

Embedded System Course 2020-21

C4µC
C/C++ Programming for Microcontrollers

Lecturers: Ing. Marco Santic, Ing. Walter Tiberti
- -

 marco.santic@univaq.it walter.tiberti@graduate.univaq.it

mailto:marco.santic@univaq.it
mailto:walter.tiberti@graduate.univaq.it

C4µC

● Comm. Interfaces
● I2C

● UART

● SPI

● Examples

● Other peripherals
● ADC

● GPIO bitbanging

● Examples

● Introduction
● Atmega328P

● Toolchain

● IDE

● Examples

● C language recap

● Basic functionalities
● GPIO

● Timers

● Interrupt

● Examples

C4µC - Introduction

● Reference microcotroller: Atmega328p (8 bit)

Parameter Name Value

Program Memory Type Flash

Program Memory (KB) 32

CPU Speed (MIPS) 20

RAM Bytes 2048

Data EEPROM (bytes) 1024

Digital Communication Peripherals 1-UART, 2-SPI, 1-I2C

Capture/Compare/PWM Peripherals 1 Input Capture, 1 CCP, 6PWM

Timers 2 x 8-bit, 1 x 16-bit

Comparators 1

Temperature Range (C) -40 to 85

Operating Voltage Range (V) 1.8 to 5.5

Pin Count 32
[It's the one on Arduino!]

C4µC - Introduction

● Programming a microcontroller in C
● A microcontroller has on-chip peripherals that dramatically

decrease the amount of external components needed in a design.
It may have general purpose IO, serial IO, ADC and sometimes
even special purpose IO pins that support protocol such as the I2C
bus, all built into the chip itself.

● Typically these peripherals present themselves as IO registers to
the CPU - for example, to generate a high signal on an output pin, it
is usually only required for the CPU to write a "1" to the
corresponding IO registers bits.

● Some CPU architectures have a separate IO space for these
registers with special instructions to access them.

● Since there is no such concept as IO space in the C language
per se, in these cases the C compiler provides an extension
allowing access to these IO registers.

C4µC - Introduction

● Software Development Process
● Write programs in C or

assembly
● Compile or assemble them...
● ...obtaining object files
● Link together and with

library files...
● ... obtainng the executable
● Load the device with exe.
● Test and debug

A lot of this stuff using the toolchain

C4µC - Introduction

● Example of the toolchain for the AVR
Let test1.c be the sourcecode of our app:

● avr-gcc -Wall -Os -DF_CPU=16000000UL
-mmcu=atmega328p -c -o test1.o test1.c

● avr-gcc -Wall -mmcu=atmega328p test1.o -o
test1.elf

● avr-objcopy -O ihex -R .eeprom test1.elf
test1.hex

● avrdude -F -V -C avrdude.conf -c arduino -p
ATMEGA328P -P COM7 -b 57600 -U flash:w:test1.hex

● avr-size test1.elf
[to see the size of the code]

● avr-objdump -d test1.elf > test1.lst
[to see the assembly]

C4µC - Introduction

Already scared???

C4µC - Introduction

● Opensource HW reference design: Arduino
● Simple (user-friendly) IDE

– Scientifically talking, it hides many
details of Software Dev. Process

● Programs are written in C/C++
● Plenty of examples, libraries

and sourcecode
Arduino Uno

Arduino NanoArduino IDE 1.8.5

(latest version is 1.8.13)

C4µC - Introduction

● Let's install the IDE
● Download the latest release: https://www.arduino.cc/en/software

and install it (in this document, images maybe referred to older release)

● Install, if needed, the drivers for USB-uart converter
(if you have a Windows OS and any Arduino with CH340, then download and
install the drivers for the converter; search "Arduino CH340 driver"; under linux
the device should be recognized; also in MacOS, otherwise:
http://www.wch.cn/download/CH341SER_MAC_ZIP.html)

● Connect the Arduino and check the presence of a COM port
(in Win), a new /dev/ttyACM* or /dev/ttyUSB* (on linux), a
new /dev/cu.wchusbserial**** (on Mac)
(linux note: insert user in dialout group; Mac note: maybe insert user in wheel
group)

LIVE!

https://www.arduino.cc/en/software

C4µC - Introduction

● Basic examples (LED, Serial, ...)
● Set the board and the communication port: Menu Tools

– Board --> (Uno, Nano, ...)

– Processor: 328P (Old Boot...)

– Port --> (COM*, ttyUSB*, ...)

● Ex.1: Blinkin' LED

– Menu File --> Examples --> Basics --> Blink

– Compile and upload

– The led should blink

● Ex.2: Serial communication

– Menu File --> Examples --> Basics --> AnalogReadSerial

– Increase "delay" to 1000; compile and upload

– [Connect the serial port for 2nd example]

LIVE!

C4µC - Introduction

● IDE hides the toolchain!!!
● Everything is wrapped in "Setup()" and "Loop()"

● Every "functionality" is wrapped in a library function

● Go to:
● Menu File --> Settings

● Check: Show detailed output ... "Compilation" and "Upload"

● Let's repeat the steps for Blink example

We can see the list of
the commands called
by the IDE -->

C4µC - Introduction

● Using the toolchain without the IDE (local use)
● Let's try to compile from the shell
● Let's upload the executable

● NOTE:
● We assume that the toolchain is already installed on our OSs

● The folder with the SW is set in some "System Path" environment variable

C4µC - Introduction

● Using the toolchain without the IDE (local use)
● Create a folder "test" in a path of your choice
● Copy/paste inside it the avrdude configuration file

(find avrdude.conf path in IDE output window)
(...\arduino-1.8.10\hardware\tools\avr\etc\avrdude.conf)

● Create a test1.c
empty text file:

(It's another "blink")
● Save it
● Open a cmd/shell and
cd to "test"

#include <avr/io.h>
#include <util/delay.h>

#define BLINK_DELAY_MS 100

int main (void){
 /* set pin 5 of PORTB for output*/
 DDRB |= _BV(DDB5);

 while(1) {
 /* set pin 5 high to turn led on */
 PORTB |= _BV(PORTB5);
 _delay_ms(BLINK_DELAY_MS);

 /* set pin 5 low to turn led off */
 PORTB &= ~_BV(PORTB5);
 _delay_ms(BLINK_DELAY_MS);
 }
}

C4µC - Introduction

● Using the toolchain without the IDE (local use)
● COMPILER/ASSEMBLER

avr-gcc -Wall -Os -DF_CPU=16000000UL -mmcu=atmega328p -c -o test1.o test1.c
[-Wall] Enable most warning messages
[-Os] Optimize for space rather than speed
[-D<macro>=<val>] Define a <macro> with <val> as its value
[-mmcu=MCU] Select the target MCU
[-c] Compile and assemble, but do not link
[-o <file>] Place output into <file>

● LINKER
avr-gcc -Wall -mmcu=atmega328p test1.o -o test1.elf
[-Wall] Enable most warning messages
[-mmcu=MCU] Select the target MCU
[-o <file>] Place output into <file>

● COPY BINARY
avr-objcopy -O ihex -R .eeprom test1.elf test1.hex
[-O <bfdname>] Create an output file in format <bfdname>
[-R <name>] Remove section <name> from the output]

● DUMP ASSEMBLY
avr-objdump -d test1.elf > test1.lst

Have a look at the .lst (assembly)

C4µC - Introduction

● Using the toolchain without the IDE (local use)
● UPLOAD

avrdude -F -V -C avrdude.conf -v -p atmega328p -c arduino -P COM7 -b 57600
-Uflash:w:test1.hex:i
[-F] Override invalid signature check
[-V] Do not verify
[-C <fileconf>] Specify location of configuration file
[-v] Verbose output. -v -v for more
[-p <partno>] Required. Specify AVR device
[-c <programmer>] Specify programmer type
[-P <port>] Specify connection port
[-b <baud>] Override RS-232 baud rate
[-U <memtype>:r|w|v:<filename>[:format]] Memory operation specification

Note the dimension of the hex code footprint
(176 bytes)

C4µC - Introduction

● Using the toolchain without the IDE (remote use)
● What if the device is not physically available, but is

remotely connected?

● If we have some OS and avrdude...

DEMO!

C4µC - Introduction

● Using the IDE with test1.c
● Can the IDE compile our test code?

– Create a new sketch ("test2")
– Delete Setup() and Loop()
– Paste the sourcecode
– Modify BLINK_DELAY_MS 500

● Try to compile and upload
● See the result
● Inspect the temporary folder

– Dump the .elf

C4µC - Introduction

● Reload Blink (from examples)
● Inspect temporary folder

– Dump the .elf

● Note the code dimensions...

● IDE
● Higher abstraction level
● A lot of other stuff (bigger hex footprint)
● But still useful if you know what you are doing!

C4µC - Introduction

● Reload Blink (from examples)
● Inspect temporary folder

– Dump the .elf

● Note the code dimensions...

● IDE
● Higher abstraction level
● A lot of other stuff (bigger hex footprint)
● But still useful if you know what you are doing!

… hex code footprint (928 bytes)

C4µC - Introduction

Let's use the IDE for C recap/examples
● Following slides for C_basics
● Following slides for C_examples

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20

