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Introduction

• Embedded system’s functionality aspects

– Processing

• processors

• transformation of data

– Storage 

• memory

• retention of data

– Communication

• buses

• transfer of data
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Basic Concepts



Embedded Systems Design: A Unified 

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
6

Memory: basic concepts

• Stores large number of bits

– m x n: m words of n bits each

– k = Log2(m) address input signals

– or m = 2^k words

– e.g., 4,096 x 8 memory:

• 32,768 bits

• 12 address input signals

• 8 input/output data signals

• Memory access

– r/w: selects read or write

– enable: read or write only when asserted

– multiport: multiple accesses to different locations 

simultaneously

m × n memory

…

…

n bits per word
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2k × n read and write 

memory
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memory external view
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Write Ability and Storage Permanence
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Write ability/ storage permanence

• Traditional ROM/RAM distinctions

– ROM

• read only, bits stored without power

– RAM

• read and write, lose stored bits without 

power

• Traditional distinctions blurred

– Advanced ROMs can be written to

• e.g., EEPROM

– Advanced RAMs can hold bits without 

power

• e.g., NVRAM

• Write ability

– Manner and speed a memory can be 

written

• Storage permanence

– ability of memory to hold stored bits 

after they are written

Write ability and storage permanence of memories, 

showing relative degrees along each axis (not to scale).
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Write ability

• Ranges of write ability

– High end

• processor writes to memory simply and quickly

• e.g., RAM

– Middle range

• processor writes to memory, but slower

• e.g., FLASH, EEPROM

– Lower range

• special equipment, “programmer”, must be used to write to memory

• e.g., EPROM, OTP ROM

– Low end

• bits stored only during fabrication

• e.g., Mask-programmed ROM

• In-system programmable memory

– Can be written to by a processor in the embedded system using the 
memory

– Memories in high end and middle range of write ability
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Storage permanence

• Range of storage permanence

– High end

• essentially never loses bits

• e.g., mask-programmed ROM

– Middle range

• holds bits days, months, or years after memory’s power source turned off

• e.g., NVRAM

– Lower range

• holds bits as long as power supplied to memory

• e.g., SRAM

– Low end

• begins to lose bits almost immediately after written

• e.g., DRAM

• Nonvolatile memory

– Holds bits after power is no longer supplied

– High end and middle range of storage permanence
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Common Memory Types
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Common memory types

• ROM

– Mask-programmed

– OTP

– EPROM

– EEPROM

– Flash

• RAM

– Basic

– Variations

• The future?

– PCM
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ROM: “Read-Only” Memory

• Nonvolatile memory

• Can be read from but not written to, by a 

processor in an embedded system

• Traditionally written to, “programmed”,  

before inserting to embedded system

• Uses

– Store software program for general-purpose or 

application-specific processor

• program instructions can be one or more ROM 

words

– Store constant data needed by system

– Implement combinational circuit

2k × n ROM

…

Q0Qn-1

A0

…

enable

Ak-1

External view
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Example: 8 x 4 ROM

• Horizontal lines = words

• Vertical lines = data

• Lines connected only at circles

• Decoder sets word 2’s line to 1 if 

address input is 010

• Data lines Q3 and Q1 are set to 1 

because there is a “programmed” 

connection with word 2’s line

• Word 2 is not connected with data 

lines Q2 and Q0

• Output is 1010

8 × 4  ROM

3×8

decoder

Q0Q3

A0

enable

A2

word 0

word 1

A1

Q2 Q1

programmable 

connection wired-OR

word line

data line

word 2

Internal view
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Mask-programmed ROM

• Connections “programmed” at fabrication

– set of masks

• Lowest write ability

– only once

• Highest storage permanence

– bits never change unless damaged

• Typically used for final design of high-volume systems

– spread out NRE cost for a low unit cost
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OTP ROM: One-time programmable ROM

• Connections “programmed” after manufacture by user

– user provides file of desired contents of ROM

– file input to machine called ROM programmer

– each programmable connection is a fuse/antifuse

• Very low write ability

– typically written only once and requires ROM programmer device

• Very high storage permanence

– bits don’t change unless reconnected to programmer and more fuses 

blown

• Commonly used in final products

– cheaper, harder to inadvertently modify
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+15V
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source drain
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5-30 min

EPROM: Erasable programmable ROM

• Programmable component is a MOS transistor

– Transistor has “floating” gate surrounded by an insulator

– (a) Negative charges form a channel between source and drain 

storing a logic 1

– (b) Large positive voltage at gate causes negative charges to 

move out of channel and get trapped in floating gate storing a 

logic 0

– (c) (Erase) Shining UV rays on surface of floating-gate causes 

negative charges to return to channel from floating gate restoring 

the logic 1

– (d) An EPROM package showing quartz window through which 

UV light can pass

• Better write ability

– can be erased and reprogrammed thousands of times

• Reduced storage permanence

– program lasts about 10 years but is susceptible to 

radiation and electric noise

• Typically used during design development
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EEPROM:

Electrically erasable programmable ROM 

• Programmed and erased electronically

– typically by using higher than normal voltage

– can program and erase individual words

• Better write ability

– can be in-system programmable with built-in circuit to provide higher 

than normal voltage

• built-in memory controller commonly used to hide details from memory user

– writes very slow due to erasing and programming

• “busy” pin indicates to processor EEPROM still writing

– can be erased and programmed tens of thousands of times

• Similar storage permanence to EPROM (about 10 years)

• Far more convenient than EPROMs, but more expensive



Embedded Systems Design: A Unified 

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
19

Flash Memory

• Extension of EEPROM
– Same floating gate principle

– Same write ability and storage permanence

• Fast erase
– Large blocks of memory erased at once, rather than one word at a time

– Blocks typically several thousand bytes large

• Writes to single words may be slower
– Entire block must be read, word updated, then entire block written back

• NAND (read block)/NOR (read byte)

• Used with embedded systems storing large data items in 
nonvolatile memory
– e.g., digital cameras, TV set-top boxes, cell phones (NAND)

– BIOS, Smarthphone OSs (NOR)
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RAM: “Random-access” memory

• Typically volatile memory

– bits are not held without power supply

• Read and written to easily by embedded system 

during execution

• Internal structure more complex than ROM

– a word consists of several memory cells, each 

storing 1 bit

– each input and output data line connects to each 

cell in its column

– rd/wr connected to every cell

– when row is enabled by decoder, each cell has logic 

that stores input data bit when rd/wr indicates write 

or outputs stored bit when rd/wr indicates read

enable

2k × n read and write 

memory

A0
…

r/w

…

Q0Qn-1

Ak-1

external view

4×4 RAM

2×4 

decoder

Q0Q3

A0

enable

A1

Q2 Q1

Memory 

cell

I0I3 I2 I1

rd/wr To every  cell

internal view
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Basic types of RAM

• SRAM: Static RAM

– Memory cell uses flip-flop to store bit

– Requires 6 transistors 

– Holds data as long as power supplied

• DRAM: Dynamic RAM

– Memory cell uses MOS transistor and 

capacitor to store bit

– More compact than SRAM

– “Refresh” required due to capacitor leak

• word’s cells refreshed when read

– Typical refresh rate 15.625 microsec.

– Slower to access than SRAM

memory cell internals

Data

W

Data'

SRAM

Data

W

DRAM
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Ram variations

• PSRAM: Pseudo-static RAM

– DRAM with built-in memory refresh controller

– Popular low-cost high-density alternative to SRAM

• NVRAM: Nonvolatile RAM

– Holds data after external power removed

– Battery-backed RAM

• SRAM with own permanently connected battery

• writes as fast as reads

• no limit on number of writes unlike nonvolatile ROM-based memory

– SRAM with EEPROM or flash

• stores complete RAM contents on EEPROM or flash before power turned off
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Example: 

HM6264 & 27C256 RAM/ROM devices

• Low-cost low-capacity memory 

devices 

• Commonly used in 8-bit 

microcontroller-based 

embedded systems

• First two numeric digits indicate 

device type

– RAM: 62

– ROM: 27

• Subsequent digits indicate 

capacity in kilobits

• Memory controllers?

Device       Access Time (ns)      Standby Pwr. (mW)      Active Pwr. (mW)      Vcc Voltage (V)

HM6264            85-100                           .01                                 15                               5

27C256                  90                              .5                                  100                              5

22

20

data<7…0>

addr<15...0>

/OE

/WE

/CS1

CS2 HM6264

11-13, 15-19

2,23,21,24,
25, 3-10

22

27

20

26

data<7…0>

addr<15...0>

/OE

/CS

27C256

11-13, 15-19

27,26,2,23,21,
24,25, 3-10

block diagrams

device characteristics

timing diagrams

data

addr

OE

/CS1

CS2

Read operation

data

addr

WE

/CS1

CS2

Write operation
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The future?
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The future?
Phase Change Memory

• Overview
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The future?
Phase Change Memory

• Comparison
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The future?
Phase Change Memory

• Possible use

– EEPROM replacement

– Hybrid architectures for mobile platforms
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Composing Memory
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Composing memory

• Memory size needed often differs from size of readily 

available memories

• When available memory is larger, simply ignore unneeded 

high-order address bits and higher data lines

• When available memory is smaller, compose several smaller 

memories into one larger memory

– Connect side-by-side to increase width of words

– Connect top to bottom to increase number of words

• added high-order address line selects smaller memory 

containing desired word using a decoder

– Combine techniques to increase number and width of words

…

2m × 3n  ROM

2m × n  ROM

A0 …

enable 2m × n  ROM

…

2m × n  ROM

…

Q3n-1 Q2n-1

…

Q0

…

Am

Increase width 

of words

2m+1 × n  ROM

2m × n  ROM

A0
…

enable

…

2m × n  ROM

Am-1

Am

1 × 2 

decoder

…

…

…

Qn-1 Q0

…

Increase number of words

A

enable

outputs

Increase number 

and width of 

words
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Memory Hierarchy & Cache Memory
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Memory hierarchy

• Want inexpensive, fast 

memory

• Main memory

– Large, inexpensive, slow 

memory stores entire 

program and data

• Cache

– Small, expensive, fast 

memory stores copy of likely 

accessed parts of larger 

memory

– Can be multiple levels of 

cache

L0?

Die, Chip, Module
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Memory hierarchy

More info:

https://www.hipeac.net/

vision/2019/

https://www.eurolab4h

pc.eu/media/public/visi

on/D2-2--final-

vision.pdf

• The future?
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Why cache memory?

• Empirical spatial/temporal locality principle
• If a memory location with address i is used at a time t, it is very 

probable that the same location and the near ones will be used in a 

few time

– This is valid both for instructions and data

– The principle is statistically verified by the major part of the programs

• Empirical “90/10” law

– 90% of the execution time is related to the 10% of code

• The law is statistically verified by several programs
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Cache

• Usually designed with SRAM

– faster but more expensive than DRAM

• Usually on same chip as processor

– space limited, so much smaller than off-chip main memory

– faster access ( 1 cycle vs. several cycles for main memory)

• Cache operation

– Request for main memory access (read or write)

– First, check cache for copy

• cache hit: copy is in cache, quick access

• cache miss: copy not in cache, read address and possibly its neighbors into cache

• Several cache design choices

– Separated or unified data/instructions cache

– Cache mapping, replacement policies, and write techniques
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Cache mapping

• Far fewer number of available cache addresses

– Are address’ contents in cache?

• Cache mapping used to assign main memory address to cache 

address and determine hit or miss

• Three basic techniques:

– Direct mapping

– Fully associative mapping

– Set-associative mapping

• Caches partitioned into indivisible blocks or lines of adjacent 

memory addresses

– usually 4 or 8 addresses per line
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Direct mapping

• Main memory address divided into 2 fields

– Index

• cache address

• number of bits determined by cache size

– Tag

• compared with tag stored in cache at address 

indicated by index

• if tags match, check valid bit

• Valid bit

– indicates whether data in slot has been loaded 

from memory

• Offset

– used to find particular word in cache line

Data

Valid

Tag Index Offset

=

V    T   D



Embedded Systems Design: A Unified 

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
37

Fully associative mapping

• Complete main memory address stored in each cache address

• All addresses stored in cache simultaneously compared with 

desired address

• Valid bit and offset same as direct mapping

Tag Offset

=

V    T   D

Valid

V    T   D
…

V    T   D

=
=

Data
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Set-associative mapping

• Compromise between direct mapping and 

fully associative mapping

• Index same as in direct mapping

• But, each cache address contains content 

and tags of 2 or more memory address 

locations

• Tags of that set simultaneously compared as 

in fully associative mapping

• Cache with set size N called N-way set-

associative

– 2-way, 4-way, 8-way are common

Tag Index Offset

=

V    T   D

Data

Valid

V    T   D

=
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Cache-replacement policy

• Technique for choosing which block to replace

– when fully associative cache is full

– when set-associative cache’s line is full

• Direct mapped cache has no choice

• Random

– replace block chosen at random

• LRU: least-recently used

– replace block not accessed for longest time

• FIFO: first-in-first-out

– push block onto queue when accessed

– choose block to replace by popping queue
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Cache write techniques

• When written, data cache must update main memory

• Write-through

– write to main memory whenever cache is written to

– easiest to implement 

– processor must wait for slower main memory write

– potential for unnecessary writes

• Write-back

– main memory only written when “dirty” block replaced

– extra dirty bit for each block set when cache block written to

– reduces number of slow main memory writes
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Cache impact on system performance

• Most important parameters in terms of performance

– Total size of cache

• Total number of data bytes cache can hold

• Tag, valid and other house keeping bits not included in total

– But they can be a lot!

– Degree of associativity

– Data block size

• Larger caches achieve lower miss rates but higher access cost

– Improving cache hit rate without increasing size

• Increase line size

• Change set-associativity

• Big problem!

– Cache coherence in multi processor/core systems!
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Examples

AMD Opteron ARM 7D Intel Xscale

CPU

Application

CISC, 64 bit

High-End Desktop

RISC, 32 bit

GPS, PDA, Games

RISC, 32 bit

Embedded

L1 organization

L1 dimension

L1 associativity

L1 replacement

L1 writing

Separated

64 KB, 64 KB

2-way

LRU

write-back

Unified

2 KB

4-way

LRU

write-back

Separated

32 KB, 32 KB

32-way

Roud-Robin

configurable

L2 organization

L2 dimension

L2 associativity

L2 replacement

L2 writing

Unified

1 MB

16-way

Approximated LRU

write-back
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Advanced RAM
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Advanced RAM

• DRAMs commonly used as main memory in processor based 

embedded systems

– high capacity, low cost

• Many variations of DRAMs proposed

– need to keep pace with processor speeds

• FPM DRAM: fast page mode DRAM

• EDO DRAM: extended data out DRAM

• SDRAM/ESDRAM: synchronous and enhanced synchronous DRAM

• RDRAM: rambus DRAM

• Double-Data Rate RAM (DDR, DDR2, DDR3, LP–DDR)

• Fully-Buffered DRAM (FB-DRAM)

– a key role is played by the memory controller
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DRAM integration problem

• SRAM easily integrated on same chip as processor

• DRAM more difficult

– Different “chip making process” between DRAM and 
conventional logic

• But similar to CMOS sensors!

– Goal of conventional logic (IC) designers

• minimize parasitic capacitance to reduce signal propagation delays 
and power consumption

– Goal of DRAM designers

• create capacitor cells to retain stored information

– Integration processes beginning to appear
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Scratch-Pad Memory
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Scratch-Pad Memory

• A combination of small memories containing 

frequently used data and instructions and a larger 

memory containing the remaining data and instructions 

is generally also more energy efficient than a single, 

large memory

– Caches were initially introduced in order to provide good 

run-time efficiency but it is obvious that caches potentially 

also improve the energy-efficiency of a memory system

• Accesses to caches are accesses to small memories and therefore 

may require less energy per access than large memories
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Scratch-Pad Memory

• However, for caches it is required that the hardware 
checks whether or not the cache has a valid copy of the 
information associated with a certain address

– This check involves comparing the tag fields of caches, 
containing a subset of the relevant address bits

• Reading these tags requires additional energy

• Also, the predictability of the real-time performance of caches is 
frequently low

• Alternatively…

…small memories can be mapped directly into the address 
space!
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Scratch-Pad Memory

• Such memories are called Scratch Pad Memories

– Frequently used variables and instructions should be 

allocated to that address space and no checking needs to be 

done in hardware

• As a result, the energy per access is reduced

– SPMs can improve memory access times and predictability, 

if the compiler is in charge of keeping frequently used 

variables in the SPM. But…

• SPM is visible to the programmer/compiler while cache is not!

• In a multi-tasking system the SPM could be erased (or managed 

in some way) at each context switch…
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Scratch-Pad Memory

• Structural view

DRAM

Data

Cache

CPU Core

External Memory
Interface

Address

Data

Scratch-Pad Memory

SRAM

I/F
SRAM

Hit

Hit



Embedded Systems Design: A Unified 

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
51

Scratch-Pad Memory

• Address space view

On-chip

Memory

Off-chip

Memory

Data

Cache
(on-chip)

CPU

Addressable

Memory

1 cycle

1 cycle

10-20 cycles

0

P-1

P

N-1
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Scratch-Pad Memory

• Scratchpad usage in embedded systems could reduce 

the memory energy consumption, improve the 

performance and reduce the occupied area

– To maximize the benefit of using scratchpads, compiler 

has a primary role in the memory allocation…

Cache

• Larger

• Subject to conflict, capacity and 

compulsary misses

• Unpredictable data access time

• Runtime assignment

Scratchpad

•Smaller

•Always result in a hit if requested 

within the data range

•Mapping by user or compiler 

directed


