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Introduction

 Embedded system’s functionality aspects

— Processing
* Processors
» transformation of data

— Storage
* memory
 retention of data
— Communication

e buses
» transfer of data
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Basic Concepts
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Memory: basic concepts
- ____0_00__0_0_0000__"]

» Stores large number of bits m nmemory
— m x n: mwords of n bits each
— k =Log:(m) address input signals
— orm = 2"k words 7T
— e.g.,4,096 x 8 memory: < o Y
« 32,768 bits hspernes

» 12 address input signals
» 8 input/output data signals

m words
A

memory external view

riw ]
"1 2% x n read and write

 Memory access enable J memory
— rfw: selects read or write
— enable: read or write only when asserted

- . - - Ak-l
— multiport: multiple accesses to different locations
simultaneously

A, .

Qn-l QO
s
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Write Ability and Storage Permanence
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Write ability/ storage permanence

» Traditional ROM/RAM distinctions
- ROM
» read only, bits stored without power

- RAM

« read and write, lose stored bits without
power

» Traditional distinctions blurred
— Advanced ROMs can be written to
* e.g, EEPROM
— Advanced RAMs can hold bits without
power
* e.g., NVRAM
e Write ability
— Manner and speed a memory can be
written
e Storage permanence

— ability of memory to hold stored bits
after they are written

[5]
[S]
AT
cls
=]
7] % Mask-programmed ROM Ideal memory
o © o
Life of | OT? ROM
product
Tens of EPROM | EEPROM FLASH
years ° ° °
Battery q\Nonvolatile NVRAM
life (10T-
years)
In-system
programmable SRA'\leRAM
Near .
ze10— — Write
| [ [ | I ability
During External External External External In-svstem fast
fabrication programmer, programmer, programmer  programmer v}\//rites'
only onetimeonly  1,000s OR in-system, OR in-system, unlimitéd
of cycles 1,000s block-oriented eveles
of cycles  writes, 1,000s y

of cycles

Write ability and storage permanence of memories,
showing relative degrees along each axis (not to scale).
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Write ability

* Ranges of write ability

— Highend
» processor writes to memory simply and quickly
* e.g, RAM

— Middle range
e processor writes to memory, but slower
* e.g., FLASH, EEPROM

— Lower range
» special equipment, “programmer”, must be used to write to memory
* e.g., EPROM, OTP ROM

— Lowend
* Dits stored only during fabrication
* e.g., Mask-programmed ROM
* In-system programmable memory

— Can be written to by a processor in the embedded system using the
memory

— Memories in high end and middle range of write ability
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Storage permanence

- ____0_00__0_0_0000__"]
 Range of storage permanence
— Highend
» essentially never loses bits
* e.g., mask-programmed ROM

— Middle range
 holds bits days, months, or years after memory’s power source turned off
* e.g., NVRAM

— Lower range
 holds bits as long as power supplied to memory
* e.g., SRAM
— Lowend
* Dbegins to lose bits almost immediately after written
* e.g, DRAM

* Nonvolatile memory
— Holds bits after power is no longer supplied
— High end and middle range of storage permanence
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Common Memory Types
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Common memory types

« ROM
— Mask-programmed
— OTP
— EPROM
— EEPROM
— Flash
- PCM

« RAM

— Basic
— Variations

o The future?
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ROM: “Read-Only” Memory

00—
* Nonvolatile memory

o (Can be read from but not written to, by a

processor in an embedded system External view
 Traditionally written to, “programmed”, enable ——| 2xNROM
before inserting to embedded system Ao —
o Uses A T H l l
— Store software program for general-purpose or 0 Q

application-specific processor

e program instructions can be one or more ROM
words

— Store constant data needed by system

— Implement combinational circuit
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Example: 8 x 4 ROM

-
 Horizontal lines = words

« Vertical lines = data Internal view

* Lines connected only at circles 8 x4 ROM

e Decoder setsword 2’s line to 1 if  ewe | [ 38 [T v

. . decoder | TX Y IYIY o

address input is 010 A — 0 DG 2 24 vt

o DatalinesQsand Qraresettol — A—- eiefele]
because there is a “programmed” e A
connection with word 2’s line progammatle. (PP [ wieoor

« Word 2 is not connected with data & Qi Q

lines Q2 and Qo
e Outputis 1010
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Mask-programmed ROM

Connections “programmed” at fabrication
— set of masks

Lowest write ability
— only once

Highest storage permanence
— bits never change unless damaged

Typically used for final design of high-volume systems
— spread out NRE cost for a low unit cost
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OTP ROM: One-time programmable ROM

]
« Connections “programmed” after manufacture by user

— user provides file of desired contents of ROM
— file input to machine called ROM programmer
— each programmable connection is a fuse/antifuse

e \ery low write ability
— typically written only once and requires ROM programmer device

 \ery high storage permanence

— Dbits don’t change unless reconnected to programmer and more fuses
blown

e Commonly used in final products
— cheaper, harder to inadvertently modify
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Programmable component is a MOS transistor

EPROM: Erasable programmable ROM

— Transistor has “floating” gate surrounded by an insulator & @ o ~eled]
— (a) Negative charges form a channel between source and drain F"’agfgﬁ | Jedel ]
storing a logic 1 o |3 o8 o S
— (b) Large positive voltage at gate causes negative charges to JI330
move out of channel and get trapped in floating gate storing a @)
| JeHapp 99 : YIYY
logic 0 YoV Vo
— (c) (Erase) Shining UV rays on surface of floating-gate causes
negative charges to return to channel from floating gate restoring +15V
:
the logic 1
— (d) An EPROM package showing quartz window through which o | & 4 [
UV light can pass
Better write ability Lﬁé S5 530min
— can be erased and reprogrammed thousands of times %
Reduced storage permanence o L] o e
— program lasts about 10 years but is susceptible to -
radiation and electric noise — v,
. . . d
Typically used during design development e
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EEPROM:

Electrically erasable programmable ROM
- /0000000000001

* Programmed and erased electronically
— typically by using higher than normal voltage
— can program and erase individual words

o Better write ability

— can be in-system programmable with built-in circuit to provide higher
than normal voltage

 built-in memory controller commonly used to hide details from memory user

— writes very slow due to erasing and programming
* “pusy” pin indicates to processor EEPROM still writing

— can be erased and programmed tens of thousands of times
o Similar storage permanence to EPROM (about 10 years)
e Far more convenient than EPROMS, but more expensive
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Flash Memory

e Extension of EEPROM

— Same floating gate principle
— Same write ability and storage permanence

e [ast erase
— Large blocks of memory erased at once, rather than one word at a time
— Blocks typically several thousand bytes large

* \Writes to single words may be slower
— Entire block must be read, word updated, then entire block written back
* NAND (read block)/NOR (read byte)
o Used with embedded systems storing large data items in
nonvolatile memory
— e.g., digital cameras, TV set-top boxes, cell phones (NAND)
— BIOS, Smarthphone OSs (NOR)
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Phase Change Memory

e Qverview
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Phase Change Memory

e
e Qverview

| Features

e Scaling capability to <10nm

e Small cell size (5.5F?)

« Bit alterability, Byte/Bit Write, NO erase required
¢ High endurance:10°* cycles

¢ High write throughput (5 +15+MB/sec)

e Very low read latency and high read throughput

¢ Improve System performance
¢ Lower boot time
e SW improvement using PCM Overwrite
¢ Superior Quality
e Improved cycling performance
* Better Reliability for code storage/execution
e Save Battery Life
¢ Reduce overall power consumption in a system
e Design optimization
¢ Lower BOM Cost by reducing required RAM density
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Phase Change Memory

Overview
— EEPROM replacement
— Hybrid architectures for mobile platforms

I— Legacy LPDDR2

Nor Int -[ PCM

Dynamic I
: MemCnt
Dynamic

MemCnt I — js-gggfq LPDDR2
SDRAM

eMMC Hybrid UFs Hybrid

Host Cnt T HostCnt [ == UFES

fr— em Cnt Jj ™

SDRAM SDRAM
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RAM: “Random-access” memory

external view

 Typically volatile memory W ———
— bits are not held without power supply eneple == memory
« Read and written to easily by embedded system Po ——=
during execution A T
* Internal structure more complex than ROM Q‘ ' 'L
— aword consists of several memory cells, each " °
storing 1 bit i.:te”ff ' V.ZGW.O
— each input and output data line connects to each 4x4 RAM —
cell in its column - —
— rd/wr connected to every cell fecader
— when row is enabled by decoder, each cell has logic f\‘j .
that stores input data bit when rd/wr indicates write i
or outputs stored bit when rd/wr indicates read rAAWF ——=To every cel
S, 4,9, o
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Basic types of RAM

e SRAM: Static RAM memory cell internals

— Memory cell uses flip-flop to store bit .

— Requires 6 transistors —_ E

— Holds data as long as power supplied . P

: ata \ Data

« DRAM: Dynamic RAM = gj EE T

— Memory cell uses MOS transistor and T v v T W

capacitor to store bit
— More compact than SRAM
— “Refresh” required due to capacitor leak PRAN
 word’s cells refreshed when read W o
— Typical refresh rate 15.625 microsec. —4+

— Slower to access than SRAM
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Ram variations

e PSRAM: Pseudo-static RAM

— DRAM with built-in memory refresh controller
— Popular low-cost high-density alternative to SRAM

 NVRAM: Nonvolatile RAM

— Holds data after external power removed

— Battery-backed RAM
* SRAM with own permanently connected battery
 writes as fast as reads
* no limit on number of writes unlike nonvolatile ROM-based memory

— SRAM with EEPROM or flash
 stores complete RAM contents on EEPROM or flash before power turned off

Embedded Systems Design: A Unified o5
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Example:
HM6264 & 2/C256 RAM/ROM devices

» Low-cost low-capacity memory

devices 11-13, 15-19¢—| data<7...0> 11-13, 15-19<—>| data<7...0>
. . 2,23,21,24,— addr<15...0> 27262,2321—>| addr<15..0>
e Commonly used in 8-bit B3 o MBS |
microcontroller-based 27— WE 20— ICS
embedded systems 20—>| /CSL
. . .. . . 26— CS2 HM6264 27C256
 First two numeric digits indicate block diagrarms
Device Access Time (ns)  Standby Pwr. (mW)  Active Pwr. (mW)  Vcc Voltage (V)

device type

HM6264 85-100 .01 15 5
27C256 90 5 100 5
— RAM: 62
device characteristics
— ROM: 27

Read operation

Write operation

» Subsequent digits indicate wa——— F— ]
capacity in kilobits s 2 o —
/CS1 ICS1— —

e Memory controllers? o2 o
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The future?

Memory Devices

PN
" =3

Volatile Memory Non-volatile Memory
'3 - ~

@@ Charge Trap Polz':f‘a;:":‘ Resistance

-

i
L ]
L]
]
1]

]! St g
I S O

Charge -based Current-based <: . | Phase- Magneto- Interface
Programming & Programming & , | dependent || Resistance | | ©f bulk
Reading Reading i | Resistance || changes Resistance

' | changes changes |
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Composing Memory
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Composing memory

* Memory size needed often differs from size of readily Increase number of words
available memories 2m1x n ROM
«  When available memory is larger, simply ignore unneeded ~ 27N ROM
high-order address bits and higher data lines Ao >
: : AT B
*  When available memory is smaller, compose several smaller A 1x2 [~ _
memories into one larger memory m decoder - , v
—  Connect side-by-side to increase width of words onable ~| "y " ROM
— Connect top to bottom to increase number of words —]
» added high-order address line selects smaller memory
containing desired word using a decoder L l ,
— Combine techniques to increase number and width of words U U
2m x 3n ROM It R
enable | _om x n ROM|___,.2m x n.ROM|__,.P™ x n ROM A -
Increase width Increase number g=Eimill
A =< =< e :
of words 0—— ; and width of L i—‘i i—]
An T g - words .
enable i_-i i_
Y YVY v VoYY A e |_:|
QSn—l 2n-1 QO outputs
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Memory Hierarchy & Cache Memory
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Memory hierarchy

]
« \Want inexpensive, fast

memory
e Main memory

Processor

Registers 28 bytes

— Large, inexpensive, slow e 216 bytes
memory stores entire L0? !
program and data Die, Chip, Module
L2 Cache 270 bytes
e Cache
— Small, expensive, fast Main Memory [VEUWIGY
memory stores copy of likely
?r::;:;ssf; parts of larger 240 bytes
- Canhbe multiple levels of 240 bytes
cache
s
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Why cache memory?

o Empirical spatial/temporal locality principle

 If a memory location with address 1 is used at a time t, it is very
probable that the same location and the near ones will be used in a
few time

— This is valid both for instructions and data
— The principle is statistically verified by the major part of the programs

e Empirical “90/10” law

— 90% of the execution time is related to the 10% of code
» The law is statistically verified by several programs

Embedded Systems Design: A Unified 32
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Cache

o Usually designed with SRAM
— faster but more expensive than DRAM

» Usually on same chip as processor
— space limited, so much smaller than off-chip main memory
— faster access ( 1 cycle vs. several cycles for main memory)

» Cache operation
— Request for main memory access (read or write)
— First, check cache for copy
 cache hit: copy is in cache, quick access
 cache miss: copy not in cache, read address and possibly its neighbors into cache
» Several cache design choices
— Separated or unified data/instructions cache
— Cache mapping, replacement policies, and write techniques

Embedded Systems Design: A Unified 33
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Cache mapping

o Far fewer number of available cache addresses
— Are address’ contents in cache?

e Cache mapping used to assign main memory address to cache
address and determine hit or miss

* Three basic techniques:
— Direct mapping
— Fully associative mapping
— Set-associative mapping

« Caches partitioned into indivisible blocks or lines of adjacent
memory addresses
— usually 4 or 8 addresses per line

Embedded Systems Design: A Unified 34
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Direct mapping

e Main memory address divided into 2 fields
— Index

» cache address
» number of bits determined by cache size

— Tag

» compared with tag stored in cache at address

indicated by index
o if tags match, check valid bit

« Valid bit

— indicates whether data in slot has been loaded
from memory

o Offset
— used to find particular word in cache line

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis
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Fully assoclative mapping

o Complete main memory address stored in each cache address

« All addresses stored in cache simultaneously compared with
desired address

 Valid bit and offset same as direct mapping

ALY
V| TID

[) THLEN [
)
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Set-assoclative mapping

e Compromise between direct mapping and
fully associative mapping

e Index same as in direct mapping

e But, each cache address contains content
and tags of 2 or more memory address
locations

« Tags of that set simultaneously compared as
in fully associative mapping

» Cache with set size N called N-way set-
associative

— 2-way, 4-way, 8-way are common

elag

-{:\|ﬂ

Vali

L)
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Cache-replacement policy

« Technique for choosing which block to replace
— when fully associative cache is full
— when set-associative cache’s line is full

 Direct mapped cache has no choice
e Random
— replace block chosen at random
o LRU: least-recently used
— replace block not accessed for longest time
e FIFO: first-in-first-out
— push block onto queue when accessed
— choose block to replace by popping queue

Embedded Systems Design: A Unified

: 38
Hardware/Software Introduction, (c) 2000 Vahid/Givargis



Cache write techniques

- ____0_00__0_0_0000__"]
* When written, data cache must update main memory
e Write-through
— write to main memory whenever cache is written to
— easlest to implement

— processor must wait for slower main memory write
— potential for unnecessary writes

e Write-back

— main memory only written when “dirty” block replaced
— extra dirty bit for each block set when cache block written to
— reduces number of slow main memory writes

Embedded Systems Design: A Unified
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Cache impact on system performance

* Most important parameters in terms of performance

— Total size of cache
» Total number of data bytes cache can hold

» Tag, valid and other house keeping bits not included in total
— But they can be a lot!

— Degree of associativity
— Data block size

» Larger caches achieve lower miss rates but higher access cost

— Improving cache hit rate without increasing size
 Increase line size
» Change set-associativity

e Big problem!
— Cache coherence in multi processor/core systems!

Embedded Systems Design: A Unified 40
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Examples

AMD Opteron ARM 7D Intel Xscale
CPU CISC, 64 bit RISC, 32 hit RISC, 32 bit
Application High-End Desktop | GPS, PDA, Games | Embedded
L1 organization Separated Unified Separated
L1 dimension 64 KB, 64 KB 2 KB 32 KB, 32 KB
L1 associativity 2-way 4-way 32-way
L1 replacement LRU LRU Roud-Robin
L1 writing write-back write-back configurable
L2 organization Unified
L2 dimension 1 MB
L2 associativity 16-way
L2 replacement | Approximated LRU
L2 writing write-back
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Advanced RAM
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Advanced RAM

« DRAMSs commonly used as main memory in processor based
embedded systems
— high capacity, low cost

e Many variations of DRAMSs proposed

— need to keep pace with processor speeds
« FPM DRAM: fast page mode DRAM
« EDO DRAM: extended data out DRAM
« SDRAM/ESDRAM: synchronous and enhanced synchronous DRAM
« RDRAM: rambus DRAM
e Double-Data Rate RAM (DDR, DDR2, DDR3, LP-DDR)
 Fully-Buffered DRAM (FB-DRAM)

— akey role is played by the memory controller

Embedded Systems Design: A Unified 43
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DRAM integration problem

- ____0_00__0_0_0000__"]
 SRAM easily integrated on same chip as processor

e DRAM more difficult

— Different “chip making process” between DRAM and
conventional logic
« But similar to CMOS sensors!
— Goal of conventional logic (IC) designers

* minimize parasitic capacitance to reduce signal propagation delays
and power consumption

— Goal of DRAM designers
* create capacitor cells to retain stored information

— Integration processes beginning to appear
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Scratch-Pad Memory
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Scratch-Pad Memory

e A combination of small memories containing
frequently used data and instructions and a larger
memory containing the remaining data and instructions

IS generally also more energy efficient than a single,
large memory

— Caches were Initially introduced in order to provide good
run-time efficiency but it is obvious that caches potentially
also improve the energy-efficiency of a memory system

o Accesses to caches are accesses to small memories and therefore
may require less energy per access than large memories
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Scratch-Pad Memory

* However, for caches it is required that the hardware
checks whether or not the cache has a valid copy of the
Information associated with a certain address

— This check involves comparing the tag fields of caches,
containing a subset of the relevant address bits
» Reading these tags requires additional energy

» Also, the predictability of the real-time performance of caches is
frequently low

o Alternatively...

...small memories can be mapped directly into the address
space!
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Scratch-Pad Memory

e
e Such memories are called Scratch Pad Memories

— Frequently used variables and instructions should be
allocated to that address space and no checking needs to be
done Iin hardware

* As aresult, the energy per access is reduced

— SPMs can improve memory access times and predictability,
If the compiler is in charge of keeping frequently used
variables in the SPM. But...

» SPM is visible to the programmer/compiler while cache is not!

* In a multi-tasking system the SPM could be erased (or managed
In some way) at each context switch...
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Scratch-Pad Memory

e Structural view

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis
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Scratch-Pad Memory

- /0000000000001
o Address space view

1 cycle

Addressable
Memory

N-1

Embedded Systems Design: A Unified 50
Hardware/Software Introduction, (c) 2000 Vahid/Givargis



Scratch-Pad Memory

« Scratchpad usage in embedded systems could reduce
the memory energy consumption, improve the
performance and reduce the occupied area

— To maximize the benefit of using scratchpads, compiler
has a primary role in the memory allocation...

Cache Scratchpad

 Larger «Smaller
» Subject to conflict, capacity and
compulsary misses

» Unpredictable data access time
* Runtime assignment

*Always result in a hit if requested
within the data range

Mapping by user or compiler
directed

Embedded Systems Design: A Unified 51
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