
Embedded Systems Design: A Unified
Hardware/Software Introduction

1

Custom single-purpose processors
ESD_Cap2 ++

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

2

Outline

• Introduction
• Combinational logic
• Sequential logic
• Custom single-purpose processor design
• RT-level custom single-purpose processor design

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

3

Introduction

• Processor
– Digital circuit that performs a

computation tasks
– Controller and datapath
– General-purpose: variety of computation

tasks
– Single-purpose: one particular

computation task
– Custom single-purpose: non-standard

task

• A custom single-purpose
processor may be
– Fast, small, low power
– But, high NRE, longer time-to-market,

less flexible

Microcontroller

CCD
preprocessor

Pixel coprocessor
A2D

D2A

JPEG codec

DMA controller

Memory controller ISA bus interface UART LCD ctrl

Display
ctrl

Multiplier/Accum

Digital camera chip

lens

CCD

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

4

CMOS transistor on silicon

• Transistor
– The basic electrical component in digital systems
– Acts as an on/off switch
– Voltage at “gate” controls whether current flows from

source to drain
– Don’t confuse this “gate” with a logic gate

source drain
oxide
gate

IC package IC
channel

Silicon substrate

gate

source

drain

Conducts
if gate=1

1

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

5

CMOS transistor implementations

• Complementary Metal Oxide
Semiconductor

• We refer to logic levels
– Typically 0 is 0V, 1 is 5V

• Two basic CMOS types
– nMOS conducts if gate=1
– pMOS conducts if gate=0
– Hence “complementary”

• Basic gates
– Inverter, NAND, NOR

x F = x'

1

inverter

0

F = (xy)'

x
1

x

y

y

NAND gate

0

1

F = (x+y)'

x y

x

y

NOR gate
0

gate

source

drain

nMOS

Conducts
if gate=1

gate

source

drain

pMOS

Conducts
if gate=0

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

6

Basic logic gates

F = x y
AND

F = (x y)’
NAND

F = x y
XOR

F = x
Driver

F = x’
Inverter

x F

F = x + y
OR

F = (x+y)’
NOR

x F

x

y
F

F
x

y

x

y
F

x
y

F
x
y F

F = x y
XNOR

Fy
xx

0
y
0

F
0

0 1 0
1 0 0
1 1 1

x
0

y
0

F
0

0 1 1
1 0 1
1 1 1

x
0

y
0

F
0

0 1 1
1 0 1
1 1 0

x
0

y
0

F
1

0 1 0
1 0 0
1 1 1

x
0

y
0

F
1

0 1 1
1 0 1
1 1 0

x
0

y
0

F
1

0 1 0
1 0 0
1 1 0

x F
0 0
1 1

x F
0 1
1 0

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

7

Combinational logic design

A) Problem description

y is 1 if a is to 1, or b and c are 1. z is 1 if
b or c is to 1, but not both, or if all are 1.

D) Minimized output equations

00
0

1

01 11 10
0

1

0 1 0

1 1 1

a
bcy

y = a + bc

00
0

1

01 11 10
0

0

1 0 1

1 1 1

z

z = ab + b’c + bc’

a
bc

C) Output equations

y = a'bc + ab'c' + ab'c + abc' + abc

z = a'b'c + a'bc' + ab'c + abc' + abc

B) Truth table

1 0 1 1 1
1 1 0 1 1
1 1 1 1 1

0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 1 0

00 0 0 0

Inputs
a b c

Outputs
y z

E) Logic Gates

a
b
c

y

z

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

8

(RT-Level) Combinational components

With enable input e
all O’s are 0 if e=0

With carry-in input Ci

sum = A + B + Ci

May have status outputs
carry, zero, etc.

O =
I0 if S=0..00
I1 if S=0..01
…
I(m-1) if S=1..11

O0 =1 if I=0..00
O1 =1 if I=0..01
…
O(n-1) =1 if I=1..11

sum = A+B
(first n bits)

carry = (n+1)’th
bit of A+B

less = 1 if A<B
equal =1 if A=B
greater=1 if A>B

O = A op B
op determined
by S.

n-bit, m x 1
Multiplexor

O

…
S0

S(log m)

n

n

I(m-1) I1 I0

…

log n x n
Decoder

…

O1 O0O(n-1)

I0I(log n -1)
…

n-bit
Adder

n
A B

n

sumcarry

n-bit
Comparator

n n
A B

less equal greater

n bit,
m function

ALU

n n
A B

…
S0

S(log m)n

O

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

9

(RT-Level) Sequential components

Q =
0 if clear=1,
I if load=1 and clock=1,
Q(previous) otherwise.

Q =
0 if clear=1,
Q(prev)+1 if count=1 and clock=1.

clear

n-bit
Register

n

n

load

I

Q

shift

I Q

n-bit
Shift register

n-bit
Counter
n

Q

Q = lsb
- Content shifted
- I stored in msb

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

10

Sequential logic design

A) Problem Description

You want to construct a clock
divider. Slow down your pre-
existing clock so that you output a
1 for every four clock cycles

0

1 2

3

x=0

x=1x=0

x=0

a=1 a=1

a=1

a=1

a=0

a=0

a=0

a=0

B) State Diagram

C) Implementation Model

Combinational logic

State register

a x

I0

I0

I1

I1

Q1 Q0

D) State Table (Moore-type)

1 0 1 1 1
1 1 0 1 1
1 1 1 0 0

0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 1 0

00 0 0 0

Inputs
Q1 Q0 a

Outputs
I1 I0

1

0

0

0

x

• Given this implementation model
– Sequential logic design quickly reduces to

combinational logic design

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

11

Sequential logic design (cont.)

00

1

Q1Q0I1

I1 = Q1’Q0a + Q1a’ +
Q1Q0’

0 1

1

1

010

00 11 10a 01

0

0

0

1 0 1

1

00 01 11a

1

10I0 Q1Q0

I0 = Q0a’ + Q0’a0

1

0 0

0

1

1

0

0

00 01 11 10

x = Q1Q0

x

0

1

0

a

Q1Q0

E) Minimized Output Equations F) Combinational Logic

a

Q1 Q0

I0

I1

x

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

12

(RT-Level) Custom single-purpose processor
basic model

controller and datapath

controller datapath

…

…

external
control
inputs

external
control
outputs

…

external
data

inputs

…

external
data

outputs

datapath
control
inputs

datapath
control
outputs

… …

a view inside the controller and datapath

controller datapath

… …

state
register

next-state
and

control
logic

registers

functional
units

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

13

Example: greatest common divisor

GCD

(a) black-box
view

x_i y_i

d_o

go_i

0: int x, y;
1: while (1) {
2: while (!go_i);
3: x = x_i;
4: y = y_i;
5: while (x != y) {
6: if (x < y)
7: y = y - x;

else
8: x = x - y;

}
9: d_o = x;

}

(b) desired functionality

y = y -x7: x = x - y8:

6-J:

x!=y

5: !(x!=y)

x<y !(x<y)

6:

5-J:

1:

1

!1

x = x_i3:

y = y_i4:

2:

2-J:

!go_i

!(!go_i)

d_o = x

1-J:

9:

(c) state
diagram• First create algorithm

• Convert algorithm to
“complex” state machine
– Known as FSMD: finite-

state machine with data
– Can use templates to

perform such conversion

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

14

State diagram templates

Assignment statement

a = b
next statement

a = b

next
statement

Loop statement

while (cond) {
loop-body-

statements
}
next statement

loop-body-
statements

cond

next
statement

!cond

J:

C:

Branch statement

if (c1)
c1 stmts

else if c2
c2 stmts

else
other stmts

next statement

c1

c2 stmts

!c1*c2 !c1*!c2

next
statement

othersc1 stmts

J:

C:

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

15

Creating the datapath

• Create a register for any
declared variable

• Create a functional unit for
each arithmetic operation

• Connect the ports, registers
and functional units
– Based on reads and writes
– Use multiplexors for

multiple sources

• Create unique identifier
– for each datapath component

control input and output

y = y -x7: x = x - y8:

6-J:

x!=y

5: !(x!=y)

x<y !(x<y)

6:

5-J:

1:

1

!1

x = x_i3:

y = y_i4:

2:

2-J:

!go_i

!(!go_i)

d_o = x

1-J:

9:

subtractor subtractor
7: y-x8: x-y5: x!=y 6: x<y

x_i y_i

d_o

0: x 0: y

9: d

n-bit 2x1 n-bit 2x1
x_sel

y_sel
x_ld

y_ld

x_neq_y

x_lt_y
d_ld

<
5: x!=y

!=

Datapath

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

16

Creating the controller’s FSM

• Same structure as FSMD
• Replace complex

actions/conditions with
datapath configurations

y = y -x7: x = x - y8:

6-J:

x!=y

5: !(x!=y)

x<y !(x<y)

6:

5-J:

1:

1

!1

x = x_i3:

y = y_i4:

2:

2-J:

!go_i

!(!go_i)

d_o = x

1-J:

9:

y_sel = 1
y_ld = 1

7: x_sel = 1
x_ld = 1

8:

6-J:

x_neq_y

5:
!x_neq_y

x_lt_y !x_lt_y

6:

5-J:

d_ld = 1

1-J:

9:

x_sel = 0
x_ld = 13:

y_sel = 0
y_ld = 14:

1:
1

!1

2:

2-J:

!go_i

!(!go_i)

go_i

0000

0001

0010

0011

0100

0101

0110

0111 1000
1001

1010

1011

1100

Controller

subtractor subtractor
7: y-x8: x-y5: x!=y 6: x<y

x_i y_i

d_o

0: x 0: y

9: d

n-bit 2x1 n-bit 2x1
x_sel

y_sel
x_ld

y_ld

x_neq_y

x_lt_y
d_ld

<
5: x!=y

!=

Datapath

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

17

Splitting into a controller and datapath

y_sel = 1
y_ld = 1

7: x_sel = 1
x_ld = 1

8:

6-J:

x_neq_y=1

5:
x_neq_y=0

x_lt_y=1 x_lt_y=0

6:

5-J:

d_ld = 1

1-J:

9:

x_sel = 0
x_ld = 13:

y_sel = 0
y_ld = 14:

1:
1

!1

2:

2-J:

!go_i

!(!go_i)

go_i

0000

0001

0010

0011

0100

0101

0110

0111 1000
1001

1010

1011

1100

ControllerController implementation model

y_sel
x_sel

Combinational
logic

Q3 Q0

State register

go_i

x_neq_y
x_lt_y

x_ld
y_ld

d_ld

Q2 Q1

I3 I0I2 I1

subtractor subtractor
7: y-x8: x-y5: x!=y 6: x<y

x_i y_i

d_o

0: x 0: y

9: d

n-bit 2x1 n-bit 2x1
x_sel

y_sel
x_ld

y_ld

x_neq_y

x_lt_y
d_ld

<
5: x!=y

!=

(b) Datapath

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

18

Controller state table for the GCD example

Inputs Outputs

Q3 Q2 Q1 Q0 x_neq
_y

x_lt_
y

go_i I3 I2 I1 I0 x_sel y_sel x_ld y_ld d_ld

0 0 0 0 * * * 0 0 0 1 X X 0 0 0

0 0 0 1 * * 0 0 0 1 0 X X 0 0 0

0 0 0 1 * * 1 0 0 1 1 X X 0 0 0

0 0 1 0 * * * 0 0 0 1 X X 0 0 0

0 0 1 1 * * * 0 1 0 0 0 X 1 0 0

0 1 0 0 * * * 0 1 0 1 X 0 0 1 0

0 1 0 1 0 * * 1 0 1 1 X X 0 0 0

0 1 0 1 1 * * 0 1 1 0 X X 0 0 0

0 1 1 0 * 0 * 1 0 0 0 X X 0 0 0

0 1 1 0 * 1 * 0 1 1 1 X X 0 0 0

0 1 1 1 * * * 1 0 0 1 X 1 0 1 0

1 0 0 0 * * * 1 0 0 1 1 X 1 0 0

1 0 0 1 * * * 1 0 1 0 X X 0 0 0

1 0 1 0 * * * 0 1 0 1 X X 0 0 0

1 0 1 1 * * * 1 1 0 0 X X 0 0 1

1 1 0 0 * * * 0 0 0 0 X X 0 0 0

1 1 0 1 * * * 0 0 0 0 X X 0 0 0

1 1 1 0 * * * 0 0 0 0 X X 0 0 0

1 1 1 1 * * * 0 0 0 0 X X 0 0 0

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

19

Completing the GCD
custom single-purpose processor design

• We finished the datapath
• We have a state table for

the next state and control
logic
– All that’s left is

combinational logic
design

• This is not an optimized
design, but we see the
basic steps

… …

a view inside the controller and datapath

controller datapath

… …

state
register

next-state
and

control
logic

registers

functional
units

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

20

• We often start with a state
machine
– Rather than algorithm
– Cycle timing often too central

to functionality

• Example
– Bus bridge that converts 4-bit

bus to 8-bit bus
– Start with FSMD
– Known as register-transfer

(RT) level
– Exercise: complete the design

RT-level
custom single-purpose processor design

Pr
ob

le
m

 S
pe

ci
fic

at
io

n

Bridge
A single-purpose processor that

converts two 4-bit inputs, arriving one
at a time over data_in along with a

rdy_in pulse, into one 8-bit output on
data_out along with a rdy_out pulse.

Sende
r

data_in(4)

rdy_in rdy_out

data_out(8)

Rece
iver

clock

FS
M

D

WaitFirst4 RecFirst4Start
data_lo=data_in

WaitSecond4

rdy_in=1
rdy_in=0

RecFirst4End

rdy_in=1

RecSecond4Start
data_hi=data_in

RecSecond4End

rdy_in=1rdy_in=0
rdy_in=1

rdy_in=0

Send8Start
data_out=data_hi

& data_lo
rdy_out=1

Send8End
rdy_out=0

Bridge

rdy_in=0
Inputs
rdy_in: bit; data_in: bit[4];

Outputs
rdy_out: bit; data_out:bit[8]

Variables
data_lo, data_hi: bit[4];

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

21

RT-level
custom single-purpose processor design

WaitFirst4 RecFirst4Start
data_lo_ld=1

WaitSecond4

rdy_in=1
rdy_in=0

RecFirst4End

rdy_in=1

RecSecond4Start
data_hi_ld=1

RecSecond4End

rdy_in=1rdy_in=0
rdy_in=1

rdy_in=0

Send8Start
data_out_ld=1

rdy_out=1

Send8End
rdy_out=0

(a) Controller

rdy_in rdy_out

data_lodata_hi

data_in(4)

(b) Datapath
data_outda

ta
_o

ut
_l

d
da

ta
_h

i_
ld

da
ta

_l
o_

ld

clk

to
 a

ll
re

gi
st

er
s

data_out

Bridge

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

22

Optimizing single-purpose processors

• Optimization is the task of making design metric
values the best possible

• Optimization opportunities
– original program
– FSMD
– datapath
– FSM

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

23

Optimizing the original program

• Analyze program attributes and look for areas of
possible improvement
– number of computations
– size of variable
– time and space complexity
– operations used

• multiplication and division very expensive

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

24

Optimizing the original program (cont’)

0: int x, y;
1: while (1) {
2: while (!go_i);
3: x = x_i;
4: y = y_i;
5: while (x != y) {
6: if (x < y)
7: y = y - x;

else
8: x = x - y;

}
9: d_o = x;

}

0: int x, y, r;
1: while (1) {
2: while (!go_i);

// x must be the larger number
3: if (x_i >= y_i) {
4: x=x_i;
5: y=y_i;

}
6: else {
7: x=y_i;
8: y=x_i;

}
9: while (y != 0) {

10: r = x % y;
11: x = y;
12: y = r;

}
13: d_o = x;

}

original program optimized program

replace the subtraction
operation(s) with modulo

operation in order to speed
up program

GCD(42, 8) - 9 iterations to complete the loop

x and y values evaluated as follows : (42, 8), (43, 8),
(26,8), (18,8), (10, 8), (2,8), (2,6), (2,4), (2,2).

GCD(42,8) - 3 iterations to complete the loop

x and y values evaluated as follows: (42, 8), (8,2),
(2,0)

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

25

Optimizing the FSMD

• Areas of possible improvements
– merge states

• states with constants on transitions can be eliminated, transition
taken is already known

• states with independent operations can be merged

– separate states
• states which require complex operations (a*b*c*d) can be broken

into smaller states to reduce hardware size

– scheduling

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

26

Optimizing the FSMD (cont.)

int x, y;
2:

go_i !go_i

x = x_i
y = y_i

x<y x>y

y = y -x x = x - y

3:

5:

7: 8:

d_o = x9:

y = y -x7: x = x - y8:

6-J:

x!=y

5: !(x!=y)

x<y !(x<y)

6:

5-J:

1:

1

!1

x = x_i

y = y_i4:

2:

2-J:
!go_i

!(!go_i)

d_o = x

1-J:

9:

int x, y;

3:

original FSMD optimized FSMD

eliminate state 1 – transitions have constant values

merge state 2 and state 2J – no loop operation in
between them

merge state 3 and state 4 – assignment operations are
independent of one another

merge state 5 and state 6 – transitions from state 6 can
be done in state 5

eliminate state 5J and 6J – transitions from each state
can be done from state 7 and state 8, respectively

eliminate state 1-J – transition from state 1-J can be
done directly from state 9

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

27

Optimizing the datapath

• Sharing of functional units
– one-to-one mapping, as done previously, is not necessary
– if same operation occurs in different states, they can share a

single functional unit

• Multi-functional units
– ALUs support a variety of operations, it can be shared

among operations occurring in different states

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

28

Optimizing the FSM

• State encoding
– task of assigning a unique bit pattern to each state in an FSM
– size of state register and combinational logic vary
– can be treated as an ordering problem

• State minimization
– task of merging equivalent states into a single state

• state equivalent if for all possible input combinations the two states
generate the same outputs and transitions to the next same state

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

29

Summary

• Custom single-purpose processors
– Straightforward design techniques
– Can be built to execute algorithms
– Typically start with FSMD
– CAD tools can be of great assistance

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

30

Considerations

• Y-Chart
– Gajski-Kuhn Chart

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

31

Concurrent

functionalities

(blocks, processes)

Processors, Memories, Interconnections

Pseudo-code

C-code

Assembly code
SW: GPP, ASP

HW: SPP

Combinatorial Circuits

Logical/Boolean Equations

Truth Tables

Sequential Circuits

State Table/Diagram

FSMD

ASM

Transaction

Level

Modeling

Behavioural

Differential Equations

Registers, Multiplexers

Adders, Subtractors, ALUs

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

32

Considerations

• Why HW design is normally more complex than SW
design?
– In HW design, there is (quite) always the need to consider

some structural issues
• This often implies to face with synthesis, mapping, etc.

– We cannot completely forget the lower levels of abstraction!

– In SW Design, fixed a programming language, we can “just”
select an existing GPP/ASP processor and to compile for it

• No structural issues!

– Moreover, the re-use practice (e.g. libraries, OSs, etc.) is still
more mature in the SW domain than in the HW one

