to SDCC command the option -mfamilyname. For
example, to compile the file sourcefile.c family MCS 51, we can use the command:

> sdcc sourcefile.c –mmcs51	

Another aspect it is worth to refine is the memory RAM size; it is usual to have the need of informing the
compiler of the memory size and structure.

By scrolling down SDCC options list the Linker options section is displayed; the option that fits our needs is -
-iram-size, it allows to enter the RAM size value for target device.

Figure 18 – SDCC linker options

RAM size dimension for our VHDL model is 128 byte; see documentation at
http://www.cs.ucr.edu/~dalton/i8051/

Command to compile divmul.c for Intel 8051 with 128 byte RAM is

> sdcc sourcefile.c –mmcs51 -–iram-size 128 –o ./obj/

Note the flag –o ./obj/ move all output files into /obj/which shall already exists.
Once we obtained divmul.ihx file, use command packihx to obtain divmul.hex.

> packihx ./obj/sourcefile.ihx > sourcefile.hex

We can compare the two divmul.hex files, obtained with the procedure just outlined, with the file
divmul.hex made available from Dalton Project.
Figure 19 is a comparison between the three divmul.hex files; at left the file obtained by the SDCC compiler
with no options, in the center the .hex obtained from SDCC compiler with refining option while on the right
the one provided by the Dalton Project.

Figure 193 – Comparison between .hex obtained files

Hex executables produced by different compilers is, of course, different in turn; indeed, among
executables, length and structure are different. It is worth to notice that divmul.hex files obtained by SDCC
compiler (with and without optimization) have the same structure and the same length; their only
difference is a single character on the line 16, as shown in the table in Figure 20.

15
16
17

:0101020022DA
:06003500E478FFF6D8FD9F
:100013007900E94400601B7A00900171780075A0B3

:0101020022DA
:06003500E4787FF6D8FD1F
:100013007900E94400601B7A00900171780075A0B3

Divmul.hex without refinement options Divmul.hex with refinement opdtions

Figure 20 – SDCC divmul.hex files comparison

3.3. Keil	compiler	in	action	
Open Keil μVision4 program. As shown in Figure 21, the work area is divided into four parts: top menu with
toolbars, the Project Navigator to the left, to the right the File Editor and at the bottom Build Output which
is the output console.

3 xyz.hex files were renamed in xyz.txt, due to display issues.

Figure 21 – uVision IDE

Before creating a new project, create an empty folder that contains all the files of our application, copy the
divmul.c file in it as shown in Figure 22.

Figure 22 – divmul.c in uVision project folder

Create a new project, from navigation bar select project->New 𝜇𝑉𝑖𝑠𝑖𝑜𝑛	𝑃𝑟𝑜𝑗𝑒𝑐𝑡.

Figure 23 – New uVision project

Select directory previously created and name the project as divmul.uvproj.

A window will pop up, select Generic->8051 as target device.

Figure 24 – uVision select target device

When asked for “Copy ’STARTUP.A51’ to Project Folder and add file to Project?” answer Yes.
Add divmul.c file to project. In Project Navigator click with right mouse button on Source Group 1 and select
Add existing file to group… as in Figure 25, select and add divmul.c file from previously created directory.

Figure 25 – uVision add files to project

Please remember that this compiler is compliant with reg51.h library and not with 8051.h. Refer to SDCC
and Keil section.

Figure 26 – include reg51.h for Keil compiler

Before build, inform the IDE we want to get .hex output file, go to Project Navigator click right mouse
button on Target1->Options for…

Figure 27 – uVision option for project

In Output tab, put a tick on Create HEX File.

Figure 28 – uVision tick Create HEX Fiie option

To compile divmul.c file from menu bar click on Project->Build target.

Figure 29 – uVision build target

At the end of building process, in the below Build output window will show up the message in Figure 30.

Figure 30 – uVision end building message

While in project folder:

Figure 31 – uVision project folder

Between files created by IDEs in building process, there is also divmul.hex file, which is the file that can be
used for simulation via ISS and VHDL model.

From comparison between .hex file just created by building process and divmul.hex file provided by Dalton
Project we note that the content is different, even if length file seems to match.

Figure 324 – divmul.hex Keil produced files comparision

Keil	output	issue	
The .hex Keil output file has a format not compliant with Linux system.
Indeed if we try to run hex2rom program with divmul.hex executable (obtained from Keil compilation
process), we obtain following error:

Figure 33 – hex2rom execution on divmul.hex file (obtained from keil)

To understand the problem see the output of command

> od -cx divmul.hex

It shows the hexadecimal representation of divmul.hex file:

Figure 34 - hexadecimal representation of divmul.hex file

The output shows that End Of Line (EOL) characters are decoded with \r\n which is the format used by
Windows systems. Linux environment uses \n

4 xyz.hex files were renamed in xyz.txt, due to display issues.

The command:

> tr -d '\015' < divmul.hex > divmul_EOL.hex

substitutes the \r\n with \n in file divmul_EOL.hex as shown in figure:

Figure 35 - hexadecimal representation of divmul_EOL.hex file

Now using hex2rom on divmul_EOL.hex work perfectly.

Figure 36 – hex2rom execution on divmul_EOL.hex file

4. Software	simulation	
According to previous sections, this section shows results of software simulations via the ISASim ISS.
Results refers to the Release and ReleaseForDebugging configurations. For each of the Release and
ReleaseForDebugging configurations will be shown the results of the three builds simulations (SDCC with no
option, SDCC with option, Keil).
Information provided by ISS, as a result of the simulation, are about registers’ values evolution (Figure 37 –
ISASim I/O ports evolution) and simulated program performances (Figure 38 – ISASim simulated program
performances).

Figure 37 – ISASim I/O ports evolution

Figure 37 shows part of software simulation output. The result shows the evolution of output values on the
four I/O ports. Each column refers to one of the four I/O ports available. Whenever register port value is
updated, a new row is generated and displayed by ISASim; there is no temporal relationship according to
which a new line is displayed.
Note that last four lines do not contribute to the program logic execution, but are part of the closure
procedure, of course they impact on performance indices.

Figure 38 – ISASim simulated program performances

ISASim provides information (reported at Figure 38 – ISASim simulated program performances) at the end
of the simulation. There are two kind of information; the first are indices about the host machine
performances that run simulation, the latter are the performance projections that would take place at 8051
microcontroller execution.
In detail the provided indices are:

Instructions executed: the number of instructions simulated. In this item, we must consider the four
assignments necessary for program closure.
Execution Time: the time, in seconds, that the host computer took to simulate the program
instructions.
Average Instructions/second: the average number of instructions, simulated by the host computer,
executed per second.
Clock Cycles Required for 8051: the number of clock cycles needed to run the program by 8051
microprocessor.
Execution Time for 8051<12 Mhz><seconds>: the time in seconds that microprocessor 8051 would
have taken to execute the simulated program at a frequency of 12 MHz.
Average Instructions/second for 8051: average number of instructions per second that
microprocessor 8051 would have run.

Group/Student	shall	#3:	Applying	software	simulation	on	built	programs			

• Run ISASim on divmul.hex file into ~/workspaces/i8051/divmulSDCC/ following steps in section
4.1.1

• Run ISASim on divmul.hex file into ~/workspaces/i8051/divmulSDCCRefined/ following steps in
section 4.1.1

• Run ISASim on divmul.hex file into ~/workspaces/i8051/divmulKeil/ following steps in section 4.1.1
• Compare results with the one provided in 4.2.

4.1. Running	ISASim	
Once ISS code is compiled an executable file is produced, it takes two input parameters:

application-name <hex-file> <output-file>

application-name is the name of ISS executable file.
<hex-file> is the objct code results of building we want to simulate.
<output-file> is the text report file generated (if enabled). It will be generated only for
ReleaseForDebugging configuration.

4.1.1. Running	ISASim	on	Linux	
Change to directory ~/workspaces/i8051/divmul/

Execute Command for simulation without additional debug output information:

> ../ISASim/Release/ISASim ./divmul.hex

Execute Command for simulation with additional debug output information:
> ../ISASim/ReleaseForDebugging/ISASim ./divmul.hex ./divmulReport.txt

4.1.2. Running	ISASim	on	Windows	
Change to directory ~/workspaces/i8051/divmul

Execute Command for simulation without additional debug output information:

C:/pathToDivmul > C:/pathToISASim/ISASim.exe divmul.hex
Execute Command for simulation with additional debug output information:

C:/pathToDivmul > C:/pathToISASimForDebugging/ISASim.exe divmul.hex
 divmulReport.txt

4.1.3. ISASim	debug	information	report	
ReleaseForDebugging simulation in addition to output indices provides a report file.

In Code 9 part of report contents.

00000 - LJMP
 LJMP6
00006 - MOV 12
 RAM(129) <- 0x09
00009 - LCALL
 LCALL 387
00387 - MOV 12
 RAM(130) <- 0x00
00390 - RET
 RET 12
00012 - MOV 2
 A <- RAM(130)
00014 - JZ
 if(A == 0) JMP 19
00019 - MOV 7
 R1 <- 0x00
00021 - MOV 1
 A <- R1
00022 - ORL 4
 A <- A | 0x00

00000 - LJMP
 LJMP6
00006 - MOV 12
 RAM(129) <- 0x09
00009 - LCALL
 LCALL 387
00387 - MOV 12
 RAM(130) <- 0x00
00390 - RET
 RET 12
00012 - MOV 2
 A <- RAM(130)
00014 - JZ
 if(A == 0) JMP 19
00019 - MOV 7
 R1 <- 0x00
00021 - MOV 1
 A <- R1
00022 - ORL 4
 A <- A | 0x00

00000 - LJMP
 LJMP191
00191 - MOV 7
 R0 <- 0x7F
00193 - CLR 1
 A <- 0x00
00194 - MOV 13
 RAM(R0) <- A
00195 - DJNZ 1
 R0--
 if(R0 != 0) JMP
194
00194 - MOV 13
 RAM(R0) <- A
00195 - DJNZ 1
 R0--
 if(R0 != 0) JMP
194
00194 - MOV 13
 RAM(R0) <- A

divmulReport by SDCC divmulReport by SDCC refined divmulReport by KEIL

Code 9 – divmulReport comparison

In report files there is the list of executed instructions. These instructions clearly refers to the assembly
code, even if they are arranged in a quite different way.

Reports of simulations related to programs build with SDCC are very similar; indeed, the only difference is
the number of instructions. Contrarily the simulation report of the Keil program clearly differs for
instructions and instructions number.

4.2. Software	Simulation	results	comparison	

Release	configuration	simulations	
Figure 39 – simulation of divmul build by SDCC (Release configuration), Figure 40 – simulation of divmul
build by SDCC with option refinement (Release configuration) and Figure 41 – simulation of divmul build by
KEIL (Release configuration) depict results of the simulation performed with ISASim ISS (build in Release
configuration).

Figure 39 – simulation of divmul build by SDCC (Release configuration)

Figure 40 – simulation of divmul build by SDCC with option refinement (Release configuration)

Figure 41 – simulation of divmul build by KEIL (Release configuration)

Registers change their values accordingly to divmul program statement. Figure 39 – simulation of divmul
build by SDCC (Release configuration), Figure 40 – simulation of divmul build by SDCC with option
refinement (Release configuration) and Figure 41 – simulation of divmul build by KEIL (Release
configuration) show that computational results are the same for all performed builds. Note that last four
lines correspond to the completion program procedure. Fifth from the last line indicates the results of the
computation performed by divmul program. Expected results match in each of software simulations
performed.

Looking at Figure 39 – simulation of divmul build by SDCC (Release configuration) and Figure 40 –
simulation of divmul build by SDCC with option refinement (Release configuration) we can compare and
evaluate SDCC builds, one without refinement option and one with.
Number of executed instruction for SDCC with refinement options is lower, instead host Execution Time
seems to be higher. About I8051 projected data, number of clock cycles and execution time are both better
for build with refinement options.
These data confirm the benefits derived from refinement options in the building process.

Figure 41 – simulation of divmul build by KEIL (Release configuration) shows that the number of executed
instructions by divmul simulation build with KEIL, is much smaller than the buildings by SDCC, also the time
of running on the Intel 8051 is smaller.

Software simulations show that different compilation (with respect to different copiler and different flags)
change i8051 performances projection. Results show that the execution of the program build with Keil is
more efficient. In addition SDCC compiler produces more efficient results with refinement options.

ReleaseForDebugging	configuration	simulations	
Figure 42, Figure 43 and Figure 44 shows results of simulations by ISASim ISS build in ReleaseForDebugging
configuration.

Figure 42 – simulation of Divmul build by SDCC (ReleaseForDebugging configuration)

Figure 43 – simulation of Divmul build by SDCC with refinement options (ReleaseForDebugging configuration)

Figure 44 – simulation of Divmul build by KEIL (ReleaseForDebugging configuration)

Simulation results achieved with ISASim build in Release configuration, match perfectly with those
produced by ISASim build in ReleaseForDebugging configuration, with the exception of host computer
performance indices. Those, in addition to being subject to host computational load at the time of
simulation, also depend on operations that ISASim executes during simulation.

5. Hardware	simulation	
Hardware simulation consists of two main steps: i8051 rom generation using Hex2Rom and

Group/Student	shall	#4:	Applying	hardware	simulation	on	built	programs			

• Run Hex2Rom on divmul.hex file into ~/workspaces/i8051/divmulSDCC/ following steps in section
4.1.1

• Run Hex2Rom on divmul.hex file into ~/workspaces/i8051/divmulSDCCRefined/ following steps in
section 4.1.1

• Run Hex2Rom on divmul.hex file into ~/workspaces/i8051/divmulKeil/ following steps in section
4.1.1

• Student shall prepare Vivado Project for i8051 as described in 5.2
• Copy ~/workspaces/i8051/divmulSDCC/i8051_rom.vhd into i8051 Vivado project folder, then start

behavioural simulation.
• Copy ~/workspaces/i8051/divmulSDCCRefined/i8051_rom.vhd into i8051 Vivado project folder,

then start behavioural simulation.
• Copy ~/workspaces/i8051/divmulKeil/i8051_rom.vhd into i8051 Vivado project folder, then start

behavioural simulation.
• Compare results with the one provided in 5.4

5.1. Running	Hex2Rom	
Once program is compiled we get an executable file that takes one input parameter:

application-name <hex-file>

application-name is the name of executable file.

<hex-file> is the object code results we want to build the ROM for.

The command creates a file named i8051_rom.vhd, it is the VHDL model memory filled with instructions of
<hex-file> compiled code.

5.1.1. Running	Hex2Rom	on	Linux	
Change to directory ~/workspaces/i8051/divmul/

Execute Command for i8051 rom generation:

> ../hex2rom/Release/Hex2Rom ./divmul.hex

Check whether i8051_rom.vhd was correctly generated by typing:

> ls -l

Figure 45 – i8051_rom.vhd generation

5.2. Creating	Vivado	project	for	I8051	model	

In i8051 workspace folder, create a new subfolder with i8051 name.

> cd ~/workspaces/i8051/
> mkdir i8051

Move into isasim folder:
 > cd i8051/
create src and subfolders

> mkdir model
Copy all .vhd files from Dalton Project VHDL into i8051/model/.

> cp ~/Desktop/material/VHDL/*.vhd ./model/	

Run Xilinx Vivado software, we will realize hardware simulation using it’s features.

Figure 46 - Vivado main window

Create a project by File->New Project…

Figure 47 – Vivado new project

Set project name (as i8051) and project directory path (as ~/workspaces/i8051/), then click on Next.
Select RTL project; indeed we will only have simulation at behavioural level.

Figure 48 – Vivado new project wizard

Click on Add files… and select all .vhd files we moved in ~/workspaces/i8051/i8051/model directory as a
source for this project.

Figure 49 - Vivado selecting model’s files

Select Boards perspective and select the FPGA board to use within simulation. Choose Artix7.

Figure 50 – Vivado board select

Check information about created project and click on Finish button.

Figure 51 – Vivado project summary

5.2.1. Perform	Vivado	Hardware	Simulation	

To start simulation, click on Run Simulation in Simulation, on the left panel.

Figure 52 - Vivado Simulation start

Once simulation VHDL simulation process is started automatically will be open a simulation panel.

Figure 53 – Vivado Simulation Perspective

To run the simulation you may click on play button on the top right menu bar, this button won’t stop the
simulation so you will have to stop it manually.
You may also start the simulation only for a specific period of time, which you can set in the form.

Figure 54 – Simulation Time Control

Note that the simulation allows to monitor each signal temporal evolution. p0, p1, p2 and p3 output signals
are the signals relative to the four output port.

Figure 55 – Simulation output signals

For each displayed signal is possible to analyse every bit it is composed of, as shown in Figure 56.

Figure 56 – Simulation output signal details

5.3. ROM	memory	generation	(by	using	Hex2Rom)	

For every obtained executable file generate its ROM memory image for microcontroller 8051. Then
proceed with the hardware simulation.

To generate ROMs execute the command Hex2Rom. In Figure 57, commands to generate ROMs.

Figure 57 - ROM file creation

Before ROM memory file generation, check that Hex2Rom.exe executable directory do not contain a file
with named i8051_rom.vhd, otherwise the file could be not properly replaced.

5.4. Hardware	simulation	results	comparison	

For each executable file obtained, create a new Xilinx ISE project, by following procedure previously
proposed.
Replace I8051_rom.vhd file with relative I8051_rom.vhd file generated by Hex2Rom. To assure replacement
takes place, first delete the model file then copy the file generated.
In the following are the results of hardware simulations.

SDCC	simulation	

VHDL model simulation of executable build with SDCC without refinement options, runs in error ERROR:
Index 1033 out of bound 0 to 370, look at Console in Figure 58 and in Figure 58 – hardware simulation of
Divmul build by SDCC.

Figure 58 – hardware simulation of Divmul build by SDCC

As stated in message text the problem lies in the device memory size. The RAM memory is in fact too small
to allow each instruction, contained in the file divmul.hex, to correctly allocate information.

This error is because the .hex executable, hardware simulated program, was build with SDCC without
providing target device information. SDCC compiler can compile C code for device families, but not for
specific devices.

SDCC	with	refinement	options	simulation	

VHDL model simulation, for executable build with SDCC with refinement options, is depicted in Figure 59.

Figure 59 – hardware simulation of Divmul build by SDCC with refinement options

This simulation, differently than previous one, ended without error. The P0, P1, P2 and P3 output signals
undergo two commutations.
The first commutation sets registers value with computation results, those are correct. The second
commutation sets registers to 0, according to program completion procedure defined for ISASim.
The execution time of the program on microcontroller is 745 us.

Keil	simulation	
The simulation by VHDL model, for executable build with Keil, is depicted in Figure 60.

Figure 60 – hardware simulation of Divmul build by Keil

Simulation results match expectations, and are correct. Simulation time is 343 us.
 	

6. Conclusions	

Homelab aims to explore the Intel 8051 microcontroller world. Using tools and models made available by
Dalton Project from University of California, we have built an environment which allows to develop
applications for Intel 8051 microprocessor. This approach grant fast test and application prototyping by a
heavy reduction of time to market and development cost..

During building process we compared different compilers and focus our attention on SDCC and Keil.
The SDCC compiler is an open source software, thanks to its high configurability, it well suited to our needs.
The Keil compiler with its IDE, despite license limitations, was easy to use and very efficient. Even if not
reported in this document, mikroC Pro for 8051 compiler was also experienced, but only allowed us to
successfully simulate by ISS.

Software simulation allows to get information about program implementation.
Information provided regards both host machine and 8051 microprocessor; it provides host machine timing
performance and projected data for execution on 8051 microprocessor. It also displays output port values.
Performed simulations show that functionally all results were successful, while by a performance point of
view the simulation by Keil was the most efficient both in time and in therefore in number of executed
instructions.
Information obtained from software simulation do not return too much detail but provide a general idea
about program execution. They are particularly suited to check performed computations and code
optimization.

Hardware simulation allows to observe entire signals time evolution for microcontroller 8051. Each signal
described in VHDL model, can be plotted and viewed in every bit at every instant of simulation time.
First hardware simulation proposal highlights a problem with the size of the memory that the ISS ISASim
had not found. Instead simulations of divmul.c that was build with sdcc with options refining and with Keil
have produced the correct expected results. Simulation program build by Keil was more performant.
Detail of information provided is very high, but hardware simulation is very costly for machine that runs it.

In conclusion, SDCC and Keil compilers were both suitable for Homelab purposes, SDCC was less
performant than Keil, but of course cheaper.
Quality and detail level of produced information by hardware simulation is much higher than software
simulation. However time and load of hardware simulation is very onerous. Contrarily software simulation
disclose less valuable but easier to obtain and more usable data.

Each	student	shall:	

Please remember that this homelab will be fulfilled only after the application of the simulation flow to a
function of your will.

• Write a new function (alternative to the divmul.c presented in this homelab) and apply to it the
classical SW development flow and the i8051 flow.

• Produce a comparison among the results obtained by applying both the SW development flow and
the i8051 flow. Please note that the comparison must involve the obtained results and the timing
performances of:

o SW execution (i.e., application of classical SW development flow using the C time library to
measure the timing performances).

o IS and VHDL simulation considering the RAM size (Section 3.2.2).
o IS and VHDL simulation without considering RAM size (Section 3.2.2).

• Produce the analysis of any anomalies detected.
• When done prepare the slides that describe and document the work performed.

