
UNIVERSITÀ DEGLI STUDI DELL’AQUILA

Embedded Systems (Dott. Luigi Pomante)

A.A. 2020/2021

HomeLab ARTY FPGA

(VHDL’s Exercises and Introduction to Vivado Design Suite)

Author

Giacomo valente (giacomo.valente@univaq.it)

Version 6.0: 1st of Novembre 2020

mailto:giacomo.valente@univaq.it

Index

Before start: preparation ... 3

Board reservation .. 3

Virtual Machine and Vivado Design Suite ... 3

ARTY ... 3

Communication test between Board and PC .. 3

Further investigations .. 4

Section 1: Simulation and Synthesis of simple combinatorial circuits .. 5

1.1 – VHDL Description of Half Adder ... 5

1.2 - Simulation .. 8

1.3 -Synthesis ... 9

1.3 – Further Investigations ... 9

Section 2: Sequential circuits, I/O and constraints .. 10

2.1 – Counter ... 10

2.2 - Sequence detector (Finite State Machines - FSM) .. 13

2.3 – Further Investigations ... 13

Section 3: MicroBlaze .. 14

Section 5: References and useful readings .. 15

Before start: preparation

Board reservation

In order to perform the homelab, one week is allowed. Please reserve the board using the following link:

https://docs.google.com/forms/d/e/1FAIpQLSfW05Px7HxUUZk2IgnHq3Pn5pPEfkskCJ_04O8GAmtzo1fEng/v

iewform?usp=sf_link

and you will be scheduled. We strongly recommend you to first perform all the simulation and synthesis

activities proposed in the Homelab, and then ask for the board only when you have all the bitstreams ready

for the board configuration. That shall allow you to maximize your efforts in your “week of the board”,

working with the board configuration and solving problems related to that, also avoiding to struggle with

simulation issues.

Virtual Machine and Vivado Design Suite

Install Virtual Box on the host PC (download the latest version).

Import the Virtual Machine image on Virtual Box and launch the booting. The password is: asdasd24. Please

note that you need at least a PC with 4 GB of RAM. When importing the Virtual Machine, set the RAM

memory for the guest to 2 GB at least.

Also, please note that when importing the virtual machine, you need at least 120 GB of free space on your

PC.

In case you want to install Vivado Design Suite on your PC, you are free to download it and install the latest

version: you will be able to correctly perform the Homelab FPGA. Indeed, all the steps work also in newer

versions of Vivado, even if some screenshots may appear different. However, please notice that the virtual

machine is required for the homelab u8051 ISS/VHDL.

ARTY

Take a deep look to Reference Manual (RM) [link] and verify, before the beginning of the homelab, that the

board is properly configured. This means that the jumpers configuration must be checked: a jumper serves as

connection between two points. In general, it can allow certain voltages to be applied in some parts of the

circuit, so take care when selecting jumpers configurations: they can damage the board if not correctly set.

The rightness of the jumpers position can be checked on RM: select them in order to use the board with

JTAG connection.

When you use the board, please avoid to place it on top of conducting materials and surfaces.

Communication test between Board and PC

Connect the board to the PC through USB cable, and it will be automatically powered-on.

Connect the ARTY board to the Virtual Machine by selecting it among devices:

https://docs.google.com/forms/d/e/1FAIpQLSfW05Px7HxUUZk2IgnHq3Pn5pPEfkskCJ_04O8GAmtzo1fEng/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSfW05Px7HxUUZk2IgnHq3Pn5pPEfkskCJ_04O8GAmtzo1fEng/viewform?usp=sf_link
https://reference.digilentinc.com/reference/programmable-logic/arty/reference-manual?redirect=1

Check the connection of the board to Vivado:

• Set environment variables with the command:

source /opt/Xilinx/SDx/2017.4/settings64.sh

• run Vivado with the command:

vivado

• Select Open Hardware Manager from the icons.

Select the link Open Target and click to Auto-Connect. The ARTY board has to be recognized by the

environment without errors.

Further investigations

• Standard IEEE 1149.1: Standard Test Access Port and Boundary-Scan Architecture (JTAG)

• ARTY board, documentation [link]

https://www.xilinx.com/products/boards-and-kits/arty.html#documentation

Section 1: Simulation and Synthesis of simple combinatorial

circuits
This section refers on how to use Vivado Design Suite for simulation and synthesis of a simple digital

circuit, the half adder.

1.1 – VHDL Description of Half Adder

The creation of a new project in Vivado and description of the half-adder come through the following steps:

• Exit from Vivado and re-launch it from linux shell

• Select Create New Project from icons

• Click Next and gives project name and project location (pay attention to select destination folders

without spaces in the folder name)

• Click Next and select RTL Project

• Click Next and Select VHDL Language and Mixed simulator. Do not add sources and click Next. Do

not add Existing IP and click Next. Do not add constraints and click next.

Select ARTY Board from the list and click next:

Review the settings and click finish.

Now the following screen will appear:

The screen is divided in various different areas:

• Source Window: it is located at the top of the environment by default, and it contains all the sources

associated to the project. For example, Design Sources represent HDL files (that can be VHDL or

Verilog), while Constraints Sources represent constraints files

• Flow Navigator Pane: it is located at the left of the environment by default, and it contains the main

steps that can be performed in a design with Vivado (such as Simulation, Synthesis, etc.)

The project just created does not contain source files. Add one by right clicking the mouse into source

window and selecting Add Sources.

Select Add or create design sources and click Next. Click on the green cross at the top left and select Create

File. Specify the name (e.g., half_adder, pay attention to not insert spaces in the file name) and click OK.

Then click Finish. A wizard will be opened: it allows to define module parameters (i.e., entity name and

architecture name).

After filling various fields keeping in mind the half adder structure, click OK to complete the source file

creation. Open the new generated source file by double clicking on it in the source window. Internal to this

file you can see that the structure of the VHDL code has been automatically set up. It is possible to note how

it is necessary only to write the architecture section (i.e., the functionality of the system). Complete the

description as seen during the course lesson:

ARCHITECTURE Behavioral OF half_adder IS

BEGIN

 SUM <= A xor B;

 CARRY <= A and B;

END Behavioral;

At this point, the description of half adder module is complete. Save the modified source file.

1.2 - Simulation

Verify that the behavior of the block is the expected one, i.e., perform a Behavioral simulation.

It is necessary to create a testbench to stimulate the described circuit. Add to the project another source file,

but now select Add or create simulation sources. Then create a new file from the top-left green arrow and

select Finish. Do not insert ports to the entity (it is a testbench):

From source window, select the testbench from Simulation Sources:

Consider the testbench contained in the homelab folder. In the code section it can be noted that a constant

period has been defined: this one can be used to define time interval variations of input signals. By means of

the process statement and the wait instruction, it is possible to model the desired signal input evolutions.

Examine, for example, the following piece of code and draw the equivalent timing diagrams. Then, add these

stimuli to the right section of the provided testbench file:

 A_stim_proc: process

 begin

 wait for 100 ns;

 SIG_A <='0';

 wait for period;

 SIG_A <='1';

 wait for period;

 end process;

 B_stim_proc: process

 begin

 wait for 100 ns;

 SIG_B <='0';

 wait for 2*period;

 SIG_B <='1';

 wait for 2*period;

 end process;

Once defined input signals evolution, it is possible to run the simulation: in the flow navigator pane, select

Simulation Settings and check if Vivado Simulator is set and if the top module is the testbench that was

already written. Then, in the Simulation Tab, set the Simulation Runtime. At the end, select OK and select

Run Simulation and Run Behavioral Simulation in the flow navigator pane.

This last step will launch the XSim simulator, and this one will show automatically the timing diagrams of

the simulation process (click to various buttons to show waveforms with different levels of detail).

Check simulation results by verifying that half adder outputs behave good with respect to the inputs.

1.3 -Synthesis

Close XSim, go back to source window, select the half adder module and click on Run Synthesis in the flow

navigator pane. At the end, it is possible to check reports, to have a look at synthetized design, or to continue

by running Implementation.

1.3 – Further Investigations

Try to develop and simulate VHDL description of the following combinatorial circuits:

- Multiplexer

- Demultiplexer

Section 2: Sequential circuits, I/O and constraints
In a development board, like ARTY, the FPGA is surrounded with hardware components (e.g., UART ->

USB converters, VGA, PMODs, LEDs, switch buttons, push buttons, etc.). For the use of these components,

we need to connect the implemented blocks inside FPGA with external hardware.

In this section, a sequential circuit into FPGA is first implemented, and how to show the outputs by means of

LEDs placed on the board will be illustrated [5].

2.1 – Counter

Create a new project in Vivado (e.g., named hl_counter), still targeting the ARTY board, and add a new

source file having the entity named hl_counter. The possible structure of the counter is reported in the

homelab folder.

It is possible to note that it is necessary to generate a “slow clock”, otherwise the frequency of the counting

would be too fast and it will not be visible to human eye through a LED.

Once defined the architecture of the counter, it is possible to go to next phase.

At the middle of work, it is possible to perform a behavioral simulation. For this sake, a testbench has to be

defined, in the same manner of the last exercise (i.e., the half adder), and the counter has to be instantiated

into this one and properly excited.

Pay attention to the fact that, after simulation launching, by default one is able to look at the behavior of

input and output of the top-level section of the system, that is the entity: remember that a slow clock has been

used internally to the counter, in order to have the ability to show the LED blinking on the board. From the

simulation point of view, this could require a very long simulation time. In order to check the functionality

with smaller simulation time, one can either have a look to the internal signals of the counter module, or

rewrite the architecture of the VHDL module removing the process that slows down the counter evolution.

This can be done by navigating into XSim through Object Tab and Scope Tab, and by dragging and drop

necessary signals. Note that the simulation should be re-launched in order to include these signals.

Going toward the implementation phase, remember that after the downloading of the bitstream on the FPGA,

the counter outputs has to drive directly LEDs sited on the board. In order to do this, some constraints have

to be defined for the implementation by operating on Xilinx Design Constraints (XDC). An XDC file is a list

of functions written in TCL language [link] that allow to make some operations targeting constraints in the

Vivado Design Suite. Constraints can be of different types: board constraints, timing constraints, etc. In this

context, the interest is on board constraints. The way (not the unique) to operate with constraints, in this

context, is to start from a single XDC file that contains all the board constraints, related to the ARTY board,

initially commented out. In order to use this XDC file, it must be downloaded from the Digilent repository

[link]. Have a look on the internal of the file, and note a list of TCL commands. The ARTY board has

various inputs and outputs elements, as indicated in RM. Considering that the counter has 1 clock input, 1

reset input, 1 counter output (composed of 4 bits), there is the need of 1 input clock (e.g., provided by an

oscillator), 1 input reset (e.g., a push-button) and 4 output counter (e.g., 4 LEDs). After checking that these

elements are available on the board, the XDC file can be imported into the project:

• Going in the source pane and adding a source

• Selecting Add or Create Constraints

• Adding the XDC file using the top-left green cross (set the Copy constraints files into the project)

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_4/ug835-vivado-tcl-commands.pdf
https://github.com/Digilent/Arty/tree/master/Resources/XDC

• Clicking Finish

Now the XDC file can be modified, in order to make required board connections. In particular, the following

lines can be commented out:

• Connect the clock:

set_property -dict { PACKAGE_PIN E3 IOSTANDARD LVCMOS33 } [get_ports { clk }]

• Connect the output:

set_property -dict { PACKAGE_PIN H5 IOSTANDARD LVCMOS33 } [get_ports { count_out[0]

}]

set_property -dict { PACKAGE_PIN J5 IOSTANDARD LVCMOS33 } [get_ports { count_out[1] }]

set_property -dict { PACKAGE_PIN T9 IOSTANDARD LVCMOS33 } [get_ports { count_out[2] }]

set_property -dict { PACKAGE_PIN T10 IOSTANDARD LVCMOS33 } [get_ports { count_out[3]

}]

• Connect the reset:

set_property -dict { PACKAGE_PIN D9 IOSTANDARD LVCMOS33 } [get_ports { reset }]

The synthesis process and bitstream generation can be completed now, by clicking on Generate Bitstream in

the flow navigator pane. At the end, board can be connected to the PC and to the Virtual Machine. The

FPGA configuration can be done by using Hardware Manager, in particular:

• selecting Open Hardware Manager in the screen at the end of bitstream generation or in the flow

navigator pane

• clicking on Open Target and asking for auto-connection

• Clicking on Program Device and selecting the bitstream generated file (located in the runs/impl_1

folder of the project tree).

At the end of operation, the LEDs 0-3 on the board should illuminate according to counter evolution. It can

be tested also the reset by pushing the BTN0 push-button.

2.2 - Sequence detector (Finite State Machines - FSM)

In this section, it will be illustrated how to implement a circuit able to detect an exact binary sequence on the

input line. Suppose that a synchronous detector has to be implemented, therefore data input line (X) and

clock signal are expected as inputs: data will then be read at the rising edge of the clock. The output (Y) will

be equal to 1 only when the sequence is detected.

Using the HDL for system description, XDC for constraints and Vivado Design Suite for implementation,

the task is to implement a system that solves the problem and to verify the functionality using two switches

to emulate, respectively, the clock signal and the input signal.

The following state diagram describes a sequence detector in which the detected word on the serial port

(101) is “hardcoded”.

A draft of VHDL code for a Finite State Machine (Moore type, i.e., the output is determined only by the

current machine state, and the next machine state is determined by the input and the current machine state)

that implements the behavior of the previous diagram is provided within the homelab folder. The definition

of an enumerated data type is convenient for the state representation. It is left as exercise the completion of

the project (by assigning XDC to specify the right connection between sequence detector, board LEDs and

board switches and to perform the FPGA configuration in the same way of the previous exercise).

2.3 – Further Investigations

Simulate the GCD single purpose processor: do it for every kind of hardware description, i.e., behavioral,

RTL with FSMD and RTL with FSM and datapath. You already have the files from the extra folder from

“Introduction to VHDL” lessons.

Section 3: MicroBlaze
MicroBlaze is Xilinx 32-bit RISC Harvard architecture soft processor core with a rich instruction set

optimized for embedded applications. The MicroBlaze soft processor solution delivers complete flexibility to

select the combination of peripheral, memory and interface features that will give you the exact system you

need at a reduced cost on a single FPGA.

Following the tutorial at the following link:

https://reference.digilentinc.com/vivado/getting-started-with-ipi/start

build a MicroBlaze on ARTY board and program it.

https://reference.digilentinc.com/vivado/getting-started-with-ipi/start

Section 5: References and useful readings
[1] ARTY Reference Manual [link]

[2] Pong P. Chu – FPGA Prototyping by VHDL Examples - Wiley

[3] VHDL Tutorial – Learn by examples [link]

Acknowledgements

We would like to thank Fabio Federici, Walter Tiberti, Gianni Rea, Federico Angeloni, Mattia Micozzi,

Celestino De Crescente Pinti, Marco Mirabilio and Gabriella D’Andrea for the support to solve some issues.

https://reference.digilentinc.com/reference/programmable-logic/arty/reference-manual?redirect=1
http://esd.cs.ucr.edu/labs/tutorial/

