
Embedded Systems Design: A Unified
Hardware/Software Introduction

1

General-Purpose Processors: Software
ESD_Cap3 ++/--

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

2

Introduction

• General-Purpose Processor
– Processor designed for a variety of computation tasks
– Low unit cost, in part because manufacturer spreads NRE

over large numbers of units
• Motorola sold half a billion 68HC05 microcontrollers in 1996 alone

– Carefully designed since higher NRE is acceptable
• Can yield good performance, size and power

– Low NRE cost, short time-to-market/prototype, high
flexibility

• User just writes software; no processor design
– a.k.a. “microprocessor” – “micro” used when they were

implemented on one or a few chips rather than entire rooms

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

3

Basic Architecture

• Control unit and
datapath
– Note similarity to single-

purpose processor
• In fact they are SPP!

– The “single purpose”
is: to be able to execute
a given ISA!

See_Extra ch3_102802

• Key differences
– Datapath is general
– Control unit doesn’t store

the algorithm – the
algorithm is
“programmed” into the
memory

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

4

Datapath Operations

• Load
– Read memory location

into register
• ALU operation

– Input certain registers
through ALU, store
back in register

• Store
– Write register to

memory location

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...

10

+1

11

11

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

5

Control Unit

• Control unit: configures the datapath
operations

– Sequence of desired operations
(“instructions”) stored in memory –
“program”

• Instruction cycle – broken into
several sub-operations, each one
clock cycle, e.g.:

– Fetch: Get next instruction into IR
– Decode: Determine what the

instruction means
– Fetch operands: Move data from

memory to datapath register
– Execute: Move data through the

ALU
– Store results: Write data from

register to memory

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

6

Control Unit Sub-Operations

• Fetch
– Get next instruction

into IR
– PC: program

counter, always
points to next
instruction

– IR: holds the
fetched instruction

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

7

Control Unit Sub-Operations

• Decode
– Determine what the

instruction means

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

8

Control Unit Sub-Operations

• Fetch operands
– Move data from

memory to datapath
register

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

10

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

9

Control Unit Sub-Operations

• Execute
– Move data through

the ALU
– This particular

instruction does
nothing during this
sub-operation

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

10

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

10

Control Unit Sub-Operations

• Store results
– Write data from

register to memory
– This particular

instruction does
nothing during this
sub-operation

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

10

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

11

Instruction Cycles

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1

PC=100

10

Fetch
ops

Exec. Store
results

clk

Fetch

load R0, M[500]

Decode

100

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

12

Instruction Cycles

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1
10

PC=100
Fetch Decode Fetch

ops
Exec. Store

results
clk

PC=101

inc R1, R0

Fetch Fetch
ops

+1

11

Exec. Store
results

clk

101

Decode

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

13

Instruction Cycles

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1
1110

PC=100
Fetch Decode Fetch

ops
Exec. Store

results
clk

PC=101
Fetch Decode Fetch

ops
Exec. Store

results
clk

PC=102
store M[501], R1

Fetch Fetch
ops

Exec.

11

Store
results

clk

Decode

102

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

14

Architectural Considerations

• N-bit processor
– N-bit ALU, registers,

buses, memory data
interface

– Embedded: 8-bit, 16-
bit, 32-bit common

– Desktop/servers: 32-
bit, even 64

• PC size determines
address space

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

15

Architectural Considerations

• Clock frequency
– Inverse of clock

period
– Must be longer than

longest register to
register delay in
entire processor

– Memory access is
often the longest

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

16

Pipelining: Increasing Instruction Throughput

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Fetch-instr.

Decode

Fetch ops.

Execute

Store res.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Wash

Dry

Time

Non-pipelined Pipelined

Time

Time

Pipelined

pipelined instruction execution

non-pipelined dish cleaning pipelined dish cleaning

Instruction 1

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

17

Superscalar and VLIW Architectures

• Performance can be improved by:
– Faster clock (but there’s a limit)

• Dennard Scaling & Black Silicon
– Pipelining: slice up instruction into stages, overlap stages
– Multiple ALUs to support more than one instruction stream

• Superscalar
– Scalar: non-vector operations
– Fetches instructions in batches, executes as many as possible

• May require extensive hardware to detect independent instructions
• VLIW: each word in memory has multiple independent instructions

– Relies on the compiler to detect and schedule instructions
– Currently growing in popularity (2000)

• Currently used only in specific domains (2015)

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

18

Two Memory Architectures

Processor

Program
memory

Data memory

Processor

Memory
(program and data)

Harvard Princeton (Von Neumann)

• Princeton
– Fewer memory

wires

• Harvard
– Simultaneous

program and data
memory access

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

19

Cache Memory

• Memory access may be slow
• Cache is small but fast

memory close to processor
– Holds copy of part of memory
– Hits and misses

Processor

Memory

Cache

Fast/expensive technology, usually on
the same chip

Slower/cheaper technology, usually on
a different chip

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

20

Programmer’s View

• Programmer doesn’t need detailed understanding of architecture
– Instead, needs to know what instructions can be executed

• Two levels of instructions:
– Assembly level
– High-Level Languages (C, C++, Java, etc.)

• Most development today done using HLL
– But, some assembly level programming may still be necessary
– Drivers: portion of program that communicates with and/or controls

(drives) another device
• Often have detailed timing considerations, extensive bit manipulation
• Assembly level may be best for these

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

21

Assembly-Level Instructions

opcode operand1 operand2

opcode operand1 operand2

opcode operand1 operand2

opcode operand1 operand2

...

Instruction 1

Instruction 2

Instruction 3

Instruction 4

• Instruction Set
– Defines the legal set of instructions for that processor

• Data transfer: memory/register, register/register, I/O, etc.
• Arithmetic/logical: move register through ALU and back
• Branches: determine next PC value when not just PC+1

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

22

A Simple (Trivial) Instruction Set

opcode operands

MOV Rn, direct

MOV @Rn, Rm

ADD Rn, Rm

0000 Rn direct

0010 Rn

0100 RmRn

Rn = M(direct)

Rn = Rn + Rm

SUB Rn, Rm 0101 Rm Rn = Rn - Rm

MOV Rn, #immed. 0011 Rn immediate Rn = immediate

Assembly instruct. First byte Second byte Operation

JZ Rn, relative 0110 Rn relative PC = PC+ relative
(only if Rn is 0)

Rn

MOV direct, Rn 0001 Rn direct M(direct) = Rn

Rm M(Rn) = Rm

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

23

Addressing Modes

Data

Immediate

Register-direct

Register
indirect

Direct

Indirect

Data

Operand field

Register address

Register address

Memory address

Memory address

Memory address Data

Data

Memory address

Data

Addressing
mode

Register-file
contents

Memory
contents

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

24

Sample Programs

int total = 0;
for (int i=10; i!=0; i--)

total += i;
// next instructions...

C program

MOV R0, #0; // total = 0
MOV R1, #10; // i = 10

JZ R1, Next; // Done if i=0
ADD R0, R1; // total += i

MOV R2, #1; // constant 1

JZ R3, Loop; // Jump always

Loop:

Next: // next instructions...

SUB R1, R2; // i--

Equivalent assembly program

MOV R3, #0; // constant 0

0
1
2
3

5
6
7

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

25

Programmer Considerations

• Program and data memory space
– Embedded processors often very limited

• e.g., 64 Kbytes program, 256 bytes of RAM (expandable)

• Registers: How many are there?
– Only a direct concern for assembly-level programmers

• I/O
– How communicate with external signals?

• Interrupts

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

26

Operating System

• Optional software layer
providing low-level services to
a program (application)
– File management, disk access
– Keyboard/display interfacing
– Scheduling multiple programs for

execution
• Or even just multiple threads from

one program
– Program makes system calls to

the OS

DB file_name “out.txt” -- store file name

MOV R0, 1324 -- system call “open” id
MOV R1, file_name -- address of file-name
INT 34 -- cause a system call
JZ R0, L1 -- if zero -> error

. . . read the file
JMP L2 -- bypass error cond.
L1:

. . . handle the error

L2:

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

27

Development Environment

• Development processor
– The processor on which we write and debug our programs

• Usually a PC

• Target processor
– The processor that the program will run on in our embedded

system
• Often different from the development processor

Development processor Target processor

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

28

Software Development Process

Compiler

Linker

C File C File Asm.
File

Binary
File

Binary
File

Binary
File

Exec.
File

Assemble
r

Library

Implementation Phase

Debugger

Profiler

Verification Phase

• Compilers
– Cross compiler

• Runs on one
processor, but
generates code for
another

– Often retargetable

• Assemblers
• Linkers
• Debuggers
• Profilers

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

29

Running a Program

• If development processor is different than target, how can we
run our compiled code? Two options:
– Download to target processor
– Simulate

• Simulation: main methods
– Compile for host and execute on it!

• Suitable to check algorithm logic correctness
– Suitable to evaluate statistics/metrics/estimations?

– Hardware Description Language
• More detailed but slow, not always available

– Instruction Set Simulator (ISS)
• Runs on development processor, but executes (i.e. interprets) assembly

instructions of target processor

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

30

Instruction Set Simulator
for a simple processor

#include <stdio.h>
typedef struct {

unsigned char first_byte, second_byte;
} instruction;

instruction program[1024]; //instruction memory
unsigned char memory[256]; //data memory

void run_program(int num_bytes) {

int pc = -1;
unsigned char reg[16], fb, sb;

while(++pc < (num_bytes / 2)) {
fb = program[pc].first_byte;
sb = program[pc].second_byte;
switch(fb >> 4) {

case 0: reg[fb & 0x0f] = memory[sb]; break;
case 1: memory[sb] = reg[fb & 0x0f]; break;
case 2: memory[reg[fb & 0x0f]] =

reg[sb >> 4]; break;
case 3: reg[fb & 0x0f] = sb; break;
case 4: reg[fb & 0x0f] += reg[sb >> 4]; break;
case 5: reg[fb & 0x0f] -= reg[sb >> 4]; break;
case 6: pc += sb; break;
default: return –1;

}
}
return 0;

}

int main(int argc, char *argv[]) {

FILE* ifs;

If(argc != 2 ||
(ifs = fopen(argv[1], “rb”) == NULL) {

return –1;
}
if (run_program(fread(program,

sizeof(program) == 0) {
print_memory_contents();
return(0);

}
else return(-1);

}

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

31

Testing and Debugging

Implementation
Phase

Implementation
Phase

Verification
Phase

Verification
Phase

Emulator

Debugger
/ ISS

Programmer

Development processor

(a) (b)

External tools

• ISS (HDL)
– Gives us control over time –

set breakpoints, look at
register values, set values,
step-by-step execution, ...

– But, doesn’t interact with real
environment

• Download to board
– Use device programmer
– Runs in real environment, but

not controllable
• Compromise: Emulator

– Runs in real environment, at
speed or near

– Supports some controllability
from the PCSee Extra RTC4ES

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

32

Application-Specific Instruction-Set
Processors (ASIPs)

• General-purpose processors
– Sometimes too general to be effective in demanding

application
• e.g., video processing – requires huge video buffers and operations

on large arrays of data, inefficient on a GPP
– But single-purpose processor has high NRE, not

programmable
• ASIPs – targeted to a particular domain

– Contain architectural features specific to that domain
• e.g., embedded control, digital signal processing, video processing,

network processing, telecommunications, etc.
– Still programmable

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

33

A Common ASIP: Microcontroller

• For embedded control applications
– Reading sensors, setting actuators
– Mostly dealing with events (bits): data is present, but not in huge

amounts
– e.g., VCR, disk drive, digital camera (assuming SPP for image

compression), washing machine, microwave oven
• Microcontroller features

– On-chip peripherals
• Timers, analog-digital converters, serial communication, etc.
• Tightly integrated for programmer, typically part of register space

– On-chip program and data memory
– Direct programmer access to many of the chip’s pins
– Specialized instructions for bit-manipulation and other low-level

operations

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

34

Another Common ASIP:
Digital Signal Processors (DSP)

• For signal processing applications
– Large amounts of digitized data, often streaming
– Data transformations must be applied fast
– e.g., cell-phone voice filter, digital TV, music synthesizer

• DSP features
– Several instruction execution units
– Multiple-accumulate single-cycle instruction, other instrs.
– Efficient vector operations – e.g., add two arrays

• Vector ALUs, loop buffers, etc.

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

35

Trend: Even More Customized ASIPs

• In the past, microprocessors were acquired as chips
– Today, we increasingly acquire a processor as Intellectual Property (IP)

• e.g., soft-cores: synthesizable VHDL models

• Opportunity to add a custom datapath hardware and a few
custom instructions, or delete a few instructions
– Can have significant performance, power and size impacts
– Problem: need compiler/debugger for customized ASIP

• Remember, most development uses structured languages
• One solution: automatic RTL core and compiler/debugger generation

– e.g.
• http://ip.cadence.com/ipportfolio/tensilica-ip
• https://www.synopsys.com/IP/ProcessorIP/asip/Pages/asip-eupdate-april2015.aspx
• http://www.archc.org/

http://ip.cadence.com/ipportfolio/tensilica-ip
https://www.synopsys.com/IP/ProcessorIP/asip/Pages/asip-eupdate-april2015.aspx
http://www.archc.org/

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

36

Selecting a Microprocessor

• Issues
– Technical: speed, power, size, cost
– Other: development environment, prior expertise, licensing, etc.

• Speed: how evaluate a processor’s speed?
– Clock speed – but instructions per cycle may differ
– Instructions per second – but work per instr. may differ
– Dhrystone: Synthetic benchmark, developed in 1984. Dhrystones/sec.
– SPEC: set of more realistic benchmarks, but oriented to desktops
– Other…
– EEMBC – EDN Embedded Benchmark Consortium, www.eembc.org

• Suites of benchmarks: automotive, consumer electronics, networking, office
automation, telecommunications

http://www.eembc.org/

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

37

General Purpose Processors (1998!)

Processor Clock speed Periph. Bus Width MIPS Power Trans. Price
General Purpose Processors

Intel PIII 1GHz 2x16 K
L1, 256K
L2, MMX

32 ~900 97W ~7M $900

IBM
PowerPC
750X

550 MHz 2x32 K
L1, 256K
L2

32/64 ~1300 5W ~7M $900

MIPS
R5000

250 MHz 2x32 K
2 way set assoc.

32/64 NA NA 3.6M NA

StrongARM
SA-110

233 MHz None 32 268 1W 2.1M NA

Microcontroller
Intel
8051

12 MHz 4K ROM, 128 RAM,
32 I/O, Timer, UART

8 ~1 ~0.2W ~10K $7

Motorola
68HC811

3 MHz 4K ROM, 192 RAM,
32 I/O, Timer, WDT,
SPI

8 ~.5 ~0.1W ~10K $5

Digital Signal Processors
TI C5416 160 MHz 128K, SRAM, 3 T1

Ports, DMA, 13
ADC, 9 DAC

16/32 ~600 NA NA $34

Lucent
DSP32C

80 MHz 16K Inst., 2K Data,
Serial Ports, DMA

32 40 NA NA $75

Sources: Intel, Motorola, MIPS, ARM, TI, and IBM Website/Datasheet; Embedded Systems Programming, Nov. 1998

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

38

Chapter Summary

• General-purpose processors
– Good performance, low NRE, flexible

• Controller, datapath, and memory
• Structured languages prevail

– But some assembly level programming still necessary
• Many tools available

– Including instruction-set simulators, and in-circuit emulators
• ASIPs

– Microcontrollers, DSPs, network processors, more customized ASIPs
• Choosing among processors is an important step

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

39

Processor

NO ISA
(SPP) ISA

GPP AS(I)P

Logical
Component

(Description)

Physical
Component

(Implementation)

PLD
(FPGA) (AS)IC

Simulators (ALG, ISS)
Compilers
Assemblers

Linkers
Debuggers
Profilers

Operating Systems
Libraries

HDL Simulators
(BHV, RTL, GATE)

Synthesizers
Map/Place/Route Oscilloscopes

Analyzers
On-Chip Debuggers

What?

How?

	General-Purpose Processors: Software�ESD_Cap3 ++/--
	Introduction
	Basic Architecture
	Datapath Operations
	Control Unit
	Control Unit Sub-Operations
	Control Unit Sub-Operations
	Control Unit Sub-Operations
	Control Unit Sub-Operations
	Control Unit Sub-Operations
	Instruction Cycles
	Instruction Cycles
	Instruction Cycles
	Architectural Considerations
	Architectural Considerations
	Pipelining: Increasing Instruction Throughput
	Superscalar and VLIW Architectures
	Two Memory Architectures
	Cache Memory
	Programmer’s View
	Assembly-Level Instructions
	A Simple (Trivial) Instruction Set
	Addressing Modes
	Sample Programs
	Programmer Considerations
	Operating System
	Development Environment
	Software Development Process
	Running a Program
	Instruction Set Simulator�for a simple processor
	Testing and Debugging
	Application-Specific Instruction-Set Processors (ASIPs)
	A Common ASIP: Microcontroller
	Another Common ASIP:�Digital Signal Processors (DSP)
	Trend: Even More Customized ASIPs
	Selecting a Microprocessor
	General Purpose Processors (1998!)
	Chapter Summary
	Diapositiva numero 39

