
Embedded Systems Design: A Unified
Hardware/Software Introduction

1

Interfacing

ESD_Cap6 --

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

2

Outline

• Interfacing basics
• Microprocessor interfacing

– I/O Addressing
– Interrupts
– Direct memory access

• Arbitration
• Bus hierarchy

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

3

• Embedded system functionality aspects
– Processing

• Transformation of data
• Implemented using processors

– Storage
• Retention of data
• Implemented using memory

– Communication
• Transfer of data between processors and memories
• Mainly implemented using buses
• The basic needed knowledge is related to interfacing

Introduction

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

4

Interfacing Basics

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

5

A simple bus

bus structure

Processor Memory
rd'/wr

enable

addr[0-11]

data[0-7]

bus

• Wires:
– Uni-directional or bi-directional

• Represented by lines
– One line may represent multiple wires

• Bus
– Set of wires with a single function

• Address bus, data bus

– Or, entire collection of wires
• Address, data and control
• Associated protocol: rules for

communication

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

6

Ports

• Conducting device on periphery
– Connect the device with other ones

• e.g. Connect bus to processor or memory
• Often referred to as a pin

– Actual pins on periphery of IC package that plug into socket on printed-circuit board
– Sometimes metallic balls instead of pins
– Today, metal “pads” connecting processors and memories within single IC

• Single wire or set of wires with single function
– E.g., 12-wire address port

bus

Processor Memoryrd'/wr

enable

addr[0-11]

data[0-7]

port

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

7

Microprocessor Interfacing

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

8

Microprocessor interfacing:
I/O addressing

• A microprocessor communicates with other devices
(memories or other processors) using some of its pins
– Port-based I/O (Parallel I/O)

• Processor has one or more N-bit ports
• Processor’s software reads and writes a port just like a register
• E.g., P0 = 0xFF; v = P1.2; -- P0 and P1 are 8-bit ports

– A sort of point-to-point connection with another device

– Bus-based I/O
• Processor has address, data and control ports that form a single bus
• Communication protocol is built into the processor
• A single instruction carries out the read or write protocol on the bus

– A sort of multi-point connection by means of device addresses

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

9

Compromises/extensions

• Parallel I/O peripheral
– When processor only supports bus-based I/O but

parallel I/O needed
– Each port on peripheral connected to a register

within peripheral that is read/written by the
processor

• Extended parallel I/O
– When processor supports port-based I/O but

more ports needed
– One or more processor ports interface with

parallel I/O peripheral extending total number of
ports available for I/O

– e.g., extending 4 ports to 6 ports in figure

Processor Memory

Parallel I/O peripheral

Port A

System bus

Port CPort B

Adding parallel I/O to a bus-
based I/O processor

Processor

Parallel I/O peripheral

Port A Port B Port C

Port 0
Port 1
Port 2
Port 3

Extended parallel I/O

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

10

Types of bus-based I/O:
memory-mapped I/O and standard I/O

• Processor talks to both memory and peripherals using
same bus – two ways to talk to peripherals
– Memory-mapped I/O

• Peripheral registers occupy addresses in same address space as memory
• e.g., Bus has 16-bit address

– lower 32K addresses may correspond to memory
– upper 32k addresses may correspond to peripherals

– Standard I/O (I/O-mapped I/O)
• Additional pin (M/IO) on bus indicates whether a memory or peripheral

access
• e.g., Bus has 16-bit address

– all 64K addresses correspond to memory when M/IO set to 0
– all 64K addresses correspond to peripherals when M/IO set to 1

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

11

Memory-mapped I/O vs. Standard I/O

• Memory-mapped I/O
– Requires no special instructions

• Assembly instructions involving memory like MOV and ADD work
with peripherals as well

• Standard I/O requires special instructions (e.g., IN, OUT) to move
data between peripheral registers and memory

• Standard I/O
– No loss of memory addresses to peripherals
– Simpler address decoding logic in peripherals possible

• When number of peripherals much smaller than address space then
high-order address bits can be ignored

– smaller and/or faster comparators

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

12

Interrupts

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

13

Microprocessor interfacing: interrupts

• Suppose a peripheral intermittently receives data,
which must be serviced by the processor
– The processor can poll the peripheral regularly to see if data

has arrived – wasteful
– The peripheral can interrupt the processor when it has data

• Requires an extra pin or pins: Int
– If Int is 1, processor suspends current program, jumps to an

Interrupt Service Routine, or ISR
– Known as interrupt-driven I/O
– Essentially, “polling” of the interrupt pin is built-into the

hardware, so no extra time!

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

14

Microprocessor interfacing: interrupts

• What is the address (interrupt address vector) of the
ISR?
– Fixed interrupt

• Address built into microprocessor, cannot be changed
• Either ISR stored at address or a jump to actual ISR stored if not

enough bytes available
– Vectored interrupt

• Peripheral must provide the address
• Common when microprocessor has multiple peripherals connected

by a system bus
– Compromise: interrupt address table

The same concepts are involved in reset and exceptions (see Extra)!

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

15

Interrupt-driven I/O using fixed ISR location

1(a): μP is executing its main program. 1(b): P1 receives input data in a
register with address 0x8000.

2: P1 asserts Int to request
servicing by the
microprocessor.3: After completing instruction at 100, μP

sees Int asserted, saves the PC’s value of
100, and sets PC to the ISR fixed location
of 16.

4(a): The ISR reads data from 0x8000,
modifies the data, and writes the resulting
data to 0x8001.

5: The ISR returns, thus restoring PC to
100+1=101, where μP resumes executing.

4(b): After being read, P1 de-
asserts Int.

Tim
e

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

16

Interrupt-driven I/O using fixed ISR location

1(a): µP is executing its main program

1(b): P1 receives input data in a register
with address 0x8000.

μP

P1 P2

System bus

Int

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101:

instruction
instruction

...
Main program

...

Program memory

PC

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

17

Interrupt-driven I/O using fixed ISR location

2: P1 asserts Int to request servicing by
the microprocessor

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101:

instruction
instruction

...
Main program

...

Program memory

PC

IntInt
1

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

18

Interrupt-driven I/O using fixed ISR location

3: After completing instruction at 100,
µP sees Int asserted, saves the PC’s
value of 100, and sets PC to the ISR
fixed location of 16.

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101:

instruction
instruction

...
Main program

...

Program memory

PC

Int

100100

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

19

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101:

instruction
instruction

...
Main program

...

Program memory

PC

Int

Interrupt-driven I/O using fixed ISR location

4(a): The ISR reads data from 0x8000,
modifies the data, and writes the
resulting data to 0x8001.

4(b): After being read, P1 deasserts Int.

100

Int
0

P1

System bus

P1

0x8000

P2

0x8001

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

20

Interrupt-driven I/O using fixed ISR location

5: The ISR returns, thus restoring PC to
100+1=101, where µP resumes
executing.

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101:

instruction
instruction

...
Main program

...

Program memory

PC

Int

100100
+1

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101:

instruction
instruction

...
Main program

...

100

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

21

Interrupt-driven I/O using vectored interrupt

1(a): μP is executing its main program. 1(b): P1 receives input data in a
register with address 0x8000.

2: P1 asserts Int to request servicing
by the microprocessor.3: After completing instruction at 100, μP sees Int

asserted, saves the PC’s value of 100, and asserts
Inta.

5(a): μP jumps to the address on the bus (16).
The ISR there reads data from 0x8000, modifies
the data, and writes the resulting data to 0x8001.

6: The ISR returns, thus restoring PC to
100+1=101, where μP resumes executing.

5(b): After being read, P1 deasserts
Int.

Tim
e

4: P1 detects Inta and puts interrupt
address vector 16 on the data bus.

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

22

Interrupt-driven I/O using vectored interrupt

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101:

instruction
instruction

...
Main program

...

Program memory

PC

100

Int
Inta

16

1(a): P is executing its main program

1(b): P1 receives input data in a register
with address 0x8000.

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

23

Interrupt-driven I/O using vectored interrupt

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101:

instruction
instruction

...
Main program

...

Program memory

PC

100

Inta

16

2: P1 asserts Int to request servicing by the
microprocessor

Int
1

Int

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

24

Interrupt-driven I/O using vectored interrupt

3: After completing instruction at 100, μP
sees Int asserted, saves the PC’s value of
100, and asserts Inta

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101:

instruction
instruction

...
Main program

...

Program memory

PC
Int

Inta

16

100100

1
Inta

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

25

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101:

instruction
instruction

...
Main program

...

Program memory

PC
Int

Inta

16

Interrupt-driven I/O using vectored interrupt

100

4: P1 detects Inta and puts interrupt
address vector 16 on the data bus

16

16

System bus

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

26

Interrupt-driven I/O using vectored interrupt

5(a): PC jumps to the address on the bus
(16). The ISR there reads data from
0x8000, modifies the data, and writes the
resulting data to 0x8001.

5(b): After being read, P1 deasserts Int.

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101:

instruction
instruction

...
Main program

...

Program memory

PC
Int

Inta

16

100

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101:

instruction
instruction

...
Main program

...
P1 P2

0x8000 0x8001

System bus

0
Int

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

27

Interrupt-driven I/O using vectored interrupt

6: The ISR returns, thus restoring the PC to
100+1=101, where the μP resumes

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101:

instruction
instruction

...
Main program

...

Program memory

PC

Int

100100
+1

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101:

instruction
instruction

...
Main program

...

100

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

28

Interrupt address table

• Compromise between fixed and vectored interrupts
– One interrupt pin
– Table in memory holding ISR addresses (maybe 256 words)
– Peripheral doesn’t provide ISR address, but rather index into

table
• Fewer bits are sent by the peripheral
• Can move ISR location without changing peripheral

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

29

Additional interrupt issues

• Maskable vs. non-maskable interrupts
– Maskable: programmer can set bit that causes processor to ignore

interrupt
• Important when in the middle of time-critical code and to manage interrupt

nesting!
– Non-maskable: a separate interrupt pin that can’t be masked

• Typically reserved for drastic situations, like power failure requiring
immediate backup of data to non-volatile memory

• Jump to ISR
– Some microprocessors treat jump same as call of any subroutine

• Complete state saved (PC, registers) – may take hundreds of cycles
– Others only save partial state, like PC only

• Thus, ISR must not modify registers, or else must save them first
• Assembly-language programmer must be aware of which registers stored

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

30

Direct Memory Access

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

31

Direct memory access

• Buffering
– Temporarily storing data in memory before processing
– Data accumulated in peripherals commonly buffered

• Microprocessor could handle this with ISR
– Storing and restoring microprocessor state inefficient
– Regular program must wait

• DMA controller more efficient
– Separate single-purpose processor
– Microprocessor relinquishes control of system bus to DMA controller
– Microprocessor can meanwhile execute its regular program

• No inefficient storing and restoring state due to ISR call
• Regular program need not wait unless it requires the system bus

– Harvard archictecture – processor can fetch and execute instructions as long as
they don’t access data memory – if they do, processor stalls

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

32

Peripheral to memory transfer without DMA,
using vectored interrupt

1(a): μP is executing its main program. 1(b): P1 receives input data in a register
with address 0x8000.

2: P1 asserts Int to request servicing by
the microprocessor.3: After completing instruction at 100, μP sees Int

asserted, saves the PC’s value of 100, and asserts Inta.

5(a): μP jumps to the address on the bus (16). The ISR
there reads data from 0x8000 and then writes it to
0x0001, which is in memory.

6: The ISR returns, thus restoring PC to 100+1=101,
where μP resumes executing.

5(b): After being read, P1 deasserts Int.

Tim
e

4: P1 detects Inta and puts interrupt
address vector 16 on the data bus.

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

33

Peripheral to memory transfer without DMA,
using vectored interrupt

1(a): µP is executing its main program

1(b): P1 receives input data in a register
with address 0x8000.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x0001, R0
19: RETI # ISR return

ISR

100:
101: instruction

...
Main program

...

Program memory

PC

Data memory
0x0000 0x0001

16Int
Inta

instruction

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

34

Peripheral to memory transfer without DMA,
using vectored interrupt

2: P1 asserts Int to request servicing by the
microprocessor

μP

P1

System bus

0x8000

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x0001, R0
19: RETI # ISR return

ISR

100:
101: instruction

...
Main program

...

Program memory

PC

Data memory
0x0000 0x0001

16Int
Inta

instruction
1

Int

100

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

35

Peripheral to memory transfer without DMA,
using vectored interrupt

3: After completing instruction at 100, µP
sees Int asserted, saves the PC’s value of
100, and asserts Inta.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x0001, R0
19: RETI # ISR return

ISR

100:
101: instruction

...
Main program

...

Program memory

PC

Data memory
0x0000 0x0001

16Int
Inta

instruction

100

Inta
1

100

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

36

Peripheral to memory transfer without DMA,
using vectored interrupt (cont’)

4: P1 detects Inta and puts interrupt address
vector 16 on the data bus.

μP

P1

System bus

0x8000

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x0001, R0
19: RETI # ISR return

ISR

100:
101: instruction

...
Main program

...

Program memory

PC

Data memory
0x0000 0x0001

16Int
Inta

instruction

100

16

16 System bus

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

37

μP

P1

System bus

0x8000

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101: instruction

...
Main program

...

Program memory

PC

Data memory
0x0000 0x0001

16Int
instruction

Inta

Peripheral to memory transfer without DMA,
using vectored interrupt (cont’)

5(a): µP jumps to the address on the bus (16).
The ISR there reads data from 0x8000 and
then writes it to 0x0001, which is in memory.

5(b): After being read, P1 de-asserts Int.

100

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19:

ISR

100:
101: instruction

...
Main program

...
instruction

RETI # ISR return
System bus

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x0001, R0
19:

ISR

100:
101: instruction

...
Main program

...
instruction

RETI # ISR return

0x8000

P1

Data memory
0x0001

Int
0

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

38

μP

P1

System bus

0x8000

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101: instruction

...
Main program

...

Program memory

PC

Data memory
0x0000 0x0001

16Int
instruction

Inta

Peripheral to memory transfer without DMA,
using vectored interrupt (cont’)

6: The ISR returns, thus restoring PC to
100+1=101, where µP resumes executing.

100100
+1

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x0001, R0
19:

ISR

100:
101: instruction

...
Main program

...
instruction

RETI # ISR return

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

39

Peripheral to memory transfer with DMA

1(a): μP is executing its main program.
It has already configured the DMA ctrl
registers.

1(b): P1 receives input
data in a register with
address 0x8000.

2: P1 asserts req to request
servicing by DMA ctrl.

7(b): P1 de-asserts req.

Tim
e

3: DMA ctrl asserts Dreq
to request control of
system bus.

4: After executing instruction 100, μP
sees Dreq asserted, releases the system
bus, asserts Dack, and resumes
execution. μP stalls only if it needs the
system bus to continue executing.

5: (a) DMA ctrl asserts
ack (b) reads data from
0x8000 and (b) writes that
data to 0x0001.

6:. DMA de-asserts Dreq
and ack completing
handshake with P1.

7(a): μP de-asserts Dack and resumes
control of the bus.

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

40

Peripheral to memory transfer with DMA
(cont’)

1(a): µP is executing its main program. It has
already configured the DMA ctrl registers

1(b): P1 receives input data in a register with
address 0x8000.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:
instruction
instruction

...
Main program

...

Program memory

PC

100

Dreq
Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack
req

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

41

Peripheral to memory transfer with DMA
(cont’)

2: P1 asserts req to request servicing
by DMA ctrl.

3: DMA ctrl asserts Dreq to request control of
system bus

Data memoryμP

DMA ctrl P1

System bus

0x8000101:
instruction
instruction

...
Main program

...

Program memory

PC

100

Dreq
Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack
reqreq

1

P1
Dreq

1

DMA ctrl P1

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

42

Peripheral to memory transfer with DMA
(cont’)

4: After executing instruction 100, µP sees
Dreq asserted, releases the system bus, asserts
Dack, and resumes execution, µP stalls only if
it needs the system bus to continue executing.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:
instruction
instruction

...
Main program

...

Program memory

PC

100

Dreq
Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack
req

Dack
1

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

43

Data memoryμP

DMA ctrl P1

System bus

0x8000101:
instruction
instruction

...
Main program

...

Program memory

PC

100

Dreq
Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack
req

Data memory

DMA ctrl P1

System bus

0x8000

0x0000 0x0001

0x0001

0x8000

ack
req

Peripheral to memory transfer with DMA
(cont’)

5: DMA ctrl (a) asserts ack, (b) reads data
from 0x8000, and (c) writes that data to
0x0001.

(Meanwhile, processor still executing if not
stalled!)

ack
1

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

44

Peripheral to memory transfer with DMA
(cont’)

6: DMA de-asserts Dreq and ack completing
the handshake with P1.

Data memoryμP

DMA ctrl P1

System bus

0x8000101:
instruction
instruction

...
Main program

...

Program memory

PC

100

Dreq
Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack
req
ack

0Dreq
0

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

45

Arbitration

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

46

Arbitration: Priority arbiter

• Consider the situation where multiple peripherals request service from single
resource (e.g., microprocessor, DMA controller) simultaneously - which gets
serviced first?

• Priority arbiter
– Single-purpose processor
– Peripherals make requests to arbiter, arbiter makes requests to resource
– Arbiter connected to system bus for configuration only

Micro-
processor

Priority
arbiter

Peripheral1

System bus

Int
3

5
7

Inta
Peripheral2

Ireq1

Iack2

Iack1
Ireq2

2 2

6

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

47

Arbitration using a priority arbiter

1. 1. Microprocessor is executing its program.
2. 2. Peripheral1 needs servicing so asserts Ireq1. Peripheral2 also needs servicing so asserts Ireq2.
3. 3. Priority arbiter sees at least one Ireq input asserted, so asserts Int.
4. 4. Microprocessor stops executing its program and stores its state.
5. 5. Microprocessor asserts Inta.
6. 6. Priority arbiter asserts Iack1 to acknowledge Peripheral1.
7. 7. Peripheral1 puts its interrupt address vector on the system bus
8. 8. Microprocessor jumps to the address of ISR read from data bus, ISR executes and returns
9. (and completes handshake with arbiter).
10. 9. Microprocessor resumes executing its program.

Micro-
processor

Priority
arbiter

Peripheral1

System bus

Int
3

5
7

Inta
Peripheral2

Ireq1

Iack2

Iack1
Ireq2

2 2

6

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

48

Arbitration: Priority arbiter

• Types of priority
• Fixed priority

– each peripheral has unique rank
– highest rank chosen first with simultaneous requests
– preferred when clear difference in rank between peripherals

• Rotating priority (round-robin)
– priority changed based on history of servicing
– better distribution of servicing especially among peripherals with

similar priority demands

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

49

Arbitration: Daisy-chain arbitration

• Arbitration done by peripherals
– Built into peripheral or external logic added

• req input and ack output added to each peripheral

• Peripherals connected to each other in daisy-chain manner
– One peripheral connected to resource, all others connected “upstream”
– Peripheral’s req flows “downstream” to resource, resource’s ack flows

“upstream” to requesting peripheral
– Closest peripheral has highest priority

µP
System bus

Int

Inta
Peripheral1

Ack_in Ack_out
Req_out Req_in

Peripheral2

Ack_in Ack_out
Req_out Req_in

Daisy-chain aware peripherals

0

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

50

Arbitration: Daisy-chain arbitration

• Pros/cons
– Easy to add/remove peripheral - no system redesign needed
– Does not support rotating priority
– One broken peripheral can cause loss of access to other

peripherals

µP
System bus

Int

Inta
Peripheral1

Ack_in Ack_out
Req_out Req_in

Peripheral2

Ack_in Ack_out
Req_out Req_in

Daisy-chain aware peripherals

0

Micro-
processor

Priority
arbiter

Peripheral
1

System bus

Int

Inta
Peripheral

2
Ireq1

Iack2

Iack1
Ireq2

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

51

Multi Level Bus Architectures

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

52

Multilevel bus architectures

• Processor-local bus
– High speed, wide, most frequent

communication
– Connects microprocessor, cache, memory

controllers, etc.
• Peripheral bus

– Lower speed, narrower, less frequent
communication

– Typically industry parallel standard bus
(ISA, PCI, PCIe) for portability

Processor-local bus

Micro-
processor

Cache Memory
controller

DMA
controller

BridgePeripheralPeripheralPeripheral

Peripheral bus

• Don’t want one bus for all communications
– Peripherals would need high-speed, processor-specific bus interface

• excess gates, power consumption, and cost; less portable
– Too many peripherals slows down bus

• Bridge
– Single-purpose processor converts communication between busses

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

53

Summary

• General-purpose processors
– Port-based or bus-based I/O
– I/O addressing: Memory mapped I/O or Standard I/O
– Interrupt handling: fixed or vectored
– Direct memory access

• Arbitration
– Priority arbiter (fixed/rotating) or daisy chain

• Bus hierarchy

	Interfacing��ESD_Cap6 --
	Outline
	Introduction
	Diapositiva numero 4
	A simple bus
	Ports
	Diapositiva numero 7
	Microprocessor interfacing:�I/O addressing
	Compromises/extensions
	Types of bus-based I/O: �memory-mapped I/O and standard I/O
	Memory-mapped I/O vs. Standard I/O
	Diapositiva numero 12
	Microprocessor interfacing: interrupts
	Microprocessor interfacing: interrupts
	Interrupt-driven I/O using fixed ISR location
	Interrupt-driven I/O using fixed ISR location
	Interrupt-driven I/O using fixed ISR location
	Interrupt-driven I/O using fixed ISR location
	Interrupt-driven I/O using fixed ISR location
	Interrupt-driven I/O using fixed ISR location
	Interrupt-driven I/O using vectored interrupt
	Interrupt-driven I/O using vectored interrupt
	Interrupt-driven I/O using vectored interrupt
	Interrupt-driven I/O using vectored interrupt
	Interrupt-driven I/O using vectored interrupt
	Interrupt-driven I/O using vectored interrupt
	Interrupt-driven I/O using vectored interrupt
	Interrupt address table
	Additional interrupt issues
	Diapositiva numero 30
	Direct memory access
	Peripheral to memory transfer without DMA, using vectored interrupt
	Diapositiva numero 33
	Peripheral to memory transfer without DMA, using vectored interrupt
	Peripheral to memory transfer without DMA, using vectored interrupt
	Peripheral to memory transfer without DMA, using vectored interrupt (cont’)
	Peripheral to memory transfer without DMA, using vectored interrupt (cont’)
	Peripheral to memory transfer without DMA, using vectored interrupt (cont’)
	Peripheral to memory transfer with DMA
	Peripheral to memory transfer with DMA (cont’)
	Peripheral to memory transfer with DMA (cont’)
	Peripheral to memory transfer with DMA (cont’)
	Peripheral to memory transfer with DMA (cont’)
	Peripheral to memory transfer with DMA (cont’)
	Diapositiva numero 45
	Arbitration: Priority arbiter
	Arbitration using a priority arbiter
	Arbitration: Priority arbiter
	Arbitration: Daisy-chain arbitration
	Arbitration: Daisy-chain arbitration
	Diapositiva numero 51
	Multilevel bus architectures
	Summary

