
Chapter 10: Exceptions and Interrupts 
10.1 Introduction 
Exceptions and interrupts are part of a mechanism provided by the majority of embedded 
processor architectures to allow for the disruption of the processor's normal execution path. This 
disruption can be triggered either intentionally by application software or by an error, unusual 
condition, or some unplanned external event.  

Many real-time operating systems provide wrapper functions to handle exceptions and interrupts 
in order to shield the embedded systems programmer from the low-level details. This application-
programming layer allows the programmer to focus on high-level exception processing rather 
than on the necessary, but tedious, prologue and epilogue system-level processing for that 
exception. This isolation, however, can create misunderstanding and become an obstacle when 
the programmer is transformed from an embedded applications programmer into an embedded 
systems programmer.  

Understanding the inner workings of the processor exception facility aids the programmer in 
making better decisions about when to best use this powerful mechanism, as well as in designing 
software that handles exceptions correctly. The aim of this chapter is to arm the programmer with 
this knowledge.  

This chapter focuses on:  
§ the definitions of exception and interrupt,  
§ the applications of exceptions and interrupts,  
§ a closer look at exceptions and interrupts in terms of hardware support, classifications, 

priorities, and causes of spurious interrupts, and  
§ a detailed discussion on how to handle exceptions and interrupts.  
 
10.2 What are Exceptions and Interrupts?  
An exception is any event that disrupts the normal execution of the processor and forces the 
processor into execution of special instructions in a privileged state. Exceptions can be classified 
into two categories: synchronous exceptions and asynchronous exceptions.  

Exceptions raised by internal events, such as events generated by the execution of processor 
instructions, are called synchronous exceptions. Examples of synchronous exceptions include the 
following:  
§ On some processor architectures, the read and the write operations must start at an even 

memory address for certain data sizes. Read or write operations that begin at an odd 
memory address cause a memory access error event and raise an exception (called an 
alignment exception ).  

§ An arithmetic operation that results in a division by zero raises an exception. 

Exceptions raised by external events, which are events that do not relate to the execution of 
processor instructions, are called asynchronous exception s. In general, these external events 
are associated with hardware signals. The sources of these hardware signals are typically 
external hardware devices. Examples of asynchronous exceptions include the following:  
§ Pushing the reset button on the embedded board triggers an asynchronous exception 

(called the system reset exception ).  
§ The communications processor module that has become an integral part of many 

embedded designs is another example of an external device that can raise asynchronous 
exceptions when it receives data packets.  



An interrupt, sometimes called an external interrupt, is an asynchronous exception triggered by 
an event that an external hardware device generates. Interrupts are one class of exception. What 
differentiates interrupts from other types of exceptions, or more precisely what differentiates 
synchronous exceptions from asynchronous exceptions, is the source of the event. The event 
source for a synchronous exception is internally generated from the processor due to the 
execution of some instruction. On the other hand, the event source for an asynchronous 
exception is an external hardware device.  

Because the term interrupt has been used extensively in other texts, therefore, the text that 
follows uses exceptions to mean synchronous exceptions and interrupts to mean asynchronous 
exceptions. The book uses general exceptions to mean both. The term interrupts and external 
interrupts are used interchangeably throughout the text.  

Exceptions and interrupts are the necessary evils that exist in the majority of embedded systems. 
This facility, specific to the processor architecture, if misused, can become the source of troubled 
designs. While exceptions and interrupts introduce challenging design complications and impose 
strict coding requirements, they are nearly indispensable in embedded applications. The following 
sections describe the most common and important uses of these mechanisms.  
 
10.3 Applications of Exceptions and Interrupts  
From an application's perspective, exceptions and external interrupts provide a facility for 
embedded hardware (either internal or external to the processor) to gain the attention of 
application code. Interrupts are a means of communicating between the hardware and an 
application currently running on an embedded processor.  

In general, exceptions and interrupts help the embedded engineer in three areas:  
§ internal errors and special conditions management,  
§ hardware concurrency, and  
§ service requests management.  

10.3.1 Internal Errors and Special Conditions Management  

Handling and appropriately recovering from a wide range of errors without coming to a halt is 
often necessary in the application areas in which embedded systems are typically employed.  

Exceptions are either error conditions or special conditions that the processor detects while 
executing instructions. Error conditions can occur for a variety of reasons. The embedded system 
might be implementing an algorithm, for example, to calculate heat exchange or velocity for a 
cruise control. If some unanticipated condition occurs that causes a division by zero, over-flow, or 
other math error, the application must be warned. In this case, the execution of the task 
performing the calculation halts, and a special exception service routine begins. This process 
gives the application an opportunity to evaluate and appropriately handle the error. Other types of 
errors include memory read or write failures (a common symptom of a stray pointer), or attempts 
to access floating-point hardware when not installed.  

Many processor architectures have two modes of execution: normal and privileged. Some 
instructions, called privileged instructions, are allowed to execute only when the processor is in 
the privileged execution mode. An exception is raised when a privileged instruction is issued 
while the processor is in normal execution mode. 

Special conditions are exceptions that are generated by special instructions, such as the TRAP 
instruction on the Motorola 68K processor family. These instructions allow a program to force the 
processor to move into privileged execution mode, consequently gaining access to a privileged 



instruction set. For example, the instruction used to disable external interrupts must be issued in 
privileged mode.  

Another example of a special condition is the trace exception generated by the break point 
feature available on many processor architectures. The debugger agent, a special software 
program running on the embedded device, handles this exception, which makes using a host 
debugger to perform software break point and code stepping possible.  

Although not all microcontrollers or embedded processors define the same types of exceptions or 
handle them in the same way, an exception facility is available and can assist the embedded 
systems engineer design a controlled response to these internal errors and special conditions.  

10.3.2 Hardware Concurrency and Service Request Management  

The ability to perform different types of work simultaneously is important in embedded systems. 
Many external hardware devices can perform device-specific operations in parallel to the core 
processor. These devices require minimum intervention from the core processor. The key to 
concurrency is knowing when the device has completed the work previously issued so that 
additional jobs can be given. External interrupts are used to achieve this goal.  

For example, an embedded application running on a core processor issues work commands to a 
device. The embedded application continues execution, performing other functions while the 
device tries to complete the work issued. After the work is complete, the device triggers an 
external interrupt to the core processor, which indicates that the device is now ready to accept 
more commands. This method of hardware concurrency and use of external interrupts is common 
in embedded design.  

Another use of external interrupts is to provide a communication mechanism to signal or alert an 
embedded processor that an external hardware device is requesting service. For example, an 
initialized programmable interval timer chip communicates with the embedded processor through 
an interrupt when a preprogrammed time interval has expired. (Chapter 11 discusses 
programmable interval timers in detail.) Similarly, the network interface device uses an interrupt to 
indicate the arrival of packets after the received packets have been stored into memory.  

The capabilities of exceptions and their close cousins, external interrupts, empower embedded 
designs. Applying the general exception facility to an embedded design, however, requires 
properly handling general exceptions according to the source and associated cause of each 
particular general exception in question. The following section provides the needed background 
knowledge.  
 
10.4 A Closer Look at Exceptions and Interrupts  
General exceptions have classifications and are prioritized based on the classifications. It is 
possible there exists another level of priorities, imposed and enforced by the interrupt hardware, 
among the external interrupts. Understanding the hardware sources that can trigger general 
exceptions, the hardware that implements the transfer of control, and the mechanisms for 
determining where control vectors reside are all critical to properly installing general exception 
handlers and to writing correct general exception handlers.  

10.4.1 Programmable Interrupt Controllers and External Interrupts  

Most embedded designs have more than one source of external interrupts, and these multiple 
external interrupt sources are prioritized. To understand how this process is handled, a clear 
understanding of the concept of a programmable interrupt controller (PIC) is required.  



The PIC is implementation-dependent. It can appear in a variety of forms and is sometimes given 
different names, however, all serve the same purpose and provide two main functionalities:  
§ Prioritizing multiple interrupt sources so that at any time the highest priority interrupt is 

presented to the core CPU for processing.  
§ Offloading the core CPU with the processing required to determine an interrupt's exact 

source.  

The PIC has a set of interrupt request lines. An external source generates interrupts by asserting 
a physical signal on the interrupt request line. Each interrupt request line has a priority assigned 
to it. Figure 10.1 illustrates a PIC used in conjunction with four interrupt sources. Each interrupt 
source connects to one distinct interrupt request line: the airbag deployment sensor, the break 
deployment sensor, the fuel-level sensor detecting the amount of gasoline in the system, and a 
real-time clock.  

 
Figure 10.1: Programmable interrupt controller.  

Figure 10.1 translates into an interrupt table that captures this information more concisely. The 
interrupt table lists all available interrupts in the embedded system. In addition, several other 
properties help define the dynamic characteristics of the interrupt source. Table 10.1 is an 
example of an interrupt table for the hypothetical example shown in Figure 10.1. The information 
in the table illustrates all of the sources of external interrupts that the embedded system must 
handle.  

Why is it important to know this information? Understanding the priorities of the interrupt sources 
enables the embedded systems programmer to better understand the concept of nested 
interrupts. The term refers to the ability of a higher priority interrupt source to preempt the 
processing of a lower priority interrupt. It is easy to see how low-priority interrupt sources are 
affected by higher priority interrupts and their execution times and frequency if this interrupt table 
is ordered by overall system priority. This information aids the embedded systems programmer in 
designing and implementing better ISRs that allow for nested interrupts.  

The maximum frequency column of the interrupt table specifies the process time constraint 
placed on all ISRs that have the smallest impact on the overall system.  
Table 10.1: Interrupt table.  

Source  Priority  Vector 
Address  

IRQ  Max 
Freq.  

Description  

Airbag Highest  14h  8  N/A  Deploys airbag 



Table 10.1: Interrupt table.  

Source  Priority  Vector 
Address  

IRQ  Max 
Freq.  

Description  

Sensor  

Break Sensor  High  18h  7  N/A  Deploys the breaking 
system 

Fuel Level 
Sensor  

Med  1Bh  6  20Hz  Detects the level of 
gasoline 

Real-Time 
Clock  

Low  1Dh  5  100Hz  Clock runs at 10ms 
ticks  

The vector address column specifies where in memory the ISR must be installed. The processor 
automatically fetches the instruction from one of these known addresses based on the interrupt 
number, which is specified in the IRQ column. This instruction begins the interrupt-specific 
service routine. In this example, the interrupt table contains a vector address column, but these 
values are dependent on processor and hardware design. In some designs, a column of indexes 
is applied to a formula used to calculate an actual vector address. In other designs, the processor 
uses a more complex formulation to obtain a vector address before fetching the instructions. 
Consult the hardware manual for specific details. Later sections of this chapter discuss the 
interrupt service routine in detail. In general, the vector table also covers the service routines for 
synchronous exceptions. The service routines are also called vectors in short.  

10.4.2 Classification of General Exceptions  

Although not all embedded processors implement exceptions in the same manner, most of the 
more recent processors have these types of exceptions:  
§ asynchronous-non-maskable,  
§ asynchronous-maskable,  
§ synchronous-precise, and  
§ synchronous-imprecise. 

Asynchronous exceptions are classified into maskable and non-maskable exceptions. External 
interrupts are asynchronous exceptions. Asynchronous exceptions that can be blocked or 
enabled by software are called maskable exceptions. Similarly, asynchronous exceptions that 
cannot be blocked by software are called non-maskable exceptions. Non-maskable exceptions 
are always acknowledged by the processor and processed immediately. Hardware-reset 
exceptions are always non-maskable exceptions. Many embedded processors have a dedicated 
non-maskable interrupt (NMI) request line. Any device connected to the NMI request line is 
allowed to generate an NMI.  

External interrupts, with the exception of NMIs, are the only asynchronous exceptions that can be 
disabled by software.  

Synchronous exceptions can be classified into precise and imprecise exceptions. With precise 
exception s, the processor's program counter points to the exact instruction that caused the 
exception, which is the offending instruction, and the processor knows where to resume 
execution upon return from the exception. With modern architectures that incorporate instruction 
and data pipelining, exceptions are raised to the processor in the order of written instruction, not 
in the order of execution. In particular, the architecture ensures that the instructions that follow the 
offending instruction and that were started in the instruction pipeline during the exception do not 
affect the CPU state. This chapter is concerned with precise exceptions.  



Silicon vendors employ a number of advanced techniques (such as predictive instruction and 
data loading, instruction and data pipelining, and caching mechanisms) to streamline overall 
execution in order to increase chip performance. For example, the processor can do floating point 
and integer memory operations out of order with the non-sequential memory access mode. If an 
embedded processor implements heavy pipelining or pre-fetch algorithms, it can often be 
impossible to determine the exact instruction and associated data that caused an exception. This 
issue indicates an imprecise exception. Consequently, when some exceptions do occur, the 
reported program counter does not point to the offending instruction, which makes the program 
counter meaningless to the exception handler.  

Why is it important to know this information? Knowing the type of exception for which an 
exception handler is written helps the programmer determine how the system is to recover from 
the exception, if the exception is at all recoverable.  

10.4.3 General Exception Priorities  

All processors handle exceptions in a defined order. Although not every silicon vendor uses the 
exact same order of exception processing, generally exceptions are handled according to these 
priorities, as shown in Table 10.2.  
Table 10.2: Exception priorities.  

Highest  Asynchronous  Non-maskable  

Synchronous  Precise  

 Synchronous  Imprecise  

Lowest  Asynchronous  Maskable  

The highest priority level of exceptions is usually reserved for system resets, other significant 
events, or errors that warrant the overall system to reset. In many cases, hardware 
implementations for this exception also cause much, if not all, of the surrounding hardware to 
reset to a known state and condition. For this reason, this exception is treated as the highest 
level.  

The next two priority levels reflect a set of errors and special execution conditions internal to the 
processor. A synchronous exception is generated and acknowledged only at certain states of the 
internal processor cycle. The sources of these errors are rooted in either the instructions or data 
that is passed along to be processed.  

Typically, the lowest priority is an asynchronous exception external to the core processor. 
External interrupts (except NMIs) are the only exceptions that can be disabled by software.  

From an application point of view, all exceptions have processing priority over operating system 
objects, including tasks, queues, and semaphores. Figure 10.2 illustrates a general priority 
framework observed in most embedded computing architectures.  



 
Figure 10.2: System-wide priority scheme.  
 
10.5 Processing General Exceptions  
Having introduced the fundamentals of exceptions and external interrupts, it is time to discuss 
processing exceptions and external interrupts. The overall exception handling mechanism is 
similar to the mechanism for interrupt handling. In a simplified view, the processor takes the 
following steps when an exception or an external interrupt is raised:  
§ Save the current processor state information.  
§ Load the exception or interrupt handling function into the program counter.  
§ Transfer control to the handler function and begin execution.  
§ Restore the processor state information after the handler function completes.  
§ Return from the exception or interrupt and resume previous execution.  

A typical handler function does the following:  
§ Switch to an exception frame or an interrupt stack.  
§ Save additional processor state information.  
§ Mask the current interrupt level but allow higher priority interrupts to occur.  
§ Perform a minimum amount of work so that a dedicated task can complete the main 

processing.  

10.5.1 Installing Exception Handlers  

Exception service routines (ESRs) and interrupt service routines (ISRs) must be installed into the 
system before exceptions and interrupts can be handled. The installation of an ESR or ISR 
requires knowledge of the exception and interrupt table (called the general exception table).  

The general exception table, as exemplified in Table 10.1, has a vector address column, which is 
sometimes also called the vector table. Each vector address points to the beginning of an ESR or 
ISR. Installing an ESR or ISR requires replacing the appropriate vector table entry with the 
address of the desired ESR or ISR.  

The embedded system startup code typically installs the ESRs at the time of system initialization. 
Hardware device drivers typically install the appropriate ISRs at the time of driver initialization.  



If either an exception or an interrupt occurs when no associated handler function is installed, the 
system suffers a system fault and may halt. To prevent this problem, it is common for an 
embedded RTOS to install default handler functions (i.e., functions that perform small amounts of 
work to ensure the proper reception of and the proper return from exceptions) into the vector 
table for every possible exception and interrupt in the system. Many RTOSes provide a 
mechanism that the embedded systems programmer can use to overwrite the default handler 
function with his or her own or to allow the programmer to insert further processing in addition to 
the default actions. If allowed, the embedded systems programmer can code specific actions 
before and after the default action is completed.  

In this book, the general term service routine means either an ESR or an ISR when the distinction 
is not important.  

10.5.2 Saving Processor States  

When an exception or interrupt comes into context and before invoking the service routine, the 
processor must perform a set of operations to ensure a proper return of program execution after 
the service routine is complete. Just as tasks save information in task control blocks, exception 
and interrupt service routines also need to store blocks of information, called processor state 
information, somewhere in memory. The processor typically saves a minimum amount of its state 
information, including the status register (SR) that contains the current processor execution status 
bits and the program counter (PC) that contains the returning address, which is the instruction to 
resume execution after the exception. The ESR or the ISR, however, must do more to preserve 
more complete state information in order to properly resume the program execution that the 
exception preempted. A later section discusses this issue in more detail.  

So, whose stack is used during the exception and interrupt processing?  

Stacks are used for the storage requirement of saving processor state information. In an 
embedded operating system environment, a stack is a statically reserved block of memory and an 
active dynamic pointer called a stack pointer, as shown in Figure 10.3. In some embedded 
architectures, such as Motorola's 68000 microprocessors, two separate stacks-the user stack 
(USP) and the supervisor stack (SSP)-are used. The USP is used when the processor executes 
in non-privileged mode. The SSP is used when the processor executes in privileged mode.  

 
Figure 10.3: Store processor state information onto stack.  

Section 10.3.1, 'Internal Errors and Special Conditions Management' on page 145, discusses 
processor execution modes. On this type of architecture, the processor consciously selects SSP 
to store its state information during general exception handling. While some architectures offer 
special support for stack switching, the balance of this chapter assumes a simple environment 
with just one run-time stack.  



As data is saved on the stack, the stack pointer is incremented to reflect the number of bytes 
copied onto the stack. This process is often called pushing values on the stack. When values are 
copied off the stack, the stack pointer is decremented by the equivalent number of bytes copied 
from the stack. This process is called popping values off the stack. The stack pointer always 
points to the first valid location in order to store data onto the stack. For purposes of this book, the 
stack grows up; however, a stack can grow in the opposite direction. Note that a typical stack 
does not store identifiers for the contents. Stack users are required to push and pop items onto 
and off the stack in a symmetric order. If this rule is not followed during exception or interrupt 
processing, unintended results are likely to occur.  

As Chapter 5 discusses, in an embedded operating system environment, all task objects have a 
task control block (TCB). During task creation, a block of memory is reserved as a stack for task 
use, as shown in Figure 10.4. High-level programming languages, such as C and C++, typically 
use the stack space as the primary vehicle to pass variables between functions and objects of the 
language.  

 
Figure 10.4: Task TCB and stack.  

The active stack pointer (SP) is reinitialized to that of the active task each time a task context 
switch occurs. The underlying real-time kernel performs this work. As mentioned earlier, the 
processor uses whichever stack the SP points to for storing its minimum state information before 
invoking the exception handler.  

Although not all embedded architectures implement exception or interrupt processing in the same 
way, the general idea of sizing and reserving exception stack space is the same. In many cases, 
when general exceptions occur and a task is running, the task's stack is used to handle the 
exception or interrupt. If a lower priority ESR or ISR is running at the time of exception or 
interrupt, whichever stack the ESR or ISR is using is also the stack used to handle the new 
exception or interrupt. This default approach on stack usage can be problematic with nested 
exceptions or interrupts, which are discussed in detail shortly.  

10.5.3 Loading and Invoking Exception Handlers  

As discussed earlier, some differences exist between an ESR and an ISR in the precursory work 
the processor performs. This issue is caused by the fact that an external interrupt is the only 
exception type that can be disabled by software. In many embedded processor architectures, 
external interrupts can be disabled or enabled through a processor control register. This control 
register directly controls the operation of the PIC and determines which interrupts the PIC raises 



to the processor. In these architectures, all external interrupts are raised to the PIC. The PIC 
filters interrupts according to the setting of the control register and determines the necessary 
action. This book assumes this architecture model in the following discussions.  

Formally speaking, an interrupt can be disabled, active, or pending. A disabled interrupt is also 
called a masked interrupt. The PIC ignores a disabled interrupt. A pending interrupt is an 
unacknowledged interrupt, which occurs when the processor is currently processing a higher 
priority interrupt. The pending interrupt is acknowledged and processed after all higher priority 
interrupts that were pending have been processed. An active interrupt is the one that the 
processor is acknowledging and processing. Being aware of the existence of a pending interrupt 
and raising this interrupt to the processor at the appropriate time is accomplished through 
hardware and is outside the concern of an embedded systems developer.  

For synchronous exceptions, the processor first determines which exception has occurred and 
then calculates the correct index into the vector table to retrieve the ESR. This calculation is 
dependent on implementation. When an asynchronous exception occurs, an extra step is 
involved. The PIC must determine if the interrupt has been disabled (or masked). If so, the PIC 
ignores the interrupt and the processor execution state is not affected. If the interrupt is not 
masked, the PIC raises the interrupt to the processor and the processor calculates the interrupt 
vector address and then loads the exception vector for execution, as shown in Figure 10.5.  

 
Figure 10.5: Loading exception vector.  

Some silicon vendors implement the table lookup in hardware, while others rely on software 
approaches. Regardless, the mechanisms are the same. When an exception occurs, a value or 
index is calculated for the table. The content of the table at this index or offset reflects the 
address of a service routine. The program counter is initialized with this vector address, and 
execution begins at this location. Before examining the general approach to an exception handler, 
let's first examine nested interrupts and their effect on the stack.  

10.5.4 Nested Exceptions and Stack Overflow  

Nested exceptions refer to the ability for higher priority exceptions to preempt the processing of 
lower priority exceptions. Much like a context switch for tasks when a higher priority one becomes 
ready, the lower priority exception is preempted, which allows the higher priority ESR to execute. 
When the higher priority service routine is complete, the earlier running service routine returns to 
execution. Figure 10.6 illustrates this process.  



 
Figure 10.6: Interrupt nesting.  

The task block in the diagram in this example shows a group of tasks executing. A low-priority 
interrupt then becomes active, and the associated service routine comes into context. While this 
service routine is running, a high-priority interrupt becomes active, and the lower priority service 
routine is preempted. The high-priority service routine runs to completion, and control returns to 
the low-priority service routine. Before the low-priority service routine completes, another interrupt 
becomes active. As before, the low-priority service routine is preempted to allow the medium-
priority service routine to complete. Again, before the low-priority routine can finish, another high-
priority interrupt becomes active and runs to completion. The low-priority service routine is finally 
able to run to completion. At that point, the previously running task can resume execution.  

When interrupts can nest, the application stack must be large enough to accommodate the 
maximum requirements for the application's own nested function invocation, as well as the 
maximum exception or interrupt nesting possible, if the application executes with interrupts 
enabled. This issue is exactly where the effects of interrupt nesting on the application stack are 
most commonly observed.  

As exemplified in Figure 10.4, N tasks have been created, each with its own TCB and statically 
allocated stack. Assuming the stack of the executing task is used for exceptions, a sample 
scenario, as shown in Figure 10.7, might look as follows:  

1. Task 2 is currently running.  
2. A low-priority interrupt is received.  
3. Task 2 is preempted while exception processing starts for a low-priority interrupt.  
4. The stack grows to handle exception processing storage needs.  
5. A medium-priority interrupt is received before exception processing is complete.  
6. The stack grows again to handle medium-priority interrupt processing storage 

requirements.  
7. A high-priority interrupt is received before execution processing of the medium interrupt is 

complete.  
8. The stack grows to handle high-priority interrupt processing storage needs. 

 
Figure 10.7: Nested interrupts and stack overflow.  



In each case of exception processing, the size of the stack grows as has been discussed. Note 
that without a MMU, no bounds checking is performed when using a stack as a storage medium. 
As depicted in this example, the sum of the application stack space requirement and the 
exception stack space requirement is less than the actual stack space allocated by Task 2. 
Consequently, when data is copied onto the stack past the statically defined limits in this 
example, Task 3's TCB is corrupted, which is a stack overflow. Unfortunately, the corrupted TCB 
is not likely to be noticed until Task 3 is scheduled to run. These types of errors can be very hard 
to detect. They are a function of the combination of the running task and the exact frequency, 
timing, and sequence of interrupts or exceptions presented to the operating environment. This 
situation often gives a user or testing team the sense of a sporadic or flaky system. Sometimes, 
dependably recreating errors is almost impossible.  

Two solutions to the problem are available: increasing the application's stack size to 
accommodate all possibilities and the deepest levels of exception and interrupt nesting, or having 
the ESR or ISR switch to its own exception stack, called an exception frame.  

The maximum exception stack size is a direct function of the number of exceptions, the number 
of external devices connected to each distinct IRQ line, and the priority levels supported by the 
PIC. The simple solution is having the application allocate a large enough stack space to 
accommodate the worst case, which is if the lowest priority exception handler executes and is 
preempted by all higher priority exceptions or interrupts. A better approach, however, is using an 
independent exception frame inside the ESR or the ISR. This approach requires far less total 
memory than increasing every task stack by the necessary amount.  

10.5.5 Exception Handlers  

After control is transferred to the exception handler, the ESR or the ISR performs the actual work 
of exception processing. Usually the exception handler has two parts. The first part executes in 
the exception or interrupt context. The second half executes in a task context.  

Exception Frames  
The exception frame is also called the interrupt stack in the context of asynchronous exceptions.  

Two main reasons exist for needing an exception frame. One reason is to handle nested 
exceptions. The other reason is that, as embedded architecture becomes more complex, the ESR 
or ISR consequently increases in complexity. Commonly, exception handlers are written in both 
machine assembly language and in a high-level programming language, such as C or C++. As 
mentioned earlier, the portion of the ESR or ISR written in C or C++ requires a stack to which to 
pass function parameters during invocation. This fact is also true if the ESR or ISR were to invoke 
a library function written in a high-level language.  

The common approach to the exception frame is for the ESR or the ISR to allocate a block of 
memory, either statically or dynamically, before installing itself into the system. The exception 
handler then saves the current stack pointer into temporary memory storage, reinitializes the 
stack pointer to this private stack, and begins processing. This is depicted in Figure 10.8.  



 
Figure 10.8: Switching SP to exception frame.  

The exception handler can perform more housekeeping work, such as storing additional 
processor state information, onto this stack.  

Differences between ESR and ISR  
One difference between an ESR and an ISR is in the additional processor state information 
saved.  

The three ways of masking interrupts are:  
§ Disable the device so that it cannot assert additional interrupts. Interrupts at all levels can 

still occur.  
§ Mask the interrupts of equal or lower priority levels, while allowing higher priority 

interrupts to occur. The device can continue to generate interrupts, but the processor ignores 
them.  

§ Disable the global system-wide interrupt request line to the processor (the line between 
the PIC and the core processor), as exemplified in Figure 10.1. Interrupts of any priority level 
do not reach the processor. This step is equivalent to masking interrupts of the highest 
priority level.  

An ISR would typically deploy one of these three methods to disable interrupts for one or all of 
these reasons:  
§ the ISR tries to reduce the total number of interrupts raised by the device,  
§ the ISR is non-reentrant, and  
§ the ISR needs to perform some atomic operations. 

Some processor architectures keep the information on which interrupts or interrupt levels are 
disabled inside the system status register. Other processor architectures use an interrupt mask 
register (IMR). Therefore, an ISR needs to save the current IMR onto the stack and disable 
interrupts according to its own requirements by setting new mask values into the IMR. The IMR 
only applies to maskable asynchronous exceptions and, therefore, is not saved by synchronous 
exception routines.  

One other related difference between an ESR and an ISR is that an exception handler in many 
cases cannot prevent other exceptions from occurring, while an ISR can prevent interrupts of the 
same or lower priority from occurring.  



Exception Timing  
Discussions about the ESR or ISR, however, often mention keeping the ESR or ISR short. How 
so and how short should it be? To answer this question, let's focus the discussion on the external 
interrupts and the ISR.  

It is the hardware designer's job to use the proper interrupt priority at the PIC level, but it is the 
ISR programmer's responsibility to know the timing requirements of each device when an ISR 
runs with either the same level or all interrupts disabled.  

The embedded systems programmer, when designing and implementing an ISR, should be 
aware of the interrupt frequency of each device that can assert an interrupt. Table 10.1 contains a 
column called Maximum Frequency, which indicates how often a device can assert an interrupt 
when the device operates at maximum capacity. The allowed duration for an ISR to execute with 
interrupts disabled without affecting the system can be inferred from Table 10.1.  

Without going into detail, an ISR, when executing with interrupts disabled, can cause the system 
to miss interrupts if the ISR takes too long. Interrupt miss is the situation in which an interrupt is 
asserted but the processor could not record the occurrence due to some busy condition. The 
interrupt service routine, therefore, is not invoked for that particular interrupt occurrence. This 
issue is typically true for a device that uses the edge-triggering mechanism to assert interrupts. 
The edge-triggering mechanism is discussed in 'The Nature of Spurious Interrupts' on page 163, 
section 10.6.  

The RTOS kernel scheduler cannot run when an ISR disables all system interrupts while it runs. 
As indicated earlier, interrupt processing has higher priority than task processing. Therefore, real-
time tasks that have stringent deadlines can also be affected by a poorly designed ISR.  

Figure 10.9 illustrates a number of concepts as they relate to a single interrupt. In Figure 10.9, the 
value of TA is based on the device interrupt frequency.  

 
Figure 10.9: Exception timing.  

The interrupt latency, TB, refers to the interval between the time when the interrupt is raised and 
the time when the ISR begins to execute. Interrupt latency is attributed to:  
§ The amount of time it takes the processor to acknowledge the interrupt and perform the 

initial housekeeping work.  
§ A higher priority interrupt is active at the time.  
§ The interrupt is disabled and then later re-enabled by software. 

The first case is always a contributing factor to interrupt latency. As can be seen, interrupt latency 
can be unbounded. Therefore, the response time can also be unbounded. The interrupt latency is 



outside the control of the ISR. The processing time TC, however, is determined by how the ISR is 
implemented.  

The interrupt response time is TD = TB + TC. 

It is possible for the entire processing to be done within the context of the interrupt, that is, with 
interrupts disabled. Notice, however, that the processing time for a higher priority interrupt is a 
source of interrupt latency for the lower priority interrupt. Another approach is to have one section 
of ISR running in the context of the interrupt and another section running in the context of a task. 
The first section of the ISR code services the device so that the service request is acknowledged 
and the device is put into a known operational state so it can resume operation. This portion of 
the ISR packages the device service request and sends it to the remaining section of the ISR that 
executes within the context of a task. This latter part of the ISR is typically implemented as a 
dedicated daemon task.  

There are two main reasons to partition the ISR into two pieces. One is to reduce the processing 
time within the interrupt context. The other is a bit more complex in that the architecture treats the 
interrupt as having higher priority than a running task, but in practice that might not be the case. 
For example, if the device that controls the blinking of an LED reports a failure, it is definitely 
lower in priority than a task that must send a communication reply to maintain its connection with 
the peer. If the ISR for this particular interrupt were partitioned into two sections, the daemon task 
that continues the LED interrupt processing can have a lower task priority than the other task. 
This factor allows the other higher priority task to complete with limited impact. Figure 10.10 
illustrates this concept.  

 
Figure 10.10: Interrupt processing in two contexts.  

The benefits to this concept are the following:  
§ Lower priority interrupts can be handled with less priority than more critical tasks running 

in the system.  
§ This approach reduces the chance of missing interrupts.  
§ This approach affords more concurrency because devices are being serviced minimally 

so that they can continue operations while their previous requests are accumulated without 
loss to the extent allowed by the system.  

On the other hand, the interrupt response time increases, because now the interrupt response 
time is TD = TB + TC + TE + TF. The increase in response time is attributed to the scheduling delay, 
and the daemon task might have to yield to higher priority tasks.  



The scheduling delay happens when other higher priority tasks are either running or are 
scheduled to run. The scheduling delay also includes the amount of time needed to perform a 
context switch after the daemon task is moved from the ready queue to the run queue.  

In conclusion, the duration of the ISR running in the context of the interrupt depends on the 
number of interrupts and the frequency of each interrupt source existing in the system. Although 
general approaches to designing an ISR exist, no one solution exists to implement an ISR so that 
it works in all embedded designs. Rather the embedded systems developer must design an ISR 
according to the considerations discussed in this section.  

General Guides  
On architectures where interrupt nesting is allowed:  
§ An ISR should disable interrupts of the same level if the ISR is non-reentrant.  
§ An ISR should mask all interrupts if it needs to execute a sequence of code as one 

atomic operation.  
§ An ISR should avoid calling non-reentrant functions. Some standard library functions are 

non-reentrant, such as many implementations of malloc and printf. Because interrupts 
can occur in the middle of task execution and because tasks might be in the midst of the 
"malloc" function call, the resulting behavior can be catastrophic if the ISR calls this same 
non-reentrant function.  

§ An ISR must never make any blocking or suspend calls. Making such a call might halt the 
entire system.  

If an ISR is partitioned into two sections with one section being a daemon task, the daemon task 
does not have a high priority by default. The priority should be set with respect to the rest of the 
system.  
 
10.6 The Nature of Spurious Interrupts  
A spurious interrupt is a signal of very short duration on one of the interrupt input lines, and it is 
likely caused by a signal glitch.  

An external device uses a triggering mechanism to raise interrupts to the core processor. Two 
types of triggering mechanisms are level triggering and edge triggering. Figure 10.11 illustrates 
the variants of edge triggers (rising edge or falling edge). This kind of triggering is typically used 
with a digital signal.  

 
Figure 10.11: Edge triggering on either rising or falling edge.  

In contrast, level triggering is commonly used in conjunction with an analog signal. Figure 10.12 
illustrates how level triggering might be implemented in a design. It is important to note that when 
using level triggering, the PIC or microcontroller silicon typically defines the trigger threshold 
value.  



 
Figure 10.12: Level triggering.  

How do spurious interrupts occur? In real-world situations, digital and analog signals are not as 
clean as portrayed here. The environment, types of sensors or transducers, and the method in 
which wiring is laid out in an embedded design all have a considerable effect on how clean the 
signal might appear. For example, a digital signal from a switch might require debouncing, or an 
analog signal might need filtering. Figure 10.13 provides a good illustration of how both digital 
and analog signals can really look. While electronic methods for debouncing and filtering fall 
beyond the realm of this book, it is important nonetheless to understand that input signals, 
whether for interrupts or other inputs, might not be as clean as a developer might envision them. 
These signals, therefore, can represent a potential source for sporadic behavior.  

 
Figure 10.13: Real signals.  

As can be seen, one reason for the occurrence of spurious interrupts is unstableness of the 
interrupt signal. Spurious interrupts can be caused when the processor detects errors while 
processing an interrupt request. The embedded systems programmer must be aware of spurious 
interrupts and know that spurious interrupts can occur and that this type of interrupt must be 
handled as any other type of interrupts. The default action from the kernel is usually sufficient.  
 
10.7 Points to Remember  
Some points to remember include the following:  
§ Exceptions are classified into synchronous and asynchronous exceptions.  
§ Exceptions are prioritized.  
§ External interrupts belong to the category of asynchronous exceptions.  
§ External interrupts are the only exceptions that can be disabled by software.  
§ Exceptions can be nested.  
§ Using a dedicated exception frame is one solution to solving the stack overflow problem 

that nested exceptions cause.  
§ Exception processing should consider the overall timing requirements of the system 

devices and tasks.  
§ Spurious interrupts can occur and should be handled as any other interrupts.  
 


