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Foreword 
We live in a world today in which software plays a critical part. The most critical soft ware is not 
running on large systems and PCs. Rather, it runs inside the infrastructure and in the devices that 
we use every day. Our transportation, communications, and energy systems won't work if the 
embedded software contained in our cars, phones, routers and power plants crashes. 

The design of this invisible, embedded software is crucial to all of us. Yet, there has been a real 
shortage of good information as to effective design and implementation practices specific to this 
very different world. Make no mistake, it is indeed different and often more difficult to design 
embedded software than more traditional programs. Time, and the interaction of multiple tasks in 
real-time, must be managed. Seemingly esoteric concepts, such as priority inversion, can 
become concrete in a hurry when they bring a device to its knees. Efficiency-a small memory 
footprint and the ability to run on lower cost hardware-become key design considerations 
because they directly affect cost, power usage, size, and battery life. Of course, reliability is 
paramount when so much is at stake-company and product reputations, critical infrastructure 
functions, and, some times, even lives. 

Mr. Li has done a marvelous job of pulling together the relevant information. He lays out the 
issues, the decision and design process, and the available tools and methods. The latter part of 
the book provides valuable insights and practical experiences in understanding application 
development, common design problems, and solutions. The book will be helpful to anyone 
embarking on an embedded design project, but will be of par ticular help to engineers who are 
experienced in software development but not yet in real-time and embedded software 
development. It is also a wonderful text or reference volume for academic use. 

The quality of the pervasive, invisible software surrounding us will determine much about the 
world being created today. This book will have a positive effect on that quality and is a welcome 
addition to the engineering bookshelf.  

Jerry Fiddler  
Chairman and Co-Founder, Wind River  
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Chapter 1: Introduction 
Overview 
In ways virtually unimaginable just a few decades ago, embedded systems are reshaping the way 
people live, work, and play. Embedded systems come in an endless variety of types, each 
exhibiting unique characteristics. For example, most vehicles driven today embed intelligent 
computer chips that perform value-added tasks, which make the vehicles easier, cleaner, and 
more fun to drive. Telephone systems rely on multiple integrated hardware and software systems 
to connect people around the world. Even private homes are being filled with intelligent 
appliances and integrated systems built around embedded systems, which facilitate and enhance 
everyday life. 

Often referred to as pervasive or ubiquitous computers, embedded systems represent a class of 
dedicated computer systems designed for specific purposes. Many of these embedded systems 
are reliable and predictable. The devices that embed them are convenient, user-friendly, and 
dependable. 

One special class of embedded systems is distinguished from the rest by its requirement to 
respond to external events in real time. This category is classified as the real-time embedded 
system. 

As an introduction to embedded systems and real-time embedded systems, this chapter focuses 
on: 
§ examples of embedded systems, 
§ defining embedded systems, 
§ defining embedded systems with real-time behavior, and 
§ current trends in embedded systems. 
 
1.1 Real Life Examples of Embedded Systems 
Even though often nearly invisible, embedded systems are ubiquitous. Embedded systems are 
present in many industries, including industrial automation, defense, transportation, and 
aerospace. For example, NASA’s Mars Path Finder, Lockheed Martin’s missile guidance system, 
and the Ford automobile all contain numerous embedded systems. 

Every day, people throughout the world use embedded systems without even knowing it. In fact, 
the embedded system’s invisibility is its very beauty: users reap the advantages without having to 
understand the intricacies of the technology. 

Remarkably adaptable and versatile, embedded systems can be found at home, at work, and 
even in recreational devices. Indeed, it is difficult to find a segment of daily life that does not 
involve embedded systems in some way. Some of the more visible examples of embedded 
systems are provided in the next sections. 

1.1.1 Embedded Systems in the Home Environment 

Hidden conveniently within numerous household appliances, embedded systems are found all 
over the house. Consumers enjoy the effort-saving advanced features and benefits provided by 
these embedded technologies. 

As shown in Figure 1.1 embedded systems in the home assume many forms, including security 
systems, cable and satellite boxes for televisions, home theater systems, and telephone 
answering machines. As advances in microprocessors continue to improve the functionality of 



ordinary products, embedded systems are helping drive the development of additional home-
based innovations. 

 
Figure 1.1: Embedded systems at home.  

1.1.2 Embedded Systems in the Work Environment 
Embedded systems have also changed the way people conduct business. Perhaps the most 
significant example is the Internet, which is really just a very large collection of embedded 
systems that are interconnected using various networking technologies. Figure 1.2 illustrates 
what a small segment of the Internet might look like. 

 
Figure 1.2: Embedded systems at work.  

From various individual network end-points (for example, printers, cable modems, and enterprise 
network routers) to the backbone gigabit switches, embedded technology has helped make use 
of the Internet necessary to any business model. The network routers and the backbone gigabit 
switches are examples of real-time embedded systems. Advancements in real-time embedded 
technology are making Internet connectivity both reliable and responsive, despite the enormous 
amount of voice and data traffic carried over the network.  

1.1.3 Embedded Systems in Leisure Activities 

At home, at work, even at play, embedded systems are flourishing. A child’s toy unexpectedly 
springs to life with unabashed liveliness. Automobiles equipped with in-car navigation systems 
transport people to destinations safely and efficiently. Listening to favorite tunes with anytime-
anywhere freedom is readily achievable, thanks to embedded systems buried deep within 
sophisticated portable music players, as shown in Figure 1.3. 



 
Figure 1.3: Navigation system and portable music player.  

Even the portable computing device, called a web tablet, shown in Figure 1.4, is an embedded 
system. 

 
Figure 1.4: A web tablet.  

Embedded systems also have teamed with other technologies to deliver benefits to the 
traditionally low-tech world. GPS technology, for example, uses satellites to pinpoint locations to 
centimeter-level accuracy, which allows hikers, cyclists, and other outdoor enthusiasts to use 
GPS handheld devices to enjoy vast spaces without getting lost. Even fishermen use GPS 
devices to store the locations of their favorite fishing holes. 

Embedded systems also have taken traditional radio-controlled airplanes, racecars, and boats to 
new heights…and speeds. As complex embedded systems in disguise, these devices take 
command inputs from joysticks and pass them wirelessly to the device’s receiver, enabling the 
model airplane, racecar, or boat to engage in speedy and complex maneuvers. In fact, the 
introduction of embedded technology has rendered these sports safer and more enjoyable for 
model owners by virtually eliminating the once-common threat of crashing due to signal 
interference.  

1.1.4 Defining the Embedded System 

Some texts define embedded systems as computing systems or devices without a keyboard, 
display, or mouse. These texts use the “look” characteristic as the differentiating factor by saying, 
“embedded systems do not look like ordinary personal computers; they look like digital cameras 
or smart toasters.” These statements are all misleading.  

A general definition of embedded systems is: embedded systems are computing systems with 
tightly coupled hardware and software integration, that are designed to perform a dedicated 
function. The word embedded reflects the fact that these systems are usually an integral part of a 



larger system, known as the embedding system. Multiple embedded systems can coexist in an 
embedding system.  

This definition is good but subjective. In the majority of cases, embedded systems are truly 
embedded, i.e., they are “systems within systems.” They either cannot or do not function on their 
own. Take, for example, the digital set-top box (DST) found in many home entertainment systems 
nowadays. The digital audio/video decoding system, called the A/V decoder, which is an integral 
part of the DST, is an embedded system. The A/V decoder accepts a single multimedia stream 
and produces sound and video frames as output. The signals received from the satellite by the 
DST contain multiple streams or channels. Therefore, the A/V decoder works in conjunction with 
the transport stream decoder, which is yet another embedded system. The transport stream 
decoder de-multiplexes the incoming multimedia streams into separate channels and feeds only 
the selected channel to the A/V decoder.  

In some cases, embedded systems can function as standalone systems. The network router 
illustrated in Figure 1.2 is a standalone embedded system. It is built using a specialized 
communication processor, memory, a number of network access interfaces (known as network 
ports), and special software that implements packet routing algorithms. In other words, the 
network router is a standalone embedded system that routes packets coming from one port to 
another, based on a programmed routing algorithm. 

The definition also does not necessarily provide answers to some often-asked questions. For 
example: “Can a personal computer be classified as an embedded system? Why? Can an Apple 
iBook that is used only as a DVD player be called an embedded system?” 

A single comprehensive definition does not exist. Therefore, we need to focus on the char-
acteristics of embedded systems from many different perspectives to gain a real under-standing 
of what embedded systems are and what makes embedded systems special.  

1.1.5 Embedded Processor and Application Awareness 

The processors found in common personal computers (PC) are general-purpose or universal 
processors. They are complex in design because these processors provide a full scale of features 
and a wide spectrum of functionalities. They are designed to be suitable for a variety of 
applications. The systems using these universal processors are programmed with a multitude of 
applications. For example, modern processors have a built-in memory management unit (MMU) 
to provide memory protection and virtual memory for multitasking-capable, general-purpose 
operating systems. These universal processors have advanced cache logic. Many of these 
processors have a built-in math co-processor capable of performing fast floating-point operations. 
These processors provide interfaces to support a variety of external peripheral devices. These 
processors result in large power consumption, heat production, and size. The complexity means 
these processors are also expensive to fabricate. In the early days, embedded systems were 
commonly built using general-purpose processors. 

Because of the quantum leap in advancements made in microprocessor technology in recent 
years, embedded systems are increasingly being built using embedded processors instead of 
general-purpose processors. These embedded processors are special-purpose processors 
designed for a specific class of applications. The key is application awareness, i.e., knowing the 
nature of the applications and meeting the requirement for those applications that it is designed to 
run. 

One class of embedded processors focuses on size, power consumption, and price. Therefore, 
some embedded processors are limited in functionality, i.e., a processor is good enough for the 
class of applications for which it was designed but is likely inadequate for other classes of 
applications. This is one reason why many embedded processors do not have fast CPU speeds. 
For example, the processor chosen for a personal digital assistant (PDA) device does not have a 



floating-point co-processor because floating-point operations are either not needed or software 
emulation is sufficient. The processor might have a 16-bit addressing architecture instead of 32-
bit, due to its limited memory storage capacity. It might have a 200MHz CPU speed because the 
majority of the applications are interactive and display-intensive, rather than computation-
intensive. This class of embedded processors is small because the overall PDA device is slim 
and fits in the palm of your hand. The limited functionality means reduced power consumption 
and long-lasting battery life. The smaller size reduces the overall cost of processor fabrication. 

On the other hand, another class of embedded processors focuses on performance. These 
embedded processors are powerful and packed with advanced chip-design technologies, such as 
advanced pipeline and parallel processing architecture. These processors are designed to satisfy 
those applications with intensive computing requirements not achievable with general-purpose 
processors. An emerging class of highly specialized and high-performance embedded processors 
includes network processors developed for the network equipment and telecommunications 
industry. Overall, system and application speeds are the main concerns.  

Yet another class of embedded processors focuses on all four requirements—performance, size, 
power consumption, and price. Take, for example, the embedded digital signal processor (DSP) 
used in cell phones. Real-time voice communication involves digital signal processing and cannot 
tolerate delays. A DSP has specialized arithmetic units, optimized design in the memory, and 
addressing and bus architectures with multiprocessing capability that allow the DSP to perform 
complex calculations extremely fast in real time. A DSP outperforms a general-purpose processor 
running at the same clock speed many times over comes to digital signal processing. These 
reasons are why DSPs, instead of general-purpose processors, are chosen for cell phone 
designs. Even though DSPs are incredibly fast and powerful embedded processors, they are 
reasonably priced, which keeps the overall prices of cell phones competitive. The battery from 
which the DSP draws power lasts for hours and hours. A cell phone under $100 fits in half the 
palm-size of an average person at the time this book was written. 

System-on-a-chip (SoC) processors are especially attractive for embedded systems. The SoC 
processor is comprised of a CPU core with built-in peripheral modules, such as a programmable 
general-purpose timer, programmable interrupt controller, DMA controller, and possibly Ethernet 
interfaces. Such a self-contained design allows these embedded processors to be used to build a 
variety of embedded applications without needing additional external peripheral devices, again 
reducing the overall cost and size of the final product.  

Sometimes a gray area exists when using processor type to differentiate between embedded and 
non-embedded systems. It is worth noting that, in large-scale, high-performance embedded 
systems, the choice between embedded processors and universal microprocessors is a difficult 
one. 

In high-end embedded systems, system performance in a predefined context outweighs power 
consumption and cost. The choice of a high-end, general purpose processor is as good as the 
choice of a high-end, specialized embedded processor in some designs. Therefore, using 
processor type alone to classify embedded systems may result in wrong classifications. 

1.1.6 Hardware and Software Co-Design Model 

Commonly both the hardware and the software for an embedded system are developed in 
parallel. Constant design feedback between the two design teams should occur in this 
development model. The result is that each side can take advantage of what the other can do. 
The software component can take advantage of special hardware features to gain performance. 
The hardware component can simplify module design if functionality can be achieved in software 
that reduces overall hardware complexity and cost. Often design flaws, in both the hardware and 
software, are uncovered during this close collaboration. 



The hardware and software co-design model reemphasizes the fundamental characteristic of 
embedded systems—they are application-specific. An embedded system is usually built on 
custom hardware and software. Therefore, using this development model is both permissible and 
beneficial.  

1.1.7 Cross-Platform Development 

Another typical characteristic of embedded systems is its method of software development, called 
cross-platform development, for both system and application software. Software for an embedded 
system is developed on one platform but runs on another. In this context, the platform is the 
combination of hardware (such as particular type of processor), operating system, and software 
development tools used for further development. 

The host system is the system on which the embedded software is developed. The target system 
is the embedded system under development. 

The main software tool that makes cross-platform development possible is a cross compiler. A 
cross compiler is a compiler that runs on one type of processor architecture but produces object 
code for a different type of processor architecture. A cross compiler is used because the target 
system cannot host its own compiler. For example, the DIAB compiler from Wind River Systems 
is such a cross compiler. The DIAB compiler runs on the Microsoft Windows operating system 
(OS) on the IA-32 architecture and runs on various UNIX operating systems, such as the Solaris 
OS on the SPARC architecture. The compiler can produce object code for numerous processor 
types, such as Motorola’s 68000, MIPS, and ARM. We discuss more cross-development tools in 
Chapter 2.  

1.1.8 Software Storage and Upgradeability 

Code for embedded systems (such as the real-time embedded operating system, the system 
software, and the application software) is commonly stored in ROM and NVRAM memory 
devices. In Chapter 3, we discuss the embedded system booting process and the steps involved 
in extracting code from these storage devices. Upgrading an embedded system can mean 
building new PROM, deploying special equipment and/or a special method to reprogram the 
EPROM, or reprogramming the flash memory. 

The choice of software storage device has an impact on development. The process to reprogram 
an EPROM when small changes are made in the software can be tedious and time-consuming, 
and this occurrence is common during development. Removing an EPROM device from its socket 
can damage the EPROM; worse yet, the system itself can be damaged if careful handling is not 
exercised. 

The choice of the storage device can also have an impact on the overall cost of maintenance. 
Although PROM and EPROM devices are inexpensive, the cost can add up if a large volume of 
shipped systems is in the field. Upgrading an embedded system in these cases means shipping 
replacement PROM and EPROM chips. The embedded system can be upgraded without the 
need for chip replacement and can be upgraded dynamically over a network if flash memory or 
EEPROM is used as the code storage device (see the following sidebar). 

Armed with the information presented in the previous sections, we can now attempt to answer the 
questions raised earlier. A personal computer is not an embedded system because it is built 
using a general-purpose processor and is built independently from the software that runs on it. 
The software applications developed for personal computers, which run operating systems such 
as FreeBSD or Windows, are developed natively (as opposed to cross-developed) on those 
operating systems. For the same reasons, an Apple iBook used only as a DVD player is used like 
an embedded system but is not an embedded system.  



Read Only Memory (ROM)  

With non-volatile content and without the need for an external power source. 
§ Mask Programmed ROM—the memory content is programmed during the 

manufacturing process. Once programmed, the content cannot be changed. It cannot be 
reprogrammed. 

§ Field Programmable ROM (PROM)—the memory content can be custom-programmed 
one time. The memory content cannot change once programmed. 

§ Erasable Programmable ROM (EPROM)—an EPROM device can be custom-
programmed, erased, and reprogrammed as often as required within its lifetime (hundreds or 
even thousands of times). The memory content is non-volatile once programmed. Traditional 
EPROM devices are erased by exposure to ultraviolet (UV) light. An EPROM device must be 
removed from its housing unit first. It is then reprogrammed using a special hardware device 
called an EPROM programmer. 

§ Electrically Erasable Programmable ROM (EEPROM or E2PROM)—modern EPROM 
devices are erased electrically and are thus called EEPROM. One important difference 
between an EPROM and an EEPROM device is that with the EEPROM device, memory 
content of a single byte can be selectively erased and reprogrammed. Therefore, with an 
EEPROM device, incremental changes can be made. Another difference is the EEPROM 
can be reprogrammed without a special programmer and can stay in the device while being 
reprogrammed. The versatility of byte-level programmability of the EEPROM comes at a 
price, however, as programming an EEPROM device is a slow process. 

§ Flash Memory—the flash memory is a variation of EEPROM, which allows for block-
level (e.g., 512-byte) programmability that is much faster than EEPROM. 

Random Access Memory (RAM)  

Also called Read/Write Memory, requires external power to maintain memory content. The term 
random access refers to the ability to access any memory cell directly. RAM is much faster than 
ROM. Two types of RAM that are of interest:  
§ Dynamic RAM (DRAM)—DRAM is a RAM device that requires periodic refreshing to 

retain its content. 
§ Static RAM (SRAM)—SRAM is a RAM device that retains its content as long as power is 

supplied by an external power source. SRAM does not require periodic refreshing and it is 
faster than DRAM. 

§ Non-Volatile RAM (NVRAM)—NVRAM is a special type of SRAM that has backup 
battery power so it can retain its content after the main system power is shut off. Another 
variation of NVARM combines SRAM and EEPROM so that its content is written into the 
EEPROM when power is shut off and is read back from the EEPROM when power is 
restored. 

 
 1.2 Real-Time Embedded Systems 
In the simplest form, real-time systems can be defined as those systems that respond to external 
events in a timely fashion, as shown in Figure 1.5. The response time is guaranteed. We revisit 
this definition after presenting some examples of real-time systems. 



 
Figure 1.5: A simple view of real-time systems.  

External events can have synchronous or asynchronous characteristics. Responding to external 
events includes recognizing when an event occurs, performing the required processing as a 
result of the event, and outputting the necessary results within a given time constraint. Timing 
constraints include finish time, or both start time and finish time. 

A good way to understand the relationship between real-time systems and embedded systems is 
to view them as two intersecting circles, as shown in Figure 1.6. It can be seen that not all 
embedded systems exhibit real-time behaviors nor are all real-time systems embedded. 
However, the two systems are not mutually exclusive, and the area in which they overlap creates 
the combination of systems known as real-time embedded systems.  

 
Figure 1.6: Real-time embedded systems.  

Knowing this fact and because we have covered the various aspects of embedded systems in the 
previous sections, we can now focus our attention on real-time systems.  

 
Figure 1.7: Structure of real-time systems.  

1.2.1 Real-Time Systems 

The environment of the real-time system creates the external events. These events are received 
by one or more components of the real-time system. The response of the real-time system is then 
injected into its environment through one or more of its components. Decomposition of the real-
time system, as shown in Figure 1.5, leads to the general structure of real-time systems. 

The structure of a real-time system, as shown in Figure 1.7, is a controlling system and at least 
one controlled system. The controlling system interacts with the controlled system in various 
ways. First, the interaction can be periodic, in which communication is initiated from the 



controlling system to the controlled system. In this case, the communication is predictable and 
occurs at predefined intervals. Second, the interaction can be aperiodic, in which communication 
is initiated from the controlled system to the controlling system. In this case, the communication is 
unpredictable and is determined by the random occurrences of external events in the 
environment of the controlled system. Finally, the communication can be a combination of both 
types. The controlling system must process and respond to the events and information generated 
by the controlled system in a guaranteed time frame. 

Imagine a real-time weapons defense system whose role is to protect a naval destroyer by 
shooting down incoming missiles. The idea is to shred an incoming missile into pieces with bullets 
before it reaches the ship. The weapons system is comprised of a radar system, a command-
and-decision (C&D) system, and weapons firing control system. The controlling system is the 
C&D system, whereas the controlled systems are the radar system and the weapons firing control 
system.  
§ The radar system scans and searches for potential targets. Coordinates of a potential 

target are sent to the C&D system periodically with high frequency after the target is 
acquired.  

§ The C&D system must first determine the threat level by threat classification and 
evaluation, based on the target information provided by the radar system. If a threat is 
imminent, the C&D system must, at a minimum, calculate the speed and flight path or 
trajectory, as well as estimate the impact location. Because a missile tends to drift off its 
flight path with the degree of drift dependent on the precision of its guidance system, the 
C&D system calculates an area (a box) around the flight path.  

§ The C&D system then activates the weapons firing control system closest to the 
anticipated impact location and guides the weapons system to fire continuously within the 
moving area or box until the target is destroyed. The weapons firing control system is 
comprised of large-caliber, multi-barrel, high-muzzle velocity, high-power machine guns.  

In this weapons defense system example, the communication between the radar system and the 
C&D system is aperiodic, because the occurrence of a potential target is unpredictable and the 
potential target can appear at any time. The communication between the C&D system and the 
weapons firing control system is, however, periodic because the C&D system feeds the firing 
coordinates into the weapons control system periodically (with an extremely high frequency). 
Initial firing coordinates are based on a pre-computed flight path but are updated in real-time 
according to the actual location of the incoming missile. 

Consider another example of a real-time system-the cruise missile guidance system. A cruise 
missile flies at subsonic speed. It can travel at about 10 meters above water, 30 meters above flat 
ground, and 100 meters above mountain terrains. A modern cruise missile can hit a target within 
a 50-meter range. All these capabilities are due to the high-precision, real-time guidance system 
built into the nose of a cruise missile. In a simplified view, the guidance system is comprised of 
the radar system (both forward-looking and look-down radars), the navigation system, and the 
divert-and-altitude-control system. The navigation system contains digital maps covering the 
missile flight path. The forward-looking radar scans and maps out the approaching terrains. This 
information is fed to the navigation system in real time. The navigation system must then 
recalculate flight coordinates to avoid terrain obstacles. The new coordinates are immediately fed 
to the divert-and-altitude-control system to adjust the flight path. The look-down radar periodically 
scans the ground terrain along its flight path. The scanned data is compared with the estimated 
section of the pre-recorded maps. Corrective adjustments are made to the flight coordinates and 
sent to the divert-and-altitude-control system if data comparison indicates that the missile has 
drifted off the intended flight path.  

In this example, the controlling system is the navigation system. The controlled systems are the 
radar system and the divert-and-altitude-control system. We can observe both periodic and 
aperiodic communications in this example. The communication between the radars and the 



navigation system is aperiodic. The communication between the navigation system and the diver-
and-altitude-control system is periodic.  

Let us consider one more example of a real-time system-a DVD player. The DVD player must 
decode both the video and the audio streams from the disc simultaneously. While a movie is 
being played, the viewer can activate the on-screen display using a remote control. On-screen 
display is a user menu that allows the user to change parameters, such as the audio output 
format and language options. The DVD player is the controlling system, and the remote control is 
the controlled system. In this case, the remote control is viewed as a sensor because it feeds 
events, such as pause and language selection, into the DVD player.  

1.2.2 Characteristics of Real-Time Systems 

The C&D system in the weapons defense system must calculate the anticipated flight path of the 
incoming missile quickly and guide the firing system to shoot the missile down before it reaches 
the destroyer. Assume T1 is the time the missile takes to reach the ship and is a function of the 
missile's distance and velocity. Assume T2 is the time the C&D system takes to activate the 
weapons firing control system and includes transmitting the firing coordinates plus the firing 
delay. The difference between T1 and T2 is how long the computation may take. The missile 
would reach its intended target if the C&D system took too long in computing the flight path. The 
missile would still reach its target if the computation produced by the C&D system was 
inaccurate. The navigation system in the cruise missile must respond to the changing terrain fast 
enough so that it can re-compute coordinates and guide the altitude control system to a new flight 
path. The missile might collide with a mountain if the navigation system cannot compute new 
flight coordinates fast enough, or if the new coordinates do not steer the missile out of the 
collision course.  

Therefore, we can extract two essential characteristics of real-time systems from the examples 
given earlier. These characteristics are that real-time systems must produce correct 
computational results, called logical or functional correctness, and that these computations must 
conclude within a predefined period, called timing correctness.  

Real-time systems are defined as those systems in which the overall correctness of the system 
depends on both the functional correctness and the timing correctness. The timing cor-rectness is 
at least as important as the functional correctness.  

It is important to note that we said the timing correctness is at least as important as the functional 
correctness. In some real-time systems, functional correctness is sometimes sacrificed for timing 
correctness. We address this point shortly after we introduce the classifications of real-time 
systems.  

Similar to embedded systems, real-time systems also have substantial knowledge of the 
environment of the controlled system and the applications running on it. This reason is one why 
many real-time systems are said to be deterministic, because in those real-time systems, the 
response time to a detected event is bounded. The action (or actions) taken in response to an 
event is known a priori. A deterministic real-time system implies that each component of the 
system must have a deterministic behavior that contributes to the overall determinism of the 
system. As can be seen, a deterministic real-time system can be less adaptable to the changing 
environment. The lack of adaptability can result in a less robust system. The levels of 
determinism and of robustness must be balanced. The method of balancing between the two is 
system- and application-specific. This discussion, however, is beyond the scope of this book. 
Consult the reference material for additional coverage on this topic.  



1.2.3 Hard and Soft Real-Time Systems 

In the previous section, we said computation must complete before reaching a given deadline. In 
other words, real-time systems have timing constraints and are deadline-driven. Real-time 
systems can be classified, therefore, as either hard real-time systems or soft real-time systems. 

What differentiates hard real-time systems and soft real-time systems are the degree of tolerance 
of missed deadlines, usefulness of computed results after missed deadlines, and severity of the 
penalty incurred for failing to meet deadlines.  

For hard real-time systems, the level of tolerance for a missed deadline is extremely small or zero 
tolerance. The computed results after the missed deadline are likely useless for many of these 
systems. The penalty incurred for a missed deadline is catastrophe. For soft real-time systems, 
however, the level of tolerance is non-zero. The computed results after the missed deadline have 
a rate of depreciation. The usefulness of the results does not reach zero immediately passing the 
deadline, as in the case of many hard real-time systems. The physical impact of a missed 
deadline is non-catastrophic.  

A hard real-time system is a real-time system that must meet its deadlines with a near-zero 
degree of flexibility. The deadlines must be met, or catastrophes occur. The cost of such 
catastrophe is extremely high and can involve human lives. The computation results obtained 
after the deadline have either a zero-level of usefulness or have a high rate of depreciation as 
time moves further from the missed deadline before the system produces a response.  

A soft real-time system is a real-time system that must meet its deadlines but with a degree of 
flexibility. The deadlines can contain varying levels of tolerance, average timing deadlines, and 
even statistical distribution of response times with different degrees of acceptability. In a soft real-
time system, a missed deadline does not result in system failure, but costs can rise in proportion 
to the delay, depending on the application.  

Penalty is an important aspect of hard real-time systems for several reasons. 
§ What is meant by 'must meet the deadline'? 
§ It means something catastrophic occurs if the deadline is not met. It is the penalty that 

sets the requirement. 
§ Missing the deadline means a system failure, and no recovery is possible other than a 

reset, so the deadline must be met. Is this a hard real-time system? 

That depends. If a system failure means the system must be reset but no cost is associated 
with the failure, the deadline is not a hard deadline, and the system is not a hard real-time 
system. On the other hand, if a cost is associated, either in human lives or financial penalty 
such as a $50 million lawsuit, the deadline is a hard deadline, and it is a hard real-time 
system. It is the penalty that makes this determination. 

§ What defines the deadline for a hard real-time system? 
§ It is the penalty. For a hard real-time system, the deadline is a deterministic value, and, 

for a soft real-time system, the value can be estimation. 

One thing worth noting is that the length of the deadline does not make a real-time system hard 
or soft, but it is the requirement for meeting it within that time. 

The weapons defense and the missile guidance systems are hard real-time systems. Using the 
missile guidance system for an example, if the navigation system cannot compute the new 
coordinates in response to approaching mountain terrain before or at the deadline, not enough 
distance is left for the missile to change altitude. This system has zero tolerance for a missed 
deadline. The new coordinates obtained after the deadline are no longer useful because at 
subsonic speed the distance is too short for the altitude control system to navigate the missile into 
the new flight path in time. The penalty is a catastrophic event in which the missile collides with 



the mountain. Similarly, the weapons defense system is also a zero-tolerance system. The 
missed deadline results in the missile sinking the destroyer, and human lives potentially being 
lost. Again, the penalty incurred is catastrophic.  

On the other hand, the DVD player is a soft real-time system. The DVD player decodes the video 
and the audio streams while responding to user commands in real time. The user might send a 
series of commands to the DVD player rapidly causing the decoder to miss its deadline or 
deadlines. The result or penalty is momentary but visible video distortion or audible audio 
distortion. The DVD player has a high level of tolerance because it continues to function. The 
decoded data obtained after the deadline is still useful.  

Timing correctness is critical to most hard real-time systems. Therefore, hard real-time systems 
make every effort possible in predicting if a pending deadline might be missed. Returning to the 
weapons defense system, let us discuss how a hard real-time system takes corrective actions 
when it anticipates a deadline might be missed. In the weapons defense system example, the 
C&D system calculates a firing box around the projected missile flight path. The missile must be 
destroyed a certain distance away from the ship or the shrapnel can still cause damage. If the 
C&D system anticipates a missed deadline (for example, if by the time the precise firing 
coordinates are computed, the missile would have flown past the safe zone), the C&D system 
must take corrective action immediately. The C&D system enlarges the firing box and computes 
imprecise firing coordinates by methods of estimation instead of computing for precise values. 
The C&D system then activates additional weapons firing systems to compensate for this 
imprecision. The result is that additional guns are brought online to cover the larger firing box. 
The idea is that it is better to waste bullets than sink a destroyer. 

This example shows why sometimes functional correctness might be sacrificed for timing 
correctness for many real-time systems. 

Because one or a few missed deadlines do not have a detrimental impact on the operations of 
soft real-time systems, a soft real-time system might not need to predict if a pending deadline 
might be missed. Instead, the soft real-time system can begin a recovery process after a missed 
deadline is detected.  

For example, using the real-time DVD player, after a missed deadline is detected, the decoders in 
the DVD player use the computed results obtained after the deadline and use the data to make a 
decision on what future video frames and audio data must be discarded to re-synchronize the two 
streams. In other words, the decoders find ways to catch up. 

So far, we have focused on meeting the deadline or the finish time of some work or job, e.g., a 
computation. At times, meeting the start time of the job is just as important. The lack of required 
resources for the job, such as CPU or memory, can prevent a job from starting and can lead to 
missing the job completion deadline. Ultimately this problem becomes a resource-scheduling 
problem. The scheduling algorithms of a real-time system must schedule system resources so 
that jobs created in response to both periodic and aperiodic events can obtain the resources at 
the appropriate time. This process affords each job the ability to meet its specific timing 
constraints. This topic is addressed in detail in Chapter 14. 
 
1.3 The Future of Embedded Systems 
Until the early 1990s, embedded systems were generally simple, autonomous devices with long 
product lifecycles. In recent years, however, the embedded industry has experienced dramatic 
transformation, as reported by the Gartner Group, an independent research and advisory firm, as 
well as by other sources: 
§ Product market windows now dictate feverish six- to nine-month turnaround cycles. 
§ Globalization is redefining market opportunities and expanding application space.  



§ Connectivity is now a requirement rather than a bonus in both wired and emerging 
wireless technologies. 

§ Electronics-based products are more complex. 
§ Interconnecting embedded systems are yielding new applications that are dependent on 

networking infrastructures. 
§ The processing power of microprocessors is increasing at a rate predicted by Moore’s 

Law, which states that the number of transistors per integrated circuit doubles every 18 
months. 

If past trends give any indication of the future, then as technology evolves, embedded software 
will continue to proliferate into new applications and lead to smarter classes of products. With an 
ever-expanding marketplace fortified by growing consumer demand for devices that can virtually 
run themselves as well as the seemingly limitless opportunities created by the Internet, 
embedded systems will continue to reshape the world for years to come. 
 
1.4 Points to Remember 
§ An embedded system is built for a specific application. As such, the hardware and 

software components are highly integrated, and the development model is the hardware and 
software co-design model. 

§ Embedded systems are generally built using embedded processors. 
§ An embedded processor is a specialized processor, such as a DSP, that is cheaper to 

design and produce, can have built-in integrated devices, is limited in functionality, produces 
low heat, consumes low power, and does not necessarily have the fastest clock speed but 
meets the requirements of the specific applications for which it is designed. 

§ Real-time systems are characterized by the fact that timing correctness is just as 
important as functional or logical correctness. 

§ The severity of the penalty incurred for not satisfying timing constraints differentiates hard 
real-time systems from soft real-time systems. 

§ Real-time systems have a significant amount of application awareness similar to 
embedded systems. 

§ Real-time embedded systems are those embedded system with real-time behaviors. 
 
 



Chapter 2: Basics Of Developing For Embedded 
Systems 
2.1 Introduction 
Chapter 1 states that one characteristic of embedded systems is the cross-platform development 
methodology. The primary components in the development environment are the host system, the 
target embedded system, and potentially many connectivity solutions available between the host 
and the target embedded system, as shown in Figure 2.1. 

 
Figure 2.1: Typical cross-platform development environment.  

The essential development tools offered by the host system are the cross compiler, linker, and 
source-level debugger. The target embedded system might offer a dynamic loader, a link loader, 
a monitor, and a debug agent. A set of connections might be available between the host and the 
target system. These connections are used for downloading program images from the host 
system to the target system. These connections can also be used for transmitting debugger 
information between the host debugger and the target debug agent. 

Programs including the system software, the real-time operating system (RTOS), the kernel, and 
the application code must be developed first, compiled into object code, and linked together into 
an executable image. Programmers writing applications that execute in the same environment as 
used for development, called native development, do not need to be concerned with how an 
executable image is loaded into memory and how execution control is transferred to the 
application. Embedded developers doing cross-platform development, however, are required to 
understand the target system fully, how to store the program image on the target embedded 
system, how and where to load the program image during runtime, and how to develop and 
debug the system iteratively. Each of these aspects can impact how the code is developed, 
compiled, and most importantly linked.  

The areas of focus in this chapter are 
§ the ELF object file format, 
§ the linker and linker command file, and 
§ mapping the executable image onto the target embedded system. 

This chapter does not provide full coverage on each tool, such as the compiler and the linker, nor 
does this chapter fully describe a specific object file format. Instead, this chapter focuses on 
providing in-depth coverage on the aspects of each tool and the object file format that are most 
relevant to embedded system development. The goal is to offer the embedded developer 
practical insights on how the components relate to one another. Knowing the big picture allows an 
embedded developer to put it all together and ask the specific questions if and when necessary. 
 



2.2 Overview of Linkers and the Linking Process 
Figure 2.2 illustrates how different tools take various input files and generate appropriate output 
files to ultimately be used in building an executable image. 

 
Figure 2.2: Creating an image file for the target system.  

The developer writes the program in the C/C++ source files and header files. Some parts of the 
program can be written in assembly language and are produced in the corresponding assembly 
source files. The developer creates a makefile for the make utility to facilitate an environment 
that can easily track the file modifications and invoke the compiler and the assembler to rebuild 
the source files when necessary. From these source files, the compiler and the assembler 
produce object files that contain both machine binary code and program data. The archive utility 
concatenates a collection of object files to form a library. The linker takes these object files as 
input and produces either an executable image or an object file that can be used for additional 
linking with other object files. The linker command file instructs the linker on how to combine the 
object files and where to place the binary code and data in the target embedded system.  

The main function of the linker is to combine multiple object files into a larger relocatable object 
file, a shared object file, or a final executable image. In a typical program, a section of code in one 
source file can reference variables defined in another source file. A function in one source file can 
call a function in another source file. The global variables and non-static functions are commonly 
referred to as global symbols. In source files, these symbols have various names, for example, a 
global variable called foo_bar or a global function called func_a. In the final executable binary 
image, a symbol refers to an address location in memory. The content of this memory location is 
either data for variables or executable code for functions.  

The compiler creates a symbol table containing the symbol name to address mappings as part of 
the object file it produces. When creating relocatable output, the compiler generates the address 



that, for each symbol, is relative to the file being compiled. Consequently, these addresses are 
generated with respect to offset 0. The symbol table contains the global symbols defined in the 
file being compiled, as well as the external symbols referenced in the file that the linker needs to 
resolve. The linking process performed by the linker involves symbol resolution and symbol 
relocation.  

Symbol resolution is the process in which the linker goes through each object file and determines, 
for the object file, in which (other) object file or files the external symbols are defined. Sometimes 
the linker must process the list of object files multiple times while trying to resolve all of the 
external symbols. When external symbols are defined in a static library, the linker copies the 
object files from the library and writes them into the final image.  

Symbol relocation is the process in which the linker maps a symbol reference to its definition. The 
linker modifies the machine code of the linked object files so that code references to the symbols 
reflect the actual addresses assigned to these symbols. For many symbols, the relative offsets 
change after multiple object files are merged. Symbol relocation requires code modification 
because the linker adjusts the machine code referencing these symbols to reflect their finalized 
addresses. The relocation table tells the linker where in the program code to apply the relocation 
action. Each entry in the relocation table contains a reference to the symbol table. Using this 
reference, the linker can retrieve the actual address of the symbol and apply it to the program 
location as specified by the relocation entry. It is possible for the relocation table to contain both 
the address of the symbol and the information on the relocation entry. In this case, there is no 
reference between the relocation table and the symbol table. 

Figure 2.3 illustrates these two concepts in a simplified view and serves as an example for the 
following discussions. 

 
Figure 2.3: Relationship between the symbol table and the relocation table.  

For an executable image, all external symbols must be resolved so that each symbol has an 
absolute memory address because an executable image is ready for execution. The exception to 
this rule is that those symbols defined in shared libraries may still contain relative addresses, 
which are resolved at runtime (dynamic linking).  

A relocatable object file may contain unresolved external symbols. Similar to a library, a linker-
reproduced relocatable object file is a concatenation of multiple object files with one main 
difference—the file is partially resolved and is used for further linking with other object files to 
create an executable image or a shared object file. A shared object file has dual purposes. It can 
be used to link with other shared object files or relocatable object modules, or it can be used as 
an executable image with dynamic linking. 
 



2.3 Executable and Linking Format 
Typically an object file contains 
§ general information about the object file, such as file size, binary code and data size, and 

source file name from which it was created, 
§ machine-architecture-specific binary instructions and data 
§ symbol table and the symbol relocation table, and 
§ debug information, which the debugger uses. 

The manner in which this information is organized in the object file is the object file format. The 
idea behind a standard object file format is to allow development tools which might be produced 
by different vendors-such as a compiler, assembler, linker, and debugger that conform to the 
well-defined standard-to interoperate with each other.  

This interoperability means a developer can choose a compiler from vendor A to produce object 
code used to form a final executable image by a linker from vendor B. This concept gives the end 
developer great flexibility in choice for development tools because the developer can select a tool 
based on its functional strength rather than its vendor.  

Two common object file formats are the common object file format (COFF) and the executable 
and linking format (ELF). These file formats are incompatible with each other; therefore, be sure 
to select the tools, including the debugger, that recognize the format chosen for development.  

We focus our discussion on ELF because it supersedes COFF. Understanding the object file 
format allows the embedded developer to map an executable image into the target embedded 
system for static storage, as well as for runtime loading and execution. To do so, we need to 
discuss the specifics of ELF, as well as how it relates to the linker. 

Using the ELF object file format, the compiler organizes the compiled program into various 
system-defined, as well as user-defined, content groupings called sections. The program's binary 
instructions, binary data, symbol table, relocation table, and debug information are organized and 
contained in various sections. Each section has a type. Content is placed into a section if the 
section type matches the type of the content being stored. 

A section also contains important information such as the load address and the run address. The 
concept of load address versus run address is important because the run address and the load 
address can be different in embedded systems. This knowledge can also be helpful in 
understanding embedded system loader and link loader concepts introduced in Chapter 3. 

Chapter 1 discusses the idea that embedded systems typically have some form of ROM for non-
volatile storage and that the software for an embedded system can be stored in ROM. Modifiable 
data must reside in RAM. Programs that require fast execution speed also execute out of RAM. 
Commonly therefore, a small program in ROM, called a loader, copies the initialized variables into 
RAM, transfers the program code into RAM, and begins program execution out of RAM. This 
physical ROM storage address is referred to as the section's load address. The section's run 
address refers to the location where the section is at the time of execution. For example, if a 
section is copied into RAM for execution, the section's run address refers to an address in RAM, 
which is the destination address of the loader copy operation. The linker uses the program's run 
address for symbol resolutions.  

The ELF file format has two different interpretations, as shown in Figure 2.4. The linker interprets 
the file as a linkable module described by the section header table, while the loader interprets the 
file as an executable module described by the program header table. 



 
Figure 2.4: Executable and linking format.  

Listing 2.1 shows both the section header and the program header, as represented in C 
programming structures. We describe the relevant fields during the course of this discussion. 
Listing 2.1: Section header and program header.  
 

Section header  Program header 

typedef struct {  
§ Elf32_Word sh_name;  

§ Elf32_Word sh_type;  

§ Elf32_Word sh_flags;  

§ Elf32_Addr sh_addr;  

§ Elf32_Off sh_offset;  

§ Elf32_Word sh_size;  

§ Elf32_Word sh_link;  

§ Elf32_Word sh_info;  

§ Elf32_Word sh_addralign;  

§ Elf32_Word sh_entsize;  
} Elf32_Shdr;  

typedef struct {  
§ Elf32_Word p_type;  

§ Elf32_Off p_offset;  

§ Elf32_Addr p_vaddr;  

§ Elf32_Addr p_paddr;  

§ Elf32_Word p_filesz;  

§ Elf32_Word p_memsz;  

§ Elf32_Word p_flags;  

§ Elf32_Word p_align;  
} Elf32_Phdr;  

 
 

A section header table is an array of section header structures describing the sections of an 
object file. A program header table is an array of program header structures describing a loadable 
segment of an image that allows the loader to prepare the image for execution. Program headers 
are applied only to executable images and shared object files.  

One of the fields in the section header structure is sh_type, which specifies the type of a 
section. Table 2.1 lists some section types.  
Table 2.1: Section types.  

NULL  Inactive header without a section. 

PROGBITS  Code or initialized data. 



SYMTAB  Symbol table for static linking. 

STRTAB  String table. 

RELA/REL  Relocation entries. 

HASH  Run-time symbol hash table.  

DYNAMIC  Information used for dynamic linking. 

NOBITS  Uninitialized data. 

DYNSYM  Symbol table for dynamic linking.  

The sh_flags field in the section header specifies the attribute of a section. Table 2.2 lists some 
of these attributes.  
Table 2.2: Section attributes.  

WRITE  Section contains writeable data. 

ALLOC  Section contains allocated data. 

EXECINSTR  Section contains executable instructions.  

Some common system-created default sections with predefined names for the PROGBITS are 
.text, .sdata, .data, .sbss, and .bss. Program code and constant data are contained in the 
.text section. This section is read-only because code and constant data are not expected to 
change during the lifetime of the program execution. The .sbss and .bss sections contain 
uninitialized data. The .sbss section stores small data, which is the data such as variables with 
sizes that fit into a specific size. This size limit is architecture-dependent. The result is that the 
compiler and the assembler can generate smaller and more efficient code to access these data 
items. The .sdata and .data sections contain initialized data items. The small data concept 
described for .sbss applies to .sdata. A .text section with executable code has the EXECINSTR 
attribute. The .sdata and .data sections have the WRITE attribute. The .sbss and .bss 
sections have both the WRITE and the ALLOC attributes.  

Other common system-defined sections are .symtab containing the symbol table, .strtab 
containing the string table for the program symbols, .shstrtab containing the string table for the 
section names, and .relaname containing the relocation information for the section named 
name. We have discussed the role of the symbol table (SYMTAB) previously. In Figure 2.3, the 
symbol name is shown as part of the symbol table. In practice, each entry in the symbol table 
contains a reference to the string table (STRTAB) where the character representation of the name 
is stored. 

The developer can define custom sections by invoking the linker command .section. For 
example, where the source files states  

.section my_section 

the linker creates a new section called my_section. The reasons for creating custom named 
sections are explained shortly. 

The sh_addr is the address where the program section should reside in the target memory. The 
p_paddr is the address where the program segment should reside in the target memory. The 
sh_addr and the p_paddr fields refer to the load addresses. The loader uses the load address 
field from the section header as the starting address for the image transfer from non-volatile 
memory to RAM. 



For many embedded applications, the run address is the same as the load address. These 
embedded applications are directly downloaded into the target system memory for immediate 
execution without the need for any code or data transfer from one memory type or location to 
another. This practice is common during the development phase. We revisit this topic in Chapter 
3, which covers the topic of image transfer from the host system to the target system. 
 
2.4 Mapping Executable Images into Target Embedded Systems 
After multiple source files (C/C++ and assembly files) have been compiled and assembled into 
ELF object files, the linker must combine these object files and merge the sections from the 
different object files into program segments. This process creates a single executable image for 
the target embedded system. The embedded developer uses linker commands (called linker 
directives) to control how the linker combines the sections and allocates the segments into the 
target system. The linker directives are kept in the linker command file. The ultimate goal of 
creating a linker command file is for the embedded developer to map the executable image into 
the target system accurately and efficiently. 

2.4.1 Linker Command File 

The format of the linker command file, as well as the linker directives, vary from linker to linker. It 
is best to consult the programmer’s reference manual from the vendor for specific linker 
commands, syntaxes, and extensions. Some common directives, however, are found among the 
majority of the available linkers used for building embedded applications. Two of the more 
common directives supported by most linkers are MEMORY and SECTION. 

The MEMORY directive can be used to describe the target system’s memory map. The memory 
map lists the different types of memory (such as RAM, ROM, and flash) that are present on the 
target system, along with the ranges of addresses that can be accessed for storing and running 
an executable image. An embedded developer needs to be familiar with the addressable physical 
memory on a target system before creating a linker command file. One of the best ways to do this 
process, other than having direct access to the hardware engineering team that built the target 
system, is to look at the target system’s schematics, as shown in Figure 2.5, and the hardware 
documentation. Typically, the hardware documentation describes the target system’s memory 
map.  

 
Figure 2.5: Simplified schematic and memory map for a target system.  

The linker combines input sections having the same name into a single output section with that 
name by default. The developer-created, custom-named sections appear in the object file as 
independent sections. Sometimes developers might want to change this default linker behavior of 
only coalescing sections with the same name. The embedded developer might also need to 
instruct the linker on where to map the sections, in other words, what addresses should the linker 
use when performing symbol resolutions. The embedded developer can use the SECTION 
directive to achieve these goals.  



The MEMORY directive defines the types of physical memory present on the target system and the 
address range occupied by each physical memory block, as specified in the following generalized 
syntax  
MEMORY { 
    area-name : org = start-address, len = number-of-bytes 
   … 
} 

In the example shown in Figure 2.5, three physical blocks of memory are present:  
§ a ROM chip mapped to address space location 0, with 32 bytes, 
§ some flash memory mapped to address space location 0x40, with 4,096 bytes, and 
§ a block of RAM that starts at origin 0x10000, with 65,536 bytes. 

Translating this memory map into the MEMORY directive is shown in Listing 2.2. The named areas 
are ROM, FLASH, and RAM. 
Listing 2.2: Memory map.  
 

MEMORY { 
      ROM: origin = 0x0000h, length = 0x0020h 
      FLASH: origin = 0x0040h, length = 0x1000h 
      RAM: origin = 0x1000h, length = 0x10000h 
} 
 
 

The SECTION directive tells the linker which input sections are to be combined into which output 
section, which output sections are to be grouped together and allocated in contiguous memory, 
and where to place each section, as well as other information. A general notation of the SECTION 
command is shown in Listing 2.3. 
Listing 2.3: SECTION command.  
 

SECTION { 
      output-section-name : { contents } > area-name  
      … 
      GROUP { 
              [ALIGN(expression)] 
             section-definition 
             … 
      } > area-name 
} 
 
 

The example shown in Figure 2.6 contains three default sections (.text, .data, and .bss), as 
well as two developer-specified sections (loader and my_section), contained in two object 
files generated by a compiler or assembler (file1.o and file2.o). Translating this example 
into the MEMORY directive is shown in Listing 2.4. 



 
Figure 2.6: Combining input sections into an executable image.  
Listing 2.4: Example code.  
 

SECTION { 
       .text : 
       { 
              my_section 
              *(.text) 
       } 
       loader : > FLASH 
       GROUP ALIGN (4) : 
       { 
              .text, 
              .data : {} 
              .bss  : {} 
     } >RAM 
} 
 
 

The SECTION command in the linker command file instructs the linker to combine the input 
section named my_section and the default .text sections from all object files into the final 
output .text section. The loader section is placed into flash memory. The sections .text, 
.data, and .bss are grouped together and allocated in contiguous physical RAM memory 
aligned on the 4-byte boundary, as shown in Figure 2.7. 



 
Figure 2.7: Mapping an executable image into the target system.  

Tips on section allocation include the following: 
§ allocate sections according to size to fully use available memory, and 
§ examine the nature of the underlying physical memory, the attributes, and the purpose of 

a section to determine which physical memory is best suited for allocation.  

2.4.2 Mapping Executable Images 

Various reasons exist why an embedded developer might want to define custom sections, as well 
as to map these sections into different target memory areas as shown in the last example. The 
following sections list some of these reasons.  

Module Upgradeability 
Chapter 1 discusses the storage options and upgradability of software on embedded systems. 
Software can be easily upgraded when stored in non-volatile memory devices, such as flash 
devices. It is possible to upgrade the software dynamically while the system is still running. 
Upgrading the software can involve downloading the new program image over either a serial line 
or a network and then re-programming the flash memory. The loader in the example could be 
such an application. The initial version of the loader might be capable of transferring an image 
from ROM to RAM. A newer version of the loader might be capable of transferring an image from 
the host over the serial connection to RAM. Therefore, the loader code and data section would be 
created in a custom loader section. The entire section then would be programmed into the flash 
memory for easy upgradeability in the future.  

Memory Size Limitation 
The target system usually has different types of physical memory, but each is limited in size. At 
times, it is impossible to fit all of the code and data into one type of memory, for example, the 
SDRAM. Because SDRAM has faster access time than DRAM, it is always desirable to map code 
and data into it. The available physical SDRAM might not be large enough to fit everything, but 
plenty of DRAM is available in the system. Therefore, the strategy is to divide the program into 
multiple sections and have some sections allocated into the SDARM, while the rest is mapped 



into the DRAM. For example, an often-used function along with a frequently searched lookup 
table might be mapped to the SDRAM. The remaining code and data is allocated into the DRAM.  

Data Protection 
Programs usually have various types of constants, such as integer constants and string 
constants. Sometimes these constants are kept in ROM to avoid accidental modification. In this 
case, these constants are part of a special data section, which is allocated into ROM.  

2.4.3 Example in Practice 

Consider an example system containing 256 bytes of ROM, 16KB of flash memory, and two 
blocks of RAM. RAMB0 is 128KB of SDRAM, and RAMB1 is 2MB of DRAM. An embedded 
application with a number of sections, as listed in Table 2.3, needs to be mapped into this target 
system. 
Table 2.3: Example embedded application with sections.  

Sections  Size  Attribute¹ Description 

_loader  10KB  RD  Contains the loader code 

_wflash  2KB  RD  Contains the flash memory 
programmer 

.rodata  128 bytes  RD  Contains non-volatile default 
initialization parameters and data, 
such as copyright information 

.sbss  10KB  R/W  Contains uninitialized data less than 
64KB (e.g., global variables) 

.sdata  2KB  R/W  Contains initialized data less than 
64KB 

.bss  128KB  R/W  Contains uninitialized data larger 
than 64KB 

.data  512KB  R/W  Contains initialized data larger than 
64KB 

_monitor  54KB  RD  Contains the monitor code 

.text  512KB  RD  Contains other program code 

1. RD = read only; R/W = readable and writeable 

One possible allocation is shown in Listing 2.5; it considers why an embedded engineer might 
want greater section allocation control. 
Listing 2.5: Possible section allocation.  
 

MEMORY { 
      ROM: origin = 0x00000h, length = 0x000100h 
      FLASH: origin = 0x00110h, length = 0x004000h  
      RAMB0: origin = 0x05000h, length = 0x020000h 
      RAMB1: origin = 0x25000h, length = 0x200000h 
} 



SECTION { 
      .rodata : > ROM 
      _loader : > FLASH 
      _wflash : > FLASH 
      _monitor : > RAMB0 
      .sbss (ALIGN 4) : > RAMB0 
      .sdata (ALIGN 4) : > RAMB0 
      .text : > RAMB1 
      .bss (ALIGN 4) : > RAMB1 
      .data (ALIGN 4) : > RAMB1 
} 
 
 

This program allocation is shown in Figure 2.8 (page 34). The section allocation strategies 
applied include the following: 
§ The .rodata section contains system initialization parameters. Most likely these default 

values never change; therefore, allocate this section to ROM. 
§ The loader program is usually part of the system program that executes at startup. The 

_loader and the _wflash sections are allocated into flash memory because the loader 
code can be updated with new versions that understand more object formats. You need the 
flash memory programmer for this purpose, which can also be updated. Therefore, section 
_wflash is allocated into the flash memory as well.  

§ The embedded programmer interacts with the monitor program to probe system 
execution states and help debug application code; therefore, it should be responsive to user 
commands. SDRAM is faster than DRAM, with shorter access time. Therefore, section 
_monitor is allocated into RAMB0.  

§ RAMB0 still has space left to accommodate both sections .sbss and .sdata. The 
allocation strategy for these two sections is to use the leftover fast memory fully. 

§ The remaining sections (.text, .bss, and .data) are allocated into RAMB1, which is 
the only memory that can accommodate all of these large sections. 

 
Figure 2.8: Mapping an executable image into the target system.  

 



2.5 Points to Remember 
Some points to remember include the following: 
§ The linker performs symbol resolution and symbol relocation. 
§ An embedded programmer must understand the exact memory layout of the target 

system towards which development is aimed. 
§ An executable target image is comprised of multiple program sections. 
§ The programmer can describe the physical memory, such as its size and its mapping 

address, to the linker using the linker command file. The programmer can also instruct the 
linker on combining input sections into output sections and placing the output program 
sections using the linker command file. 

§ Each program section can reside in different types of physical memory, based on how the 
section is used. Program code (or .text section) can stay in ROM, flash, and RAM during 
execution. Program data (or .data section) must stay in RAM during execution. 

 


