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Introduction

• Embedded system’s functionality aspects
– Processing

• processors
• transformation of data

– Storage 
• memory
• retention of data

– Communication
• buses
• transfer of data
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Basic Concepts
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Memory: basic concepts

• Stores large number of bits
– m x n: m words of n bits each
– k = Log2(m) address input signals
– or m = 2^k words
– e.g., 4,096 x 8 memory:

• 32,768 bits
• 12 address input signals
• 8 input/output data signals

• Memory access
– r/w: selects read or write
– enable: read or write only when asserted
– multiport: multiple accesses to different locations 

simultaneously

m × n memory

…

…

n bits per word

m
w

or
ds

enable
2k × n read and write 

memory

A0
…

r/w

…

Q0Qn-1

Ak-1

memory external view
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Write Ability and Storage Permanence
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Write ability/ storage permanence

• Traditional ROM/RAM distinctions
– ROM

• read only, bits stored without power
– RAM

• read and write, lose stored bits without 
power

• Traditional distinctions blurred
– Advanced ROMs can be written to

• e.g., EEPROM
– Advanced RAMs can hold bits without 

power
• e.g., NVRAM

• Write ability
– Manner and speed a memory can be 

written
• Storage permanence

– ability of memory to hold stored bits 
after they are written

Write ability and storage permanence of memories, 
showing relative degrees along each axis (not to scale).
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Write ability

• Ranges of write ability
– High end

• processor writes to memory simply and quickly
• e.g., RAM

– Middle range
• processor writes to memory, but slower
• e.g., FLASH, EEPROM

– Lower range
• special equipment, “programmer”, must be used to write to memory
• e.g., EPROM, OTP ROM

– Low end
• bits stored only during fabrication
• e.g., Mask-programmed ROM

• In-system programmable memory
– Can be written to by a processor in the embedded system using the 

memory
– Memories in high end and middle range of write ability
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Storage permanence

• Range of storage permanence
– High end

• essentially never loses bits
• e.g., mask-programmed ROM

– Middle range
• holds bits days, months, or years after memory’s power source turned off
• e.g., NVRAM

– Lower range
• holds bits as long as power supplied to memory
• e.g., SRAM

– Low end
• begins to lose bits almost immediately after written
• e.g., DRAM

• Nonvolatile memory
– Holds bits after power is no longer supplied
– High end and middle range of storage permanence
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Common Memory Types
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Common memory types

• ROM
– Mask-programmed
– OTP
– EPROM
– EEPROM
– Flash
– PCM

• RAM
– Basic
– Variations

• The future?
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ROM: “Read-Only” Memory

• Nonvolatile memory
• Can be read from but not written to, by a 

processor in an embedded system
• Traditionally written to, “programmed”,  

before inserting to embedded system
• Uses

– Store software program for general-purpose or 
application-specific processor

• program instructions can be one or more ROM 
words

– Store constant data needed by system
– Implement combinational circuit

2k × n ROM

…

Q0Qn-1

A0

…

enable

Ak-1

External view
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Example: 8 x 4 ROM

• Horizontal lines = words
• Vertical lines = data
• Lines connected only at circles
• Decoder sets word 2’s line to 1 if 

address input is 010
• Data lines Q3 and Q1 are set to 1 

because there is a “programmed” 
connection with word 2’s line

• Word 2 is not connected with data 
lines Q2 and Q0

• Output is 1010

8 × 4  ROM

3×8
decoder

Q0Q3

A0

enable

A2

word 0
word 1

A1

Q2 Q1

programmable 
connection wired-OR

word line

data line

word 2

Internal view
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Mask-programmed ROM

• Connections “programmed” at fabrication
– set of masks

• Lowest write ability
– only once

• Highest storage permanence
– bits never change unless damaged

• Typically used for final design of high-volume systems
– spread out NRE cost for a low unit cost



Embedded Systems Design: A Unified 
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

16

OTP ROM: One-time programmable ROM

• Connections “programmed” after manufacture by user
– user provides file of desired contents of ROM
– file input to machine called ROM programmer
– each programmable connection is a fuse/antifuse

• Very low write ability
– typically written only once and requires ROM programmer device

• Very high storage permanence
– bits don’t change unless reconnected to programmer and more fuses 

blown

• Commonly used in final products
– cheaper, harder to inadvertently modify
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(d)

(a)

(b) source drain

+15V

source drain

0V

(c)
source drain

floating gate

5-30 min

EPROM: Erasable programmable ROM

• Programmable component is a MOS transistor
– Transistor has “floating” gate surrounded by an insulator
– (a) Negative charges form a channel between source and drain 

storing a logic 1
– (b) Large positive voltage at gate causes negative charges to 

move out of channel and get trapped in floating gate storing a 
logic 0

– (c) (Erase) Shining UV rays on surface of floating-gate causes 
negative charges to return to channel from floating gate restoring 
the logic 1

– (d) An EPROM package showing quartz window through which 
UV light can pass

• Better write ability
– can be erased and reprogrammed thousands of times

• Reduced storage permanence
– program lasts about 10 years but is susceptible to 

radiation and electric noise
• Typically used during design development
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EEPROM:
Electrically erasable programmable ROM 

• Programmed and erased electronically
– typically by using higher than normal voltage
– can program and erase individual words

• Better write ability
– can be in-system programmable with built-in circuit to provide higher 

than normal voltage
• built-in memory controller commonly used to hide details from memory user

– writes very slow due to erasing and programming
• “busy” pin indicates to processor EEPROM still writing

– can be erased and programmed tens of thousands of times

• Similar storage permanence to EPROM (about 10 years)
• Far more convenient than EPROMs, but more expensive
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Flash Memory

• Extension of EEPROM
– Same floating gate principle
– Same write ability and storage permanence

• Fast erase
– Large blocks of memory erased at once, rather than one word at a time
– Blocks typically several thousand bytes large

• Writes to single words may be slower
– Entire block must be read, word updated, then entire block written back

• NAND (read block)/NOR (read byte)
• Used with embedded systems storing large data items in 

nonvolatile memory
– e.g., digital cameras, TV set-top boxes, cell phones (NAND)
– BIOS, Smarthphone OSs (NOR)
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Phase Change Memory

• Overview
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Phase Change Memory

• Overview
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Phase Change Memory

• Overview
– EEPROM replacement
– Hybrid architectures for mobile platforms
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RAM: “Random-access” memory

• Typically volatile memory
– bits are not held without power supply

• Read and written to easily by embedded system 
during execution

• Internal structure more complex than ROM
– a word consists of several memory cells, each 

storing 1 bit
– each input and output data line connects to each 

cell in its column
– rd/wr connected to every cell
– when row is enabled by decoder, each cell has logic 

that stores input data bit when rd/wr indicates write 
or outputs stored bit when rd/wr indicates read

enable
2k × n read and write 

memory

A0 …

r/w

…

Q0Qn-1

Ak-1

external view

4×4 RAM

2×4 
decoder

Q0Q3

A0

enable

A1

Q2 Q1

Memory 
cell

I0I3 I2 I1

rd/wr To every  cell

internal view
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Basic types of RAM

• SRAM: Static RAM
– Memory cell uses flip-flop to store bit
– Requires 6 transistors 
– Holds data as long as power supplied

• DRAM: Dynamic RAM
– Memory cell uses MOS transistor and 

capacitor to store bit
– More compact than SRAM
– “Refresh” required due to capacitor leak

• word’s cells refreshed when read
– Typical refresh rate 15.625 microsec.
– Slower to access than SRAM

memory cell internals

Data

W

Data'

SRAM

Data
W

DRAM
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Ram variations

• PSRAM: Pseudo-static RAM
– DRAM with built-in memory refresh controller
– Popular low-cost high-density alternative to SRAM

• NVRAM: Nonvolatile RAM
– Holds data after external power removed
– Battery-backed RAM

• SRAM with own permanently connected battery
• writes as fast as reads
• no limit on number of writes unlike nonvolatile ROM-based memory

– SRAM with EEPROM or flash
• stores complete RAM contents on EEPROM or flash before power turned off
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Example: 
HM6264 & 27C256 RAM/ROM devices

• Low-cost low-capacity memory 
devices 

• Commonly used in 8-bit 
microcontroller-based 
embedded systems

• First two numeric digits indicate 
device type

– RAM: 62
– ROM: 27

• Subsequent digits indicate 
capacity in kilobits

• Memory controllers?

Device       Access Time (ns)      Standby Pwr. (mW)      Active Pwr. (mW)      Vcc Voltage (V)
HM6264            85-100                           .01                                 15                               5
27C256                  90                              .5                                  100                              5

22

20

data<7…0>

addr<15...0>

/OE

/WE

/CS1

CS2 HM6264

11-13, 15-19

2,23,21,24,
25, 3-10

22

27

20

26

data<7…0>

addr<15...0>

/OE

/CS

27C256

11-13, 15-19

27,26,2,23,21,
24,25, 3-10

block diagrams

device characteristics

timing diagrams

data

addr

OE

/CS1

CS2

Read operation

data

addr

WE

/CS1

CS2

Write operation
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The future?
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Composing Memory
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Composing memory
• Memory size needed often differs from size of readily 

available memories
• When available memory is larger, simply ignore unneeded 

high-order address bits and higher data lines
• When available memory is smaller, compose several smaller 

memories into one larger memory
– Connect side-by-side to increase width of words
– Connect top to bottom to increase number of words

• added high-order address line selects smaller memory 
containing desired word using a decoder

– Combine techniques to increase number and width of words

…

2m × 3n  ROM
2m × n  ROM

A0 …

enable 2m × n  ROM

…

2m × n  ROM

…

Q3n-1 Q2n-1

…

Q0

…
Am

Increase width 
of words

2m+1 × n  ROM
2m × n  ROM

A0 …

enable

…

2m × n  ROM

Am-1

Am
1 × 2 

decoder

…

…

…

Qn-1 Q0

…

Increase number of words

A

enable

outputs

Increase number 
and width of 

words
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Memory Hierarchy & Cache Memory
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Memory hierarchy

• Want inexpensive, fast 
memory

• Main memory
– Large, inexpensive, slow 

memory stores entire 
program and data

• Cache
– Small, expensive, fast 

memory stores copy of likely 
accessed parts of larger 
memory

– Can be multiple levels of 
cache

L0?

Die, Chip, Module
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Why cache memory?

• Empirical spatial/temporal locality principle
• If a memory location with address i is used at a time t, it is very 

probable that the same location and the near ones will be used in a 
few time

– This is valid both for instructions and data
– The principle is statistically verified by the major part of the programs

• Empirical “90/10” law
– 90% of the execution time is related to the 10% of code

• The law is statistically verified by several programs
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Cache

• Usually designed with SRAM
– faster but more expensive than DRAM

• Usually on same chip as processor
– space limited, so much smaller than off-chip main memory
– faster access ( 1 cycle vs. several cycles for main memory)

• Cache operation
– Request for main memory access (read or write)
– First, check cache for copy

• cache hit: copy is in cache, quick access
• cache miss: copy not in cache, read address and possibly its neighbors into cache

• Several cache design choices
– Separated or unified data/instructions cache
– Cache mapping, replacement policies, and write techniques
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Cache mapping

• Far fewer number of available cache addresses
– Are address’ contents in cache?

• Cache mapping used to assign main memory address to cache 
address and determine hit or miss

• Three basic techniques:
– Direct mapping
– Fully associative mapping
– Set-associative mapping

• Caches partitioned into indivisible blocks or lines of adjacent 
memory addresses
– usually 4 or 8 addresses per line
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Direct mapping

• Main memory address divided into 2 fields
– Index

• cache address
• number of bits determined by cache size

– Tag
• compared with tag stored in cache at address 

indicated by index
• if tags match, check valid bit

• Valid bit
– indicates whether data in slot has been loaded 

from memory
• Offset

– used to find particular word in cache line

Data

Valid

Tag Index Offset

=

V    T   D
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Fully associative mapping

• Complete main memory address stored in each cache address
• All addresses stored in cache simultaneously compared with 

desired address
• Valid bit and offset same as direct mapping

Tag Offset

=

V    T   D

Valid

V    T   D
…

V    T   D

=
=

Data
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Set-associative mapping

• Compromise between direct mapping and 
fully associative mapping

• Index same as in direct mapping
• But, each cache address contains content 

and tags of 2 or more memory address 
locations

• Tags of that set simultaneously compared as 
in fully associative mapping

• Cache with set size N called N-way set-
associative

– 2-way, 4-way, 8-way are common

Tag Index Offset

=

V    T   D
Data

Valid

V    T   D

=
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Cache-replacement policy

• Technique for choosing which block to replace
– when fully associative cache is full
– when set-associative cache’s line is full

• Direct mapped cache has no choice
• Random

– replace block chosen at random

• LRU: least-recently used
– replace block not accessed for longest time

• FIFO: first-in-first-out
– push block onto queue when accessed
– choose block to replace by popping queue
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Cache write techniques

• When written, data cache must update main memory
• Write-through

– write to main memory whenever cache is written to
– easiest to implement 
– processor must wait for slower main memory write
– potential for unnecessary writes

• Write-back
– main memory only written when “dirty” block replaced
– extra dirty bit for each block set when cache block written to
– reduces number of slow main memory writes
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Cache impact on system performance

• Most important parameters in terms of performance
– Total size of cache

• Total number of data bytes cache can hold
• Tag, valid and other house keeping bits not included in total

– But they can be a lot!
– Degree of associativity
– Data block size

• Larger caches achieve lower miss rates but higher access cost
– Improving cache hit rate without increasing size

• Increase line size
• Change set-associativity

• Big problem!
– Cache coherence in multi processor/core systems!
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Examples

AMD Opteron ARM 7D Intel Xscale
CPU
Application

CISC, 64 bit
High-End Desktop

RISC, 32 bit
GPS, PDA, Games

RISC, 32 bit
Embedded

L1 organization
L1 dimension
L1 associativity
L1 replacement
L1 writing

Separated
64 KB, 64 KB

2-way
LRU

write-back

Unified
2 KB
4-way
LRU

write-back

Separated
32 KB, 32 KB

32-way
Roud-Robin
configurable

L2 organization
L2 dimension
L2 associativity
L2 replacement
L2 writing

Unified
1 MB

16-way
Approximated LRU

write-back
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Advanced RAM
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Advanced RAM

• DRAMs commonly used as main memory in processor based 
embedded systems
– high capacity, low cost

• Many variations of DRAMs proposed
– need to keep pace with processor speeds

• FPM DRAM: fast page mode DRAM
• EDO DRAM: extended data out DRAM
• SDRAM/ESDRAM: synchronous and enhanced synchronous DRAM
• RDRAM: rambus DRAM
• Double-Data Rate RAM (DDR, DDR2, DDR3, LP–DDR)
• Fully-Buffered DRAM (FB-DRAM)

– a key role is played by the memory controller
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DRAM integration problem

• SRAM easily integrated on same chip as processor
• DRAM more difficult

– Different “chip making process” between DRAM and 
conventional logic

• But similar to CMOS sensors!
– Goal of conventional logic (IC) designers

• minimize parasitic capacitance to reduce signal propagation delays 
and power consumption

– Goal of DRAM designers
• create capacitor cells to retain stored information

– Integration processes beginning to appear
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Scratch-Pad Memory
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Scratch-Pad Memory

• A combination of small memories containing 
frequently used data and instructions and a larger 
memory containing the remaining data and instructions 
is generally also more energy efficient than a single, 
large memory
– Caches were initially introduced in order to provide good 

run-time efficiency but it is obvious that caches potentially 
also improve the energy-efficiency of a memory system

• Accesses to caches are accesses to small memories and therefore 
may require less energy per access than large memories
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Scratch-Pad Memory

• However, for caches it is required that the hardware 
checks whether or not the cache has a valid copy of the 
information associated with a certain address
– This check involves comparing the tag fields of caches, 

containing a subset of the relevant address bits
• Reading these tags requires additional energy
• Also, the predictability of the real-time performance of caches is 

frequently low

• Alternatively…
…small memories can be mapped directly into the address 

space!
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Scratch-Pad Memory

• Such memories are called Scratch Pad Memories
– Frequently used variables and instructions should be 

allocated to that address space and no checking needs to be 
done in hardware

• As a result, the energy per access is reduced
– SPMs can improve memory access times and predictability, 

if the compiler is in charge of keeping frequently used 
variables in the SPM. But…

• SPM is visible to the programmer/compiler while cache is not!
• In a multi-tasking system the SPM could be erased (or managed 

in some way) at each context switch…
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Scratch-Pad Memory

• Structural view

DRAM

Data
Cache

CPU Core

External Memory
Interface

Address

Data

Scratch-Pad Memory

SRAM
I/F SRAM

Hit
Hit
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Scratch-Pad Memory

• Address space view

On-chip
Memory

Off-chip
Memory

Data
Cache

(on-chip)

CPU

Addressable
Memory

1 cycle

1 cycle

10-20 cycles

0

P-1
P

N-1
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Scratch-Pad Memory

• Scratchpad usage in embedded systems could reduce 
the memory energy consumption, improve the 
performance and reduce the occupied area
– To maximize the benefit of using scratchpads, compiler 

has a primary role in the memory allocation…
Cache

• Larger
• Subject to conflict, capacity and 

compulsary misses
• Unpredictable data access time
• Runtime assignment

Scratchpad

•Smaller

•Always result in a hit if requested 
within the data range

•Mapping by user or compiler 
directed
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