

Embedded System Course 2018-19

C4µC
C/C++ Programming for Microcontrollers

Lecturers: Ing. Marco Santic, Ing. Walter Tiberti
- -

 marco.santic@univaq.it walter.tiberti@graduate.univaq.it

Exercises

mailto:marco.santic@univaq.it
mailto:walter.tiberti@graduate.univaq.it

Exercise 1

● A bluetooth module need to be connected to our Arduino
Nano board:

● The module should be powered (and switched ON/OFF) from the
board itself

● For that reason it will be connected to GPIO pins and, since each
pin can source a limited amount of current, 3 GPIO pins will be
used.

● Challenge: the 3 GPIO should be driven toghether and
instantaneously

● Choose 3 pins in the set of available GPIOs, sketch the connection
diagram and write 3 functions to control: the initialization of the GPIO,
the BT power ON, the BT power OFF; .

● void init_bt_pins(); //to be called once in the "setup code"

● void bt_power_on(); //to be called during the application exec

● void bt_power_off(); //to be called during the application exec

Exercise 2

● The bluetooth module, previously connected to Arduino
Nano board for the power supply, is connected also to the
UART tx-rx pins:

● Consider that the pins are shared with the USB-UART converter
onboard, see the scheme below; for that reason, the use of the
UART for debug messages should be limited

● The µC needs to send a sequence of special messages (AT
commands) to the module (serial connection 9600 8N1):

– ..., "AT+RESET", "AT+IMME1", ..., "AT+DISI?"

Host USB/UART µC 328P

BT module

tx

tx
tx

rx

rx

rx

Exercise 2

● To each command corresponds an answer that can arrive, from
the module, within a certain time (variable, unpredictable, with
other data in between)

● Before sending a command, the answer to the previous command
must be received or timed out (error signaled)

● The complete table of commands and answers is:

Seq. Command Answer

1 AT+RENEW OK+RENEW

2 AT+RESET OK+RESET

3 AT+IMME1 OK+Set:1

4 AT+ROLE1 OK+Set:1

5 AT+DISI? … OK+DISCE

6 AT+START OK+START

Exercise 2

● Propose at least 2 possible strategies to read the answer
and decide if it is possible to send the next command
(write a flow-chart or functions in pseudo-code)

● Implement the following function, that reads for a maximum time of
millis_timeout from the serial, comparing the read chars with the
String resp passed as parameter; can use a parameter dbg for test
purposes

● // the function returns 0 if no response received within
// millis_timeout
// or returns 1 if a sequence matching resp is found in the stream
uint8_t wait_for_resp(String resp, uint16_t millis_timeout, bool
dbg)

● /* the function will be used in the sequence like:
 Serial.print("AT+RENEW");
 r = wait_for_resp("OK+RENEW", 100, 0);
*/

● // to keep the time, in the function implementation, you can
// use variables and millis() like:
unsigned long int quit_time = millis() + ...

Solution 1

● Go back to lesson on Comm.Interfaces and see that in
"sketch_c4uc_5.1_parallel_sender" we have already used the direct
access to GPIO registers to control pins together...

● Three pins could be from PORT B: PB0, PB1, PB2 (Ard. 8, 9, 10)

● The init and control functions:
● #define BT_POWER_MASK 0x07

● void init_bt_ports(){
 DDRB |= BT_POWER_MASK;
 bt_off();
}

● void bt_on(){
 PORTB |= BT_POWER_MASK;
}

● void bt_off(){
 PORTB &= ~BT_POWER_MASK;
}

Solution 2

● One simple possible strategy is, for each command to send:

● Send the command

● Wait a fixed amount of time

● Read and compare the response (to the expected one), if any

● Another is:

● Send the command

● Wait a certain number of read characters (fixed or variable)

● Search for the expected response

● The first solution can miss a response if delay time is not managed
properly

● The second solution can be blocking if a shorter (or no) response is
received

Solution 2

● The implementation of the function, that represents a more flexible
compromise respect to previous solutions:

uint8_t wait_for_resp(String resp, uint16_t millis_timeout, bool dbg){

 uint8_t retval = 0; // the return value
 uint8_t str_len = resp.length(); // how many chars are expected in resp
 uint8_t str_i = 0; // index when comparing
 char in_char;

 unsigned long in_time = millis(); // start time
 volatile unsigned long out_time = in_time + millis_timeout; // quit time

 // ...continues with the loop...

Solution 2

● ... loop for time-check and read-check...

 while(millis() < out_time){ // time-check
 if(Serial.available()){ // non-blocking
 in_char = Serial.read();
 if(dbg) Serial.write(in_char); // example of debug output
 if(in_char == resp.charAt(str_i)){ // read-check
 str_i++; // incrementing index
 out_time = millis() + millis_timeout; // resetting quit time
 } else {
 str_i = 0; // unexpected char, resetting index
 }
 if(str_i == str_len){ // all chars in response OK
 retval = 1; // setting return value
 break; // breaking the while, so the function will return immed.
 }
 }
 }

 return retval; // returning the "response found" or not
}

Solution 2

● FYI, during the execution, the function can be called:

 uint8_t r = 0;

 //...
 Serial.print("AT+RENEW");
 r = wait_for_resp("OK+RENEW", 100, 0); // wait for 100 milliseconds

 if(r){
 Serial.print("AT+RESET");
 r = wait_for_resp("OK+RESET", 1400, 0); // wait longer...
 }

 //...
 //...

 if(!r){
 // signal ERROR in some way....
 }

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10

