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Abstract Wireless Sensor Networks (WSNs) have found more and more applications in a variety of pervasive computing
environments. However, how to support the development, maintenance, deployment and execution of applications over
WSNs remains to be a nontrivial and challenging task, mainly because of the gap between the high level requirements from
pervasive computing applications and the underlying operation of WSNs. Middleware for WSN can help bridge the gap
and remove impediments. In recent years, research has been carried out on WSN middleware from different aspects and
for different purposes. In this paper, we provide a comprehensive review of the existing work on WSN middleware, seeking
for a better understanding of the current issues and future directions in this field. We propose a reference framework to
analyze the functionalities of WSN middleware in terms of the system abstractions and the services provided. We review
the approaches and techniques for implementing the services. On the basis of the analysis and by using a feature tree, we
provide taxonomy of the features of WSN middleware and their relationships, and use the taxonomy to classify and evaluate
existing work. We also discuss open problems in this important area of research.
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1 Introduction

In recent years, a new wave of networks labeled Wire-
less Sensor Networks (WSNs) has attracted a lot of at-
tentions from researchers in both academic and indus-
trial communities. WSNs can be used for forming the
underlying sensing and network infrastructure in per-
vasive computing environments. A WSN consists of a
collection of sensor nodes and a sink node connected
through wireless channels, and can be used for build-
ing distributed systems for data collection and process-
ing, covering the functions of on-field signal sensing
and processing, in-network data aggregation, and self-
organized wireless communication. WSNs have found
many applications in different areas, including environ-
mental surveillance, intelligent building, health moni-
toring, intelligent transportations, etc.[1]

This survey paper is concerned with middleware for
WSNs. Middleware refers to software and tools that
can help hide the complexity and heterogeneity of the
underlying hardware and network platforms, ease the
management of system resources, and increase the pre-

dictability of application executions[2]. WSN middle-
ware is a kind of middleware providing the desired ser-
vices for sensing-based pervasive computing applica-
tions that make use of a wireless sensor network and
the related embedded operating system or firmware of
the sensor nodes.

The motivation behind the research on WSN mid-
dleware derives from the gap between the high-level re-
quirements from pervasive computing applications and
the complexity of the operations in the underlying
WSNs. The application requirements include high flex-
ibility, re-usability, and reliability. The complexity of
the operations with a WSN is characterized by con-
strained resources, dynamic network topology, and low
level embedded OS APIs. WSN middleware provides
a potential solution to bridging the gap and removing
the impediments. In the early time of the research on
WSN, people did not pay much attention to middleware
because the simplicity of the early applications did not
show much demand for the support from the middle-
ware. Along with the rapid evolution in this area, the
gap becomes increasingly obvious and hinders the pop-
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ularity of WSN-based applications.
WSN middleware helps the programmer develop ap-

plications in several ways. First, it provides appropriate
system abstractions, so that the application program-
mer can focus on the application logic without caring
too much about the lower level implementation details.
Second, it provides reusable code services, such as code
update, and data services, such as data filtering, so that
the application programmer can deploy and execute the
application without being troubled with complex and
tedious functions. Third, it helps the programmer in
network infrastructure management and adaptation by
providing efficient resource services, e.g., power man-
agement. It also supports system integration, monitor-
ing, as well as system security.

Although middleware is a well established research
area in distributed computing systems, WSN poses
new challenges to middleware research. The tradi-
tional middleware techniques cannot be applied di-
rectly to WSNs. First, most distributed system mid-
dleware techniques[3,4] aim at providing transparency
abstractions by hiding the context information, but
WSN-based applications should usually be context-
aware. Second, although many mobile computing
middleware[5,6] supports context awareness, their ma-
jor concern is how to continuously satisfy the interests
of individual mobile nodes in the presence of mobil-
ity. In contrast, WSN-based systems are data cen-
tric, reflecting the whole application’s interests. Thus,
the locations and mobility of the sensor nodes should
be handled by WSN middleware in a different way.
For example, a node moving away from a phenomenon
may choose to hand off the monitoring responsibility
to a nearby node. Also, WSNs mostly use attribute-
based addressing[1,7] rather than relying on network-
wide unique node addresses. Third, data aggregation
in intermediate nodes of the forwarding path is desir-
able in a WSN, but no such kind of support is provided
in traditional distributed system middleware because of
the end-to-end paradigm used. Finally, WSN requires
the middleware to be light weight[7−9] for implemen-
tation in sensor nodes with limited processing and en-
ergy resources. WSNs also have new requirements on
hardware (e.g., various sensors and computing nodes),
operating systems and routing protocols[10], as well as
the applications[11].

In recent years, a lot of work has been done
on WSN middleware, focusing on different aspects
and for different purposes. Although several sur-
vey papers can be found in literature[7−9,12−18],
each of them addresses only a subset of the issues,
e.g., the system architecture[7−9,16], the programming

paradigm[13,14,17], and the run time supporting[12,18].
There is no reference model for classifying and ana-
lyzing the middleware functionalities, and no detailed
discussion on the implementation techniques.

This paper presents a systematic study of recent re-
search on WSN middleware to help identify the key
services, challenging issues, and important techniques.
Compared with the existing surveys, this paper makes
the following distinct contributions. First, it proposes
a reference model for analyzing the functionalities and
key services of WSN-middleware. Second, it provides a
detailed review of the existing work on the most impor-
tant aspects in developing WSN middleware, covering
the major approaches to and corresponding techniques
of implementing the services. Third, the paper pro-
poses a feature tree-based taxonomy[19] that organizes
WSN-middleware features and their relationships into
a framework to help understand and classify the exist-
ing work. The paper also discusses the open problems
and identifies the directions in future research.

The remainder of this paper is organized as follows.
In Section 2, we describe a reference framework to an-
alyze the functionalities of and identify the key ser-
vices to be provided by WSN middleware. In Section 3,
we survey the approaches and the corresponding tech-
niques for implementing the key services. In Sections 4
and 5, we look into the WSN runtime support and QoS
support, respectively. In Section 6, we propose a fea-
ture tree-based taxonomy for classifying the features of
WSN-middleware, and highlight the representative ex-
isting middleware projects with the evaluation of their
advantages and disadvantages. In Section 7, we discuss
the challenges, open problems, and future directions of
WSN middleware research. Finally, we conclude this
paper in Section 8.

2 Reference Model of WSN Middleware

2.1 Model Overview

As shown in Fig.1, a complete WSN-middleware so-
lution should include four major components: program-
ming abstractions, system services, runtime support,
and QoS mechanisms. Programming abstractions de-
fine the interface of the middleware to the application
programmer. System services provide implementations
to achieve the abstractions. Runtime support serves as
an extension of the embedded operating system to sup-
port the middleware services. QoS mechanisms define
the QoS constrains of the system.

By analyzing the requirements of WSN-based appli-
cations and the characteristics of WSNs, we propose a
reference framework, shown in Fig.2, to describe the or-



Miao-Miao Wang et al.: Middleware for Wireless Sensor Networks: A Survey 307

ganization and relationships of the above components.
It should be mentioned that it is not necessary for a spe-
cific WSN-middleware to include all the components.
Also, functions of several components may be combined
together and implemented as one component.

In the deployment, the functions of WSN-
middleware can be distributed to the sensor nodes, the
sink nodes, and high level application terminals, as
shown in Fig.3. The distributed middleware compo-

nents located in different nodes of the network commu-
nicate with each other to achieve some common goals.

Fig.1. Major components of WSN-middleware.

Fig.2. Reference model of WSN middleware.

Fig.3. System architecture of WSN-middleware.

2.2 Programming Abstractions

Programming abstractions are the foundation of
WSN-middleware. They provide the high-level pro-
gramming interfaces to the application programmer,
which separate the development of WSN-based appli-
cations from the operations in the underlying WSN in-
frastructures. They also provide the basis of developing
the desirable middleware services. Three aspects are

involved in developing the programming abstractions:
abstraction level, programming paradigm, and interface
type.

Abstraction Level refers to how the application pro-
grammer views the system. Node level abstraction ab-
stracts the WSN as a distributed system consisting of
a collection of sensor nodes, and provides the program-
mer the support for programming the individual sensor
nodes for their actions and cooperation[20−22]. System
level abstraction abstracts the WSN as a single virtual
system and allows the programmer to express a sin-
gle centralized program (global behavior) into subpro-
grams that can execute on local nodes (nodal behav-
ior), leaving only a small set of programming primitives
for the programmer while making transparent the low-
level concerns such as the distributed code generation,
remote data access and management, and inter-node
program flow coordination[23,24]. Generally speaking,
node level abstraction facilitates the development of ap-
plications with more flexibility and energy saving, and
less communication and interpretation overheads. On
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the other hand, system level abstraction is easier to
use because nodal behaviors can be generated auto-
matically so the programmer can concentrate on the
network-level actions, without worrying about how the
sensor nodes collaborate with each other to perform the
assigned tasks.

Programming paradigm refers to the model of pro-
gramming the applications. It is often dependent on
the applications. WSN applications can be classified
in two dimensions: application data collection fea-
ture and application dynamic feature. Data collec-
tions can be continuous, event-driven, or query-based.
Application can be totally static and has some mo-
bility characteristic, such as mobile target or mobile
sink. Correspondingly, for different applications, WSN
middleware may use different programming paradigms,
such as database, mobile agent, and Publish/Subscribe
(Pub/Sub). For example, the data base paradigm is
often used for query-based data collection, while the
Pub/Sub paradigm can be a good choice for event-
driven applications. Mobile agent paradigm may be
a choice for tracking mobile target applications.

Interface type refers to the style of the programming
interface. As a matter of fact, programming abstrac-
tion is embodied as the programming interface. De-
scriptive interfaces provide SQL-like languages for data
query[25,26], rule-based declarative languages for com-
mand execution[27], or XML-based specification files
for context configuration[28]. On the contrary, imper-
ative interfaces provide imperative programming lan-
guages for writing the code to interact with the WSN
network[29]. Descriptive interfaces usually require the
interpretation of the queries and thus consume more
resources, while imperative interfaces require the pro-
grammer to specify the logic of execution, and are more
flexible but more difficult to use.

The consideration of adopting a particular abstrac-
tion level and selecting an appropriate programming
paradigm and applicable interface depends on the
specific application requirements and the underling
WSN infrastructure. Middleware providing similar
paradigms may share the implementation techniques.
For example, the database-based paradigm is usually
implemented with a descriptive interface, while the
event-driven paradigm can be implemented either with
an imperative interface by providing the handlers to be
recalled or with a descriptive interface by providing an
event description scheme. We will discuss them in more
details in the later sections.

2.3 System Services

System services embody the functionalities and form

the core of WSN-middleware. They are exposed to the
application programmer through the abstraction inter-
face, and provide the support for application deploy-
ment, execution, as well as sensor and network manage-
ment. We classify the system services into two broad
categories: common services and domain services.

Common services are the basic services shared by all
WSN applications. They help manage the application
information and the WSN infrastructure. The func-
tionalities provided by the common services include:
• Code Management: responsible for code migrating

and code updating in a deployed network;
• Data Management: responsible for data acquisi-

tion, data storage, data synchronization, data analysis,
and data mining;
• Resource Discovery: responsible for discovering

newly joined sensor nodes and detecting nodes, which
are becoming inaccessible either as a result of mobility
or loss of battery power;
• Resource Management: responsible for managing

the node resources (e.g., energy, memory, A/D device,
communication module) and network resource (e.g.,
topology, routing, system time);
• Integration: responsible for integrating WSN and

its applications into other networks, such as the Inter-
net and Grid, for broader use.

We will explain the implementation details of the
above services in the next section.

Domain services facilitate the development of ap-
plications in a specific domain. They can make use
of the common services and add application-oriented
functions of providing domain specific services. For ex-
ample, EnviroTrack[30] is a WSN middleware that sup-
ports environmental Target tracking. Impala[22] is a
middleware for the ZetbraBet project, a wildlife moni-
toring project. It has two layers: the upper layer con-
tains the application specific protocols and functions,
and the lower layer contains the common services such
as code management. WSN-SHM middleware[31,32] is
designed for developing structural health monitoring
applications which have the requirements of high fre-
quency sampling and high resource consumption.

2.4 Runtime Support

Runtime support provides the underlying execu-
tion environment of applications and can be seen as
an extension of the embedded operating system which
provides functions of scheduling of tasks, inter-process
communication (IPC), memory control, and power con-
trol in terms of voltage scaling and component activa-
tion and inactivation. The need for runtime support in
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WSN middleware comes from the facts that the hard-
ware and firmware of the sensor nodes may not always
provide enough support for the implementation of the
middleware services described above.

The functionalities of the runtime support in WSN
middleware include local processing support, communi-
cation support, and storage support. More specifically,
the support is provided for multi-thread processing,
smart task scheduling, and synchronization of memory
access.

Runtime support of WSN-middleware is always em-
bodied as a virtual machine over a specific embedded
operating system. An example is Mate[20] built on top
of TinyOS[33].

2.5 QoS Mechanism

Quality of Service (QoS) mechanism is an advanced
feature of WSN-middleware. Providing QoS support in
WSN is still an open issue for research[34]. QoS fea-
tures are always crossing layers and crossing compo-
nents, and are embodied in various functional services.
For example, the data management service is required
to be reliable and of high accuracy.

Typical parameters for expressing QoS of WSN net-
work infrastructure include message delay, jitter, and
loss, network bandwidth, throughput, and latency.
Typical parameters for expressing QoS of WSN appli-
cations include data accuracy, aggregation delay, cover-
age, and system lifetime. Middleware acts as a broker
between the applications and the network infrastruc-
ture. QoS support may translate and control the QoS
metrics between the application level and the network
level[35]. If the QoS requirements from an application
are not feasible to fulfill in the network, the middleware
may negotiate a new QoS guarantee with both the ap-
plication and the network. QoS support may also pro-
vide the implementation framework for simplifying the
QoS-aware WSN application development using QoS
assurance algorithms.

In the rest of the paper, we will focus on the ap-
proaches and techniques for implementing the above
identified middleware components.

3 Middleware System Services

3.1 Code Management

In the context of this paper, a WSN application
consists of pieces of code that executes on the sensor
nodes. Code management provides services for code
deployment, i.e., allocation and migration of code to
sensor nodes. Code allocation determines a set of sen-

sor nodes, on which the execution will be activated.
Code migration transfers the code on a sensor node to
another node[36]. It not only helps conveniently re-task
the network for network reprogramming (code updat-
ing), but also enables the data computation elements
of an application to be re-located. Code can migrate
to the nodes close to the area where relatively large
amounts of data are collected, enabling potentially high
energy saving, or migrate with the mobile phenomena.
For example, the code of an application for fire alarm
can be migrated from node to node along the path of
fire spread.

Generally speaking, implementation of code alloca-
tion involves with checking conditions using compar-
isons. In SINA[37] code allocation is implemented in a
sensor execution environment (SEE), which compares
SQTL script parameters with the attributes of sensor
nodes and executes the script only if there is a match.
In Cougar[26], code allocation is implemented by a
query optimizer that determines the energy-efficient
query routes[36]. Code allocation services implemented
by a query optimizer have good expressivity but bring
network load, while the SEE approach has limited ex-
pressivity but good scalability. Another promising ap-
proach, as used in MiLAN[38], is to apply application-
level QoS to the control of the code allocation in con-
figuration adaptation. The approach enables the adap-
tation of the application operations on the basis of
the current application requirements, which can be ad-
justed depending on the output of the application itself.
In this way the code allocation is adaptive to the chang-
ing conditions. However, the technique used in MiLAN
requires a centralized control.

Code migration can be implemented at not only
the middleware layer but also in the underlying em-
bedded operating systems, as in BerthaOS[39] and
MagnetOS[40]. However, because WSN OS does not
support code interpretation, code migration imple-
mented at the OS level is error prone and subject to
malicious attacks[36].

At the middleware level, most techniques for task
migration rely on the use of mobile code, moving
the code to the data origins to process the data
locally[36]. Current implementations include code mi-
gration through mobile code (e.g., TCL script in
Sensorware[41], SQTL scripts in SINA[37]) and mobile
Java object (e.g., TinyLime[42]). An example of mo-
bile code is mobile agent, which is an execution thread
encapsulating the code as well as the state and data.
Mobile agent makes migration decisions autonomously.
The key of this approach is to make the application as
modular as possible to facilitate their injection and dis-
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tribution through the network. However, the nature of
mobile agent code does not allow hardware heterogene-
ity. So, this approach is implemented on top of a VM
for platform independency.

There is a trade-off between the complexity of the
interpreter running on the nodes and the complexity
of mobile code. Code migration services implemented
by mobile code with TCL and SQTL have the advan-
tages of small size and high dynamicity, but suffer from
the complexity in specification and high communica-
tion cost. Implementations based on mobile agent and
mobile Java objects have good scalability but high re-
source consumption. Code migration is very resource
dissipative and should be used only when necessary.

To get more insights of the code management ser-
vices, we take Agilla[29] as an example of the imple-
mentation techniques. Agilla is a mobile agent based
WSN middleware. The idea behind Agilla is to initially
deploy a network without any application installed.
Agents that implement the application behavior can
later be injected, effectively reprogramming the net-
work. Agilla marks the first time that multiple mobile
agents and tuple spaces are used in a unified framework
for WSNs.

Fig.4. Agilla system model.

The Agilla system model is shown in Fig.4. Each
sensor node supports multiple agents, and maintains a
tuple space and a neighbor list. The tuple space is lo-
cal and is shared by the agents residing on the node.
Special instructions are given to allow the agents to
remotely access another node’s tuple space. The neigh-
bor list contains the addresses of all the one-hop nodes.
Agents can migrate carrying their code and state, but
not their own tuple spaces.

Fig.5 shows the middleware architecture of Agilla.
The tuple space manger implements the tuple space
operations (e.g., out, inp and rdp) and reactions, and
manages the contents of the local tuple space and re-
action registry. The agent manager maintains each
agent’s context. It is responsible for allocating memory

to an agent when it arrives and de-allocating it when
the agent leaves or dies. The context manager deter-
mines the node’s location as well as that of its neigh-
bors. Instruction manager and Agilla engine provide
runtime support. Instruction Manager is responsible
for dynamic memory allocation, retrieving the next in-
struction to execute, and packing up the agent’s code
into the minimal number of messages. The Agilla en-
gine controls the concurrent execution of all the agents
on a sensor node.

Fig.5. Agilla middleware architecture.

Fig.6 shows the agent architecture. An agent con-
sists of a stack, a heap, and various registers. The heap
is a random-access storage area that allows an agent to
store variables. The registers contain the agent’s ID,
program counter (PC), and the condition code. The
agent ID is unique to each agent and is maintained
across migration operations. A cloned agent is assigned
a new ID. The PC contains the address of the next in-
struction, and is used by the code manager for fetching
the next instruction. When a reaction fires, the reac-
tion manager changes the PC to point it to the first
instruction of the reaction’s code. To allow an agent
to resume execution from where it was when the reac-
tion fired, the original PC is stored on the stack. The
condition code records the execution status.

Fig.6. Agilla mobile agent architecture.
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With regards to code allocation, Agilla uses a reac-
tion approach. Reactions are added to the tuple spaces,
allowing an agent to tell Agilla that it is interested in
tuples which match a particular template. The tuple
space manager remembers the reactions registered by
each agent by storing them within the reaction registry.
Whenever a tuple is inserted, the registry is checked to
see whether the new tuple matches a reaction’s tem-
plate. If so, the tuple space manager notifies the agent
manager, which updates the agent’s program counter
to execute the reaction’s code.

Code migration is implemented by moving or cloning
an agent from one node to another. The tuple space
manager packages up all the reactions registered by an
agent so they can be transferred along with the agent.
When an agent moves, it carries its state and code, and
resumes executing on the new node. When it clones,
it copies its state and code to another node and re-
sumes executing on both the old and new nodes. The
multi-hop migration is handled by the middleware and
is transparent to the user.

3.2 Data Management

As mentioned before, WSN applications are data
centric. Here, data refers mainly to the sensed data.
Sometimes it also refers to the network infrastructure
information interested by the applications. Data man-
agement in WSN middleware provides services to appli-
cations for data acquisition, data processing, and data
storage. The approaches to implementing the data
management services depend much on the application
data model.

3.2.1 Data Acquisition

Data acquisition is an essential service for WSN ap-
plications, responsible for delivering the relevant and
accurate data required by the application.

For the event-based data model, data acquisition
support is focused on the event definition, event regis-
ter/cancel, event detection and event delivery. The ap-
plication specifies the interest in certain state changes
of the data. Upon detecting such an event, the mid-
dleware will help send event notification to interested
applications. TinyDB[25], DSware[43], Mires[44], and
Impala[22] all support event-based data acquisition.
DSware also supports compound event detection.

A typical approach to implementing event-based
data acquisition is the Pub/Sub paradigm, which has
two advantages in supporting event-based data acqui-
sition. First, it supports asynchronous communication.
Second, it facilitates message exchanging between the

sensor nodes and the sink node. The basic entities of
Pub/Sub system are event subscriber and event pub-
lisher (some times event broker also). From the mid-
dleware’s point of view, the event subscriber is the sink
node and the event publishers are the sensor nodes.

Fig.7. Mire’s architecture.

Fig.8. Mire’s Pub/Sub component.

As an example of the Pub/Sub approach, let us have
a look of Mires. Figs. 7 and 8 show Mires’ archi-
tecture and its Pub/Sub component structure, respec-
tively. Mire includes a core component, namely the
Pub/Sub service, and some additional services. The
communication between the sensor nodes consists of
three phases. Initially, the sensor nodes in the network
advertise their available topics (e.g., temperature and
humidity) collected from the local sensors. Next, the
advertised messages are routed to the sink node using
a multi-hop routing algorithm. A user application con-
nected to the sink node is able to select (i.e., subscribe)
the desired advertised topics to be monitored. Finally,
the subscribed messages are broadcasted down to the
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network nodes. After receiving the subscribed topics,
the sensor nodes are able to publish their collected data
to the network. The Pub/Sub service maintains the
topic list and the subscribing applications so as to mar-
shal the right topic to the related application. In Mires,
only the messages referring to the subscribed topics are
sent, hence reducing the number of transmissions and
energy consumption.

For query-based data model, data acquisition sup-
port is focused on the query processing model and
methods. Middleware for query-based data model
usually uses a declarative interface, with global
level abstraction and database programming model.
Example systems are TinyDB[25], Cougar[26], and
SensorWare[41]. They leverage the techniques used in
the traditional database system to implement data ac-
quisition services, e.g., applying distributed query[45,46]

or CACQ (continuously adaptive continuous queries
over streams)[47,48].

TinyDB is a good example to illustrate the query-
based approach. TinyDB is a query-processing system
that extracts information from the data collected by the
WSN using the underlying operating system TinyOS.
TinyDB maintains a virtual database table, called SEN-
SORS, whose columns contain information such as sen-
sor type, sensor node identifier, and remaining battery
power. The programmer can view the values of the
SENSORS, and add new rows to it. Consider the fol-
lowing example, a user wants to be reported when the
average temperature is above 80◦F in any room on the
third floor of a building monitored by sensors. The user
inputs the following database query along with the rate
at which the sensors are to collect the data:

SELECT AVG (temp) FROM sensors
(select rows from Sensors)
WHERE floor = 3
(at the 3rd floor)
GROUP BY room
(rows are grouped by room number)
AVG (temp) > 80F
(only groups with average temperature > 80F)
SAMPLE PERIOD 20 seconds

(perform every 20 seconds—rate of collection)

TinyDB uses a controlled-flooding approach to dis-
seminate the queries throughout the network. The sys-
tem maintains a routing tree (spanning tree) rooted
at the end point (usually the user’s physical location).
Then, in a decentralized approach, every sensor node
has its own query processor that processes and aggre-
gates the sensor data and maintains the routing infor-
mation. In every period, the parent node closer to the
root agrees with its children in a time interval for lis-
tening to data from them.

3.2.2 Data Processing

Generally speaking, there are three different ap-
proaches to supporting data processing in WSNs. In
centralized processing, all the data are collected and
then sent to a central node for processing. In node
level, distributed processing raw data collected in the
sensor nodes are pre-processed to obtain partial results,
which are then collected by the sink node for further
processing to get the final result. In network level, dis-
tributed processing final results are obtained through
both node-level distributed processing and information
exchange between the sensor nodes, and between the
sensor nodes and the sink node. In the extreme case,
where every sensor node is involved with data process-
ing and routing, and is aware of the final decision, it
becomes completely distributed processing.

Given that the communication cost is much higher
than the computation cost at a sensor node, WSN
middleware should support in-network distributed
data processing service, mostly through data fu-
sion/aggregation. Although in-network data process-
ing services are also supported at a lower level by some
firmware in terms of signal conditioning, and data fu-
sion and data aggregation can also be supported at the
MAC and routing layers, middleware support has the
following distinctive features. 1) It is more independent
of the underlying network protocols, so different strate-
gies can be applied according to different data accu-
racy requirements from different applications or differ-
ent network conditions. 2) It facilitates high level data
analysis such as feature-based fusion and decision-based
fusion.

For event-based data model, data aggrega-
tion/fusion can be implemented in separate services.
An example is the aggregation service in Mires[44]. In
Mires, data aggregation is implemented in separate
modules for functions such as AVG and SUM. The ag-
gregation is executed by an “Aggregate Use” module
that carries out an activity of de-multiplexing, passing
requests for the correct aggregation module in accor-
dance to its identifier. This way, the flexibility to add
new aggregation functions is guaranteed, just requir-
ing the creation of a module for the new function and
adding the association between the function and an
identifier to a configuration file.

In addition, for event-based data model, detecting
the event boundary and determining the event area and
its center should also be considered in WSN middle-
ware.

For query-based data model, data aggrega-
tion/fusion services can be implemented by using the
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pipelining techniques[46], as used in TinyDB and Sen-
sorWare.

Another data processing service is data calibration
for ensuring the synchronization between the sensor
nodes. Some applications, e.g., seismographic or build-
ing health monitoring, require precise time synchroniza-
tion among the readings on different sensor nodes. How
to achieve time synchronization is an important func-
tion of the middleware. More details on implementation
techniques of time synchronization in WSN, e.g., hard-
ware implementation, software implementation can be
found in [55].

3.2.3 Data Storage

There are three approaches to implementing data
storage support in WSNs[49,50]. External storage stores
the data in the base station out of the WSN. Local
storage stores the data where it is generated, reducing
communication but increasing the inquiry cost. Data
centric storage provides a tradeoff between the previ-
ous two approaches. Data-centric storage is the most
popular approach implemented in existing WSN mid-
dleware.

Let us look at Data Service Middleware
(DSWare)[43] as an example to show the data stor-
age service implementation in WSN-middleware. As
shown in Fig.9, DSWare is a specialized layer that
implements various data services and, in doing so,
provides a database like abstraction to WSN applica-
tions. Fig.10 shows the DSWare framework. The event
detection component is responsible for providing the
data acquisition service. The group management com-
ponent provides the support for group-based decision
and is responsible for data aggregation. The schedul-
ing component schedules the services to all DSWare
components with two scheduling options: energy-aware
scheduling and real-time scheduling. Here, we focus on
the data storage and caching components.

Fig.9. DSWare framework.

Fig.10. DSWare system model.

The Data Storage component in DSWare stores data
according to the semantics associated with the data. It
has a data look-up operation and provides fault tol-
erance should there be node failures. It also has op-
erations for storing correlated data in geographically
adjacent regions. This has two advantages: enabling
data aggregation and making it possible for the system
to perform in-network processing.

To facilitate data look-up, DSWare maps data to
physical storage using two levels of hash functions. At
the first level, the hash function maps a key, which is
a unique identifier assigned to each data type, to a log-
ical storage node in the overlay network. As a result
of this operation, the storage nodes form a hierarchy at
this level. The second level involves the mapping of sin-
gle logical node to multiple physical nodes such that a
base station performing a query operation has the data
fetched from one of the physical locations. There is a
big risk in mapping a given data type to a single node
as this data could be lost as a result of node failure.
Furthermore, mapping data to a single node in the sen-
sor network causes bursts of traffic to the node which
may lead to collision and higher rate power consump-
tion. DSWare uses replication to store data in multiple
physical sensor nodes that can be mapped onto a single
logical node. Load balancing is achieved since queries
can be directed to any one of the physical nodes and
the lifetime of individual nodes is prolonged since power
consumption is substantially reduced. With replication
of data amongst multiple nodes there come consistency
issues. DSWare adopts “weak consistency” to avoid
peak time traffic since only the newest data amongst
nodes is bound to lack consistency. This new data is
propagated to other nodes and the size of inconsistent
data is bounded so that replication occurs when the
workload in individual nodes is low.
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Data caching in DSWare provides multiple copies
of data that are most requested. DSWare spreads the
cached data over the network to achieve high avail-
ability and faster query execution. A feedback con-
trol scheme is used for dynamically deciding whether
or not copies should reside in frequently queried nodes.
The scheme uses various inputs, including proportion of
periodic queries and average response time, from data
source to guide the nodes in making decisions about
whether or not a copy should be kept. This component
also monitors the usage of the copies to decide whether
to increase or reduce the number of copies, or move
them to a new location.

In conclusion, 1) data management is an important
topic in WSNs. One of the distinguished features that
middleware offers in data management is the appropri-
ate abstraction of data structure and operation. With-
out this abstraction, the developer has to manage the
heterogeneous data and low level operation in the ap-
plication. Various exiting data management algorithms
can be implemented as reusable and alternative middle-
ware services with certain of parameters. The middle-
ware system can even automatically adjust the service
parameters according to its current status. Applica-
tion specific data management algorithms can be writ-
ten based on those common data services. This also
facilitates the development process. 2) Most existing
WSN middleware provides some kinds of data manage-
ment services. However, high level in-network analysis
services related to the WSN application domain, e.g.,
data mining, are not implemented yet, to which more
attention should be paid.

3.3 Resource and Information Discovery

Resources in a WSN usually refer to the sensor node
hardware resource, e.g., energy, memory, A/D device,
and communication module. The resource discovery
service returns the data type that a discovered node
can provide, the modes in which it can operate, and
the transmission power level or residual energy level of
a sensor node. On the other hand, the information dis-
covery service returns the information about the net-
work topology, the network protocols, and the neigh-
bors and the locations of the discovered nodes. The
service can also be used for discovering new nodes and
finding out when nodes become inaccessible as a result
of either mobility or loss of battery power. However,
many of the above mentioned service features are not
being available in existing WSN middleware yet.

Compared to the resource discovery in traditional
networks[51,52] which is involved with identifying and
locating (relocating) the services and resources in the

system, resource and information discovery services in
WSN are more difficult to implement due to the lack
of unique node ID and the lack of generic service spec-
ification, and because the services need to be provided
in a power-aware way. Some existing WSN middleware
systems adopt service discovery protocols from tradi-
tional computer network solutions, e.g., SLP[53] and
Bluetooth SDP[54]. MiLAN is an example. Other sys-
tems, e.g., TinyLime, use tuple space to implement the
resource discovery service. However, these implementa-
tions need unique ID of the resource, but many WSNs
are content-based without unique ID for sensor nodes.

Although many localization algorithms have been
developed for different kinds of systems, for exam-
ple, Ultrasound, RF, and ultra-wideband, RSSI tech-
niques are used for accurate localization via carefully
placed beacons. Few existing WSN middleware has in-
tegrated location discovery service. To our opinion, this
is mainly because the implementation of this kind of
service depends very much on hardware and the un-
derlying environment. For large scale use of WSN for
pervasive computing, standard and adaptive location
discovery services should be provided.

3.4 Resource Management

Resource and information discovery services de-
scribed in the previous section have two main functions:
1) providing the underlying network information to ap-
plications that are required to be reflective or adaptive
(e.g., context-aware); 2) providing the underlying net-
work information for the purpose of supporting adap-
tive resource management services. Resource manage-
ment in WSN middleware is mainly for providing com-
mon and reusable services of supporting the applica-
tions that have the requirements for self-organization.
Resource management services are usually used for re-
source configuration at setup time and resource adap-
tation at runtime, and they are essential to ensure the
QoS of WSN which we will discuss in details later on.

Resource management at the OS layer is platform-
dependent, so changes at this level might affect different
resource requirements of the applications running in a
sensor node. On the other hand, application-level re-
source management imposes an extra burden on the ap-
plication, and adaptation mechanisms developed at this
level cannot be reused. In contrast, resource manage-
ment at the middleware layer has more flexibility. Most
existing WSN middleware provide services including
cluster service[56,57], schedule service, and data routing
service. These services are supported by finer granular
services such as power level management, transmission
level management, etc. These fine granular services
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should be supported and constrained by the underly-
ing OS, the firmware, and the hardware. Otherwise, it
is impossible for the middleware to provide the corre-
sponding services.

The cluster service refers to the cluster member
maintenance for layered WSN. For cluster service,
many middleware systems, including EnviroTrack[30],
MiLAN[38], DSWare[43], AutoSec[58], and SINA[37] ad-
dressed the implementation issues according to dif-
ferent objectives. For examples, EnviroTrack[30] pro-
vided the cluster member re-allocation service that re-
defines the clusters after deployment; the MiLAN[38]

and AutoSec[58] provided automatically cluster orga-
nization service according to the QoS information ob-
tained from network infrastructure and WSN applica-
tion. SINA[37] and DSWare[43] also provided automat-
ically cluster organization service, but the objectives
were to achieve appropriate clusters so as to facilitate
the data aggregation process. Except for the above
examples, the work reported in [57] provides a func-
tion for generic cluster management of sensor nodes.
The function arises either in terms of non-functional
requirements (e.g., security, reliability) or according to
dynamic system conditions. (e.g., power level, connec-
tivity).

The schedule service refers to the node wakeup/sleep
scheduling. It is used for reducing the energy consump-
tion by allowing the sensor nodes to be put to sleep
and to be waken up according to specific policy. For
example, when not being allocated tasks to a sensor
node can sleep in order to save energy. Implementation
of this service may make use of the services, such as
sleep scheduling protocols in the MAC layer and CPU
voltage scaling[1] in the physical layer.

The data routing service can be implemented in sev-
eral different ways. Some middleware such as Mate[20]

do not provide any specific routing management ser-
vice, but provide architecture which allows the imple-
mentation of arbitrary routing protocols. For systems
that provide routing management services, three main
approaches can be identified. The first approach is im-
plementing a new higher level routing protocol at the
middleware level. An example is MagnetOS[40] that
implements a multi-hop routing protocol in a middle-
ware component. The second is maintaining an overlay,
and supporting routing mechanism, as well as routing
reconfiguration on top of this overlay. For example,
Mires[44] makes use of a Pub-Sub mechanism to sup-
port the routing management. Owing to the loosely
coupled interactions between the nodes in the Pub-
Sub paradigm, it is very flexible to provide new kind
of data routing implementation. The third approach

is implementing a mechanism that allows for switching
between different routing protocols, as what is done in
Impala[22], or providing a mechanism that allows for
the adaptation of different routing protocols, as what
is done in MilAN[38]. As an example, Fig.11 shows the
data routing management of MilAN. The routing man-
agement of MiLAN is intended to sit on top of mul-
tiple physical networks. It acts as a layer that allows
network-specific plug-ins to convert MiLAN commands
to protocol-specific ones that are passed through the
usual network protocol stack. Therefore, MiLAN can
continuously adapt to the specific features of whichever
network is being used in the communication.

Fig.11. MiLAN network protocol management.

In conclusion, most existing WSN middleware
adopts localized resource management. Policy-based
management has been shown to be a good approach to
supporting the design of self-adaptive resource manage-
ment. Currently, resource management services in ex-
isting WSN middleware are tightly coupled with appli-
cations and generic resource management services need
to be developed.

3.5 WSN Integration

For broader applications, WSN needs to be inte-
grated into other exiting network infrastructures, such
as the Internet, Gird, and database-based systems. Be-
cause a WSN is a “close” network, it is not easy to
implement the integration service at the lower layers
(e.g., OS or MAC layer), and thus middleware should
provide this service[59−63].

For WSN middleware, integration is related to both
task coordination as well as data sharing, and can be
implemented at the application level or data level. Ap-
plication level integration is more related to task co-
ordination, where the applications are running in both
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the WSNs and the leverage system. Data level integra-
tion, on the other hand, is more related to data sharing,
where only the data provided by the WSNs are used in
the leverage system.

Proxy server is a common mechanism for inte-
gration implementation. The client can access non-
standardized services in a wireless sensor network by
inquiring a proxy server which translates the stan-
dardized protocol to the proprietary protocol, and vice
versa. For integrating WSNs into existing legacy mid-
dleware, authors of [65] described an “edge server mid-
dleware” which performs application-specific process-
ing at the boundary between the WSN and the legacy
middleware. For integrating WSNs into a Gird mid-
dleware infrastructure, several early systems have been
reported[60−63] on sensor-grid computing.

The service-oriented approach[28,64] to implementing
WSN integration is based on standard open architec-
ture technologies such as Web services[66]. It provides a
common information and communication format to fa-
cilitate the integration. In this approach, the sink node
is modeled as web service provider that exposes the ser-
vices provided by the network using a standard service
interface. The WSDL language and SOAP protocol[66]

are used for describing the services and formatting mes-
sages used by the underlying communication protocol.
This approach does not combine the proposal with any
other particular underlying data dissemination proto-
cols. Thus, the WSN can be used as a system to supply
data for different applications and users.

On the basis of the SOA approach, some researchers
proposed the concept of “Sensor-Web”[67−69]. The Sen-
sor Web aims at making various types of web-resident
sensors, instruments, image devices, and repositories
of sensor data, discoverable, accessible, and control-
lable via the World Wide Web. A lot of efforts have
been made in order to overcome the obstacles associ-
ated with the connecting and sharing of these hetero-
geneous sensor resources. The Sensor Web Enablement
(SWE) standard has been defined by the OpenGIS Con-
sortium (OGC), which is composed of a set of specifi-
cations, including SensorML, Observation & Measure-
ment, Sensor Collection Service, Sensor Planning Ser-
vice and Web Notification Service. OGC has also pro-
posed a reusable, scalable, extensible, and interopera-
ble service-oriented sensor Web architecture, which con-
forms to the SWE standard, integrates Sensor Web with
Grid Computing, and provides middleware support for
Sensor Webs.

In comparison, the proxy server approach is more ap-
plication dependent and less scalable because adding or
removing a proxy server will impact the network struc-

ture. The service-oriented approach is more flexible and
scalable, but needs more energy consumption. Most of
the integration services are now still in very prelimi-
nary stage. WSN middleware for this kind of services
are resting on the architecture concept level.

4 WSN Runtime Support

As mentioned in Section 2, because the underlying
WSN platform, mostly the embedded OS does not al-
ways provide enough support for implementing the mid-
dleware services, WSN middleware needs to develop
runtime support. Runtime support extends the func-
tions provided by the embedded OS for processing,
communication, and storage management in order to
provide a well-defined execution environment for the ex-
ecution of application and system programs. The basic
functions of runtime support include inter-process com-
munication (IPC), memory control, and power control
in terms of voltage scaling and component activation
and inactivation. These functions are used by higher
level middleware services such as multi-thread process-
ing, smart task scheduling, synchronization of memory
accessing and the spread signal spectrum management.
Runtime support in WSN middleware is always embod-
ied as some kinds of virtual machines over the under-
lying platform. It can be implemented as a platform
specific kernel on top of the embedded OS, but with
platform independent primitives for the generic WSN
middleware services.

Fig.12. Architecture of Mate.

Let us look at an example, Mate[20], which is a mid-
dleware built on top of TinyOS. Fig.12 illustrates its
architecture. Mate takes the role of a traditional OS
kernel. Instead of system calls, it provides a set of
primitives for programming. As shown in the figure,
Mate has a byte code interpreter that runs on TinyOS
which adopts a component-based model to build sen-
sor network applications in an event-driven operating
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environment. The core of the Mate architecture is
a simple FIFO scheduler. The scheduler maintains a
queue of run-able contexts, and interleaves their execu-
tion. The scheduler executes a context by fetching its
next byte code from the capsule store, and dispatches
it to the corresponding operation component. The
Mate concurrency model is based on statically named
resources, such as shared variables. Operations spec-
ify the shared resources that they use. The analysis
that determines a handler’s complete resource usage
is language-specific. Mate forwards the programs us-
ing the Trickle algorithm which uses broadcast-based
suppressions to quickly propagate new data but mini-
mizes the overheads when the nodes share data. Just
as with explicit forwarding, once a user installs a sin-
gle copy of a program in the network, Mate installs
it on every mote. Mate proposes a spectrum of re-
programmability, from simply adjusting parameter to
uploading complete program updates. The support can
be used for developing more complex code management
services, which will be discussed later on.

Another example is Magnet[40], a runtime based on
MagnetOS, which is a power-aware, adaptive operat-
ing system specifically designed for sensor and ad hoc
networks. With its support for a single system image,
MagnetOS overcomes the heterogeneity of distributed,
ad hoc sensor networks by exporting the illusion of the
Java VM on a top of distributed sensor networks. Mag-
net has both static and dynamic components. The
static components are responsible for rewriting appli-
cations in the form of object modules. The runtime
components (dynamic components) on each node mon-
itor the object’s creation, invocation, and migration.

Task cooperation is an important component of run-
time support, which includes the means for communi-
cation between distributed tasks. Task cooperation is
useful when multiple tasks reside on the nodes in the
WSN and need to interact with each other. In existing
systems, e.g., TinyTime[42] and Agilla[29], implementa-
tion of task coordination mainly uses the tuple space
approach. The concept of tuple space was proposed
originally in Linda. Tuples are collections of passive
data values. A tuple space is a pool of shared informa-
tion, where tuples are inserted, removed, or read. Data
are global and persistent in the tuple space and remain
until being explicitly removed. In WSN middleware, tu-
ple spaces are used for inter-agent communication and
context discovery. In the tuple space, a task does not
need to know its peer task and tasks do not need to
exist simultaneously, because they do not need to com-
municate directly.

Let us look at the Agilla example again for task co-

ordination support. The tuple space ensures that the
agents run autonomously by allowing them to commu-
nicate in a decoupled fashion. For example, suppose
there are a fire detection agent and a habitat monitoring
agent residing on the same node when fire is detected.
The fire detection agent inserts a fire tuple into the local
tuple space to indicate the presence of fire and activates
a tracking agent before dying. The habitat monitoring
agent reacts to this tuple, and voluntarily kills itself
to free additional resources. The fire detection agent
does not need to know who receives the fire tuple. The
sending and the reception operations can occur respec-
tively at different time, and reception can occur even
when the sender is no longer present. This spatial and
temporal decoupling ensures each agent operates au-
tonomously. In Agilla, agents also need to coordinate
with the agents residing on remote nodes. Agilla allows
agents to coordinate across nodes by introducing spe-
cial remote tuple space operations. They are synony-
mous with local operations, except that they take an
additional location parameter that specifies on which
node to perform the operation. Note that Agilla does
not support tuple spaces that span across nodes. Each
node maintains a distinct and separate tuple space. The
dedicated remote tuple space instructions rely on uni-
cast communication with the specific node hosting the
tuple space.

5 WSN QoS Support

QoS support is important for applications with
requirements on performance, both functional and
non-functional. These requirements include fault-
tolerance[70,71], reliability[72,73,77], security[74−76], and
real-time[77−80]. It is also very important for context-
aware applications. Under different contexts, applica-
tions can adopt different QoS policies. As mentioned
in Section 2, QoS support in WSN middleware is still
an open issue for research. First of all, the QoS met-
rics are not well defined in the context of WSN ap-
plications. For expressing QoS of WSN network per-
formance, parameters such as packet delay, jitter and
loss, throughput, and latency are defined. For express-
ing QoS of WSN application performance, new param-
eters are defined, including data accuracy, aggregation
delay, aggregation degree, coverage, and precision[34].
The literature [34] surveyed both of above parameters,
and proposed that in WSN middleware level, collective
QoS metrics should be considered. Because WSNs are
always densely deployed, single sensor accuracy or time
delay between two respective sensors may not be mean-
ingful. Collective behavior and effect of a set of logically
related sensors become very important. However, nei-
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ther did [34] nor other existing work provides a clear
definition of collective QoS metrics and the way of how
to implement them in WSN middleware.

Implementation of QoS support in WSN middleware
depends on the middleware services we have described
before, mainly the resource discovery service and the re-
source management service. Provision of QoS in WSN
middleware, on the other hand, also affects other ser-
vices, such as data acquisition in the data management
service.

WSN middleware may provide a QoS support im-
plementation framework with the fundamental QoS as-
surance algorithms to simplify the development process.
For example, in [70] a framework is proposed with fault-
tolerant algorithms. But a typical implementation ap-
proach of QoS support in WSN middleware is to trans-
late and control the QoS between the application and
the networks. That is, if the QoS requirements from an
application are not feasible to be satisfied in the net-
work the middleware may negotiate a new quality of
service with both the application and the network.

Fig.13. QoS support in MiLAN.

Take MiLAN, for example, let us look at how ex-
isting systems implement QoS support. As shown in
Fig.13, MiLAN assumes that application performance
can be described by the QoS expressed in different vari-
ables of interest to the application. The QoS variables
depend on the fact that sensors provide data to the
application. Each sensor has a certain QoS in charac-
terizing each of the application’s variables. In order to
determine how to best serve the application, MiLAN
needs to know the variables of interest to the applica-
tion, the required QoS for each variable, and the level of
QoS that the data from each sensor or set of sensors can
provide for each variable. Note that all of these may
change according to the application’s current state.

During the initialization of the application, the QoS
information is conveyed from the application to Mi-
lAN via State-based Variable Requirements Graph and
Sensor QoS Graph. The State-based Variable Require-
ments Graph specifies to MiLAN the application’s min-

imum acceptable QoS for each variable based on the
current state of the application. For a given applica-
tion, the QoS for each variable can be satisfied using
the data from one or more sensors. Given the informa-
tion from the two kinds of graphs as well as the current
application state, MiLAN can determine which sets of
sensors satisfy all of the application QoS requirements
for each variable. These sets of sensors define the appli-
cation feasible set FA where each element in FA is a set
of sensors that provides QoS greater than or equal to
the application-specified minimum acceptable QoS for
each specified variable. MiLAN also determines which
sets of sensor nodes can be supported by the network
using Sensor QoS Graph. The subsets of the nodes that
can be supported by the network define a network fea-
sible set FN. MiLAN combines these two constraints to
obtain an overall set of feasible set F = FA ∩ FN .

QoS support in WSN-middleware is still in a very
preliminary stage. Although work has been reported,
there is a lack of implementation and simulation results.

6 Taxonomy of WSN Middleware Features

Current works on developing middleware for WSNs
have focused on different aspects and for different pur-
poses. In this section, we highlight the characteristics
of WSN middleware and propose taxonomy of the de-
sirable features. We first classify the features of WSN
middleware by using feature trees, and then on the basis
of the classification provide an overview of the exiting
works. The use of a feature tree facilitates structur-
ing the middleware features and describing the rela-
tionships between them.

The feature tree is derived by analyzing the sys-
tem model and the implementation approaches of WSN
middleware functions discussed in the previous sections.
In Fig.14, the solid dots represent the necessary fea-
tures, while the hollow dots represent optional or alter-
native features. Features can be decomposed into sub
features. The relationship between sub features can
be either the inclusive relationship, denoted by solid
branch cross, or the alternative relationship, denoted
by the hollow branch cross.

As seen in the root tree (see Fig.14(a)), the features
are from both the WSN middleware and the underly-
ing network. The features from the middleware include
the services provided by and system architecture of the
target middleware. The features from the WSN consist
of two parts. The first part contains the features de-
scribing the characteristics of the applications that the
target middleware can support. The second part con-
tains the features that describe the underlying WSN
platform support of the target middleware.
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Fig.14. Feature trees of WSN middleware. (a) Root feature tree of WSN middleware. (b) Feature tree of middleware services. (c)

Feature tree of middleware architecture. (d) Feature tree of WSN.
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The middleware feature sub-tree (see Fig.14(a)) it-
self has two sub-trees: middleware service features (see
Fig.14(b)) and architecture features (see Fig.14(c)).
Middleware service features are composed of functional
features, which are related to the middleware services,
and none-functional features, which are related to the
QoS support. The architecture features are composed
of the programming abstraction features and the im-
plementation features. We have discussed the program-
ming abstraction features in Subsection 2.2.

Implementation-related features have two main per-
spectives: the feature of coordination among the pro-
cesses and the context features. In the branch rep-
resenting the process coordination, the procedure-
oriented method is not very applicable to the WSN Mid-

dleware due to its poor scalability[81]. Object-oriented
method is scalable, but it is based on the object con-
text whose weight is too heavy for the WSN context.
Message-oriented and tuple space oriented methods can
scale easily and support the event-driven paradigm[82].
Thus, they are often used in the WSN middleware.

In the branch that represents the context features,
hardware transparent features are those that hide the
hardware implementation details from users. The fea-
tures supporting heterogeneous hardware transparency
hide the differences of various hardware platforms.
These kinds of features are rarely supported because of
the diversity of the WSN hardware and the tight appli-
cation dependent characteristics. Remote transparency
means hiding the location and other network attribute

Table 1. Overview of Existing Projects and Proposals

(a)

Features Programming Abstraction Features Middleware Service Features

Proposal Interface Abstraction Programming Functional Un-Functional

Type Level Paradigm

Sensor Ware Declarative Local Database CodeManagement None

MagnetOS Imperative Global Virtual machine CodeManagement None

(java language) ResourceManagement

Mate Imperative Local Virtual machine CodeManagement Security

(motle, byte code) ResourceManagement

MiLAN None None None ResourceManagement None

ResourceDiscovery

SINA Declarative Global Database DataManagement None

(cells data format SQTL)

TinyDB Declarative Global Database DataManagement None

(ACQP language) Graphic UI ResourceManagement

Cougar Declarative (XML data Global Graphic UI DataManagement None

format, SQL-like language)

Impala None None Mobile agent CodeManagement Security

ResourceManagement

StorageSupporting

Agilla Imperative Local Mobile agent CodeManagement None

(compile-like)

FACTS Declarative (facts, Global Rule based CodeManagemet None

rules, functions, XML like) DataManagemet

AutoSec None None None ServiceDiscovery None

ResourceManagement

DSWare Declarative Global None DataManagement Real-time

ResourceManagement Reliability

StorageSupporting

A Service Approach Declarative Global None DataManagement None

(XML,SOAP) Integration

Resource discovery

Mire Imperative Local Graphic UI DataManagement None

Enviro Track Imperative object-based Global None DataManagement None

(context object and ) ResourceDiscovery

tracking objects ResourceManagement
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Table 1. Overview of Existing Projects and Proposals

(b)

Features Internal Implementation Features Supporting Application Features WSN Features

Proposal Process Context Application Application Network Node

Communication Transparent Reflective Dynamic Dada Collection Level Level

Sensor Ware Asynchronous Homo None Mobile All None Linux

Tuple-Oriented Phenomena IPAQ Based

MagnetOS Asynchronous Homo/ None All All Ad-Hoc On-Demand

Hetero Routing Build on PC

Mate Synchronous Homo None All All Content-Based TinyOS-

Asynchronous Routing Based;

MiLAN Synchronous Hetero Proactive All Event-Driven Switch Between None

Asynchronous Different Protocols

SINA ASynchronous Remote None Static Enquire Cluster-Based None

Homo

TinyDB Asynchronous Homo None Static/Mobile Enquire/Event Spanning-Tree- TinyOS

Sensor Driven Based Routing Mote

Cougar Asynchronous Remote None Static Enquire Directed Diffusion None

Homo Routing

Cluster-Based

Impala Asynchronous Homo Adaptive Mobile Sensor Event-Driven Switch Between iPAQ/PC

(designed for Different Protocols Linux

ZebraNet)

Agilla Asynchronous Homo None All Any Multi-Protocol Tiny OS,

(tuple based) Routing MICA2,

FACTS Asynchronous Homo None All Event-Driven None None

Tuple-Oriented

AutoSec Asynchronous Homo Proactive All No None Tiny OS

Broker-Based

DSWare Asynchronous Homo None All Event-Based Cluster-Based None

Pub-Sub-Based

A Service Asynchronous Homo Reflective All Event-Driven Directed None

Approach (Pub-Sub) Remote Proactive Diffusion

Mire Asynchronous Homo None All Event-Driven Cluster-Based TinyOS

(Pub-Sub)

Enviro Track Asynchronous Homo None Mobile- Continues/ Group-Based TinyOS

Synchronous Phenomena Event-Driven Content-Based

Routing

details from the user. Remote transparency does not
fit WSN systems which need the information to sup-
port the applications and manage the resources.

For context features, in order to achieve resource
management adaptation, developers must introduce
open resource configuration and reconfiguration. This
requires the context to be reflective[83]. Computational
reflection refers to the ability to reason about (being
aware of) and alter (being adaptive to) its own behav-
ior. Both “proactive” and “reactive” middleware sys-
tems belong to the category of adaptive middleware.
Compared to “reactive” middleware systems, which re-
act only by themselves when changes occur within the
network, “proactive” middleware systems enable appli-

cations (or middleware) to actively participate in the
process of configuring the network where the middle-
ware operates.

The branch representing the WSN network features
(see Fig.14(d)) includes the features of WSN appli-
cations such as the application dynamic features and
the application data collection features (see the right
branch of Fig.14(d)) as explained in [84]. Application
data collection feature defines the data acquiring ap-
proach. By observer initiated approach, the data ac-
quiring process is initiated by the data query command.
By event-driven approach, data will be sent to the sink
node whenever a defined event occurs. By continuous
approach, data is sent to the sink node during every de-
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Table 2. Summary of Existing WSN Middleware Production

Proposal Test Environment Simulation and Testing Tools Published Evaluation Results

Sensor Ware Prototype SensorSim Framework Size, Execution Delays, Energy Consumption

MagnetOS JVM Custom Simulator Internal Algorithm Comparison in Simulator

Mate Prototype TOSSIM Byte Code Overhead, Installation Costs, Code Infection

Performance

MiLAN None None None

SINA Simulation GloMosim SINA Networking Overhead, Application Performance

TinyDB Simulation Custom Environment Query Routing Performance in Simulation, Sample Accuracy

Prototype and Sampling Frequency in Prototypes

Cougar None None None

Impala Simulation ZnetSim System Implementation and Overhead, Impala Event

Processing Time, Software Transmission Volume

Agilla Prototype Mica 2 Reliability of Remote Tuple Space and Agent Migration

Operations, Overhead of Agilla’s Instructions, Case Study

FACTS None None None

AutoSec Simulation Custom Environment Information Collection Overhead, Overall Performance

Efficiency

DSWare Simulation GloMoSim Performance in Reduction of Communication, Impact of Node

Density, Performance in Reaction Time

Mire None None Case Study

Enviro Track Prototype Mica 2 Communication Performance Data, Effect of Sensory Radius

on Maximum Trackable Speed

Service Oriented None None WSDL Documents for Describing, the WSN Services

Middleware and the SOAP Messages Format and Content

fined period. The application dynamic features define
the mobility characteristic of WSN application. Mobil-
ity can be divided into three classes, namely, mobile tar-
get, mobile sensors and mobile sink. Location discovery
service of WSN middleware is especially important for
mobile sensor model. WSN infrastructure features (see
the left branch of Fig.14(d)) also have important im-
pact on the WSN middleware. For example, if TinyOS
is used, then synchronization process coordination can
be easily implemented because of the inherent support
from the TinyOS’s active message mechanism.

An overview of the exiting work can be found in Ta-
ble 1, which compares the existing WSN middleware
systems and the proposals by applying the feature tree.
We also provide Table 2, which summarizes the exiting
WSN middleware by classifying them into Test-beds,
simulation and testing tools, and evaluation results.

7 Challenges and Directions

Before concluding this paper, in this section, we dis-
cuss the challenges, research issues, and future direc-
tions in the area of WSN middleware.

We classify the challenges in designing and imple-
menting WSN-middleware into three main types. The

first type of the challenges comes from the conflict
between the contexts of distributed computing and
the embedded sensor devices. Distributed comput-
ing should support scalability, reliability, dependability,
and heterogeneity, but this demands the careful the de-
sign under the context of resource limited devices and
dynamic network topology.

The second type of challenges comes from the trade-
offs between the degree of application specificity and
middleware generality. It is important to integrate ap-
plication knowledge into the services provided by the
middleware because it can significantly improve the re-
source and energy efficiency of the operations. How-
ever, since middleware is designed to support and op-
timize a broad range of applications, tradeoffs need to
be explored between the degree of application-specific
requirements and the generality of the middleware. A
practical policy is to embed the unique features of an
application into the application code or specification,
which can be interpreted by the middleware at runtime.

The third type of challenges comes from the new
context of QoS. Because of the limited resources, it
is very likely that the performance requirements of all
the running applications cannot be simultaneously sat-
isfied. Therefore, it is necessary for the middleware to
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smartly trade the QoS of various applications against
each other.

Existing work uses different approaches to provide
different WSN-middleware services. For example, the
database-based approach is more appropriate for data
management services, and mobile agent is more appro-
priate for code management services. In fact, the mo-
bile agent approach can also be used in data manage-
ment services especially in distributed in-network data
processing services. So, how to choose or integrate dif-
ferent approaches, and how to make their advantages
together deserves consideration.

With regards to the system architecture, most of
the current middleware have not considered how to in-
tegrate the components into generic middleware archi-
tecture to help developers match different requirements.
Because many features need to be considered in the de-
sign of WSN middleware, re-factoring WSN middleware
with aspects[85] is helpful. Services should be reusable,
and a generic framework with customizable component-
based architecture is desirable. Component-based ar-
chitecture has good support for dynamic configuration,
and it can make use of the component interface defi-
nition to provide slandered service interface. Compo-
nents need not always exist, and they can be initialized
when needed, so as to save the system resource. The
relationship between components and services should
be carefully considered. Moreover, design patterns are
widely used in traditional middleware, but until now,
there is very little study on design patterns for WSN
middleware[86]. Also, Domain specific design of WSN
middleware functions deserves more attention.

Furthermore, evaluation metrics, as well as testing
and simulation tools for WSN-middleware are needed.

Finally, WSN middleware can be seen as a kind
of lower layer pervasive computing middleware. Un-
til now, all the exiting work on WSN middleware has
focused on the sensor networks. In the future, more
kinds of sensor nodes, RFID, and camera sensors will
put new challenges to this research field. Also, with the
maturity of new kinds of sensor networks, such as de-
lay tolerant sensor networks, sensor and actuator net-
works, and mobile sensor networks, we will face new
research issues in developing WSN-middleware, in or-
der to deal with the more complex heterogeneity prob-
lems. So, we should consider more integration of WSN-
middleware and higher level pervasive computing mid-
dleware. WSN middleware focuses on information gath-
ering from the physical world and pervasive computing
middleware focus on the use of the information, and
the appropriate division of functions and cooperation
between these two kinds of middleware are very impor-

tant for supporting efficient pervasive computing appli-
cations.

8 Conclusion

In this paper, we have presented a review of the state
of arts of middleware for wireless sensor networks. We
described a reference model for WSN middleware ar-
chitecture as a basis for our discussion. We discussed
and evaluated the programming abstractions and mid-
dleware services of the model in detail. Using a feature
tree-based taxonomy, we classified the features of WSN
middleware and compared existing projects and propos-
als. We also discussed the challenges as well as future
research directions in developing WSN middleware.

The main objective of this paper is to provide a
comprehensive understanding of the current issues in
this area for better future academic research and in-
dustrial practice of WSN-middleware. WSN is a new
and rapidly evolving field, and advances and new ca-
pabilities are constantly introduced into the design of
WSN middleware. This paper is presenting what es-
sentially constitutes a “snap shot” of the state of the
art around the time of its writing, as is unavoidable the
case of any survey of a thriving research field. We do,
however, believe that the core information and princi-
ples presented will remain relevant and useful to the
reader.
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chines applied to WSN’s: The state-of-the-art and classifi-
cation. In Proc. the 2nd International Conference on Sys-
tems and Networks Communications (ICSNC 07), Cap Es-
terel, French, Riviera, France, August 25–31, 2007.

[19] Kang K, Cohen S, Hess J, Nowak W, Peterson S. Feature-
oriented domain analysis (FODA) feasibility study. Technical
Report, CMU/SEI-90-TR-21, Pittsburgh, Software Engineer-
ing Institute, Carnegie Mellon University, PA, 1990.

[20] Levis P, Culler D. Mate: A tiny virtual machine for sensor net-
works. In Proc. the 10th Int. Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
X), San Jose, USA, ACM Press, 2002, pp.85–95.

[21] Levis P, Gay D, Culler D. Bridging the Gap: Programming
sensor networks with application specific virtual machines. In
Proc. the 6th Symp. Operating Systems Design and Imple-
mentation (OSDI 04), San Francisco, USA, 2004, pp.273–288.

[22] Liu T, Martonosi M. Impala: A middleware system for
managing autonomic, parallel sensor systems. In Proc.
PPoPP’03, San Diego, California, USA, June 2003, pp.107–
118.

[23] Welsh M, Mainland G. Programming sensor networks using
abstract regions. In Proc. the 1st Usenix/ACM Symp. Net-
worked Systems Design and Implementation (NSDI 04), San
Francisco, CA, March, 2004, pp.29–42.

[24] Gummadi R et al. Macro-programming wireless sensor net-
works using kairos. In Proc. the Int. Conf. Distributed

Computing in Sensor Systems (DCOSS 05), Marina del Rey,
USA, LNCS 3560, Springer, 2005, pp.126–140.

[25] Madden S R, Franklin M J, Hellerstein J M. TinyDB: An
acquisitioned query processing system for sensor networks.
ACM Trans. Database Systems, 2005, 30(1): 122–173.

[26] Bonnet P, Gehrke J, Seshadri P. Towards sensor database sys-
tems. In Proc. the 2nd Int. Conf. Mobile Data Management
(MDM 01), Hong Kong, China, 2001, pp.314–810.

[27] Kirsten Terfloth, Georg Wittenburg, Jochen Schiller. FACTS
— A rule-based middleware architecture. In Proc. the
IEEE/ACM International Conference on Information Pro-
cessing in Sensor Networks (IPSN), Los Angeles, USA, 2006.

[28] Fla’ Via, Paulo F Pires. A Service Approach for Architecting
Application Independent Wireless Sensor Networks. Cluster
Computing, Netherlands: Springer Science Business Media,
Inc, 8, 2005 C, 2005, pp.211–221.

[29] Fok C, Roman G, Lu C. Mobile agent middleware for sensor
networks: An application case study. In Proc. the 4th Int.
Conf. Information Processing in Sensor Networks (IPSN
05), UCLA, Los Angeles, California, USA. Apr. 25–27, 2005,
pp.382–387.

[30] Abdelzaher T, Blum B, Cao Q, Evans D, George J, George S,
He T, Luo L, Son S, Stoleru R, Stankovic J, Wood A. Envi-
roTrack: Towards an environmental computing paradigm for
distributed sensor networks. In Proc. the 24th Int. Conf.
Distributed Computing Systems (ICDCS 04), Tokyo, Japan,
March 23–26, 2004, pp.582–589.

[31] Krishna Chintalapudi, Jeongyeup Paek, Omprakash Gnawali,
Tat S Fu, Karthik Dantu, John Caffrey, Ramesh Govindan,
Erik Johnson, Sami Masri. Structural damage detection and
localization using NETSHM. In Proc. the 5th Int. Confer-
ence on Information Processing in Sensor Networks (IPSN
06), Nashville, TN, USA, April 19–21, 2006, pp.475–482.

[32] Musiani D, Lin K, Simunic Rosing T. Active sensing platform
for wireless structural health monitoring. In Proc. the 5th In-
ternational Conference on Information Processing in Sensor
Networks (IPSN 07), Cambridge, Massachusetts, April 25–27,
2007.

[33] TinyOS communities. TinyOS specification, http://www.
tinyos.net.

[34] Chen D, Varshney P K. QoS support in wireless sensor net-
works: A survey. In Proc. the Int. Conf. Wireless Networks
(ICWN 04), Las Vegas, Nevada, USA, June 21, 2004.

[35] Mohsen Sharifi, Majid Alkaee Taleghan, Amirhosein Taherko-
rdi. A middleware layer mechanism for QoS support in wire-
less sensor networks. In Proc. the Int. Conf. Networking,
Int. Conf. Systems, and Int. Conference on Mobile Commu-
nications and Learning Technologies (ICNICONSMCL 06),
Mexico, 2006, p.118.

[36] Mauri Kuorilehto, Marko Hännikäinen, Timo D Hämäläinen.
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