
EMBEDDED SYSTEMS 2016/2017/2018: THEORY [6/9 credits course]

8 T/F questions: 0.5 points for right answers, -0.25 points for wrong ones, and 0 for no answer

3 open questions: up to 2 points for right and complete answers

Max total: 10 points

Available time: 60 minutes

Name:__

TRUE or FALSE?

1) An embedded system is always designed to be as general-purpose as possible.

2) To exploit a General Purpose Processor, it is always needed a compiler for the IA-32 Instruction Set
Architecture.

3) The opportunity to perform preemption of kernel processes allows to avoid the priority inversion
problem.

4) The Instruction Set Architecture of an Applications Specific Instructions Processor is normally
customizable.

5) The Intel 8051 model used in the homelab has 4 input/output ports.

6) Phase Change Memories are volatile ones.

7) It is not possible to use floating-point arithmetic on processors without a Floating Point Unit.

8) If the utilization factor of a task set is greater than 1, the task set cannot be scheduled.

OPEN QUESTIONS

1) Describe the different “Processors Technologies” and their main differences.

2) Describe the RM and EDF scheduling algorithms and their main differences.

3) Given the following code, describe the behavior of the related application and complete the sequence
diagram (reporting comments, if needed), indicating all the (possible) calls and events in the first 1000 ms of
execution (after the first indicated event).

configuration BlinkAppC
{
}
implementation
{
 components MainC, BlinkC, LedsC;
 components new TimerMilliC() as Timer0;
 components new TimerMilliC() as Timer1;
 components new TimerMilliC() as Timer2;

 BlinkC -> MainC.Boot;

 BlinkC.Timer0 -> Timer0;
 BlinkC.Timer1 -> Timer1;
 BlinkC.Timer2 -> Timer2;
 BlinkC.Leds -> LedsC;
}

module BlinkC()
{
 uses interface Timer<TMilli> as Timer0;
 uses interface Timer<TMilli> as Timer1;
 uses interface Timer<TMilli> as Timer2;
 uses interface Leds;
 uses interface Boot;
}
implementation
{
 event void Boot.booted()
 {
 call Timer0.startPeriodic(200);
 call Timer1.startPeriodic(350);
 call Timer2.startPeriodic(950);
 }

 event void Timer0.fired()
 {
 call Leds.led0Toggle();
 }

 event void Timer1.fired()
 {
 call Leds.led1Toggle();
 }

 event void Timer2.fired()
 {
 call Leds.led2Toggle();
 }
}

