University of L’Aquila
Embedded Systems
2020/2021

Teacher: Contributor:
Dott.Ric. Ing Luigi Pomante Fausto D’Antonio
Gabriella D’Andrea

(gabriella.dandrea@graduate.univaq.it)

Contents

1. Introduction: Micro Controller Intel 8051 4
1.1. Specifications 4
1.2. Instruction Set Architecture (1.S.A.) 5
1.3. 18051 Tools and Miscellanea 6
1.3.1. 18051 Toolchains 6
1.3.2. Dalton Project Facilities 6
1.3.3. Hex Format 8
2. Setting Up the Environment 10
2.1. Software Requirements for Homelab execution 10
2.2, Preparing material 11
2.3. Compilers Tools 12
23.1. SDCC 12
2.3.2. Keil 14
24. Tools for Simulation 15
2.4.1. Tools for Sw Simulation: Building ISASim 15
2.4.2. Tools for Hw Simulation: Building Hex2Rom 18
3. Compile for Intel 8051 19
3.1. Program example 19
3.1.1. SDCC and Keil includes 20
3.1.2. Expected results 20
3.2, SDCC compiler in action 20
3.2.1. Build with plain SDCC 20
3.2.2. Build with SDCC flags 22
3.3. Keil compiler in action 24
Keil output issue 29
4. Software simulation 30
4.1. Running ISASim 31
4.1.1. Running ISASim on Linux 31
4.1.2. Running ISASim on Windows 32
4.1.3. ISASim debug information report 32
4.2, Software Simulation results comparison 32
5. Hardware simulation 36
5.1. Running Hex2Rom 36
5.1.1. Running Hex2Rom on Linux 36
5.2, Creating Vivado project for 18051 model 36
5.2.1. Perform Vivado Hardware Simulation 39
5.3. ROM memory generation (by using Hex2Rom) 41

5.4. Hardware simulation results comparison 41

6. Conclusions

44

C/C++code simulation for
uC Intel 8051

Homelab purpose is to build a development environment for Intel 8051 microcontroller and to use
simulation techniques in order to verify the functionality and efficiency of developed software.

This Homelab proposes first to compile a C program, then to perform both software and hardware
simulations. Software simulation will use an ISS, while the hardware simulation will use a VHDL model.

: Simulation by
: 1SS
compiler’s
=&
Simulation by

hex2rom.exe VHDL model

Figure 1 — Homelab workflow

In this tutorial we will first learn how to build a .c file for 8051. Various tools will be proposed and
compared, executable file will be produced in hex format.

Once executable .hex is obtained, you can simulate its execution through the use of an ISS.
.hex executable also allows to produce a ROM image in vhdl format; its inclusion in VHDL model description
you will be allowed to perform a complete hardware simulation.

Homelab purpose, rather than learn i8051 simulation process flow, is to apply the process itself to
whatever function or program.

While this document is a guide through the i8051 simulation flow with respect to a toy example, each
student will be asked to apply the same flow to one different function of its choice.

The function shall be of medium/low difficulty, similar in complexity and computational weight to the
example proposed here in the document and/or the one proposed during the i8051 homelab class.

In the following, while describing homelab development, you will find five different sections named
Group/Student shall. In each of those sections, are described the steps a student or a group of students
shall to take in order to learn homelab notions.

It is worth to notice that last Group/Student shall section contains the real homelab assignment.

At last, please consider that some information you will find in this document, such as URLs, are valid at the
time of writing but may change in time.

1. Introduction: Micro Controller Intel 8051

From Wikipedia (http://it.wikipedia.org/wiki), for Intel 8051 entry:

The Intel MCS-51 (commonly termed 8051) is a Harvard architecture, complex instruction set
computing (CISC) instruction set, single chip microcontroller (uC) series developed by Intel in
1980 for use in embedded systems.[1] Intel’s original versions were popular in the 1980s and
early 1990s and enhanced binary compatible derivatives remain popular today.

The family was continued in 1996 with the enhanced 8-bit MCS-151 and the 8/16/32-bit MCS-251
family of binary compatible microcontrollers.[2] While Intel no longer manufactures the MCS-51,
MCS-151 and MCS-251 family, enhanced binary compatible derivatives made by numerous
vendors remain popular today. Some derivatives integrate a digital signal processor (DSP).
Beyond these physical devices, several companies also offer MCS-51 derivatives as IP cores for use
in field-programmable gate array (FPGA) or application-specific integrated circuit (ASIC)
designs.

1.1. Specifications

An 8-bit CPU is the core of the Intel 8051 microcontroller. Harvard Architecture is the architectural model
adopted by the microcontroller; therefore, it parts data against instruction by the use of two memories and
two buses; indeed 8051 presents a non-volatile PROM memory, which contains program instruction, and a
RAM memory, which contains data. Furthermore, it presents an 8-bit Data Bus and a 16-bit Address Bus.
18051 registers are 8-bit registers. ALU works with 8-bit words and makes use of an accumulator register.
Intel 8051 communicates with four 1/0 8-bit ports.

Intel 8051 Microarchitecture
P0.0- PO.7 P2.0-P27

i - i

Vee —i

H Port0 Port 2
Vssr: Drivers Drivers
N][t 1
RAM Addr. Port 0 Port 2 EPROM/
Register AL Latch Latch rom |

I 1

I

1

I

I

I

I

I

I

I

I

I

]

I

I

I

: Program
| Address
1 Stack Register
I Pointer
I

I

I

I

I

1

I

I

I

I

I

I

)

I

1

B T™P2 TMP1 ‘
Register

4 PC
S Interrupt, Serial Port, - <=
Ti Blocks Incrementer 16

A

‘ s | Program)
o b [z]
PSEN# <—— -
ALEIPROGK<—— Timing |2 &
1 and §§ DPTR
EA#VPP——> Control | 8 &
RST—]—> _
1
1
1
I Port 1 Port 3
H Latch Latch
1
1
1
|
1
1
| Port 1 Port3
: oscC. Drivers Drivers
1
1
O S Spu—— 1 1] 1 O ————— 1 |
x7ALL HOR xTAL2
P10-P17 P3.0-P3.7

Figure 2 - Intel 8051 microarchitecture

1.2. Instruction Set Architecture (I.S.A.)

Instruction set groups its instructions into five distinct groups: arithmetic instructions, control instructions;
logic instructions; single bit operations and finally data transfer instructions.

Note that the generic operation OP can be declined with several kinds of parameters: OP (A, Rn), OP (A,
direct), OP (A, @Ri), OP (A, #data) where Rn is the name of a register, direct indicates a memory position, Ri

is a pointer to a position, #data is a given data.
For an exhaustive list of instructions, please refer to https://it.wikipedia.org/wiki/Intel 8051. Below some

of them.

1.2.1. Arithmetic instruction

Mnemonics Description Bytes Cycles
ADD A,Rn Sum A to content of Rn register 1 12
ADDC A,Rn Sum A to content of Rn register and CY 1 12
SUBB A,Rn Subtract to A the content of Rn register and CY 1 12
INC A Unitary increment of A 1 12
DEC A Unitary decrement of A 1 12
INC DPTR Unitary increment of DPTR register 1 24
MUL AB Multiply A content for B 1 48
DIV AB Divide A per B; quotient in A e rest in B 1 48

1.2.2. Control instruction

Mnemonics Description Bytes Cycles
ACALL addrl1 Executes routine in a 2K segment 2 24
LCALL addrl6 Executes routine 3 24
RET Stop routine execution 1 24
AJMP addr11 Jump to specified address in a 2K segmento 2 24
LIMP addr16 Jump to specified address 3 24
SIMP rel Jump to [rel] successive position of Program Counter 2 24
JMP @A+DPTR | Jump to PC position pointed by A plus DPTR content 1 24
JZ rel Jump to [rel] position if A content is zero 2 24
NOP No operation 1 12

1.2.3. Logic Instruction
Mnemonics Description Bytes Cycles
ANL A,Rn | Logic AND between A and Rn register content 1 12
ORL A,Rn | Logic OR between A Rn register content 1 12
XRL A,Rn | Logic EX-OR between A Rn register content 1 12
CLR A Put all A bits to zero 1 12
CPL A Invert all A bits (1-Complement) 1 12
RL A 1 step left shift A bits 1 12
SWAP A Swap two accumulator nibbles 1 12
1.2.4. Single bit operation instructions

Mnemonics Description Bytes Cycles
CLRC Set CY flag to 0 1 12
CLR bit Set [bit] address bit to 0 2 12
SETB C Set CY flag to 1 1 12
SETB bit Set [bit] address bit to 1 2 12
CPLC Invert CY flag 1 12
ANL C,bit Logic AND between CY and [bit] address bit 2 24
ORL C,bit Logic OR between CY and [bit] address bit 2 24
MOV C,bit Copy carry bit in bit address 2 12

1.2.5. Data transfer instructions

Mnemonics Description Bytes Cycles

MOV A,Rn Copy A content in Rn register 1 12
PUSH direct Copy in position pointed from SP the content of direct position and increment Stack 2 24
POP direct Copy in position pointed from SP the content of direct position and decrement Stack 2 24
XCH A,Rn Swap A content with Rn 1 12

1.3. 18051 Tools and Miscellanea

1.3.1. 18051 Toolchains

8051 Compilers’ market is extensive; there are open source compilers and compilers for payment. Both
have their strengths and weaknesses.

One of the most advertised products is MikroC PRO for 8051, it can be found at
http://www.mikroe.com/mikroc/8051/. This software is available as a free trial or as a full version at the
cost of $249.

An open source compiler is SDCC (Small Device C Compiler), whose website is http://sdcc.sourceforge.net/,
is a completely free software that well suits our needs.

Another compiler for payment is Keil, it is used within the pVision IDE which is specifically designed for the
compiler. Refer to the website http://www.keil.com/C51/. This software is not open source, but user is
allowed to use some of its functionalities for free, without a current license it can still compile as long as
code not exceeds 2Kbytes of object code.

SDCC compiler

From SDCC manual:
SDCC (Small Device C Compiler) is free open source, retargettable, optimizing standard (1SO C90,
ISO €99, ISO C11) C compiler suite by Sandeep Dutta designed for 8 bit Microprocessors. [...] The
entire source code for the compiler is distributed under GPL.
SDCC uses a modified version of ASXXXX & ASLINK, free open source retargetable assembler &
linker. SDCC has extensive language extensions suitable for utilizing various microcontrollers and
underlying hardware.

And more:
SDCC is not just a compiler, but a collection of tools by various developers. These include linkers,
assemblers, simulators and other components.

Keil compiler

From Keil compiler official website http://www.keil.com/, the product description:

Keil C51 is the industry-standard toolchain for all 8051-compatible devices, it supports classic
8051, Dallas 390, NXP MX, extended 8051 variants, and C251 devices. The uVision IDE/Debugger
integrates complete device simulation, interfaces to many target debug adapters, and provides
various monitor debug solutions.

1.3.2. Dalton Project Facilities

There are several ways to simulate the execution of a program compiled on a hardware platform. Among
them there are two categories: the software approach by ISS (Instruction Set Simulator) and the hardware
approach using VHDL description (VHSIC Hardware Description Language).

The University of California developed a project centred on 8051 microprocessor, project provides a
number of tools and examples useful for simulating C code on Intel 8051 microprocessor. The project name
is Dalton developed by the Dept. of computer Science of the University of California.

The online project reference is http://www.ann.ece.ufl.edu/i8051/. It offers an ISS written in C ++ language
for the Intel 8051 and a VHDL model of the processor.

To make best use of the VHDL model, it also provides a program to transform the Intel 8051 compiled code
in VHDL memory ROM module containing instructions of the compiled code. Thus, it allows hardware
simulation of C code; it even allows to synthesize the microcontroller 8051 with the compiled program
loaded in the ROM.
From project website:
We developed a VHDL synthesizable model of the 8051 and a C++ based 8051 instruction-set
simulator [...], on which we've based some research directions. One of those directions is a tuning
environment [...], to assist a designer who wants to modify the 8051 architecture to be more
power efficient for a particular program.

Software simulation: Instruction Set Simulator (ISS)

From wikipedia (http://en.wikipedia.org/wiki), at Instruction Set Simulator page:
An instruction set simulator (1SS) is a simulation model, usually coded in a high-level
programming language, which mimics the behavior of a mainframe or microprocessor by
"reading"” instructions and maintaining internal variables which represent the processor's
registers.

Dalton Project’s Instruction Set Simulator (ISS) source code consists of the following files:

e Main.cc,
e i8051.cc,
e i8051.h.

From Dalton Project website:
The high level simulator for the Intel 8051, written in C++, allows a user to simulate simple
programs written for the 8051. The simulator provides statistics on instructions executed,
instructions executed per second, execution cycles required by the 8051, and average instructions
per second for an 8051 executing the same program.

ISS source code files are downloadable at Dalton Project website
(http://www.cs.ucr.edu/~dalton/i8051/i8051sim/) or in ISS folder provided within material of this homelab.

In order to execute the program you have to compile these files and then you will able to run the
executable file from Command Line Interface (CLI).
Refer to section 2.4.1 for ISASim building procedure.

Hardware Simulation (VHDL)
From wikipedia (http://en.wikipedia.org/wiki), at VHDL item:

VHDL (VHSIC Hardware Description Language) is a hardware description language used in
electronic design automation to describe digital and mixed-signal systems such as field-
programmable gate arrays and integrated circuits. VHDL can also be used as a general purpose
parallel programming language.

VHDL (Very high speed integrated circuits Hardware Description Language) Intel 8051 microprocessor
description provided by Dalton Project is composed by many files, each describes a specific hardware
component.

4 File VHD (10)

i8051_allvh 8051 aluv i8051_ctrvh i8051_dbgyv i8051_decw
d hd d hd hd

i8051_libvh i8051_ram.wv i8051_rom. i8051_tsbvy 8051 xrm.v
d hd vhd hd hd

Figure 3 — VHDL model files
From project website:

The Intel 8051 is an 8-bit micro-controller. This micro-controller is capable of addressing 64K of
program and 64K of data memory. The implementation [...] is written in Synthesizable VHDL (at
least by Synopsys and Xilinx,) and models the actual Intel implementation rather closely, e.g., it is
100% instruction compatible.

VHDL ROM memory component (modelled by i8051_rom.vhd file) is filled and configured with the program
instructions; when started up the microprocessor will execute those instructions. By configuring this
component accordingly to program willing to execute, we need a process/program to fill the rom with
desired instructions.

To obtain ROM .vhd file filled with instructions accordingly to .hex file, Dalton project provides i8051_mkr.c
program. i8051_mkr.c needs to be compiled in order to get an executable program which is runnable from
Command Line Interface and allow to create i8051_rom.vhd file from .hex executable.

1.3.3. Hex Format

Hex is an Intel format that formats low-level hardware instructions in hexadecimal format. From Wikipedia
(https://en.wikipedia.org/wiki/Intel HEX) at Intel Hex item:

Intel HEX is a file format that conveys binary information in ASCII text form. It is commonly used
for programming microcontrollers, EPROMs, and other types of programmable logic devices. In a
typical application, a compiler or assembler converts a program's source code (such as in C or
assembly language) to machine code and outputs it into a HEX file. The HEX file is then imported
by a programmer to "burn” the machine code into a ROM, or is transferred to the target system
for loading and execution.

Despite instructions are hexdecimally coded, characters sequences are hardly comprehensible for a human
being. Nonetheless, instructions are structured such that they are easier to be understand.
In Figure 4, the pattern of hex format instructions.

Pos 4-7 Pos 10-?
10 0003 00 7F2F7EOBEF6E6015EFD39E4008C3EF9E EC
10 0013 00 FFFS8080EFC3EE9FFEF59080E78FA080 11
02 0023 00 FE22 BB
03 0000 00 020025 D6
oC 0025 00 787FE4AF6D8FD758107020003 37

00 0000 01 FF

: record start
: record length

Positions 4-7: data address. May acquire a value between 0000 — FFFF.
: data type

Positions 10-?: data field

: checksum
Figure 4 — Intel Hex format

2. Setting Up the Environment

Align student environment to Software Requirements; look at section 2.1.
Create and fill directory tree as described in section 2.22.
Build ISASim tool as described in section 2.4.1
o Follow steps into Building ISASim: fixing code section
o Build ISASim without debug option and with debug option
Build Hex2Rom tool as described in section 2.4.2

2.1. Software Requirements for Homelab execution

Homelab, proposed in this document, uses third party software; it has been developed for Linux platform.
Below the list of required software; before perform homelab assure tools/software availability on your
platform. Other software will be introduced during Homelab development.

g++ installation
g++ is th linux compiler for c++ source code files.

In order to build a c++ program, g++ is required to be installed.

Check whether g++ is already installed.

Open terminal and type:
> g++ -v

If it is not installed you will receive the following:

[v Terminal - sim8051@sim8051: ~ - 4+ X

File Edit View Terminal Tabs Help

urrently not installed. You can install it by typing:

Figure 5 — g++ not installed

Then to install gcc, type:
> sudo apt-get install g++

Insert password if/when requested.
Then prompt shows something like:

= Terminal - sim8051@sim8051: ~ - 4+ X

File Edit View Terminal Tabs Help

Figure 6 — g++ Installation

Then check g++ installation by typing again:
> g++ -v
Now you will see:

v Terminal - sim8051@sim8051: ~ - + X

inal Tabs Help

Figure 7 — g++ Installation check

gcc update

Check gcc version by typing
> gcec -v

If gcc version is lower than online update (4.9.4 at time of writing), perform following commands in order
to update the software. Insert password when requested?.

sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update

sudo apt-get upgrade

sudo apt-get dist-upgrade

VVVYV

Vivado Xilinx

Hardware simulation will be performed by usage of Xilinx software suite. Official description, from Xilinx
site, is:

The Vivado® Design Suite offers a new approach for ultra high productivity with next generation
C/C++ and IP-based design with the new HLx editions including HL System Edition, HL Design
Edition and HL WebPACK™ Edition.

The new HLx editions supply design teams with the tools and methodology needed to leverage C-
based design and optimized reuse, IP sub-system reuse, integration automation and accelerated
design closure. When coupled with the UltraFast™ High-Level Productivity Design Methodology
Guide, this unique combination is proven to accelerate productivity by enabling designers to work
at a high level of abstraction while facilitating design reuse.

The suite consists of, among others, a development environment for hardware description in VHDL and
VERILOG; which allows to simulate and analyse described hardware behavior.

The software version is freely downloadable from URL: http://www.xilinx.com/products/design-
tools/vivado/vivado-webpack.html.

2.2. Preparing material

In order to proficiently perform the actions proposed in this document, you will need to fulfil following
conditions and prepare files needed in the homelab actions.

Create ~/workspaces/i8051/ directory:
>cd ~/
> mkdir workspaces
> cd workspaces
> mkdir i8051

Access on your desktop and create the material folder which will contain all the files we will use for this
homelab.

> cd ~/Desktop/
> mkdir material

Then create ISS, VHDL and Hex2Rom folders:
> cd ~/material/
> mkdir ISS
> mkdir VHDL
> mkdir Hex2Rom

In ~/Desktop/material/ISS place Main.cc, i8051.cc and i8051.h files, which you can download from
http://www.cs.ucr.edu/~dalton/i8051/i8051sim/.

In ~/Desktop/material/VHDL place i8051_all.vhd, i8051_all.vhd, i8051_alu.vhd, i8051_ctr.vhd,
i8051 dbg.vhd, i8051 dec.vhd, i8051_lib.vhd, i8051 ram.vhd, i8051 rom.vhd, i8051_tsb.vhd and
i8051_xrm.vhd files, which you can download from http://www.cs.ucr.edu/~dalton/i8051/i8051syn/.

In ~/Desktop/material/Hex2Rom place i8051_mkr.c file, which you can download from
http://www.cs.ucr.edu/~dalton/i8051/i8051syn/.

v Terminal - sim8051@sim8051: ~/Desktop/material - e-
File Edit View Terminal Tabs Help

als 1s VHDL
18051 dec.vhd 18651 ram.vhd 18651 tsb.vhd
18051 lib.vhd 18051 rom.vhd 18051 xrm.vhd
al$ ls Hex2Rom/

Figure 8 — Material Preparation

If the files are not anymore available from web sources pointed above, then look at the 02_Material folder
provided within the homelab; there you will find mentioned files.

2.3. Compilers Tools

2.3.1. SDCC

As already mentioned, SDCC compiler’s site is http://sdcc.sourceforge.net/index.php; here you can find
compiler’s manual and have access to download section as shown in Figure 9.

, . .

jcc sourceforgenet e|[B- coogie Ple A ¥
18) pi visitati B Google [ResearchGate [Facebook B YouTube W Facolta dilngegneria ‘& Relax Sounds Download Source | Localhost ' Copy [E3 Segnalib(
SDCC - Small Device C Compiler
SDCC Home

What is SDCC?

SDCC is a retargettable, optimizing ANSI - C compiler suite that targets the Intel MCS51 based microprocessors (8031, 8032, 8051, 8052, etc.), Maxim
(formerly Dallas) DS80C390 variants, Freescale (formerly Motorola) HCO8 based (hc08, s08) and Zilog Z80 based MCUs (280, 2180, gbz80, Rabbit 2000/3000,
Rabbit 3000A). Work is in progress on supporting the Microchip PIC16 and PIC18 targets. It can be retargeted for other microprocessors.

SDCC suite is a collection of several components derived from different sources with different FOSS licenses. SDCC compiler suite include:

sdas and sdld, a retargettable assembler and linker, based on ASXXXX, written by Alan Baldwin; (GPL).
sdcpp preprocessor, based on GCC cpp; (GPL).
ucsim simulators, originally written by Daniel Drotos; (GPL).
sdcdb source level debugger, originally written by Sandeep Dutta; (GPL).
sdbinutils library archive utilities, including sdar, sdranlib and sdnm, derived from GNU Binutils; (GPL)
SDCC run-time libraries; (GPL+LE). Pic device libraries and header files are derived from Microchip header (.inc) and linker script (.lkr) files. Microchip requires
that "The header files should state that they are only to be used with authentic Microchip devices” which makes them incompatible with the GPL.
gcc-test regression tests, derived from gcc-testsuite; (no license explicitely specified, but since it is a part of GCC is probably GPL licensed)
packihx; (public domain)
makebin; (zlib/libpng License)
sdcc C compiler, originally written by Sandeep Dutta; (GPL). Some of the features include:
o extensive MCU specific language extensions, allowing effective use of the underlying hardware.
o a host of standard optimizations such as global sub expl loop (loop invariant, strength reduction of induction variables and
loop reversing), constant folding and propagation, copy propagation, dead code elimination and jump tables for 'switch' statements.
o MCU specific optimizations, including a global register allocator.
o adaptable MCU specific backend that should be well suited for other 8 bit MCUs
© independent rule based peep hole optimizer.
o a full range of data types: char (8 bits, 1 byte), short (16 bits, 2 bytes), int (16 bits, 2 bytes), long (32 bit, 4 bytes), float (4 byte IEEE) and

_Bool/bool;
basic (no integer constants) support for long long (64 bit, 8 bytes) data types for the z80, 2180, r2k, r3ka, gbz80, hc08 and s08 targets.
SDCC Wiki o the ability to add inline assembler code anywhere in a function.

o the ability to report on the complexity of a function to help decide what should be re-written in assembler.

T © a good selection of automated regression tests.

Figure 9 — SDCC website

Linux Installation

For SDCC installation on Linux based environments see the following steps.

Move (cut and paste) your SDCC object file (already decompressed) on your Desktop.
Open terminal and access Desktop folder.

> cd ~/Desktop
Login as root, provide root password when requested?:

> sudo su

Check sdcc-3.6.0 by typing
> 11 ./sdcc-3.6.0

v Terminal - root@sim8051: /home/sim8051/Desktop - + X
File Edit View Terminal Tabs Help

INSTALL. txt*

README. txt*

Figure 10 — SDCC permissions check

If you find out that the owner is root then you will need to change owner and permissions to all files and
subdirectories contained in ./sdcc-3.6.0.

Type and execute command:
> chown -R user? ./sdcc-3.6.0

Now grant full permission by typing
> chmod 0777 -R user ./sdcc-3.6.0

Usually this is not a good way to proceed but it will grant full access to SDCC capabilities.

1 Remember: user passsword set in Errore. L'origine riferimento non é stata trovata. is sim8051. If you are using giacomo’s virtual machine
then password is aswasw
2useris just a placeholder that student shall substitute with the name of the linux environment user. In pictures the user name is sim8051.

Now copy all sdcc-3.6.0 content into /usr/local/ with following commands:
> cd sdcc-3.6.0
> cp -r * /usr/local

Now consider that SDCC linux release is available only for 32 bit environment.
If you have a 64 bit linux environment the quickest solution is to install 32bit compatibility libraries.
You can do this by following commands:

> sudo dpkg --add-architecture 1386
> sudo apt-get install 1ibc6:1386 libncurses5:1386 libstdc++6:1386

To check whether SDCC installation was successful type:
> sdcc -v

If the installation was successful, command should return:

v Terminal - sim8051@sim8051: ~/Desktop —
File Edit View Terminal Tabs Help

Figure 11 — SDCC successfull installation

Disconnect from root login
> exit

2.3.2. Keil

To freely download compiler from the web, open Keil website and get through the download page
https://www.keil.com/download/product/.

€ @iy eleom/download/product | |B- cooge e A%

8} pia visitati [EJ Google [ResearchGate 7 Facebook 3 YouTube ¥ Facolta dilngegneria ‘& Relax Sounds Download Source | | Localhost ' Copy [E3 segnalibri

DIKEIE

A Products Download Events Support Videos

Latest Versions

Download the latest Keil software products.

MDK-ARM c51
' Version 4.72a (July 2013) Version 9.52 (July 2013)
‘ Development environment for Cortex and ARM devices. ' Development tools for all 8051 devices.
(57 c166 s c251
o | \Version 753 (July 2013) Version 5.5 (July 2013)
Development tools for C166, XC166, & XC2000 MCUs. Development tools for all 80251 devices.

Keil products use a License Management system - without a current license the product runs as a Lite/Evaluation edition with a few Limitations

Previous Versions

Enter a valid Product Serial Number (PSN) or License Code (LIC) to get access to all product versions available to you

PSN or LIC: []

Further information about installing your software is available in the Read Me First brochure.

Figure 12 — Keil download page

Keil compiler is a tool developed for the only Windows environment. It is possible to use Keil on Linux
through the wine (https://www.winehg.org/). Once wine is installed you can install the Keil four version
(actual is five) also on Linux environment, this helps in order to have a single environment provided with all
necessary tools.

Wine

Wine software is available for Linux systems, not for Windows.

Wine enables Linux, Mac, FreeBSD, and Solaris users to run Windows applications without a copy
of Microsoft Windows

Installation procedures are available at: https://wiki.winehqg.org/Ubuntu.

Keil Installation

Click on C51 item and proceed with registration until download executable file C51vXXX.exe and the
uav4.pdf manual. .exe file. C51vXXX.exe allows to install both compiler and IDE.

Please, before proceed, consider that registration procedure ask for personal information such as phone
and mail. Those info will be used from Italian Keil’s satellites companies to contact registered user.

Let’s start C51vXXX.exe downloaded file, a wizard will come up to guide through software installation. In
Figure 13 are the snapshots for steps to be taken.

r R, v — — N
Setup Keil C51 Version 9.52 (s Setup Keil C51 Version 9.52 [
‘Welcome to Keil pVision KE I LM License Agreement KE I E
Release 6/2013 Tools by ARM Please read the following license agreement carefully. Tools by ARM
To continue with SETUP, you must accept the terms of the License Agreement. To accept the
This SETUP program installs: agreement, click the check box below.
. . END USER LICENCE AGREEMENT FOR ARM KEIL SOFTWARE DEVELOPMENT ~
Keil C51 Version 9.52 =

TOOLS 3
This SETUP program may be used to update a previous product installation.

However, you should make a backup copy befare proceeding, THIS END USER LICENCE AGREEMENT (‘LICENCE”) IS A LEGAL AGREEMENT
BETWEEN YOU (EITHER A SINGLE INDIVIDUAL, OR SINGLE LEGAL ENTITY) AND
ARM LIMITED ("ARM") FOR THE USE OF THE SOFTWARE ACCOMPANYING THIS

. . X . LICENCE. ARM IS ONLY WILLING TO LICENSE THE SOFTWARE TO YOU ON
ieloulisnan ool clonpetel cPodcins o CONDITION THAT YOU ACCEPT ALL OF THE TERMS IN THIS LICENCE. BY ~

¥ | agree to all the terms of the preceding License Agreement

It is recommended that you exit all Windows programs before continuing with SETUP.

E I Next >> | Cancel | << Back I Next >> I Cancel |

g

Setup Keil C51 Version 9.52

e —— = —_— — <
E Setup Keil C51 Version 9.52 (o]

Folder Selection KE I u Customer Information KE I E
Select the folder where SETUP will install files. Tools by ARM Please enter your information. Tools by ARM

SETUP will install p¥ision in the following folder.

Please enter your name, the name of the company for whom you work and your E-mail address.
To install to this folder, press Next'. Ta install to a different folder, press ‘Browse' and select another

folder.
Destination Folder First Name: [Faustu
C:\Program Files (x86)\Keil Browse ...
I —‘ Last Name: ID'Anlonio
~ Update Installation: Create backup tool folder
Company Name: [Hewlett-Packard
¥ Backup old files to C:\Program Files (x86)\Keil\Backup.002
E-mail: | fausto.dantonio@gmail.com

<< Back I Next >> I Cancel I << Back I Next >> I

Cancel

Figure 13 — Keil installation wizard

2.4. Tools for Simulation

2.4.1. Tools for Sw Simulation: Building ISASim

To get Instruction Set program available for execution, it needs to compile ISS source code; there are many

ways to do that. The one we propose builds ISASim with the command line interface (CLI); see Building
ISASim: using Command Line Interface.

Building ISASim: fixing code

Before build, is necessary to update and modify some code details.

ISS code was developed before official C++ standard was modified, indeed this update impacted on C++
compiler. Furthermore, different C++ compiler implementation may have some different interpretation of
some code details. The needs to apply changes to code is almost natural.

To build ISS with last c++ compilers, code require following changes.

With reference to ISS folder in ~/Desktop/material/ISS, a first change has to be done on the header file
i8051.h. Add at line 25 the instruction using namespace std;.

22 22
23 23
24 24
25 25 using namespace std;
26 26

Code 1 -i8051.h header file modifications

Then modify main.cc file, including cstdlib library, add following code line #inciude <cstdlib>; as shown in
Code 2.

14 4#include <iostream> 14 #include <cstdlib>
15 #include <signal.h> 15 #include <iostream>
16 #include "i8051.h" 16 #include <signal.h>
17 17 #include "i8051.h"
18 18

Code 2 — main.cc main file modifications
Save changes.

ISS is not provided with a mechanism that allows to understand when simulated program ends, and
consequently ISS is not able to automatically stop the program execution.

Methods to end automatically a program are various. Here, one of the simplest but certainly not the most
elegant.

In 18051.h file, consider the statement commented reported in Code 3.

//#define PROGRAM COMPLETION ((unsigned char)RAM[P1] == 0x7F)

Code 3 - PROGRAM_COMPLETION variable

It means that ISASim terminates the program when P1 register assume 0x7F value (127 in decimal). This
condition forces programmers to be sure that simulated programs never set register P1 to the 127 value,
otherwise simulation would terminate immediately and improperly.

This instruction defines termination program condition. Such approach allows to trivially terminate
programs, but precludes the possibility to set register P1 to 127 during the program execution. This
restriction may exceed our will.

Following statement set a program completion condition, it states that all of the four registers have to be
set to 0x0.

#define PROGRAM COMPLETION (((unsigned char)RAM[P0O] == 0x0) && ((unsigned char)RAM[P1]
== 0x0) && ((unsigned char)RAM[P2] == 0x0) && ((unsigned char)RAM[P3] == 0x0))

Code 4 — Modified PROGRAM_COMPLETION variable

Remove the statement reported in Code 3, with the one in Code 4 — Modified PROGRAM_COMPLETION
variable.

This approach has the advantage to maintain the program flow under programmer control, but contrarily
forces to terminate the program with four assignments. These assignments affect the number of
instructions executed and, we will see, the information that ISASim provides.

Building ISASim: using Command Line Interface

We need two different configuration for ISASim executable, we will build it two times with different option.

In i8051 workspace folder, create a new subfolder with ISASim name.
> cd ~/workspaces/i8051/
> mkdir isasim
Move into isasim folder:
> cd isasim/
create src and inc subfolders
> mkdir src
> mkdir inc
create Release and ReleaseForDebugging subfolders
> mkdir Release
> mkdir ReleaseForDebugging

Copy all .cc files from Dalton Project ISS into isasim/src/.
> cp ~/Desktop/material/ISS/*.cc ./src/

Copy all .cc files from Dalton Project ISS into isasim/src/.
> cp ~/Desktop/material/ISS/*.h ./inc/

ISS source code files are downloadable at Dalton Project website
(http://www.cs.ucr.edu/~dalton/i8051/i8051sim/) or in ISS folder provided within material of this homelab.

Building Release configuration

Execute following commands:

> g++ -I "./inc" -03 -Wall -c -o "./Release/i8051.0" "./src/i8051.cc"
> g++ -I "./inc" -03 -Wall -c -o "./Release/main.o" "./src/main.cc"
> g++ -I "./inc" -o "./Release/ISASim" ./Release/*.o

ISASim source code composes of two .cc files: main.cc and i8051.cc. We will compile them separetly and
then link them togheter.

First of all compile and assemble i80151.cc file, with the following command:
> g++ -I "./inc" -03 -Wall -c -o "./Release/i8051.0" "./src/i8051.cc"

The command uses g++ compiler, builds " . /src/18051.cc" by using following flags:
e -1 ", /inc"
Search for .h files into . /inc subfolder (subfolder path refers to directory where g++ is called).
e -03
Set the maximum level of optimization.

e -Wall
Display all warnings.
o -C

Compile and assemble but do not link the input file.
e -0 "./Release/18051.0"
Place output 18051 .0 filein . /Release folder.

Similarily, compile and assemble main.cc file:
> g++ -I "./inc" -03 -Wall -c -o "./Release/main.o" "./src/main.cc"

Link obtained object files with the following:
> g++ -I "./inc" -o "./Release/ISASim" ./Release/18051.0 ./Release/main.o

Building ReleaseForDebugging configuration

Compile and assemble i80151.cc file, with the following command:
> g++ -I "./inc" =03 -Wall -c -o "./ReleaseForDebugging/i8051.0"
-DDEBUG -DDEBUG PC -DDETAIL "./src/i8051.cc"

Similarily, compile and assemble main.cc file:
> g++ -I "./inc" =03 -Wall -c -o "./ReleaseForDebugging/main.o"
-DDEBUG -DDEBUG_PC -DDETAIL "./src/main.cc"

Link obtained object files with the following:
> g++ -I "./inc" -o "./ReleaseForDebugging/ISASim" -DDEBUG -DDEBUG PC
-DDETAIL ./ReleaseForDebugging/i8051.0 ./ReleaseForDebugging/main.o

You can enable the production of debugging information as a simulation output, by defining DEBUG,
DEBUG_PC and DETAIL macros.

Flags -DDEBUG -DDEBUG_PC -DDETAIL allows you to define those Macros during building phase.
Alternatively, you can remove comments at 20, 21 and 22 lines in i8051.h file as follows, then build without
-DDEBUG -DDEBUG PC -DDETAIL flags:

20 20 #define DEBUG
21 21 #define DEBUG_ PC
22 22 #define DETAIL

Code 5 - ISASim debug, condition enabling

2.4.2. Tools for Hw Simulation: Building Hex2Rom
Hex2Rom application may be acquired by build i8051_mkr.c file. Dalton project about it:

Program to convert an Intel 8051 HEX file into a ROM model, i.e., generates i8051_rom.vhd. You
will need to compile this C/C++ file, say, gcc -Wall i8051_mkr.c, then run it with your HEX file as a
command line argument to it, e.g., a.out myfile.hex.

Building Hex2Rom: using Command Line Interface

We need only one configuration for Hex2Rom executable.

In i8051 workspace folder, create a new subfolder with Hex2Rom name.
> cd ~/workspaces/18051/
> mkdir hex2rom
Move into isasim folder:
> cd hex2rom/
create src and subfolders
> mkdir src
create Release subfolder
> mkdir Release
> mkdir ReleaseForDebugging

Copy all files from Dalton Project Hex2Rom into src/.
> cp ~/Desktop/material/Hex2Rom/18051 mkr.c ./src/

Compile the program with the following line:
> gecec -03 -Wall -o "./Release/Hex2Rom.o" "./src/i8051 mkr.c"

3. Compile for Intel 8051

In this section we propose a procedure to compile a program in order to obtain .hex format executable file.

e Prepare directory tree in order to perform building phase.
o Create a directory in ~/workspaces/i8051/ named divmulSDCC
Create an empty file in ~/workspaces/i8051/divmulSDCC/ named divmul.c
Copy the divmul program source code into divmul.c file.
Apply change to divmul code, according to modification proposed in 3.1
Create two more directories in ~/workspaces/i8051/ named divmulSDCCRefined and
divmulKeil
o Copy previously created and edited divmul.c file from ~/workspaces/i8051/divmulSDCC
into ~/workspaces/i8051/divmulSDCCRefined and ~/workspaces/i8051/divmulKeil
e In ~/workspaces/i8051/divmulSDCC/ apply steps for building divmul proposed in 3.2.1
e In ~/workspaces/i8051/divmulSDCCRefined/ apply steps for building divmul proposed in 3.2.2
e In ~/workspaces/i8051/divmulKeil/ apply steps for building divmul proposed in 3.3
o Create an empty file in ~/workspaces/i8051/divmulKeil/ named divmul.hex.
o Copy divmu.hex Windows file content (created in 3.3’s steps) in divmul.hex linux file.

O
O
O
O

3.1. Program example

Dalton project, in addition to ISS and VHDL model, provides a set of program examples useful for testing
their products. Each example provided consists in a .c language file and its relative .hex executable file.
We put our attention on divmul program example, it executes integer division between two numbers.
Source code is in Code 6.

#include <reg5l.h> // To use within KEIL compiler
//#include <8051.h> // To use within SDCC compiler

void main () {
unsigned x 134;
unsigned y 1;
unsigned g, r, p, 1i;
for (i=0; i<12; i++) {
y++;

Code 6 — Source divmul program

Code realizes integer division between 134 and 13.

x variable value is 134, it is divided by y. y, starting from 1, is incremented for 12 times in a for loop. Then
qguotient g, the rest r and is verified that dividend is equal to sum of the rest and the product of divisor and
quotient.

Some changes are proposed to source code in Code 6.

Change the way divmul uses registers, by enabling the usage of those that are not used (P1, P2 e P3), such
that it will be possible to see and simulate all output ports working.

Is possible to access to I/0 ports in the same way as done for registers; by using constants PO, P1, P2 and P3
we can drive device output ports.

Change output port assignment:

PO = qg; PO = q;
PO = r; Pl =y,
PO = p; P2 = r;

P3 = p;

Code 7 — New output port assignment for divmul.

Before while(1) instruction add following condition:

PO
Pl
P2
P3 ;

Code 8 — Program Completion condition

When simulation will run in CLI, it will stop before the while(1) instruction, and will avoid the need to
interrupt and close the execution by typing ctrl+c input combination.

3.1.1. SDCC and Keil includes

Depending on compilation toolchain, we need to include different files.
SDCC and Keil compilers provide header files which define constants to model microcontroller’s physical
aspects, such as memory and registers addresses.

E.g. reg51.h (for Keil) and 8051.h (for SDCC) defines PO variable and its value to 0x80 which respond to the
PO port register address.

SDCC compiler provide and uses i8051.h header file, while Keil provide and use reg51.h.

It means that when we will compile using sdcc we will include i8051.h header file. While, when we use Keil
we will include reg51.h file.

3.1.2. Expected results

x and y initial values are 134 and 1 respectively, y variable is incremented by 1 for 12 times reaching value
y=13.

Expected results are:
q= 3 =10 = 0x04 = 1010;
r=x%y=4=0x04=0100;
p=q*y+r=134=0x86 =10000110.

3.2. SDCC compiler in action

As already mentioned we will use open source compiler to get the hex file.

3.2.1. Build with plain SDCC

The compiler can be used from CLI (Command Line Interface) with the following command:

> sdcc sourcefile.c

To verify if it is working, we can get a complete list of available options by typing the command sdcc in the
terminal, or equivalently sdece --help, getting the list in Figure 14 — Help for SDCC command.

v Terminal - sim8051@sim8051: ~ = e

File Edit View Terminal Tabs Help

Figure 14 — Help for SDCC command

Move into ~/workspaces/i8051/divmul/ where you have divmul.c files.
> cd ~/workspaces/18051/divmul/

Open divmul.c file and find instruction #include <reg51.h>. Substitute with #include <8051.h>.

v, */home/sim8051/Desktop/material/divmul.c - Mousepad - + X v */home/sim8051/Desktop/material/divmul.c - Mousepad

File Edit Search View Document Help File Edit Search View Document Help

To use within KEI i ! <8051.h> // T

void main() { void main() {

unsigned x = 134;
unsigned y = 1;

unsigned x = 134;
= i
unsigned q, r, p, i;

unsigned y
unsigned q, r, p, i;

Figure 15 — Header file substitution

Save changes and quit the editor.
Execute compilation command:

> sdcec divmul.c

Among others, build command generates divmul.ihx file, it is the final output in hexadecimal Intel. From it
we can obtain divmul.hex, as is the executable result of compile process.
To better understand differences between divmul.ihx and divmul.hex files, we can refer to SDCC manual:

[...] the Intel Hex file which is generated by SDCC might include lines of varying length and the
addresses within the file are not guaranteed to be strictly ascending. If your toolchain or a
bootloader does not like this you can use the tool packihx which is part of the SDCC distribution,

The .ihx file is not so different from the .hex file except for arrangement and structure; in other words
packihx tool rearrange ihx file contents accordingly to hex format specifications. To use the tool, and thus
obtain the file divmul.hex, type command:

> packihx sourcefile.ihx > destinationfile.hex

-

v Terminal - sim8051@sim8051: ~/workspaces/i8051/divmul -

File Edit View Terminal Tabs Help
S Da

d
divmul.c

Figure 16 — SDCC building process

Compare divmul.ihx and divmul.hex. The content of the two files is almost the same.

Below, in Figure 17, a section of divmul.ihx and divmul.hex files; coloring highlights similarities and shows

how divmul.hex is ordered and organized with respect to divmul.ihx.

divmul.ihx

:03000000020006F5
:03005F0002000399
:0300030002006296
1200062007E017F007COC7DOOOEBEOOO1OF1CBCFF 44
:20008200061200DAAC82AD83D0O6DOO78EO88FO9 A8

-]
:04005BOOD8FCDOFAFA
:0D0V060V75810912016DES58260030200039F
:04016D007582002275
:00000VO1FF

divmul . hex

:03000000020006F5
:03005F0002000399
:0300030002006296
:100062007E017F007COC7DOOOEBEOOO10F1CBCFFD8
110007200 FA
:10008200061200DAAC82AD83DOO6DOO78EO88F0943
110009200 D3

[.]
:04005BOOD8FCDOFAFA
:0D0V060075810912016DES58260030200039F
:04016D007582002275
:00000VO1FF

Figure 17 - .hex and .ihx comparison

3.2.2. Build with SDCC flags

We compiled divmul.c file using the basic SDCC compiler’s settings. Compiler has options that allow to
refine the output hex file such that it mostly fits the hardware device where executable is supposed to run.
SDCC is a compiler capable of generating the .hex executable for various devices with different features, it
is flexible enough to adapt to the needs of each of these. For example, is possible to define the family of the

hardware device for which to compile.

We compile code for Intel 8051 microprocessor, whose family is Intel MCS 51. SDCC compiler, support this
family and uses it as the default one. In addition it supports among others, families Zilog Z80, Z80

GameBoy, Microchip PIC 14-bit.

You can specify for which family to compile by adding to SDCC command the option -mfamilyname. For
example, to compile the file sourcefile.c family MCS 51, we can use the command:

> sdcc sourcefile.c —-mmcsb5l

Another aspect it is worth to refine is the memory RAM size; it is usual to have the need of informing the
compiler of the memory size and structure.

By scrolling down SDCC options list the Linker options section is displayed; the option that fits our needs is -
-iram-size, it allows to enter the RAM size value for target device.

~ Terminal - sim8051@sim8051: ~/Desktop - + X
File Edit View Terminal Tabs Help

Figure 18 — SDCC linker options

RAM size dimension for our VHDL model is 128 byte; see documentation at
http://www.cs.ucr.edu/~dalton/i8051/

Command to compile divmul.c for Intel 8051 with 128 byte RAM is

> sdcc sourcefile.c -mmcs51 --iram-size 128 -o ./obj/

Note the flag —o ./ob7j/ move all output files into /ob7j /which shall already exists.
Once we obtained divmul.ihx file, use command packihx to obtain divmul.hex.

> packihx ./obj/sourcefile.ihx > sourcefile.hex

We can compare the two divmul.hex files, obtained with the procedure just outlined, with the file
divmul.hex made available from Dalton Project.

Figure 19 is a comparison between the three divmul.hex files; at left the file obtained by the SDCC compiler
with no options, in the center the .hex obtained from SDCC compiler with refining option while on the right
the one provided by the Dalton Project.

[E) divmul_SDCC.bt 52

1 :03000000020006F5
:03005F2002000399
8300030002006296
4 :100062007E017F207C0C7DRRREBEQRR1@F1CBCFFD3
5 :10007200011DEC4AD70F 28E@88F9900086C007COFA
6 :10003200061200FOACE2AD33D0R6DAB73EQ38FR92D

7 :10009200900036(007(006(005C284120136AA82ED
2 :1000A200AB33D004D2A5D206DRR73EQ38FRIBCE23E
9 :1000B2003D383(007C0@6C205C004C203(002120180
2 :1000C20019E5828533F2D202D2@3D224DOO5DAR692
:1000D268D207 2AFBEB35FOF98C803E908AABE8B090
2 :1000E20075800075900075A00075B00030FE7A10D2
3 :1@@@F200E4FBFCES8225E@F582E58333F583EB330F
:10010200FBEC33FCEBISO3FSFRECISO94006FCABF3
15 :@7@11200F@438201DADD2257
5 :06003500E478FFF6DBFDIF
100013007900E9440060187A00900187780075A09D
:1000238800E493F 2A303B3000205A0DIFADAF2754C
:02003380A0FF2C
10011980E5328508FOA4C582(0FR3509FBA4DRFETS
:100129@025F0C5838508FOA42583F58322E50845D4
:100139880960467AB1ESO325E0F503E5093340122A
23 :1@@14900F509E5829508E583950940030A80E6C328
4 :1001590@E50913F5@9E50813F588C3E5829588FSDE
25 :1@@16900FRES58395094005F58385F@82C3E5091318
5 :0AR1790@FS09ES@813FS503DAEL22A4
100038007 300E34400600A790075A00RE4F309D861

1 BOOEB4400 4FQA319
@4005B0@D3FCDIFAFA
8D2B060R758109120183E582600302000339

84018300758200225F
:00000RRLFF

[Z) divmulSDCCrefined.bt 52

1 :03000000020006F5

:03005F2002000399

©300030002006296
100062007E017F@87C0C7DRRREBERR@1BF1CBCFFD3
:10007200011DEC4D70F 23E038F@9900036CB07COFA
5 :10003200061200FBAC32AD33D206DRR73EQ83FRI2D
:10009200900036C207(006C005C804120136AA82ED
3 :1000A200AB33D004D2@5D206DRR73EA83FRIBCE28E
9 :1000B2603D33Ce87(006(005C004(003(202120180
2 :1000C20019E5828533F2D202D0@3D2G4DOO5DAR692
:1000D268D207 2AF8EB35FOF98C803E!

2 :1000E20075300075900075A00075B000380FE7A18D2
1000F 280E4FBFCES8225E0F582E58333F583EB330F
:10010200FBEC33FCEBISOBFSFRECISVI4006FCABF3
:07011200F04338201DADD2257

6 :@6803500E4787FF6DBFD1F
100013607900E9440060187A20900187780075A09D
1000236000E493F 2A303B3000205A0DIF4DAF2754C
828083300A0FF2C
10011988ES5828508FBA4C532CBFB8509FBA4DBFOT7S
:1001290025F0C53838508FOA42583F58322E50845D4
:100139080960467AB1ES0325E0FS08E5093340122A
10014900F509E5829508E583950940030A80E6C328
10015980E50913F589E50813F588C3E5829508F5DE
:100169@@FRES3395094005F58385F082C3E5091318
5 :10A@17980F509ES@813F508DAEL22A4
10003B207300E84400600A790075A000E4F309D861
1 80OEB4400600C 4FQA319
@4205B00D3FCDIFAFA
8DeBo600758109120183E582600302000339
24018300758200225F

@0BBRROLFF

[N)

<

[E] divmulKeil.xt 22

wn e

o w b

~

NN
Z R WN RSO

NNNN NN

W o N

34

:830000000200BF3C
:@C@eBFRO737FE4F6D3FD75810902006A24

: 10006A007B867A00900001E4AFFFEA3OFBF@RR10ELY
1 10007A00EF640C4E7OF4AF@3AEQ2ADB2AC83120093
: 10003AG@158E038FBIAED2AFB3ADE2AC831280153C
:10009A00ABRSAEABAFOIADE2ACE3120003EF2BFFAC
: 100K
:0500BAGOAOFSBABBFETE

509808582 B@E4FS580F598F564

00eB300EF3DFRA4ASFOCFBCFOA428CEBDFOA42ELL
2001300FE22CB
2001500BC0R@BBEOO29EF8DFO84FFADFB22E4CCCF

110002500F375F@A8EF2FFFEE33FEEC33FCEEIDECIB
:10003500984005FCEE9DFEQFDSFBEIE4CEFD22EDDE
:10004500F8FSFREE8420D21CFEADFO75FBRBEF2F28
:10005500FFED33FD4807985006D5F0OF222C398FD19
:050065000FDSFREA22B6

:000000R1FF

<

m

Figure 193 — Comparison between .hex obtained files

Hex executables produced by different compilers is, of course, different in turn; indeed, among
executables, length and structure are different. It is worth to notice that divmul.hex files obtained by SDCC
compiler (with and without optimization) have the same structure and the same length; their only
difference is a single character on the line 16, as shown in the table in Figure 20.

15 :0101020022DA :0101020022DA
16 :06003500E478FFF6D8FDOF :06003500E4787FF6D8FD1F
17 :100013007900E94400601B7A00900171780075A0B3 :100013007900E94400601B7A00900171780075A0B3

Divmul.hex without refinement options Divmul.hex with refinement opdtions

Figure 20 — SDCC divmul.hex files comparison

3.3. Keil compiler in action

Open Keil uVision4 program. As shown in Figure 21, the work area is divided into four parts: top menu with
toolbars, the Project Navigator to the left, to the right the File Editor and at the bottom Build Output which
is the output console.

3 xyz.hex files were renamed in xyz.txt, due to display issues.

- - = =Tar=s]

Flle EdtView.Prject - FlashDebug.Perpheras - Tools - SVCS - WindowHelp
TNBA@ 4 B2 en| P Rnn|FEERD Hael@le oo e
PO B e | 8| roes EEN A=)

@

@41 Targetl

@ cooks| () Func..| Oy Tem.. |

Build Output

E

Simulation CAP NUM SCRL OVR R /W,

Figure 21 — uVision IDE

Before creating a new project, create an empty folder that contains all the files of our application, copy the
divmul.c file in it as shown in Figure 22.

e

Organizza v Includi nella raccolta v Condividi con ¥ Masterizza Nuova cartella
k. Google Drive “ Nome - Ultima modifica
) L Magistral
& Laurea . e <] divmul.c 23/07/2013 00:33
| (b Progetti
|, EJWorkspace

| VPWorkspace

=

Figure 22 — divmul.c in uVision project folder

Create a new project, from navigation bar select project->New pVision Project.

File Edit View Flash Debug Peripherals Tools SVCS Window Help
NE 4 8 “ New pVision Project...

New Multi-Project Workspace...

—— Open Project...
Project

-4 Targetl

Save Project in pVisiond format

Close Project

Export

Manage

Select Device for Target ‘Target1'...
Remove Item

;:\ Options for Target ‘Target1'...

Figure 23 — New uVision project

Select directory previously created and name the project as divmul.uvproj.

A window will pop up, select Generic->8051 as target device.

Select Device for Target ‘Target1'... @
crU |

Vendor: Generic

Device: 8051 (all Variants) [Use Extended Linker (LX51) instead of BL51
Toolset: C51 [~ Use Extended Assembler (4X51] instead of 451
Data base Description:
Dolphin ~ | [8051based CMOS or NMOS Microcontroller with -

@ Domosys 32 1/0 lines, 2 Timers/Counters, 5 Intemupts/2 Priority Levels,
easyphig 4K Bytes ROM, 128 Bytes onchip RAM

Q EnOcean

-8 Evatronix

=8 Generic

. £3 8031 (all Variants)
£3 8032 (all Variants)
£3 8051 (all Variants)
£3 8052 (all Variants)
-4 Genesis Microchip
-8 Goal Semiconductor
? Handshake Solutions - —

0K Cancel Help I

Figure 24 — uVision select target device

Em

When asked for “Copy 'STARTUP.A51’ to Project Folder and add file to Project?” answer Yes.
Add divmul.c file to project. In Project Navigator click with right mouse button on Source Group 1 and select
Add existing file to group... as in Figure 25, select and add divmul.c file from previously created directory.

Progetti\Keil\divmul\divmul.uvproj -
File Edit View Project Flash Debug Peripherals Tools SVCS Window He
N 4@ 6 s8] o P RRA®R|EEL

L§3‘5| Target 1 I_—‘_’I ,ﬁ\l ﬁ

=223 Target1 ‘
B-&3

E‘] START

; Add New Item to Group ‘Source Group 1'...

‘\ Add Existing Files to Group ‘Source Group 1',..

,3,\ Options for Group 'Source Group 1'...

Add Group...
Remove Group ‘Source Group 1’ and its Files

w ﬁ Manage Components...

Figure 25 — uVision add files to project

Please remember that this compiler is compliant with reg51.h library and not with 8051.h. Refer to SDCC
and Keil section.

N4 C:\Users\Fausto\Progetti\Keil\divmul\divmul.uvproj - pVisiond
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

I I Y || | = = 0| o Haeslale oo a3
S8 e] e e R
Project L [#] divmul.c
=54 Target1 s L
=-£3 Source Group 1 o /> */
[#] STARTUP.ASL 10
] @divmul,c 11 #include <reg51.h>
12
g8 /[~ =/
14

Figure 26 — include reg51.h for Keil compiler

Before build, inform the IDE we want to get .hex output file, go to Project Navigator click right mouse
button on Target1->Options for...

V4 Ci\Users\Fausto\Progetti\Keil\div isiond
File Edit View Projet Flash Debug Peripherals Tools SVCS Window Help

=A™ - @ [| B | &= = = it
S [# e | "WI Target 1 [+ AzA\I A= e &y
Project b B divmul.c
EES] oroctl [
B3 S¢ 4K Options for Target Target1'... GUehoMl
B E Add New Item to Group... b

Add Existing Files to Group...
Add Group...

Remove Item

ﬁ Manage Components...

f34;
n
Figure 27 — uVision option for project
In Output tab, put a tick on Create HEX File.
Options for Target 'Target1' =]
Device | Target Output I Lising | User | C51 | A51 | BL51 Locate | BL51 Misc | Debug | Utiities |
Select Folder for Objects... | Name of Executable: Idiva|
(¢ Create Executable: \divmul
[V Debug Information [V Browse Information
[V Create HEXFile HEX Fomat: |HEX-80 v
" Create Library: .\divmul.LIB ™ Create Batch File
0K | Cancel | Defauts | Help

Figure 28 — uVision tick Create HEX Fiie option

To compile divmul.c file from menu bar click on Project->Build target.

R pA Ty

File Edit View Flash Debug Peripherals Tools SVCS Window Help
NS da|
& A B e

New pVision Project...
New Multi-Project Workspace...
Open Project...

Project
—aaee——"" Save Project in pVision4 format L
E-523 Target1 :
R, Close Project
E-45 Source G F——-
: B STAR Export 5
(£ divm Manage »

Select Device for Target ‘Target1'...

Remove File 'divmul.c’

X Options for File ‘divmul.c'... Alt=F7
Clean target
Build target F7

Rebuild all target files
Figure 29 — uVision build target

At the end of building process, in the below Build output window will show up the message in Figure 30.

& Proj... | € Books| {3 Fun...| Oy Tem...| || < |

Build Output

Build target
linking...
Program Size: data=11.0 xdata=0 code=191
creating hex file from "divmul”...
"divmul" - 0 Error(s), 0 Warning(s).

'Target 1°'

<

Figure 30 — uVision end building message

While in project folder:

(s ==]
€ | » Computer » Discolocale (C) » Utenti » Fausto » Progetti b Keil » divmul ~ |45 Wl Cerca divmut 2|
Organizza v Includinellaraccolta v Condividicon v Masterizza Nuova cartella = 0 @
& Google Drive ~ Nome ’ Ultima modifica Tipo Dimensione
| Laurea Magistrale)
-] divmul 23/07/201323:58 File 3KB
() Progetti R
8] divmul.c 23/07/20131855 CSource 1KB
|| E)Workspace =
7] divmul.hex 23/07/201323:58 File HEX 1KB
|| VPWorkspace L)
|| divmullnp 23/07/20132358 File LNP 1KB
) 2 divmulLST 23/07/201323:16 MASM Listing 2k8
4 Raccolte)
=) [divmulM51 23/07/201323:58 File M51 5KB
|5 Documenti =
] divmul.0B) 23/07/20132316 Object File 2KB
[Immagini R
|} divmul.plg 23/07/20132358 FilePLG 0KB
& Musica) .
_ | divmul.uvguiFausto 23/07/2013 2351 File FAUSTO 70K8
(=) Subversion £) A
va || divmul.uvgui_Fausto.bak 23/07/201318:555 File BAK 70KB
M [divmul.uvopt 23/07/2013 23:51 File UVOPT 6K8
@] divmul.uvproj 23/07/201318:5 pVisiond Project 14KB
+& Gruppo home .
|_] STARTUP.ASL 24/06/201310:27 File ASL 7KB
2] STARTUP.LST 23/07/20132316 MASM Listing 14KB
1% Computer :
- — ¥ sTARTUP.OBJ 23/07/20132316 ObjectFile 1k8
&, Disco locale (C:)
s RECOVERY (E)
15 elementi

Figure 31 — uVision project folder

Between files created by IDEs in building process, there is also divmul.hex file, which is the file that can be
used for simulation via ISS and VHDL model.

|5 divmulKeil.bt 53

1 1030000000200BF3C
2 :@CO0BFOB787FE4AFEDBFD75810902006A24

) :10006A007B867A00900001EAFFFEA3OFBFOOOL0GELY
4 :10007A00EF640C4E7OF4AFO3AEO2ADB2ACE31260093
5 :10003A00158E088FO9AEQ2AFO3ADB2ACE31200153C
6 :18009A00ABOSAEOBAFO9ADB2ACB3120803EF2BFFAC
7 :1000AAR03509808582903BA03FBOE4AF580F598F564
} 10500BA0OAOF5BOBGFETE
1 10000300EFBDFOA4ABFOCFBCFOA428CEBDFOA42ELL

0 102001300FE22CB
11 :10601560BC000BBEGB29EFBDFOB4FFADFO22E4CCCF
12 :10002500F875F0O@8EF2FFFEE33FEEC33FCEE9DECIS
13 :100083500984005FCEE9DFEOFDSFRE9E4CEFD22EDDE
14 :10004560F8F5FOEEB420D21CFEADF@75FROBEF2F28
15 :108@5500FFED33FD4007985006D5F0F222C398FD19
16 :@50065000FDSFOEA22B6
' 10000OOLFF

[5] divmulDalton.txt &2

:100003007508007509867B017ACREAFFFEOBBBOOCF
2 :110001300010A0FBFOROLOEEF640CAE7OFOACO2ADED
:1000230003AE08AF0912007B8EGABFOBACO2ADB33F
16003300AEQ8AF091200768CECEDBDACO2ADB3AESS
100043000AAFOB120067E50D2FFFES@C3ES5068011
5 :83005300850D308F308@FE22E4
7 :0300000002005BA0
} 10C005B00787FE4AF6DBFD75810D020003E8
110006 700EFFBBDFRA4FFEDCSFOCEA42EFEECBBFODE
0 104007700A42EFE2293
1 :10007600BCOCRBBEGO29EFBDFOB4FFADFO22E4CCEY
:16003BROF875F@OBEF 2FFFEE33FEEC33FCEEIDEC32
16009B00984005FCEEIDFE@FDSFOEIE4ACEFD22ED78
1000ABGOFBFSFOEES420D21CFEADF@75F@OBEF2FC2
5 :1000BBRGFFED33FD400B7985006D5FOF222C398FDB3
16 10500CBROOFDSFBEA2250
' 10000BROLFF

From comparison between .hex file just created by building process and divmul.hex file provided by Dalton
Project we note that the content is different, even if length file seems to match.

-

Figure 324 — divmul.hex Keil produced files comparision

Keil output issue

The .hex Keil output file has a format not compliant with Linux system.
Indeed if we try to run hex2rom program with divmul.hex executable (obtained from Keil compilation
process), we obtain following error:

v Terminal - sim8051@sim8051: ~/workspaces/i8051/divmulKeil - + X
File Edit View Terminal Tabs Help

sim8051@sim8051:~/workspaces/i8051/divmulKeils$../Hex2Rom/Release/Hex2Rom divmul.hex

hex file error

sim8051@sim8051:~/workspaces/i8051/divmulKeil$

Figure 33 — hex2rom execution on divmul.hex file (obtained from keil)

To understand the problem see the output of command

> od -cx divmul.hex

It shows the hexadecimal representation of divmul.hex file:

v Terminal - sim8051@sim8051: ~/workspaces/i8051/divmulKeil - + X

File Edit View Terminal Tabs Help

sim8051:~/workspaces/i8051/divmulKeil$ od -cx divmul.hex
3 0 3 0 0 0 (¢] (¢] ¢ 2 (¢] B
303a : 036 3030 030 3032

3 \r

3 G 0
0d33 0 3830 3030

1

3138

& ¢ 0

Qa0d 313a 3030

Figure 34 - hexadecimal representation of divmul.hex file

NOONNTO N

[
o
"

The output shows that End Of Line (EOL) characters are decoded with \r\n which is the format used by
Windows systems. Linux environment uses \n

4 xyz.hex files were renamed in xyz.txt, due to display issues.

The command:
> tr -d '\015' < divmul.hex > divmul EOL.hex

substitutes the \r\n with \n in file divmul_EOL.hex as shown in figure:

o Terminal - sim805 i 1:~/ i8051/di i -+ X
File Edit View Terminal Tabs Help

0
3744 383 3031

a ¢)

e S :] g 9
Figure 35 - hexadecimal representation of divmul_EOL.hex file

Now using hex2rom on divmul_EOL.hex work perfectly.

N Terminal - sim8051@sim8051: ~/workspaces/i8051/divmulKeil - + X
File Edit View Terminal Tabs Help

sim8051@sim8051:~/workspaces/i8051/divmulKeils$../Hex2Rom/Release/Hex2Rom divmul EOL.hex
sim8051@sim8051:~/workspaces/i8051/divmulKeil$

Figure 36 — hex2rom execution on divmul_EOL.hex file

4. Software simulation

According to previous sections, this section shows results of software simulations via the ISASim ISS.

Results refers to the Release and ReleaseForDebugging configurations. For each of the Release and
ReleaseForDebugging configurations will be shown the results of the three builds simulations (SDCC with no
option, SDCC with option, Keil).

Information provided by ISS, as a result of the simulation, are about registers’ values evolution (Figure 37 —

ISASim 1/0O ports evolution) and simulated program performances (Figure 38 — ISASim simulated program
performances).

Figure 37 — ISASim 1/0 ports evolution

Figure 37 shows part of software simulation output. The result shows the evolution of output values on the
four 1/0 ports. Each column refers to one of the four I/O ports available. Whenever register port value is
updated, a new row is generated and displayed by ISASim; there is no temporal relationship according to
which a new line is displayed.

Note that last four lines do not contribute to the program logic execution, but are part of the closure
procedure, of course they impact on performance indices.

Figure 38 — ISASim simulated program performances

ISASim provides information (reported at Figure 38 — ISASim simulated program performances) at the end
of the simulation. There are two kind of information; the first are indices about the host machine
performances that run simulation, the latter are the performance projections that would take place at 8051
microcontroller execution.

In detail the provided indices are:

Instructions executed: the number of instructions simulated. In this item, we must consider the four
assignments necessary for program closure.

Execution Time: the time, in seconds, that the host computer took to simulate the program
instructions.

Average Instructions/second: the average number of instructions, simulated by the host computer,
executed per second.

Clock Cycles Required for 8051: the number of clock cycles needed to run the program by 8051
microprocessor.

Execution Time for 8051<12 Mhz><seconds>: the time in seconds that microprocessor 8051 would
have taken to execute the simulated program at a frequency of 12 MHz.

Average Instructions/second for 8051: average number of instructions per second that
microprocessor 8051 would have run.

e Run ISASim on divmul.hex file into ~/workspaces/i8051/divmulSDCC/ following steps in section
4.1.1

e Run ISASim on divmul.hex file into ~/workspaces/i8051/divmulSDCCRefined/ following steps in
section 4.1.1

e Run ISASim on divmul.hex file into ~/workspaces/i8051/divmulKeil/ following steps in section 4.1.1

e Compare results with the one provided in 4.2.

4.1. Running ISASim

Once ISS code is compiled an executable file is produced, it takes two input parameters:
application-name <hex-file> <output-file>

application-name is the name of ISS executable file.

<hex-file> is the objct code results of building we want to simulate.

<output-file> is the text report file generated (if enabled). It will be generated only for
ReleaseForDebugging configuration.

4.1.1. Running ISASim on Linux
Change to directory ~/workspaces/i8051/divmul/

Execute Command for simulation without additional debug output information:
> ../ISASim/Release/ISASim ./divmul.hex

Execute Command for simulation with additional debug output information:
> ../ISASim/ReleaseForDebugging/ISASim ./divmul.hex ./divmulReport.txt

4.1.2. Running ISASim on Windows
Change to directory ~/workspaces/i8051/divmul

Execute Command for simulation without additional debug output information:
C:/pathToDivmul > C:/pathToISASim/ISASim.exe divmul.hex

Execute Command for simulation with additional debug output information:
C:/pathToDivmul > C:/pathToISASimForDebugging/ISASim.exe divmul.hex
divmulReport.txt

4.1.3. ISASim debug information report

ReleaseForDebugging simulation in addition to output indices provides a report file.

In Code 9 part of report contents.

- LJMP - LJMP - LJMP

LJMP6 LJMP6 LJMP191

- MOV - MOV - MOV

RAM(129) <- RAM(129) <- RO <-

- LCALL - LCALL - CLR

LCALL LCALL A <-

- MOV - MOV - MOV

RAM(130) <- RAM(130) <- RAM(RO) <- A

- RET - RET - DJNZ

RET RET RO--

- MOV - MOV if(RO !'= 0) JMP
A <- RAM(130) A <- RAM(130)

- JZ - JZ - MOV

if(A== 0) JMP if(A== 0) JMP RAM(RO) <- A

- MOV - MOV - DJNZ

R1 <- R1 <- RO--

- MOV - MOV if(RO !'= 0) JMP
A <- R1 A <- R1

- ORL - ORL - MOV

A <- A | A <- A | RAM(RO) <- A

Code 9 — divmulReport comparison

In report files there is the list of executed instructions. These instructions clearly refers to the assembly
code, even if they are arranged in a quite different way.

Reports of simulations related to programs build with SDCC are very similar; indeed, the only difference is
the number of instructions. Contrarily the simulation report of the Keil program clearly differs for
instructions and instructions number.

4.2. Software Simulation results comparison

Release configuration simulations

Figure 39 — simulation of divmul build by SDCC (Release configuration), Figure 40 — simulation of divmul
build by SDCC with option refinement (Release configuration) and Figure 41 — simulation of divmul build by
KEIL (Release configuration) depict results of the simulation performed with ISASim ISS (build in Release
configuration).

v Terminal - sim8051@sim8051: ~/workspaces/i8051/divmulSDCC = =
File Edit View Terminal Tabs Help

Figure 39 — simulation of divmul build by SDCC (Release configuration)

v Terminal - sim8051@sim8051: ~/workspaces/i8051/divmulSDCCRefined — -
File Edit View Terminal Tabs Help

divmul.hex

Figure 40 — simulation of divmul build by SDCC with option refinement (Release configuration)

v Terminal - sim8051@sim8051: ~/workspaces/i8051/divmulKeil — -

File Edit View Terminal Tabs Help
d divmulKei
divmulKeil

Figure 41 - simulation of divmul build by KEIL (Release configuration)

Registers change their values accordingly to divmul program statement. Figure 39 — simulation of divmul
build by SDCC (Release configuration), Figure 40 — simulation of divmul build by SDCC with option
refinement (Release configuration) and Figure 41 — simulation of divmul build by KEIL (Release
configuration) show that computational results are the same for all performed builds. Note that last four
lines correspond to the completion program procedure. Fifth from the last line indicates the results of the
computation performed by divmul program. Expected results match in each of software simulations

performed.

Looking at Figure 39 — simulation of divmul build by SDCC (Release configuration) and Figure 40 —
simulation of divmul build by SDCC with option refinement (Release configuration) we can compare and
evaluate SDCC builds, one without refinement option and one with.

Number of executed instruction for SDCC with refinement options is lower, instead host Execution Time
seems to be higher. About 18051 projected data, number of clock cycles and execution time are both better
for build with refinement options.

These data confirm the benefits derived from refinement options in the building process.

Figure 41 — simulation of divmul build by KEIL (Release configuration) shows that the number of executed
instructions by divmul simulation build with KEIL, is much smaller than the buildings by SDCC, also the time
of running on the Intel 8051 is smaller.

Software simulations show that different compilation (with respect to different copiler and different flags)
change i8051 performances projection. Results show that the execution of the program build with Keil is
more efficient. In addition SDCC compiler produces more efficient results with refinement options.

ReleaseForDebugging configuration simulations

Figure 42, Figure 43 and Figure 44 shows results of simulations by ISASim ISS build in ReleaseForDebugging
configuration.

Terminal - sim8051@sim8051: ~/workspaces/i8051/divmulSDCC - + X
Edit View Terminal Tabs Help

Figure 42 — simulation of Divmul build by SDCC (ReleaseForDebugging configuration)

7 Terminal - sim8051@sim8051: ~/workspaces/i8051/divmulSDCCRefined - + X
File Edit View Terminal Tabs Help

Figure 43 — simulation of Divmul build by SDCC with refinement options (ReleaseForDebugging configuration)

v Terminal - sim8051@sim8051: ~/workspaces/i8051/divmulKeil - + X
File Edit View Terminal Tabs Help

Figure 44 — simulation of Divmul build by KEIL (ReleaseForDebugging configuration)

Simulation results achieved with ISASim build in Release configuration, match perfectly with those
produced by ISASim build in ReleaseForDebugging configuration, with the exception of host computer
performance indices. Those, in addition to being subject to host computational load at the time of
simulation, also depend on operations that ISASim executes during simulation.

5. Hardware simulation

Hardware simulation consists of two main steps: i8051 rom generation using Hex2Rom and

e Run Hex2Rom on divmul.hex file into ~/workspaces/i8051/divmulSDCC/ following steps in section

41.1

e Run Hex2Rom on divmul.hex file into ~/workspaces/i8051/divmulSDCCRefined/ following steps in
section 4.1.1

e Run Hex2Rom on divmul.hex file into ~/workspaces/i8051/divmulKeil/ following steps in section
41.1

e Student shall prepare Vivado Project for i8051 as described in 5.2

o Copy ~/workspaces/i8051/divmulSDCC/i8051 rom.vhd into i8051 Vivado project folder, then start
behavioural simulation.

e Copy ~/workspaces/i8051/divmulSDCCRefined/i8051_rom.vhd into i8051 Vivado project folder,
then start behavioural simulation.

o Copy ~/workspaces/i8051/divmulKeil/i8051_rom.vhd into i8051 Vivado project folder, then start
behavioural simulation.

e Compare results with the one provided in 5.4

5.1. Running Hex2Rom

Once program is compiled we get an executable file that takes one input parameter:

application-name <hex-file>
application-name is the name of executable file.
<hex-file> is the object code results we want to build the ROM for.

The command creates a file named i8051_rom.vhd, it is the VHDL model memory filled with instructions of
<hex-file> compiled code.

5.1.1. Running Hex2Rom on Linux
Change to directory ~/workspaces/i8051/divmul/

Execute Command for i8051 rom generation:
> ../hex2rom/Release/Hex2Rom ./divmul.hex

Check whether i8051_rom.vhd was correctly generated by typing:
> 1ls -1

v Terminal - sim8051@sim8051: ~/workspaces/i8051/divmul - + X

dit View Terminal Tabs Help

Figure 45 - i8051_rom.vhd generation

5.2. Creating Vivado project for [8051 model

In i8051 workspace folder, create a new subfolder with i8051 name.
> cd ~/workspaces/i8051/
> mkdir i8051
Move into isasim folder:
> cd 18051/
create src and subfolders
> mkdir model
Copy all .vhd files from Dalton Project VHDL into i8051/model/.
> cp ~/Desktop/material/VHDL/*.vhd ./model/

Run Xilinx Vivado software, we will realize hardware simulation using it’s features.

~ Vivado 20163 -+ x
Eile Flow Tools Window Help Quick Acce
4 £
VIVADO. < XILINX
HLx Editions ALL PROGRAMMABLE
Quick Start Recent Projects

8051
p 1ome/simB0S1/workspaces/i8051/18051

B

Create New Project Open Project Open Example Project
Tasks
e o
- C :J)
Manage IP Open Hardware Manager Xilinx Tcl store

Information Center

Documentation and Tutorials Quick Take Videos Release Notes Guide

= Tl Console

Figure 46 - Vivado main window

Create a project by File->New Project...

| Eile | Flow Tools Window Help
MNew Project...
Open Project...
Open Recent Project 4
Open Example Project...

Figure 47 — Vivado new project

Set project name (as i8051) and project directory path (as ~/workspaces/i8051/), then click on Next.
Select RTL project; indeed we will only have simulation at behavioural level.

New Project . x
Projoct Nam
) e @ for your project A Specty drectory e the pojec data fes il b storec P P
VIVADO!
- T oca =]
Tios. o ou w4 o i, ity
ramefameas: &
5 crasto profact subdractary
et i b crestc s, romemecsL Yo il b 3blato 30 Sourcas, viow Geic Fa5ourcas,fun cosign analits, planning ang
ow
b rees. You il be abl t view parpackaga rsaurces,
om aSynpty ST or I Prjec i
S s e e e
AL o continus, cek o
—=J S0 e o] [corear]) (i) mee] i | [(come 3 ETTT I Cancal

Figure 48 — Vivado new project wizard

Click on Add files... and select all .vhd files we moved in ~/workspaces/i8051/i8051/model directory as a
source for this project.

New Project + x

Add Sources

+
1
4

Spacify HDL and netlst filos, or diractories containing HDL and netlist fles, to add to your projoct, Croate a
niew source file on disk and adld it to your project. You can also add and create sources later.

’

dd Files, Add Directories or Create File buttons

sddries || [Addorectones || createrie

and add RTL include files Into project

sources from subdiractorias

T (PR Smserers

=

[C=eeo) mee=) on] [cance]

- Add Source Files + x

D #2528/, 0x5

ook s [Cmodel

@ l5051_alluhd Racent Diractories
18051 alund
(& 18051 ctrahd
9 18051 dbgahd File Preview
18051 dec.vhd =
(& 16051 I vhd pyright (c)

(& 16051 ramvhel
18051 romhd
(& 18051, tshvhd -
1% 18051 Jrmvhd

Ihome/simaos1

Library TeeE,

luse TEEESTD_LOGIC 1164.a11;
luse TEEE. STO_LOGIC ARTTH.al1;
luse WORK.T8051_LTE a1

. New Project

Add Sources

Specify HDL and netlist files, or directories containing HDL and netlst fies, to add to your project, Create &

new sourc fle on disk and 3G t to your project. You can also add and create sources later

4, | index | nName | Ubrary | HOLSourceFor | Location |
“®1 18051._alluhd XI_defaulll Synthesis & Simul.. < frome/sim.
=@ 18051 aluvhd xi_defaultlib Synthesis & Simul... ~ /home/sim.
103 8051 ctr./nd foultib Synthesis & Simul... ~ fome/sim
H 8051 dbghd i defaulllp Synthesis & Simul.. ~ fomeyet
@s 8051 decand xi_defaullib Synthesis & Simul.. ~ jome/sim.
@ 18051 Ib.vhd i defaultlb Synthesis & Simul... ~ fhome/sim.
@7 8051 ramavnd xi_defaultllp Synthesis & Simul.. ~ frome/sim.
@0 18051 romavhd xi_defaulllb Synthesis & Simul. o,
@ 8051 tsbhd i defaultlib Synthesis & Simul... ~ fhome/sim.
@10 18051 0emuhd i defaullip Synthesis & Smul.. ~ fome/sim.
[aaaries | [cresterie

[C'scan and add RTL include fles Into project

Fle name: 18051_aluuhd" 8051 ctruhd "18051_dbg vhd "18051_dec vhd" ‘12051 libuhd 18051 ra|

16051_allhd

Files of type: [Design Source Flles (. vhal v, vhd, vho, vV, veriog, v, v, .U, 103, v v veo, vh. . ¥ vhp. &

oK Cancel
(

- New Project
Add Exi

ing IP {optional)

Specify existing configurable 1P, DSP composite, and Ermbedded sub-design il to add to your project.

g

addries] [Add Dractones |

) Copy sources into project

(]

Add Constraints {optional)

=1 &

e

Speciy or create constraint fles for physical and tiring constraints,

into project

Targat languags

Neriog <] Smuiator language:
[T

New Project + x

’

I

Use Add

i Create File buttons below
Add Files Croate il

py constraints files into project

[<meek | moes] coen | [caneel]

Figure 49 - Vivado selecting model’s files

Select Boards perspective and select the FPGA board to use within simulation. Choose Artix7.

0 New Project
Default Part
Choose & default Xilinx part or board for your project. This can be changed later.

Select:
 Filter

Product category: [al [

+ % -

Default Part

Select: & Parts
4 Filterf Preview.

Choose a default Xiinx part or board for your project. This can be changed later.

New Project

Eamily [an <] Tempgrade: [an -] Display Narne:
o e
[_Reset alFiters Reset All Filters.
search: 4 search
OPin | Block GTPE2 b Available | LUT
Part voPin | Bock | ospe | ripriops | el Display Name || vendor | moard re| Part [0 pin count e version| Btk |
@ xc7k70tfbv676-2L 676 135 240 82000 0 8 300 4100(z] @ Artix7 AC701 Evaluation Platform silinx.com 1.1 c7a200tfbg676-2 676 151 365 7
@ xc7k70t1b676-1 676 135 240 82000 0 8 300 41000
®xc7k70tibgdsa-2L 484 135 240 82000 0 4 285 4100¢
@ c7k70UbgE7E2L 676 135 240 82000 0 8 300 41000
®xc7k70tibvABA2L 484 135 240 82000 0 4 285 a100¢
@ xcTkT0UDVGT62L 676 135 240 82000 0 8 300 41000
@ c7k160tibgana-3 484 225 600 202800 0 4 285 1014¢
®c7k160tfbgsd-2 484 225 600 202800 0 4 285 101465
@ xc7k160tfbgaBa2L 484 225 600 202800 0 4 285 1014¢
®c7k160tfbgBd-1 484 225 600 202800 0 4 285 10}&@
8 10211 A0tFan876.2 b ann Snoenn n a 00 n
[] L D]
(I <Back || Next> | ench | [cancel | 2 <gack | tioe= || fren | [cancel |

Figure 50 — Vivado board select

Check information about created project and click on Finish button.

’

cancel

VIVADO!

HLx Editions

& XILINX

2

New Project +
New Project Summary

@ A new RTL project named 'i8051" will be created.

(@10 source files will be added.

/A No Configurable IP files will be added. Use Add Sources to add them later.

/4 No constraints files will be added. Use Add Sources to add them later.

®The default part and product family for the new project:
Default Board: Artix-7 AC701 Evaluation Platform
Default Part: xc7a200tfbg676-2
Product: Arti-7
Family: Artix-7
package: fbg676
Speed Grade: -2

To create the project, click Finish

[<Back | wmex= |[dnish | [cancel

Figure 51 — Vivado project summary

5.2.1. Perform Vivado Hardware Simulation

To start simulation, click on Run Simulation in Simulation, on the left panel.

’ 4 Project Manager

% Project Settings

6"‘5 Add Sources

¢ Language Templates
1F IP catalog

4 IP Integrator
#* Create Block Design
B¥ Open Block Design

4 Simulation
#% Simulation Settings

I Run Simulatﬁn

& Generate Block Design

‘4 Project Manager
&5 Project Settings
5% Add Sources
' Language Templates
LF 1P catalog

[N

IP Integrator
J% create Block Design
B Open Block Design
& Generate Block Design

4 Simulation
& simulation Settings

N\ o B

- Q| = (=)
Messages: () 2 warnings
> Design Sources (1)
@4 CFG_I8051_TSB - 18051 _1
) Constraints
) Simulation Sources (1)

[«] I
Hierarchy Libraries Compile Ord¢

Properties
@) Run Simulation <& = [P3] &
| Run Behavioral Simulation
4 RTL Analysis
Run Post-Synthesis Functional Simulation
@ Elaboratic
5 Run Post-Synthesis Timing Simulation
> @7 Open Ela Run Post-Implementation Functional Simulation
4 Synthesis Run Post-Implementation Timing Simulation Eet

Figure 52 - Vivado Simulation start

#% cunthacic Cattinne

Once simulation VHDL simulation process is started automatically will be open a simulation panel.

= 18051 - [/home/sim8051/i8051.xpr] - Vivado 20163

Ele Edt Flow Tools Window Layout View Bun Help

3 ® > ¥|® K I (@3 Dpefault Layout - N | Kl k. b [1000Jus %3 1l @ | ®
Flow Navigator 2 «| | Behavioral simulation - Functional - sim_1 - CFG_I8051_TS8
| T 5 S s_Ou x| objects s_oex
+ Project manager e ST
Name |_Design Unit | Block Type | Narne [Value [Data Ty..]
@ Project Settings 018051 TSB 18051_tsb(B... VHDL Entity rst 0 Logic
& Add Sources &G UALL 18051_ALL(S... VHDL Entity [el 0 Logic
o . oot @ UXRM 18051 XRM(.. VHDL Entity % addr(15:0] — Armray
| CEEPUILED %in_data(7:0] ~ Amay
4F IP catalog o3 out_data[7... Array
4rd 0 Logic
4 IP Integrator wr 0 Logic
create Block Design >%p0in7:0] WU Array
%pO_ouwt(70] ff Amay
%plin(7:0 UL Amay
%plout(7:0] ff Amay
%p2in(7:0 UU Amay
4 simulation ;-.paoum o ff Amay
< %p3in[7:0] WU Amay
(? :\mu\:tm‘n 'Sst!mgs S5 p3outizi0) array
@ Run Simulation
4 RTL Analysis
@ Elaboration Settings
5% Open Elaborated Design
4+ synthesis
5 Synthesis Settings
$ Run Synthesis
4 Implementation
5 Implementation Settings
> Run Implementation Scope | & Sources
Tel Console
<[# ¥ =l
4 Program and Debug | %3
4 = 4 run 10000
@ Bitstream Settings 1] INFO: [USF-XSin-96] XSim completed. Design snapshot 'CFG_I8051_TSB behav' loaded.
¥ Generate Bitstream INFO: [USF-XSin-97] XSim simulation ran for 1600ns
&° Open Hardware Manager | | .| ¢ launch_sinulation: Tise (5): cpu = 00:00:05 ; elapsed = 00:00:13 . Memory (H9): pesk = 5764.230 ; gain = 54.191 ; free physical = 6415 ; free virtusl = 15429
Gl 1

37d Console © Messages Gl Log

Simulation Scope: 18051 TSB Sim Time: 1 us

Figure 53 — Vivado Simulation Perspective

To run the simulation you may click on play button on the top right menu bar, this button won’t stop the

simulation so you will have to stop it manually.
You may also start the simulation only for a specific period of time, which you can set in the form.

Kd B, b [1000

Figure 54 — Simulation Time Control

Bz ¢

©

Note that the simulation allows to monitor each signal temporal evolution. p0, p1, p2 and p3 output signals
are the signals relative to the four output port.

B untitled1 x

™ out_data
brd

™ p0_in[7:0]
PO _out[
™ pl_in[7:

]
]

w3 out[7:0]

Figure 55 — Simulation output signals

For each displayed signal is possible to analyse every bit it is composed of, as shown in Figure 56.

B Untitled 1 x 20z

™ p0_out[7:0]
M pli
™ pl_ou

Figure 56 — Simulation output signal details

5.3. ROM memory generation (by using Hex2Rom)

For every obtained executable file generate its ROM memory image for microcontroller 8051. Then
proceed with the hardware simulation.

To generate ROMs execute the command Hex2Rom. In Figure 57, commands to generate ROMs.

v Terminal - sim8051@sim8051: ~/workspaces/i8051/divmulKeil - -
File Edit View Terminal Tabs Help

om divmul.hex

om divmul.hex

Figure 57 - ROM file creation

Before ROM memory file generation, check that Hex2Rom.exe executable directory do not contain a file
with named i8051_rom.vhd, otherwise the file could be not properly replaced.

5.4. Hardware simulation results comparison

For each executable file obtained, create a new Xilinx ISE project, by following procedure previously
proposed.

Replace 18051 _rom.vhd file with relative /18051 _rom.vhd file generated by Hex2Rom. To assure replacement
takes place, first delete the model file then copy the file generated.

In the following are the results of hardware simulations.

SDCC simulation

VHDL model simulation of executable build with SDCC without refinement options, runs in error ERROR:
Index 1033 out of bound 0 to 370, look at Console in Figure 58 and in Figure 58 — hardware simulation of
Divmul build by SDCC.

- 18051 - [/home/sim8051/i8051.xpr] - Vivado 2016.3 -+ x
Fle Edt Flow Tools Window Layout View Bun Help Q- quick sccess
el X [b %S K T GEoctutiajor -] # & KKk, b [To00]us ~Juz Il 6|® Ready
Flow Navigator 2 «| | Behavioral Simulation Functional -sim_1 - CFG_18051 TSB 2 X
A= 1=EE R s 7= Buntitled 2 x @ i8051_rom.vhd x 2002 x
+ project amager ORERTe [EEIEILE n 1 i
Name Design Unit | Block Type | Name Value [Data Ty..] 398 2 e
@ Project Settings @ 018051 _TSB 18051 _tsb(... VHDL Entity st 0 Logic 359
&% Add Sources @UAL 18051 ALL(S... VHDL Entity 6 clk 1 Logic o [400
QL e @ UXRM 18051 XRM(... VHDL Entity G addrl1:0] 409 Array 5 [401
@ Language Templates G data[7:0] - Amay {402
1F P catalog & rd 1 Logic 3 403
% PROGRAM[... 02,0... Array T |14
4 IP Integrator S
- X |406
% create Block Design 407
B Open Block Design Il |4e8
0 G e
4_simulation 9
/ |a13
() SR |2 process(rst, clk)
@ Run simulation as begin
4165 0 if(rst= 1") then
4 RTL Analysis a7
a8 O data <= CD_8;
@]EicborationiSitings as O elsif(clkevent and clk = "1') then
» &® Open Elaborated Design 420
42100 if(rd = 1") then
4 synthesis 42
423 O% data <= PROGRAM(conv_integer (addr));
@ Synthesis Settings 224 else
$ Run Synthesis 425
% QR SEIE 426 O data <= CD_8;
#¥ Open Synthesized Desig 427 end if
428 end if;
4 Implementation 429 end process;
@ Implementation Settings 430 ‘e"‘d BHV; !
Py < D
D> Run Implementation i Scope | & Sources =)
> @b Open Implemented Design | [Tl Console 2_oex
[~ ¢ run 1000 us -
4 Program and Debug ia| ERROR: Index 1033 out of bound © to 389
) BE T e 4| Tine: 864925 ns Iteration: O Process: /I8051_TSB/U_ALL/U_ROM/Line_414
o il File: /home/sing0SL/workspaces/i8051/i8051/nodel/i8051_ron. vhd
¥ Generate Bitstream &
" & Open Hordvare Manager || & HOL Line: /home/sin80S1/vorkspaces/i8051/i8051/nodel/i8051_rom. vhd: 423
@l [1 D]

[Tape a Tcl connand her
57Td Console © Messages [Log

423:0

Insert

Sim Time: 864925 ns | | VHDL

Tcl Console

run 1000 us

ERROR: Index 1033 out of bound 0 to 389

Time: 864925 ns Iteration: O Process: /I8051_TSB/U_ALL/U ROM/line_ 414
File: /home/sim8051/workspaces/18051/18051/model/18051_rom.vhd

& B4

=
il =

HDL Line: /home/sim8051/workspaces/18051/18051/model/i8051_rom.vhd:423

o 7

&b iy

Figure 58 — hardware simulation of Divmul build by SDCC

As stated in message text the problem lies in the device memory size. The RAM memory is in fact too small
to allow each instruction, contained in the file divmul.hex, to correctly allocate information.

This error is because the .hex executable, hardware simulated program, was build with SDCC without
providing target device information. SDCC compiler can compile C code for device families, but not for

specific devices.

SDCC with refinement options simulation

VHDL model simulation, for executable build with SDCC with refinement options, is depicted in Figure 59.

i i8051_rom.vhd X B8 Untitled 3 X ? 000 x

1 [

& Name Value

N Brst
QG % clk
1\: o M addr[l

© M p3_in[7:0]

I R o3 _out(7:0]

Figure 59 — hardware simulation of Divmul build by SDCC with refinement options

This simulation, differently than previous one, ended without error. The PO, P1, P2 and P3 output signals
undergo two commutations.

The first commutation sets registers value with computation results, those are correct. The second
commutation sets registers to 0, according to program completion procedure defined for ISASim.

The execution time of the program on microcontroller is 745 us.

Keil simulation

The simulation by VHDL model, for executable build with Keil, is depicted in Figure 60.

i8051_rom.vhd X B Untitled 4 x 2 O 2 x

ke
% © M addr([15:0]

Figure 60 — hardware simulation of Divmul build by Keil

Simulation results match expectations, and are correct. Simulation time is 343 us.

6. Conclusions

Homelab aims to explore the Intel 8051 microcontroller world. Using tools and models made available by
Dalton Project from University of California, we have built an environment which allows to develop
applications for Intel 8051 microprocessor. This approach grant fast test and application prototyping by a
heavy reduction of time to market and development cost..

During building process we compared different compilers and focus our attention on SDCC and Keil.

The SDCC compiler is an open source software, thanks to its high configurability, it well suited to our needs.
The Keil compiler with its IDE, despite license limitations, was easy to use and very efficient. Even if not
reported in this document, mikroC Pro for 8051 compiler was also experienced, but only allowed us to
successfully simulate by ISS.

Software simulation allows to get information about program implementation.

Information provided regards both host machine and 8051 microprocessor; it provides host machine timing
performance and projected data for execution on 8051 microprocessor. It also displays output port values.
Performed simulations show that functionally all results were successful, while by a performance point of
view the simulation by Keil was the most efficient both in time and in therefore in number of executed
instructions.

Information obtained from software simulation do not return too much detail but provide a general idea
about program execution. They are particularly suited to check performed computations and code
optimization.

Hardware simulation allows to observe entire signals time evolution for microcontroller 8051. Each signal
described in VHDL model, can be plotted and viewed in every bit at every instant of simulation time.

First hardware simulation proposal highlights a problem with the size of the memory that the ISS ISASim
had not found. Instead simulations of divmul.c that was build with sdcc with options refining and with Keil
have produced the correct expected results. Simulation program build by Keil was more performant.
Detail of information provided is very high, but hardware simulation is very costly for machine that runs it.

In conclusion, SDCC and Keil compilers were both suitable for Homelab purposes, SDCC was less
performant than Keil, but of course cheaper.

Quality and detail level of produced information by hardware simulation is much higher than software
simulation. However time and load of hardware simulation is very onerous. Contrarily software simulation
disclose less valuable but easier to obtain and more usable data.

Please remember that this homelab will be fulfilled only after the application of the simulation flow to a
function of your will.

e Write a new function (alternative to the divmul.c presented in this homelab) and apply to it the
classical SW development flow and the i8051 flow.

e Produce a comparison among the results obtained by applying both the SW development flow and
the i8051 flow. Please note that the comparison must involve the obtained results and the timing
performances of:

o SW execution (i.e., application of classical SW development flow using the C time library to
measure the timing performances).
o IS and VHDL simulation considering the RAM size (Section 3.2.2).
o IS and VHDL simulation without considering RAM size (Section 3.2.2).
e Produce the analysis of any anomalies detected.
e When done prepare the slides that describe and document the work performed.

