
Embedded Systems Design: A Unified
Hardware/Software Introduction

1

Memory

ESD_Cap5 ++

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

2

Outline

• Introduction
• Basic Concepts
• Write Ability and Storage Permanence
• Common Memory Types
• Composing Memory
• Memory Hierarchy and Cache
• Advanced RAM
• Scracth-Pad Memory

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

3

Introduction

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

4

Introduction

• Embedded system’s functionality aspects
– Processing

• processors
• transformation of data

– Storage
• memory
• retention of data

– Communication
• buses
• transfer of data

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

5

Basic Concepts

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

6

Memory: basic concepts

• Stores large number of bits
– m x n: m words of n bits each
– k = Log2(m) address input signals
– or m = 2^k words
– e.g., 4,096 x 8 memory:

• 32,768 bits
• 12 address input signals
• 8 input/output data signals

• Memory access
– r/w: selects read or write
– enable: read or write only when asserted
– multiport: multiple accesses to different locations

simultaneously

m × n memory

…

…

n bits per word

m
w

or
ds

enable
2k × n read and write

memory

A0
…

r/w

…

Q0Qn-1

Ak-1

memory external view

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

7

Write Ability and Storage Permanence

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

8

Write ability/ storage permanence

• Traditional ROM/RAM distinctions
– ROM

• read only, bits stored without power
– RAM

• read and write, lose stored bits without
power

• Traditional distinctions blurred
– Advanced ROMs can be written to

• e.g., EEPROM
– Advanced RAMs can hold bits without

power
• e.g., NVRAM

• Write ability
– Manner and speed a memory can be

written
• Storage permanence

– ability of memory to hold stored bits
after they are written

Write ability and storage permanence of memories,
showing relative degrees along each axis (not to scale).

External
programmer

OR in-system,
block-oriented
writes, 1,000s

of cycles

Battery
life (10
years)

Write
ability

EPROM

Mask-programmed ROM

EEPROM FLASH

NVRAM

SRAM/DRAM

St
or

ag
e

pe
rm

an
en

ce

Nonvolatile

In-system
programmable

Ideal memory

OTP ROM

During
fabrication

only

External
programmer,

1,000s
of cycles

External
programmer,
one time only

External
programmer

OR in-system,
1,000s

of cycles

In-system, fast
writes,

unlimited
cycles

Near
zero

Tens of
years

Life of
product

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

9

Write ability

• Ranges of write ability
– High end

• processor writes to memory simply and quickly
• e.g., RAM

– Middle range
• processor writes to memory, but slower
• e.g., FLASH, EEPROM

– Lower range
• special equipment, “programmer”, must be used to write to memory
• e.g., EPROM, OTP ROM

– Low end
• bits stored only during fabrication
• e.g., Mask-programmed ROM

• In-system programmable memory
– Can be written to by a processor in the embedded system using the

memory
– Memories in high end and middle range of write ability

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

10

Storage permanence

• Range of storage permanence
– High end

• essentially never loses bits
• e.g., mask-programmed ROM

– Middle range
• holds bits days, months, or years after memory’s power source turned off
• e.g., NVRAM

– Lower range
• holds bits as long as power supplied to memory
• e.g., SRAM

– Low end
• begins to lose bits almost immediately after written
• e.g., DRAM

• Nonvolatile memory
– Holds bits after power is no longer supplied
– High end and middle range of storage permanence

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

11

Common Memory Types

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

12

Common memory types

• ROM
– Mask-programmed
– OTP
– EPROM
– EEPROM
– Flash
– PCM

• RAM
– Basic
– Variations

• The future?

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

13

ROM: “Read-Only” Memory

• Nonvolatile memory
• Can be read from but not written to, by a

processor in an embedded system
• Traditionally written to, “programmed”,

before inserting to embedded system
• Uses

– Store software program for general-purpose or
application-specific processor

• program instructions can be one or more ROM
words

– Store constant data needed by system
– Implement combinational circuit

2k × n ROM

…

Q0Qn-1

A0

…

enable

Ak-1

External view

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

14

Example: 8 x 4 ROM

• Horizontal lines = words
• Vertical lines = data
• Lines connected only at circles
• Decoder sets word 2’s line to 1 if

address input is 010
• Data lines Q3 and Q1 are set to 1

because there is a “programmed”
connection with word 2’s line

• Word 2 is not connected with data
lines Q2 and Q0

• Output is 1010

8 × 4 ROM

3×8
decoder

Q0Q3

A0

enable

A2

word 0
word 1

A1

Q2 Q1

programmable
connection wired-OR

word line

data line

word 2

Internal view

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

15

Mask-programmed ROM

• Connections “programmed” at fabrication
– set of masks

• Lowest write ability
– only once

• Highest storage permanence
– bits never change unless damaged

• Typically used for final design of high-volume systems
– spread out NRE cost for a low unit cost

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

16

OTP ROM: One-time programmable ROM

• Connections “programmed” after manufacture by user
– user provides file of desired contents of ROM
– file input to machine called ROM programmer
– each programmable connection is a fuse/antifuse

• Very low write ability
– typically written only once and requires ROM programmer device

• Very high storage permanence
– bits don’t change unless reconnected to programmer and more fuses

blown

• Commonly used in final products
– cheaper, harder to inadvertently modify

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

17.

(d)

(a)

(b) source drain

+15V

source drain

0V

(c)
source drain

floating gate

5-30 min

EPROM: Erasable programmable ROM

• Programmable component is a MOS transistor
– Transistor has “floating” gate surrounded by an insulator
– (a) Negative charges form a channel between source and drain

storing a logic 1
– (b) Large positive voltage at gate causes negative charges to

move out of channel and get trapped in floating gate storing a
logic 0

– (c) (Erase) Shining UV rays on surface of floating-gate causes
negative charges to return to channel from floating gate restoring
the logic 1

– (d) An EPROM package showing quartz window through which
UV light can pass

• Better write ability
– can be erased and reprogrammed thousands of times

• Reduced storage permanence
– program lasts about 10 years but is susceptible to

radiation and electric noise
• Typically used during design development

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

18

EEPROM:
Electrically erasable programmable ROM

• Programmed and erased electronically
– typically by using higher than normal voltage
– can program and erase individual words

• Better write ability
– can be in-system programmable with built-in circuit to provide higher

than normal voltage
• built-in memory controller commonly used to hide details from memory user

– writes very slow due to erasing and programming
• “busy” pin indicates to processor EEPROM still writing

– can be erased and programmed tens of thousands of times

• Similar storage permanence to EPROM (about 10 years)
• Far more convenient than EPROMs, but more expensive

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

19

Flash Memory

• Extension of EEPROM
– Same floating gate principle
– Same write ability and storage permanence

• Fast erase
– Large blocks of memory erased at once, rather than one word at a time
– Blocks typically several thousand bytes large

• Writes to single words may be slower
– Entire block must be read, word updated, then entire block written back

• NAND (read block)/NOR (read byte)
• Used with embedded systems storing large data items in

nonvolatile memory
– e.g., digital cameras, TV set-top boxes, cell phones (NAND)
– BIOS, Smarthphone OSs (NOR)

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

20

Phase Change Memory

• Overview

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

21

Phase Change Memory

• Overview

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

22

Phase Change Memory

• Overview
– EEPROM replacement
– Hybrid architectures for mobile platforms

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

23

RAM: “Random-access” memory

• Typically volatile memory
– bits are not held without power supply

• Read and written to easily by embedded system
during execution

• Internal structure more complex than ROM
– a word consists of several memory cells, each

storing 1 bit
– each input and output data line connects to each

cell in its column
– rd/wr connected to every cell
– when row is enabled by decoder, each cell has logic

that stores input data bit when rd/wr indicates write
or outputs stored bit when rd/wr indicates read

enable
2k × n read and write

memory

A0 …

r/w

…

Q0Qn-1

Ak-1

external view

4×4 RAM

2×4
decoder

Q0Q3

A0

enable

A1

Q2 Q1

Memory
cell

I0I3 I2 I1

rd/wr To every cell

internal view

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

24

Basic types of RAM

• SRAM: Static RAM
– Memory cell uses flip-flop to store bit
– Requires 6 transistors
– Holds data as long as power supplied

• DRAM: Dynamic RAM
– Memory cell uses MOS transistor and

capacitor to store bit
– More compact than SRAM
– “Refresh” required due to capacitor leak

• word’s cells refreshed when read
– Typical refresh rate 15.625 microsec.
– Slower to access than SRAM

memory cell internals

Data

W

Data'

SRAM

Data
W

DRAM

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

25

Ram variations

• PSRAM: Pseudo-static RAM
– DRAM with built-in memory refresh controller
– Popular low-cost high-density alternative to SRAM

• NVRAM: Nonvolatile RAM
– Holds data after external power removed
– Battery-backed RAM

• SRAM with own permanently connected battery
• writes as fast as reads
• no limit on number of writes unlike nonvolatile ROM-based memory

– SRAM with EEPROM or flash
• stores complete RAM contents on EEPROM or flash before power turned off

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

26

Example:
HM6264 & 27C256 RAM/ROM devices

• Low-cost low-capacity memory
devices

• Commonly used in 8-bit
microcontroller-based
embedded systems

• First two numeric digits indicate
device type

– RAM: 62
– ROM: 27

• Subsequent digits indicate
capacity in kilobits

• Memory controllers?

Device Access Time (ns) Standby Pwr. (mW) Active Pwr. (mW) Vcc Voltage (V)
HM6264 85-100 .01 15 5
27C256 90 .5 100 5

22

20

data<7…0>

addr<15...0>

/OE

/WE

/CS1

CS2 HM6264

11-13, 15-19

2,23,21,24,
25, 3-10

22

27

20

26

data<7…0>

addr<15...0>

/OE

/CS

27C256

11-13, 15-19

27,26,2,23,21,
24,25, 3-10

block diagrams

device characteristics

timing diagrams

data

addr

OE

/CS1

CS2

Read operation

data

addr

WE

/CS1

CS2

Write operation

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

27

The future?

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

28

Composing Memory

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

29

Composing memory
• Memory size needed often differs from size of readily

available memories
• When available memory is larger, simply ignore unneeded

high-order address bits and higher data lines
• When available memory is smaller, compose several smaller

memories into one larger memory
– Connect side-by-side to increase width of words
– Connect top to bottom to increase number of words

• added high-order address line selects smaller memory
containing desired word using a decoder

– Combine techniques to increase number and width of words

…

2m × 3n ROM
2m × n ROM

A0 …

enable 2m × n ROM

…

2m × n ROM

…

Q3n-1 Q2n-1

…

Q0

…
Am

Increase width
of words

2m+1 × n ROM
2m × n ROM

A0 …

enable

…

2m × n ROM

Am-1

Am
1 × 2

decoder

…

…

…

Qn-1 Q0

…

Increase number of words

A

enable

outputs

Increase number
and width of

words

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

30

Memory Hierarchy & Cache Memory

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

31

Memory hierarchy

• Want inexpensive, fast
memory

• Main memory
– Large, inexpensive, slow

memory stores entire
program and data

• Cache
– Small, expensive, fast

memory stores copy of likely
accessed parts of larger
memory

– Can be multiple levels of
cache

L0?

Die, Chip, Module

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

32

Why cache memory?

• Empirical spatial/temporal locality principle
• If a memory location with address i is used at a time t, it is very

probable that the same location and the near ones will be used in a
few time

– This is valid both for instructions and data
– The principle is statistically verified by the major part of the programs

• Empirical “90/10” law
– 90% of the execution time is related to the 10% of code

• The law is statistically verified by several programs

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

33

Cache

• Usually designed with SRAM
– faster but more expensive than DRAM

• Usually on same chip as processor
– space limited, so much smaller than off-chip main memory
– faster access (1 cycle vs. several cycles for main memory)

• Cache operation
– Request for main memory access (read or write)
– First, check cache for copy

• cache hit: copy is in cache, quick access
• cache miss: copy not in cache, read address and possibly its neighbors into cache

• Several cache design choices
– Separated or unified data/instructions cache
– Cache mapping, replacement policies, and write techniques

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

34

Cache mapping

• Far fewer number of available cache addresses
– Are address’ contents in cache?

• Cache mapping used to assign main memory address to cache
address and determine hit or miss

• Three basic techniques:
– Direct mapping
– Fully associative mapping
– Set-associative mapping

• Caches partitioned into indivisible blocks or lines of adjacent
memory addresses
– usually 4 or 8 addresses per line

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

35

Direct mapping

• Main memory address divided into 2 fields
– Index

• cache address
• number of bits determined by cache size

– Tag
• compared with tag stored in cache at address

indicated by index
• if tags match, check valid bit

• Valid bit
– indicates whether data in slot has been loaded

from memory
• Offset

– used to find particular word in cache line

Data

Valid

Tag Index Offset

=

V T D

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

36

Fully associative mapping

• Complete main memory address stored in each cache address
• All addresses stored in cache simultaneously compared with

desired address
• Valid bit and offset same as direct mapping

Tag Offset

=

V T D

Valid

V T D
…

V T D

=
=

Data

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

37

Set-associative mapping

• Compromise between direct mapping and
fully associative mapping

• Index same as in direct mapping
• But, each cache address contains content

and tags of 2 or more memory address
locations

• Tags of that set simultaneously compared as
in fully associative mapping

• Cache with set size N called N-way set-
associative

– 2-way, 4-way, 8-way are common

Tag Index Offset

=

V T D
Data

Valid

V T D

=

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

38

Cache-replacement policy

• Technique for choosing which block to replace
– when fully associative cache is full
– when set-associative cache’s line is full

• Direct mapped cache has no choice
• Random

– replace block chosen at random

• LRU: least-recently used
– replace block not accessed for longest time

• FIFO: first-in-first-out
– push block onto queue when accessed
– choose block to replace by popping queue

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

39

Cache write techniques

• When written, data cache must update main memory
• Write-through

– write to main memory whenever cache is written to
– easiest to implement
– processor must wait for slower main memory write
– potential for unnecessary writes

• Write-back
– main memory only written when “dirty” block replaced
– extra dirty bit for each block set when cache block written to
– reduces number of slow main memory writes

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

40

Cache impact on system performance

• Most important parameters in terms of performance
– Total size of cache

• Total number of data bytes cache can hold
• Tag, valid and other house keeping bits not included in total

– But they can be a lot!
– Degree of associativity
– Data block size

• Larger caches achieve lower miss rates but higher access cost
– Improving cache hit rate without increasing size

• Increase line size
• Change set-associativity

• Big problem!
– Cache coherence in multi processor/core systems!

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

41

Examples

AMD Opteron ARM 7D Intel Xscale
CPU
Application

CISC, 64 bit
High-End Desktop

RISC, 32 bit
GPS, PDA, Games

RISC, 32 bit
Embedded

L1 organization
L1 dimension
L1 associativity
L1 replacement
L1 writing

Separated
64 KB, 64 KB

2-way
LRU

write-back

Unified
2 KB
4-way
LRU

write-back

Separated
32 KB, 32 KB

32-way
Roud-Robin
configurable

L2 organization
L2 dimension
L2 associativity
L2 replacement
L2 writing

Unified
1 MB

16-way
Approximated LRU

write-back

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

42

Advanced RAM

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

43

Advanced RAM

• DRAMs commonly used as main memory in processor based
embedded systems
– high capacity, low cost

• Many variations of DRAMs proposed
– need to keep pace with processor speeds

• FPM DRAM: fast page mode DRAM
• EDO DRAM: extended data out DRAM
• SDRAM/ESDRAM: synchronous and enhanced synchronous DRAM
• RDRAM: rambus DRAM
• Double-Data Rate RAM (DDR, DDR2, DDR3, LP–DDR)
• Fully-Buffered DRAM (FB-DRAM)

– a key role is played by the memory controller

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

44

DRAM integration problem

• SRAM easily integrated on same chip as processor
• DRAM more difficult

– Different “chip making process” between DRAM and
conventional logic

• But similar to CMOS sensors!
– Goal of conventional logic (IC) designers

• minimize parasitic capacitance to reduce signal propagation delays
and power consumption

– Goal of DRAM designers
• create capacitor cells to retain stored information

– Integration processes beginning to appear

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

45

Scratch-Pad Memory

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

46

Scratch-Pad Memory

• A combination of small memories containing
frequently used data and instructions and a larger
memory containing the remaining data and instructions
is generally also more energy efficient than a single,
large memory
– Caches were initially introduced in order to provide good

run-time efficiency but it is obvious that caches potentially
also improve the energy-efficiency of a memory system

• Accesses to caches are accesses to small memories and therefore
may require less energy per access than large memories

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

47

Scratch-Pad Memory

• However, for caches it is required that the hardware
checks whether or not the cache has a valid copy of the
information associated with a certain address
– This check involves comparing the tag fields of caches,

containing a subset of the relevant address bits
• Reading these tags requires additional energy
• Also, the predictability of the real-time performance of caches is

frequently low

• Alternatively…
…small memories can be mapped directly into the address

space!

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

48

Scratch-Pad Memory

• Such memories are called Scratch Pad Memories
– Frequently used variables and instructions should be

allocated to that address space and no checking needs to be
done in hardware

• As a result, the energy per access is reduced
– SPMs can improve memory access times and predictability,

if the compiler is in charge of keeping frequently used
variables in the SPM. But…

• SPM is visible to the programmer/compiler while cache is not!
• In a multi-tasking system the SPM could be erased (or managed

in some way) at each context switch…

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

49

Scratch-Pad Memory

• Structural view

DRAM

Data
Cache

CPU Core

External Memory
Interface

Address

Data

Scratch-Pad Memory

SRAM
I/F SRAM

Hit
Hit

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

50

Scratch-Pad Memory

• Address space view

On-chip
Memory

Off-chip
Memory

Data
Cache

(on-chip)

CPU

Addressable
Memory

1 cycle

1 cycle

10-20 cycles

0

P-1
P

N-1

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

51

Scratch-Pad Memory

• Scratchpad usage in embedded systems could reduce
the memory energy consumption, improve the
performance and reduce the occupied area
– To maximize the benefit of using scratchpads, compiler

has a primary role in the memory allocation…
Cache

• Larger
• Subject to conflict, capacity and

compulsary misses
• Unpredictable data access time
• Runtime assignment

Scratchpad

•Smaller

•Always result in a hit if requested
within the data range

•Mapping by user or compiler
directed

	Memory��ESD_Cap5 ++
	Outline
	Diapositiva numero 3
	Introduction
	Diapositiva numero 5
	Memory: basic concepts
	Diapositiva numero 7
	Write ability/ storage permanence
	Write ability
	Storage permanence
	Diapositiva numero 11
	Common memory types
	ROM: “Read-Only” Memory
	Example: 8 x 4 ROM
	Mask-programmed ROM
	OTP ROM: One-time programmable ROM
	EPROM: Erasable programmable ROM
	EEPROM:�Electrically erasable programmable ROM
	Flash Memory
	Phase Change Memory
	Phase Change Memory
	Phase Change Memory
	RAM: “Random-access” memory
	Basic types of RAM
	Ram variations
	Example: �HM6264 & 27C256 RAM/ROM devices
	The future?
	Diapositiva numero 28
	Composing memory
	Diapositiva numero 30
	Memory hierarchy
	Why cache memory?
	Cache
	Cache mapping
	Direct mapping
	Fully associative mapping
	Set-associative mapping
	Cache-replacement policy
	Cache write techniques
	Cache impact on system performance
	Examples
	Diapositiva numero 42
	Advanced RAM
	DRAM integration problem
	Diapositiva numero 45
	Scratch-Pad Memory
	Scratch-Pad Memory
	Scratch-Pad Memory
	Scratch-Pad Memory
	Scratch-Pad Memory
	Scratch-Pad Memory

