
Time

ESD_Cap4 --/++ (from Extra folder)

- 2 -

Overview

Characterization of Time

The role of Time in computer systems

Active temporizations

Implementations of Timers

Characterization of Time

- 4 -

Characterization of Time

Time model

Conceptual/continuous model: t (absolut time)
Time as a container of events (or produced by the events?)

Informatic/discrete model: T (local time)
It is associated to a physical phenomenon called clock that
determines the temporal resolution

ltu  local time unit [sec]
– Local temporal resolution: it is a property of the local time

representation (e.g. 1 msec resolution)

LTB = K*ltu  Local Time Base [sec]
– Updating period of a watch variable (time granularity)

» e.g. an update every 55 units of 1 msec, i.e. 18,2 times for a second

- 5 -

Characterization of Time

For each CPU there could be one or more watch variables

incremented of LTB every LTB in corrispondence of particolar

events often called tick

The behaviour of the watch variable is defined by a function in

the absolut time domain T=f(t) defined as

T = n  LTB (nN) for n*k*ltu  t  (n+1)*k*ltu

– Note: with a N bit watch variable T=(n mod 2N)*LTB

LTB

t- absolute time

T- local time

LTB

tick

- 6 -

Characterization of Time: errors

The errors due to the adoption of a local time watch

variable to misure the absolute time are decomposable

in two contributions

Errors due to the physical phenomenon used as clock

Precision

Errors due to the granularity

Quantization

- 7 -

Errors due to the physical phenomenon

Precise watch variable

t(tick[n]) - t(tick[n-1]) = LTB + e[n] with e[n]=0

e[n] caracterization

Systematic error: E[e[n]]  0

– Accuracy problem

» The physical phenomenon has a wrong frequency

Error with zero average value: E[e[n]] = 0

– Repeatability problem

» Compensating irregularity (jitter)

Correct watch variable (at an absolute time t)

Abs(T – t) < BTL

- 8 -

Errors due to the granularity

Ordering and simultaneity
Events that happen between two consecutive ticks are not
temporally orderable and so they are considered as simultaneous
in the local time also if they are distant by an absolute time t 
LTB

Interval measurement
Events that are distant t in the absolute time are considered
distant T in the local time

t/LTBLTB  T  t/LTBLTB

110 165 55 110 165 220

T=55

t=57

Simultaneous
events

55

0

110 55 55

T=110

t=57
165 55 time stamping

The role of Time in computer systems

- 10 -

The role of Time in computer systems

Events generator (Time events flow)

Time as source of implicit stimulus (not produced by external
world phenomenon)

It individuates instants to activate

– Sampling of states

– Information emissions

– Update of watch variable and calendar

Active role

Use of interrupts to notify time events and to activate related
actions

– Coarse-grain granularity: 0.5 .. 100 ms

- 11 -

State value

Value to be read in specific moments

To evaluate temporal intervals between two events

To associate to an event the information related to the current time
– e.g. Time-stamping

Passive role
As a variable to be read in a given moment

– Fine-grain granularity: 1...100 s

The role of Time in computer systems

- 12 -

Temporization for HW devices

Events generator for HW devices that can produce other events
with respect to the computer system

Active role
It produces actions on HW devices that can then generate interrupts

– Coarse/Fine grain granularity: it depends on the HW device

The role of Time in computer systems

Active temporizations

- 14 -

Active temporizations

A device that provides temporization is called Timer

Typical active timer classification

Duration Timer

Delay Timer

Cyclical Timer

- 15 -

Active temporizations

Duration Timer

It is a monostable timer activated by a trigger event and
deactivated by a stop event after a specific amount of time T

It is called re-triggerable if the count of the time re-start from 0
when a new trigger event is provided prior to the stop event

Trigger Stop

Active

t

T

T = Timer value

Trigger Stop

Active

t

T

Trigger
Trigger

- 16 -

Active temporizations

Delay Timer

The trigger event starts the count of a specific amount of time,
at the end of this time it is then generated the activation event

Normally it exists a reset command for the deactivation

– If the rest command is provided prior to the generation of the
activation event (i.e. before T is elapsed) the activation event is not
generated

Trigger

Active

t

T

T = Timer value

Activation Reset

- 17 -

Active temporizations

Cyclical Timer

After a trigger event they are produced events with a period T

A reset event stops the Timer

It restarts after a new trigger event

Trigger
t

T

T = Timer value

Reset Trigger

Implementation of Timers

- 19 -

Implementation of Timers

Basic HW components

Timer Counter

It measure time intervals

– Based on impulse counting

» e.g. given a Clk with known period,

by counting the impulses we know

how much time is elapsed

– Es. Clk 10 ns

» a 16-bit counter would count

up to 65,535*10 ns = 655.35 µsec

» Top: it signals overflow

Prescaler

Divides the clock

Increments the range

Reduce the resolution

16-bit up counter
Clk

Cnt

Basic timer

Top

Reset

16

16-bit up counterClk

16-bit up counter

16

Cnt2

Top1

16/32-bit timer

Cnt1

16

Time with prescaler

16-bit up counterClk Prescaler

Mode

- 20 -

Implementation of Timers

Basic HW components

Interval Timer

They indicates when it is elapsed

a given time interval

– Number of clock cycles

= Desired time interval / Clock period

Watchdog Timer

The system shall reset the timer each X

time units otherwise it signals an “alarm”

– Common uses

» Detect errors and faults

» Self-reset

» Timeout

» Energy saving

16-bit up counterClk
16

Terminal count

=
Top

Reset

Timer with a terminal

count

Cnt

- 21 -

Implementation of Timers

HW: Calendar/Clock Circuits
(WARNING: also called Real-Time Clocks – see Extra)

ICs that offer watch and calendar functions

Not used as Timers due to their low resolution/granularity (1 sec)

– Normally based on 32768 Hz oscillators

» ½ pre-scaler and 16 bit counter -> (1/32768 [Hz])/2 * (2^16) = 1 [sec]

They contain all the counters needed for seconds, minutes,
hours, date of the day (dd/mm/aaa)

Normally data are read out serially to reduce the pin-out

Quite slow operation (hundred of microseconds)

Normally battery-powered to back-up data

Back-up battery

- 22 -

Implementation of Timers

Minimal HW/SW implementations

Simple clock circuits that generate periodical signals (ticks) to

the interrupt generation circuit

Real-Time Clock (RTC, also called System Clock)

– Quartz oscillator with prescaler

» If backed-up it can also provide calendar/clock circuit functions

All the time-related system functions are implemented by means

of the “RTC tick ISR”

ISR updates watch and calendar variables

– Used both for time-stamping and interval measurements

ISR also manages processes state transitions

- 23 -

Implementation of Timers

Minimal HW/SW implementations

With this approach resolution and granularity of perception and

mesurement are equal and correspond to the ticks period (Tck)

Ticks frequency shall be a compromise between a fine-grain

granularity and an acceptable overhead for the system

The overhead is the average “RTC tick ISR” execution time

– It should be no more than 1/10 of Tck

Typical Tck values

– 1..10 msec for real-time systems

– 100 msec for standard applications

- 24 -

Implementation of Timers

Typical HW/SW implementations

Main goal: different granularities for different purposes

Oscillator

F=1...20MHz

Prescaler

f divider 2k (1...256)

Timer

Counter 2N (N > = 16)

Time Register Buffer (TRB)

(N latches)

Time Base Value (TBV)

Time Base Counter (TBC)

(re-started every TVB)

INT-Req

for each overflow

INT-Req

tick every TVB

Read operation

Settings

TBC generates the “time base” by

means of an interrupt each TBV,

followed by a restart of the

counter.

TRB stores all the N bits

of the TIMER to allow a

read operation.

- 25 -

Implementation of Timers

Typical HW/SW implementations
The precision is the same of the oscillator

Timer

Resolution (TIR) = Granularity (TIG)

– 2k / FreqOsc [sec] (typically 1...100 sec)

Period

– TIP = 2N  TIG [sec] (typically form 64 msec to 16 sec)
» ltu=TIG e LTB=1

Time Base

Resolution (TBR)

– 2k / FreqOsc [sec] (typically 1...100 sec)

Granularity (TBG) = Period (TBP)

– TBV  TBR [sec] (typically 1...50 msec)
» ltu=TIG e LTB=TBV

- 26 -

Implementation of Timers

Typical HW/SW implementations

Conclusions

Processes time management is perfomed by the “TBC tick ISR”

Update of watch and calendar variables could be done, for coarse-

grain usage, by “TBC tick ISR” or “TIMER overflow ISR”

Fine-grain interval measurements and fine-grain time-stampings will

use values read directly from TIMER

– Since TIMER has a period TIP, to measure time intervals long than TIP it

is needed ti proper manage TIMER overflows

- 27 -

Implementation of Timers

Complex implementations

Special Processors

Processors designed to support hard real-time applications often

includes HW mechanisms to perform time-related operations with

fine-grain granularity and near zero overheads

– e.g. Microcontroller Intel 80C196KB

» HSI/HSO

Temporization Co-Processors

In order to provide high resolutions and fine-grain granularity with

near zero overheads it is also possible to use a co-processor that

helps the main one to manage time-related operations

– e.g.

» Such co-processors are very useful to exploit general purpose processors also

for hard real-time applications

- 28 -

Implementation of Timers

SW implementations

Each application could have its time-related requirements

They could be different and also concurrent

So, it could be not possible to use an HW Timer for each

application but it is needed a SW implementation that

“virtualize” a single HW Timer

For example, it is possible to manage multiple SW Timers by means

of a single HW Timer ISR

– This approach is used in almost all the operating systems to provide

time-services to different (and often concurrent) processes

» Processes ask time-services to the OS by means of a proper API

- 29 -

Implementation of Timers

SW implementations

Basic schema

Oscillator

F=1...20MHz

Prescaler

f divider 2k (1...256)

Timer

Counter 2N (N > = 16)

Time Register Buffer (TRB)

(N latches)

Time Base Value (TBV)

Time Base Counter (TBC)

(re-started every TVB)

INT-Req

tick every TVB

SW Timer

T1 T2 Tn

SW INT-Req

every 3*TVB

SW INT-Req

every 7*TVB

SW INT-Req

every 11*TVB

Implementation of Timers

SW implementations

Basic Linux example
//

#include <stdio.h>

#include <unistd.h>

#include <signal.h>

#include <sys/wait.h>

#include <sys/types.h>

//

// Timed actions

void todo()

{

printf("Hello1!\n");

}

// Timeout management

void timeout(int s)

{

todo();

alarm(1);

}

//

int main()

{

signal(SIGALRM, timeout);

alarm(1);

while(1);

return 0;

}

- 30 -

