
Embedded Systems Design: A Unified

Hardware/Software Introduction

1

Introduction
ESD_Cap1++

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
2

Outline

• Embedded systems overview

– What are they?

• Design challenge – optimizing design metrics

• Technologies

– IC technologies

– Processor technologies

– Design technologies

• Summary

Embedded Systems Design: A Unified

Hardware/Software Introduction

3

Embedded systems overview

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
4

Embedded systems overview

• Computing systems are everywhere

• Most of us think of “desktop” computers

– PC’s

– Laptops

– Mainframes

– Servers

• But there’s another type of computing system

– Far more common...

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
5

Embedded systems overview

• Embedded computing systems

– Computing systems embedded within

other devices

– Hard to define. Nearly any computing

system other than a desktop computer

– Billions of units produced yearly, versus

millions of desktop units

– Perhaps 50 per household and per

automobile

Computers are in here...

and here...

and even here...

Lots more of these,

though they cost a lot

less each.

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
6

A “short list” of embedded systems

And the list goes on and on

Anti-lock brakes

Auto-focus cameras

Automatic teller machines

Automatic toll systems

Automatic transmission

Avionic systems

Battery chargers

Camcorders

Cell phones

Cell-phone base stations

Cordless phones

Cruise control

Curbside check-in systems

Digital cameras

Disk drives

Electronic card readers

Electronic instruments

Electronic toys/games

Factory control

Fax machines

Fingerprint identifiers

Home security systems

Life-support systems

Medical testing systems

Modems

MPEG decoders

Network cards

Network switches/routers

On-board navigation

Pagers

Photocopiers

Point-of-sale systems

Portable video games

Printers

Satellite phones

Scanners

Smart ovens/dishwashers

Speech recognizers

Stereo systems

Teleconferencing systems

Televisions

Temperature controllers

Theft tracking systems

TV set-top boxes

VCR’s, DVD players

Video game consoles

Video phones

Washers and dryers

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
7

Some common characteristics

of embedded systems

• Single-functioned

– Executes a single program, repeatedly

• But more complex ones are not so uncommon

– High-Performance Embedded Systems

• e.g., edge/fog (i.e., pervasive) computing

• Tightly-constrained

– Low cost, low power, small, fast, etc.

• Reactive and real-time

– Continually reacts to changes in the system’s environment

– Must compute certain results in “real-time” without delay

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
8

An embedded system example:

a digital camera

Microcontroller

CCD preprocessor Pixel coprocessor
A2D

D2A

JPEG codec

DMA controller

Memory controller ISA bus interface UART LCD ctrl

Display ctrl

Multiplier/Accum

Digital camera chip

lens

CCD

• Single-functioned -- always a digital camera

• Tightly-constrained -- Low cost, low power, small, fast

• Reactive and real-time -- only to a small extent

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
9

Considerations

• An important feature of such systems, from a market

point of view, is that they are often used to introduce

innovation

– Traditional products with innovative services

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
10

Considerations

• Traditional products with innovative services

– Example: E-Tooth-Brush

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
11

Considerations

• Traditional products with innovative services

– Example: Smart Beer Glass

88--bit processorbit processor

Capacitive sensor Capacitive sensor

for fluid levelfor fluid level

Inductive coil for RF Inductive coil for RF

ID activation & ID activation &

powerpower

CPU and reading coil in the table.

Reports the level of fluid in the glass,

alerts servers when close to empty

Contact less Contact less

transmission transmission

of power and of power and

readingsreadings

© Jakob Engblom

Integrates several technologies:

▪ Radio transmissions

▪ Sensor technology

▪ Magnetic inductance for

power

▪ Computer used for

calibration

Impossible without the computer

Meaningless without the

electronics

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
12

Considerations

• Traditional products with innovative services

– Example: Remember Ring

http://www.alaskajewelry.com/images/ring_animation.gif

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
13

Considerations

• Traditional products with innovative services

– Example: OSRAM DULUX EL SENSOR

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
14

Considerations

• Traditional products with innovative services

– And so on…

• e.g.

– https://www.techrepublic.com/pictures/photos-the-weird-the-wacky-

and-the-cool-tech-of-ces-2020/

https://www.techrepublic.com/pictures/photos-the-weird-the-wacky-and-the-cool-tech-of-ces-2020/

Embedded Systems Design: A Unified

Hardware/Software Introduction

15

Design challenge – optimizing design metrics

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
16

Design challenge:

optimizing design metrics

• Obvious design goal:

– Construct an implementation with desired functionality

• Functional Requirements (FR)

• Key design challenge:

– Simultaneously optimize numerous design metrics

• Non-Functional (or Extra-Functional) Requirements (NFR)

• Design metric

– A measurable feature of a system’s implementation

– Optimizing design metrics is a key challenge

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
17

Design challenge:

optimizing design metrics

• Common metrics

– NRE cost (Non-Recurring Engineering cost): the one-time
monetary cost of designing the system

– Unit cost: the monetary cost of manufacturing each copy of the system,

excluding NRE cost

– Size: the physical space required by the system

• Area (or % of available resources, e.g. memory)

– Performance: the execution time or throughput of the system

• But also Latency, Speedup, …

– Power/Energy: the amount of power/energy consumed by the system

– Flexibility: the ability to change the functionality of the system without

incurring heavy NRE cost

– …

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
18

Considerations

• A designer could think that F/NF aspects driving the

design choices are only related to technology issues

but, in the real industrial life, the ability to exploit the

market at the best moment is often the most important

one!

– It is needed to select technologies and design methodologies

that lead to the max sales volume and max profit

• Rarely this means to exploit the most advanced technologies…

• Not always this means to find the most cheaper design!

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
19

Considerations

• Time-to-market

– Sales volume loss

On-time Delayed

entry entry

Peak revenue

Peak revenue from delayed

entry

Market rise Market fall

W 2W

Time

D

On-time

Delayed
R

ev
en

u
es

 (
$
)

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
20

Design metric competition:

improving one may worsen others

• Expertise with both software

and hardware is needed to

optimize design metrics

– Not just a hardware or

software expert, as is common

– A designer must be

comfortable with various

technologies in order to choose

the best for a given application

and constraints

SizePerformance

Power

NRE cost

Microcontroller

CCD preprocessor Pixel coprocessor
A2D

D2A

JPEG codec

DMA controller

Memory controller ISA bus interface UART LCD ctrl

Display ctrl

Multiplier/Accum

Digital camera chip

lens

CCD

Hardware

Software

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
21

Considerations

• Given the same F requirements, the best technologies

could be very different depending on NF ones

– The whole HW/SW architecture could be very different too!

• For this, it is quite difficult to standardize embedded

system architectures (as normally done for general-

purpose systems)

– Some exceptions could be found in specific domains

• e.g. the AUTOSAR reference architecture in the automotive domain

• This exacerbate the need for cross-competence

designers!

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
22

Considerations

• Implementation alternatives

Functionality x

Analog

Implementation

Digital Implementation

Direct Implementation

(wired, intrinsic, HW)

HW COTS

HW Ad-Hoc

(Re)Configurable HW

Indirect Implementation

(programmed, SW)

HW COTS

HW Ad-Hoc

(Re)Configurable HW

Functionality 1 Functionality n
Application (System)

+ NFRF

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
23

Considerations

• Implementation alternatives

Digital Implementation

Direct Implementation

(wired, intrinsic, HW)

HW COTS (COTS SPP)

HW Ad-Hoc (Custom SPP)

(Re)Configurable HW (COTS/Custom IP SPP)

Indirect Implementation

(programmed, SW)

HW COTS (COTS GPP, COTS ASP)

HW Ad-Hoc (Custom GPP, Custom ASP)

(Re)Configurable HW (COTS/Custom IP GPP, COTS/Custom IP ASP)

Functionality x

Functionality 1 Functionality n
Application (System)

+ NFRF

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
24

Considerations

Digital Implementation

Direct Implementation

(wired, intrinsic, HW)

HW COTS (COTS SPP)

HW Ad-Hoc (Custom SPP)

(Re)Configurable HW (COTS/Custom IP SPP)

Indirect Implementation

(programmed, SW)

HW COTS (COTS GPP, COTS ASP)

HW Ad-Hoc (Custom GPP, Custom ASP)

(Re)Configurable HW (COTS/Custom IP GPP, COTS/Custom IP ASP)

Functionality x

Functionality 1 Functionality n
Application (System)

+ NFF

• HW/SW Architectures

?

Embedded Systems Design: A Unified

Hardware/Software Introduction

25

Technologies

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
26

Three key embedded system technologies

• Technology

– A manner of accomplishing a task, especially using technical

processes, methods, or knowledge

• Three key technologies for embedded systems

– IC technology

– Processor technology

– Design technology

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
27

Three key embedded system technologies

• Technology

– A manner of accomplishing a task, especially using technical

processes, methods, or knowledge

• Three key technologies for embedded systems

– IC technology

• In which way can we realize processors?

– Processor technology

– Design technology

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
28

IC technology

• The manner in which a digital implementation is

mapped onto an IC

– IC: Integrated circuit, or “chip” (HW Component)

– IC technologies differ in their customization to a design

– IC’s consist of numerous layers (perhaps 10 or more)

• IC technologies differ with respect to who builds each layer and

when

source drainchannel

oxide

gate

Silicon substrate

IC package IC

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
29

IC technology

• Three types of IC technologies

– Full-custom/VLSI

– Semi-custom ASIC (gate array and standard cell)

– PLD (Programmable Logic Device)

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
30

Full-custom/VLSI

• All layers are optimized for an embedded system’s

particular digital implementation

– Placing transistors

– Sizing transistors

– Routing wires

• Benefits

– Excellent performance, small size, low power

• Drawbacks

– High NRE cost, long time-to-market

• Convenient for very high volumes and/or to optimize IC sections

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
31

Semi-custom

• Lower layers are fully or partially built

– Designers are left with routing of wires and maybe placing

some blocks

• Benefits

– Good performance, good size, less NRE cost than a full-

custom implementation

• Drawbacks

– Still require weeks to months to develop

• Convenient for high volumes and/or particular scenarios

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
32

PLD (Programmable Logic Device)

• All layers already exist

– Designers can purchase an IC

– Connections on the IC are either created or destroyed to

implement desired functionality

– Field-Programmable Gate Array (FPGA) very popular

• Benefits

– Low NRE costs, almost instant IC availability

• Drawbacks

– Bigger, expensive (near 5/50000 € per unit for a low/high

end FPGA chip), power hungry, slower

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
33

Three key embedded system technologies

• Technology

– A manner of accomplishing a task, especially using technical

processes, methods, or knowledge

• Three key technologies for embedded systems

– IC technology

• In which way can we realize processors?

– Processor technology

• In which way can we perform computations?

– Design technology

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
34

Processor technology

• The architecture of the computation engine used to implement a
system’s desired functionality

• Processor does not have to be programmable

– “Processor” not equal to general-purpose processor

Application-specific

Registers

Custom

ALU

DatapathController

Program memory

Assembly code

for:

total = 0

for i =1 to …

Control logic

and State

register

Data

memory

IR PC

Single-purpose (“hardware”)

DatapathController

Control

logic

State

register

Data

memory

index

total

+

IR PC

Register

file

General

ALU

DatapathController

Program

memory

Assembly code

for:

total = 0

for i =1 to …

Control

logic and

State register

Data

memory

General-purpose (“software”)

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
35

General-purpose processors

• Programmable device used in a variety of
applications

– Also known as “microprocessor”

• Features

– Program memory

– General datapath with large register file and
general ALU

• User benefits

– Low time-to-market and NRE costs

– High flexibility

• “Pentium” the most well-known, but
there are hundreds of others

IR PC

Register

file

General

ALU

DatapathController

Program

memory

Assembly code

for:

total = 0

for i =1 to …

Control

logic and

State register

Data

memory

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
36

Single-purpose processors

• Digital circuit designed to execute exactly

one functionality (i.e., “program”)

– a.k.a. coprocessor, accelerator or peripheral

• Features

– Contains only the components needed to

execute a single program

– No program memory

• Benefits

– Fast

– Low power

– Small size

DatapathController

Control

logic

State

register

Data

memory

index

total

+

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
37

Application-specific processors

• Programmable processor optimized for a

particular class of applications having

common characteristics

– Compromise between general-purpose and

single-purpose processors

• Features

– Program memory

– Optimized datapath

– Special functional units

• Benefits

– Some flexibility, good performance, size and

power

IR PC

Registers

Custom

ALU

DatapathController

Program

memory

Assembly code

for:

total = 0

for i =1 to …

Control

logic and

State register

Data

memory

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
38

Independence of processor

and IC technologies

• Basic tradeoff

– General vs. custom

– With respect to processor technology or IC technology

– The two technologies are independent

General-

purpose

processor

ASIP
Single-

purpose

processor

Semi-customPLD Full-custom

General,

providing improved:

Customized,

providing improved:

Power efficiency

Performance

Size

Cost (high volume)

Flexibility

Maintainability

NRE cost

Time- to-prototype

Time-to-market

Cost (low volume)

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
39

Processor

NO ISA

(SPP/HW)
ISA (SW)

GPP AS(I)P

Logical

Component

(Description)

Physical

Component

(Implementation)

PLD

(FPGA)

(AS)IC

-Full Custom

-Semi-Custom

What is it able to do?

How is it realized?

Component

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
40

Three key embedded system technologies

• Technology

– A manner of accomplishing a task, especially using technical
processes, methods, or knowledge

• Three key technologies for embedded systems

– IC technology

• In which way can we realize processors?

– Processor technology

• In which way can we perform computations?

– Design technology

• In which way can we design and exploit processors and their
combinations?

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
41

Moore’s law

• The most important trend in embedded systems

– Predicted in 1965 by Intel co-founder Gordon Moore

IC transistor capacity has doubled roughly every 18 months

for the past several decades

10,000

1,000

100

10

1

0.1

0.01

0.001

Logic transistors

per chip

(in millions)

Note:

logarithmic scale

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
42

Graphical illustration of Moore’s law

1981 1984 1987 1990 1993 1996 1999 2002

Leading edge

chip in 1981

10,000

transistors

Leading edge

chip in 2002

150,000,000

transistors

• Something that doubles frequently grows more quickly
than most people realize!

– A 2002 chip can hold about 15,000 1981 chips inside itself

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
43

Moore’s law

• But it is also a matter of costs…

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
44

Moore’s law

• The whole picture!

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
45

Design productivity exponential increase

• Exponential increase over the past few decades

100,000

10,000

1,000

100

10

1

0.1

0.01

1
9

8
3

1
9

8
7

1
9

8
9

1
9

9
1

1
9

9
3

1
9

8
5

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
1

2
0

0
3

2
0

0
5

2
0

0
7

2
0

0
9

P
ro

d
u
ct

iv
it

y

(K
)

T
ra

n
s.

/S
ta

ff
 –

M
o
.

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
46

Design productivity gap

• While designer productivity has grown at an impressive rate

over the past decades, the rate of improvement has not kept

pace with chip capacity

10,000

1,000

100

10

1

0.1

0.01

0.001

Logic transistors

per chip

(in millions)

100,000

10,000

1000

100

10

1

0.1

0.01

Productivity

(K) Trans./Staff-Mo.IC capacity

productivity

Gap

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
47

The mythical man-month

• The situation is even worse than the productivity gap indicates

• In theory, adding designers to team reduces project completion time

• In reality, productivity per designer decreases due to complexities of team management

and communication

• In the software community, known as “the mythical man-month” (Brooks 1975)

• At some point, can actually lengthen project completion time! (“Too many cooks”)

10 20 30 400

10000

20000

30000

40000

50000

60000

43

24

19

16
15

16
18

23

Team

Individual

Months until completion

Number of designers

• 1M transistors, 1

designer=5000 trans/month

• Each additional designer

reduces for 100 trans/month

• So 2 designers produce 4900

trans/month each

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
48

Design Technology

• The manner in which we convert our concept of

desired system functionality into an implementation

Libraries/IP: Incorporates pre-

designed implementation from

lower abstraction level into

higher level.

System

specification

Behavioral

specification

RT

specification

Logic

specification

To final implementation

Compilation/Synthesis:

Automates exploration and

insertion of implementation

details for lower level.

Test/Verification: Ensures correct

functionality at each level, thus

reducing costly iterations

between levels.

Compilation/

Synthesis

Libraries/

IP

Test/

Verification

System

synthesis

Behavior

synthesis

RT

synthesis

Logic

synthesis

Hw/Sw/

OS

Cores

RT

components

Gates/

Cells

Model simulat./

checkers

Hw-Sw

cosimulators

HDL simulators

Gate

simulators

EDA

Tools

Electronic

Design

Automation

Electronic System Level

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
49

The co-design ladder

• In the past:

– Hardware and software

design technologies were

very different

– Recent maturation of

synthesis enables a unified

view of hardware and

software

• Hardware/software

“codesign”
Implementation

Assembly instructions

Machine instructions

Register transfers

Compilers

(1960's,1970's)

Assemblers, linkers

(1950's, 1960's)

Behavioral synthesis

(1990's)

RT synthesis

(1980's, 1990's)

Logic synthesis

(1970's, 1980's)

Microprocessor plus

program bits: “software”

VLSI, ASIC, or PLD

implementation: “hardware”

Logic gates

Logic equations / FSM's

Sequential program code (e.g., C, VHDL)

The choice of hardware versus software for a particular function is simply a tradeoff among various

design metrics, like performance, power, size, NRE cost, and especially flexibility; there is no

fundamental difference between what hardware or software can implement.

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
50

Considerations

• Embedded systems development is still far from being

a discipline with mature and general design

methodologies

– SW Engineering vs ES Engineering

• It requires cross-competences and good knowledge of

the applicative domain

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
51

Considerations

• An helpful improvement is currently provided by the
so called Platform Based Design approach

– The goal is to define and/or exploit domain-oriented
HW/SW architectures (i.e. the platforms) that could be easily
re-used for all the applications of a given domain

• e.g. Automotive: AUTOSAR, Aeronautics: ARINC,…

– A platform can be

• Virtual: it is a set of models of the different parts of the system
(may be executable, analyzable, synthesizable,…)

• Real: it is a set of well known existing hw/sw components

• Benefits: re-use of basic blocks already validated and commercially
available to move the design effort at higher levels of abstraction

• Drawbacks: less customizable/optimizable

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis
52

Summary

• Embedded systems are everywhere

• Key challenge: optimization of design metrics

– Design metrics compete with one another

• A unified view of hardware and software is necessary to

improve productivity

• Three key technologies

– IC: Full-custom, semi-custom, PLD

– Processor: general-purpose, application-specific, single-purpose

– Design: Compilation/synthesis, libraries/IP, test/verification

