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FOREWARD: MOTIVATION FOR THIS 

MULTICORE PROGRAMMING 

 PRACTICES GUIDE 

Markus Levy, Multicore Association President 

The Multicore Association was founded in May 2005, back in the pioneering days of multicore 

technology. To this day, the primary goal of the MCA is to develop an extensive set of application 

programming interfaces (APIs) and the establishment of an industry-supported set of multicore 

programming practices and services. 

When the Multicore Programming Practices working group (MPP) formed 4+ years ago, it was (and 

still is) a known fact that C/C++ was going to be the predominant programming language for at least 

the better part of the next decade. While the industry was waiting for long-term research results to 

change the programming infrastructure, the multicore programmability gap was continuously 

expanding, pointing out an obvious need for a group of like-minded methodology experts to create a 

standard “best practices” guide. 

Through the guidance of Max Domeika (Intel) and David Stewart (CriticalBlue), the Multicore 

Association created this one-of-a-kind document, providing best practices for writing multicore-ready 

software using C/C++ without extensions, describing a framework of common pitfalls when 

transitioning from serial to parallel code, and offering insight to minimizing debugging efforts by 

reducing bugs. 

Of course, the only problem with creating this kind of guide is that it’s really a work in progress. As a 

matter of fact, even at the onset of this monumental project, we realized that the biggest challenge was 

deciding what not to include (at least in the first version). So therefore, on one hand I personally wish 

to thank the working group members, and on the other hand, I’m inviting you to step forward and join 

the Multicore Association effort to help evolve this MPP Guide. 
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1.1 Introduction 

Multicore processors have been available for many years; however, their widespread use in 

commercial products and across multiple market segments has only recently occurred. This ‘multicore 

era’ transpired because processor architects ran into power & performance limits of single core 

processors. The multicore era shifts more of the responsibility for performance gains onto the software 

developer who must direct how work is distributed amongst the cores. In the future, the number of 

cores integrated onto one processor is expected to increase, which will place even greater burden on 

the software developer. Like many new eras in the computer industry, numerous supporting software 

development tools and technologies have been introduced with the aim of helping developers obtain 

maximum performance benefit with minimal effort. One of the potential challenges that may hinder 

developers is the conflict between an intrinsic quality of developing for multicore processors and the 

inertia of existing software. 

Prior to the multicore processor era, developers obtained performance increases through processor 

upgrades and the inherent clock frequency boosts and microarchitecture improvements. These 

upgrades required minimal software changes. Obtaining performance increases in the multicore era 

requires developers to invest in significant software modifications to, in effect, transform current 

sequential applications into parallel ones. This modification is nontrivial and introduces new 

challenges, spanning the traditional development phases of program analysis, design, implementation, 

debug, and performance tuning. 

In stark contrast, the inertia of existing software is undeniable. To meet tight deadlines, development 

projects rarely have the freedom to make wholesale changes to applications, and instead limit risk by 

minimizing them. This means that a developer considering a move to multicore processors may not 

have the luxury of taking on a new parallel programming language or even re-architecting the 

application to support widespread concurrency. Instead, many development projects in the computing 

industry are adopting an evolutionary approach to enabling multicore processors. This approach 

employs existing programming tools and technology and a systematic method of introducing and 

debugging concurrency in existing software. 

The Multicore Association (MCA) Multicore Programming Practices (MPP) guide is a detailed set of 

best practices for employing this evolutionary approach to multicore development. The following 

sections detail the goal of the MPP guide, the target audience, how to apply the MPP guide, and areas 

not covered. 
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1.2 Goal of MPP 

The Multicore Programming Practices guide details a concise set of best practices in software 

development for multicore processors using existing technology and existing software. In writing this 

document, the MPP working group made decisions and compromises in what and how much this 

document targets. 

The following are thoughts on some of the higher level decisions made: 

 API choices – Pthreads and MCAPI were selected for several reasons. These two APIs cover 

the two main categories of multicore programming – shared memory parallel programming and 

message passing. Second, Pthreads is a very commonly used API for shared memory parallel 

programming. MCAPI is a recently introduced API, but is novel in being a message passing-

based multicore API that specifically targets embedded homogeneous and heterogenuous 

applications. 

 Architecture categories – The architecture categories (homogeneous multicore with shared 

memory, heterogeneous multicore with mix of shared and non-shared memory, and 

homogeneous multicore with non-shared memory) are in priority order and reflect the group’s 

assessment of use in embedded applications. Admittedly, the second category is a superset of 

the first and third. The motivation for listing these three categories separately is due to the 

widespread and common use of techniques associated with the first and third, namely shared 

memory parallel techniques and process-level parallelism. The following paragraphs dissect 

this goal and offer more detail. 

1.3 Detailed Description 

A concise set of best practices is a collection of best known methods for accomplishing the task of 

development for multicore processors. The intent is to share development techniques that are known to 

work effectively for multicore processors thus resulting in reduced development costs through a 

shorter time-to-market and a more efficient development cycle for those employing these techniques. 

The phases of software development discussed in MPP and a summary of each follows: 

 Program analysis and high level design is a study of an application to determine where to add 

concurrency and a strategy for modifying the application to support concurrency. 

 Implementation and low level design is the selection of design patterns, algorithms, and data 

structures and subsequent software coding of the concurrency. 

 Debug comprises implementation of the concurrency in a manner that minimizes latent 

concurrency issues, enabling of an application to be easily scrutinized for concurrency issues, 

and techniques for finding concurrency issues. 



 

 Multicore Programming Practices Guide  Page 14 

 

 Performance concerns improving turnaround time or throughput of the application by finding 

and addressing the effects of bottlenecks involving communication, synchronization, locks, 

load balancing, and data locality. 

 Existing technology includes the programming models and multicore architectures detailed in 

the guide and are limited to a few that are in wide use today. 

 Existing software, also known as legacy software, is the currently used application as 

represented by its software code. Customers using existing software have chosen to evolve the 

implementation for new product development instead of re-implementing the entire application 

to enable multicore processors. 

1.4 Business Impact 

Readers of the MPP guide, who apply the detailed steps, may save significant costs in development 

projects. Cost savings can be applied to developer efficiency in analyzing and designing the 

implementation, a reduced number of bugs in the implementation, and increased likelihood of the 

implementation meeting performance requirements. These savings lead to faster time-to-market and 

lower development cost. 

1.5 Target Audience 

The MPP guide is written specifically for engineers and engineering managers of companies 

considering or implementing a development project involving multicore processors and favoring the 

use of existing multicore technology. 

Specifically, the benefits of this guide to the specific target audience are summarized below: 

 Software developers who are experienced in sequential programming will benefit from reading 

this guide as it will explain new concepts which are essential when developing software 

targeted at multicore processors. 

 Engineering managers running technical teams of hardware and software engineers will benefit 

from reading this guide by becoming knowledgeable about development for multicore 

processors and the learning curve faced by their software developers. 

 Project managers scheduling and delivering complex projects will benefit from reading this 

guide as it will enable them to appreciate, and appropriately schedule, projects targeting 

multicore processors. 

 Test engineers developing tests to validate functionality and verify performance will benefit 

from reading this guide as it will enable them to write more appropriate and more efficient tests 

for multicore-related projects. 
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1.6 Applying MPP 

The MPP guide is organized into chapters based upon software development phases. Following a brief 

introduction, each chapter includes either a process description or topic-by-topic coverage containing 

the technical details or both. The MPP guide provides more than a cursory review of a topic and 

strives to offer a succinct, but detailed enough description targeting the average developer. 

1.7 Areas Outside the Scope of MPP 

The MPP guide does not address every possible mechanism for parallel programming - there are 

simply too many different technologies and methods. The guide constrains coverage to existing and 

commonly used technology. Many of the techniques detailed in the guide can be generally applied to 

other programming models, however, this guide does not comment on the specifics necessary in a re-

mapping. Chapter 7 contains comments on many of the technologies and methods, but the discussion 

is intended to be informational and not specific to the best practices documented in the previous 

chapters. 

In particular, the areas outside the scope of the best practices portion of the MPP guide are: 

 Languages other than C and C++ and extensions to C and C++ that are not part of the C and 

C++ ISO standard or are proprietary extensions to the standards; 

 Coding style guidelines; and 

 Architectures and programming models other than those specified in Chapter 2. This includes 

C & C++ compatible parallel libraries other than those specified in Chapter 2. 
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CHAPTER 2: OVERVIEW OF AVAILABLE 

TECHNOLOGY 
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2.1 Introduction 

Multicore programming tools and models include items such as software development tools, 

programming languages, multicore programming APIs, and hardware architectures. While the 

programming practices covered in this guide are exemplified on these specific tools and models, our 

intent is for these practices to be generally applicable. This chapter specifies the programming 

languages, multicore programming APIs, and hardware architectures assumed in the programming 

practices documented in the later chapters. 

2.2 Programming Languages 

The MPP guide employs standard C and C++ as the implementation languages because these are the 

predominant languages used in embedded software development. The C language as specified in 

“ISO/IEC 9899:1999, Programming Language C” is used. The C++ language as specified in “ISO/IEC 

14882, Standard for the C++ Language” is used. For both languages, we did not use any nonstandard 

extensions, either commercial or research oriented. 

2.3 Implementing Parallelism: Programming Models/APIs 

There are several types of parallelism used in multicore programming, namely Task Level Parallelism 

(TLP), Data Level Parallelism (DLP), and Instruction Level Parallelism (ILP). The MPP guide focuses 

on TLP and DLP, however all three types of parallelism play a role in design and implementation 

decisions. 

The MPP guide uses two multicore programming APIs, Pthreadsi and Multicore Communications API 

(MCAPIii), for its examples. This will allow us to provide coverage of two categories of multicore 

software development - shared memory programming and message-passing programming. We chose 

these two APIs because they are commonly used APIs within these two software development 

paradigms. 

2.4 Multicore Architectures 

The MPP guide targets three classes of multicore architectures: homogeneous multicore with shared 

memory, heterogeneous multicore with mix of shared and non-shared memory, and homogeneous 

multicore with non-shared memoryiii. These three classes are the predominant architectures employed 

in embedded projects and they are different enough so that the set of practices that apply to each are 

substantially disjointed. The underlying communication fabric is outside the scope of this document 

and in most cases is irrelevant to the software developer. 
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A homogeneous multicore processor with shared memory is a processor comprised of multiple 

processor cores (2 to n cores) implementing the same ISA and having access to the same main 

memory. 

A heterogeneous multicore processor with a mix of shared and non-shared memory is a processor 

comprised of multiple processor cores implementing different ISAs and having access to both main 

memory shared between processor cores and local to them. In this type of architecture, local memory 

refers to physical storage that is only accessible from a subset of a system. An example is the memory 

associated with each SPE in the Cell BE processor from Sony/Toshiba/IBM. It is generally necessary 

to state what portion of the system the memory is local to, as memory may be local to a processor core, 

a processor, an SoC, an accelerator, or a board. 

A homogeneous multicore processor with non-shared memory is a processor comprised of multiple 

processor cores implementing the same ISA and having access to local, non-shared main memory. 

2.5 Programming Tools 

The software tools employed in this guide and details of use are summarized as follows: 

 GNU gcc version 4.X – compiler used for all C examples 

 GNU g++ version 4.X – compiler used for all C++ examples 
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CHAPTER 3: ANALYSIS AND HIGH LEVEL 

DESIGN 
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3.1 Introduction 

This chapter discusses program analysis techniques used to uncover opportunities to exploit parallel 

behavior and the dependencies which constrain that behavior. Analysis results are strongly affected by 

the use of representative benchmarks and realistic workloads. High level design decisions, including 

choice of algorithm, selection of platform architecture, and identification of appropriate parallel design 

patterns, are then made which will optimize the multicore implementation to meet critical application 

metrics such as performance, power, footprint, and scalability. 

3.2 Analysis 

To effectively exploit multicore resources, you must parallelize your program. However, several steps 

should first be taken before introducing parallelism. This section describes two such activities—

improving the program's serial performanceiv and understanding the program. 

3.3 Improving Serial Performance 

The first step in redesigning your program to exploit multicore resources is to optimize its serial 

implementation because serial performance tuning is typically easier, less time consuming, and less 

likely to introduce bugs. Serial improvement will reduce the gap between where you are and your 

performance goal, which may mean that less parallelization is needed. It also allows parallelization to 

focus on parallel behavior, rather than a mix of serial and parallel issues. 

It is important to remember, though, that serial optimization is not the end goal. We want to optimize 

carefully, applying only changes that will facilitate parallelization and the performance improvements 

that parallelization can bring. In particular, serial optimizations that interfere with, or limit 

parallelization should be avoided. For example, avoid introducing unnecessary data dependencies or 

exploiting details of the single core hardware architecture (such as cache capacity). 

Developers are familiar with many techniques that can be used to improve a program’s serial 

performance; in fact, there is a wealth of public material (e.g., articles, books, tools, and accumulated 

wisdom). But haphazard application of such improvements is generally a bad idea. 

"Programmers waste enormous amounts of time thinking about, or worrying about, the speed of 

noncritical parts of their programs, and these attempts at efficiency actually have a strong negative 

impact when debugging and maintenance are considered. We should forget about small efficiencies, 

say about 97% of the time: premature optimization is the root of all evil.”v 

Instead, discipline and an iterative approach are the keys to effective serial performance tuning (Figure 

1). Use measurements and careful analysis to guide decision making, change one thing at a time, and 

meticulously re-measure to confirm that changes have been beneficial. 
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Figure 1. Serial performance tuning approach. Four key steps: prepare, measure, tune, assess. 

The following sections provide short descriptions of the steps in this approach, but each topic is richer 

than can be reasonably covered in this document. There has been a great deal of useful work in 

performance analysis and performance tuning and most of it is applicable when preparing for 

multicore (though the effects of parallelization changes are more sensitive to the order in which the 

changes are applied). 

3.3.1 Prepare 

Assemble a collection of regression tests and benchmarks against which to improve the program's 

performance. Before making any changes, think about your objectives and assemble the resources that 

will help you achieve them efficiently and reliably. 

 What are your goals? Improving a program’s performance can be a complicated, time 

consuming, and error prone task. Stop when you've reached "good enough" results. 

 What operational scenarios are most important? Any improvements made will be based on data 

from observation of the program's execution, but which scenarios are most important? You 

could focus on steady state operations, heavy load conditions, error recovery scenarios, or 

some balance of such scenarios. 

 What performance metric makes sense for your program? Perhaps it's the time to process a unit 

of work, or maybe the number of units of work completed in a unit of time. Know what to 

measure so you can quantify goals or know that you've met them. 
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Construct a set of benchmarks (uses of the program over specific data and operations) over which you 

will collect performance data. All optimizations will be relative to the benchmarks, so carefully choose 

the scenarios for which performance most needs to be improved. Also include cases that vary the 

workload so that you can see how performance scales (at least three data points are needed to 

differentiate linear from non-linear scaling).vi 

Performance optimizations are often trade-offs with some other concern, such as memory consumption, 

code maintainability, or portability. Know how much you are willing to compromise in any of these 

areas. 

Serial performance tuning is an iterative process that involves repeated execution of your program, 

both to measure performance and ensure that correct functionality is preserved, so make sure you have 

a good regression suite before you start (it should go without saying that the program passes all tests 

before starting). 

3.3.2 Measure 

After preparations are complete, the next task is to utilize your benchmarks and understand the 

baseline performance of your program. Development tools, such as profilers, are typically used to 

measure performance. A profiler is a tool that observes the execution of a program and collects 

measures of its performance. Several different approaches are used for profiling: 

 Sampling: A sampling profiler takes measurements at regular intervals.vii 

 Instrumentation: An instrumention-based profiler typically compiles or links additional 

instructions into the program for measurement. 

 Emulation or simulation: These approaches execute the program in an environment that 

emulates or simulates (e.g., through interpretation) the execution environment. 

The quality of the performance data varies in several ways, two of which are completeness and 

resemblance of "real performance." Sampling only measures at regular intervals, generating 

incomplete insight into program behavior. Non-sampling approaches produce complete data, with 

respect to the measurement granularity. Any profiling approach, however, has some effect on how 

closely the measurements resemble execution in the absence of measurement. Low overhead 

approaches more closely resemble typical execution than those with high overhead, such as 

instrumentation or interpretation, which may alter the timing properties of the program in significant 

ways. 

Output differs from tool to tool in both granularity and format. Profilers typically measure data relative 

to functions, with simple measures being the time at which each function call and return occurs. Some 

profilers capture information at a finer granularity or allow the user add instrumentation points (e.g., 

encompassing interesting loops). 
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Profiler output varies considerably, from simple reports to sophisticated GUIs with controls for 

filtering and sorting. Two common forms of output are: 

 A flat profile is generally a tabular report of statistics organized by function, such as how much 

execution time was spent in a function (by percent and units of time) and the number of times 

the function was called. 

 A call graph shows execution time, again by function, relative to call chains. A call graph will 

show which functions were called by a given function, how many times, and how much 

execution time was used. 

Typically, you want to use both forms of output. A flat profile is a good way to quickly find where 

large portions of time are being spent (e.g., a single function that consumes 60% of the time). A call 

graph is a good way to see where a function is being used. 

Profiler(s) choice is based on a number of the usual criteria, such as availability/cost, target platform, 

experience, and so on. Use at least one profiler that measures how much of your execution time is 

spent outside of your program (e.g., in system calls) to assemble a more complete performance picture. 

When developing an embedded system, you may need to use an emulation- or simulation-based 

profiler before target hardware is available or to compensate for lack of a persistent store for 

measurements in the target device. 

3.3.3 Tune 

An important rule of thumb in performance tuning is "only change one thing at a time." Each tuning 

iteration, use the measurements you gathered through profiling to look for the biggest improvement 

you can reasonably make.viii Remember that you will also be making substantial changes when 

parallelizing your program, so it's usually best to stick with the "low-hanging fruit" or big wins when 

improving the serial program’s performance. Changing an algorithm that consumes a large portion of 

time to scale linearly rather than logarithmically, for instance, would be a good example of a change 

worth making (for clarification, this sentence only refers to the scaling, which depends on the number 

of cores, and not to the algorithm's complexity, which depends on the size of the input data). In 

general, favor changes that reduce computation over those that minimize data footprint. At this stage, 

we want to focus on reducing the program to the essential computations needed to function correctly. 

Start by looking through your measurements for hotspots. Hotspots are areas in your program that use 

disproportionate percentages of your execution time, and can be found using flat profiles. Start with 

hotspots for a simple reason: a performance improvement in frequently executed code will yield better 

overall improvement than a similar improvement in infrequently executed code. That is, a 10% 

improvement in a function using 50% of total execution time is an overall improvement of 5%; a 10% 

improvement in a function using 5% of total execution time is only an overall improvement of 0.5%. 

Beware of diminishing returns. 
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Once you select a hotspot for examination, think about why it is consuming so much time and whether 

that is reasonable. 

 Computing: executing the instructions is the first thing we tend to think about. 

 Is an appropriate algorithm used; review the profiling data for different workloads to see if it's 

scaling as you would expect. 

 Are all computations needed. You may be able to hoist calculations out of a loop or use lookup 

tables to reduce computation. 

 Are you using the right types and data structures? Moving larger chunks of memory around 

typically takes longer (e.g., using floats is often faster than using doubles). Consider the impact 

of different language constructs on your platform (e.g., the overhead that is necessary to 

support exception handling). 

 Is your program decomposition good? Use inlining or refactoring if you have functions whose 

execution time isn't significantly larger than call/return overhead. 

 Think about your persistence strategies. Re-initializing and re-using a data structure (or class) 

can be more efficient than creating a new one. 

 Waiting: some operations just have to spend time waiting, which is particularly problematic in 

serial programs. I/O operations like network or file system access take a long time, as does user 

interaction. Examine your caching strategy for some improvements, but using concurrency is 

the typical solution. Avoid introducing concurrency at this point, but note the dependency. This 

will factor into your parallelization strategy. 

 Working with large data sets can cause programs to frequently move data in and out of 

memory. Reducing unnecessary memory moves can be a big help. Memory profilers are good 

tools for understanding and improving your memory use. 

 Though it could improve serial performance, avoid reorganizing your data for locality (i.e., 

keeping data used together close in memory, which could allow a single move instead of 

several smaller moves). This kind of optimization is better performed as part of parallelization, 

when factors like cache width and policy are considered. 

As you examine each hotspot, use several sources of information. Beyond the code itself, you can also 

get a lot of quick information from the call graph generated by a profiler. By looking at calls made by 

or to a function, you gain more insight into how it's used and what it does. In particular, walking back 

up the call graph (callers of the function) may lead you to a hotspot that is not a leaf node of the call 

graph. 

3.3.4 Assess 

Each time you make a change to your program, stop and assess the effect. A "good change" is one that 

does not introduce bugs and that either directly or indirectly enables additional changes which improve 

the performance metrics you identified in the Prepare step. Assess these criteria by re-running your 

regression suite and re-measuring the program using your benchmarks. 
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If the regression fails or your performance is worse than before the change, then you misunderstood 

something about the program or your change. Study the program again, before and after the change, to 

understand the cause of the failure. If it cannot be fixed, back out the change and return to the Tune 

step. Re-examine the hotspot and try to apply different changes before moving on to the next hot spot. 

If the regression passed and your performance improved, make sure the change is also acceptable with 

regards to your other concerns. For example, it might be important to preserve the portability 

properties that your program started with. Such criteria are often more difficult to validate in an 

automated way, but should be part of your mental checklist. 

3.4 Understand the Application 

Regardless of the technique used to transform the application from one that processes sequentially to 

one that processes concurrently, having a thorough understanding of the problem being solved cannot 

be avoided. This understanding can come from a variety of sources, including documentation, 

discussions with the application’s developers, and profiling data. 

As discussed in the following sections, some aspects of an application’s behavior are particularly 

relevant to parallelization, such as a thorough understanding of computational and data dependencies. 

A good application analysis will help to determine which dependencies are inherent in solving the 

problem and which are artificial, perhaps introduced as part of a serial optimization. 

3.4.1 Setting Speed-up Expectations 

Generally there are two reasons for splitting up and re-architecting an application for parallelization: 

solving large problems and speed-up. Solving large problems is achieved not only by distributing the 

work across cores, but (sometimes) also by distributing the work across processors due to the sheer 

size of the data which makes the problem too large for a single processorix. Speed-up will be the 

primary driver for the discussion here (based on the assumption that the legacy application being 

ported to the multicore platform is already properly sized for data and memory requirements). 

Speed-up is achieved by effectively load balancing work across the cores to minimize execution time, 

but there are limits to what is reasonable. For example, some code segments cannot be effectively 

parallelized. Amdahl’s Law (see Section 6.2) expresses the maximum expected benefit for improving 

a portion of an application. If the serial execution time of a portion accounts for 80% of the total time, 

and that portion will be spread across eight cores, the result would be at best 3.3 times faster. If that 

same portion only accounted for 20% of serial execution time, the same parallelization would be at 

best 1.2 times faster. These are maximum expected improvements - various overhead factors (e.g., for 

coordination) will further reduce the benefit. 

The effort to parallelize the application should be justified by an objective analysis of the application, 

the effort required to make the change, and the realistic expectations from the effort. 
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3.4.2 Task or Data Parallel Decomposition 

From the application’s profile it should be possible to find the more computationally-intensive sections 

of the application (e.g., hotspots identified from the flat profile generated from measures of the serial 

application). The computational nature of these sections will likely fall into one of two general forms 

of parallel decomposition: task or data parallel. (Note: Task parallel is sometimes referred to as 

function parallel). 

Task parallel decomposition is where the solution to a problem could be envisioned as a sequence of 

steps which could be accomplished concurrently, which are absolutely or relatively independent of 

each other, to achieve the same outcome regardless of the order in which those tasks are carried out. 

Absolutely independent of each other means that the tasks share no data and that no synchronization 

between the steps must occur (very uncommon). Relatively independent of each other, the more 

common situation, means that such tasks share data and at certain times the tasks must synchronize 

their activities. One example of task parallel decomposition is an image processing and capture 

application in which a bitmap from a camera is received and the application performs three operations: 

 Count the number of unique colors in the image 

 Convert the bitmap to a JPEG 

 Save the image to disk. 

In the serialized application, these activities are sequential (Figure 2). In the task parallelized version 

of this application, two tasks can be done in parallel since there are no dependencies between them, 

but the third task to save the image can only be done after the bitmap is converted to JPEG—thus 

requiring synchronization between the task that performs the encoding and the task that saves the 

image. If the application were only required to save the original bitmap captured from the camera and 

not the converted JPEG, there would be absolutely no dependencies between the three tasks, and all 

three could be performed in parallel. 

 

Figure 2. Task parallel decomposition example. 

Data parallel decomposition is where the solution to a problem involves segmenting and decomposing 

major data structures (e.g., arrays) into smaller, independent blocks of data which can be processed 
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independently and concurrently from one another. An example of this form is a scalar multiplication 

operation on a matrix (Figure 3). In a serialized application, such operations are often performed 

sequentially through the aid of looping constructs. In this example, each cell can be operated on 

completely independent of other operations on other cells in the matrix. Furthermore, such operations 

can occur in any order and the resulting matrix from the operation will be the same in any case. The 

ordering imposed by the serial loop construct is simply artificial given the semantics of the loop 

construct; a parallelized form of this same matrix operation is not bound by such constraints. As such, 

each cell of the matrix could be the decomposed form of a parallelization effort. If the matrix is 2x2, 

then there could be four functions assigned to perform the scalar multiplication to each corresponding 

cell. 

 

Figure 3. Data parallel decomposition example. 

In task or data parallelization, it is often that one type will impact the other; in other words, task and 

data parallelism are not mutually exclusive. Most application problems are amenable to both forms of 

decomposition—knowing which form is the most appropriate can only be reasoned by thoroughly 

understanding the problem. Some problems, such as the image processing and capture application 

problem, are more amenable to task decomposition, whereas others (e.g. the scalar multiplication 

problem) are more amenable to data decomposition. In either type of parallelism, data structures must 

be designed so that the tasks from task parallel decomposition can perform their computations, or tasks 

must be created to manipulate the independent blocks of data resulting from the data parallel 

decomposition. 

3.4.3 Dependencies, Ordering, and Granularity 

Dependencies can be in the form of either ordering between operations within the serialized 

application or data dependencies (e.g., shared memory) between operations. Some profiling tools can 

generate call graphs which can aid in discovering the ordering and the frequencies of operations and 

tasks within an application. The serialized form of the application may yield some insight into what 

that ordering will be, but some compromises may have been made to optimize the serialized 

application for a single core processor and that the ordering could be artificial to achieve other (prior) 

objectives. Having insight of the potential for parallelization of the application, separate from the 
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serialized form, may help identify false ordering (ordering which is not required) between operations 

and present opportunities for parallelization. In the image processing and capture application example 

above, counting the number of unique colors in the bitmap did not necessarily have to occur first. 

Shared data dependencies between different (perhaps large) portions of code may also be discernible 

from call graphs, but it is more likely that inspection of the source code will be necessary to either 

confirm or refute such data dependencies. Static analysis tools and memory profiling tools may be 

available to aid in the identification of data dependencies for large regions of code (for example 

looking for access to global variables, shared memory regions, etc. across many lines of code or source 

code files). Such tools will likely be language dependent and possibly even platform dependent. 

Hotspots that are the result of a computationally-intensive loop may create dependencies within an 

operation. These hotspots are candidates for parallelization because if the loop can be designed to be 

executed in parallel some speed-up can be achieved. However, in order to perform this activity, the 

loop must be analyzed and redesigned so that each loop iteration can be made independent—that is, 

each iteration can be safely executed in any order and any dependencies are not carried from each 

iteration. On the other hand, some loops used in serialized applications must have dependencies 

between iterations, such as performing accumulations or other associative operations which are more 

difficult to remove. 

To identify speed-up and achieve efficient use of all the cores, the decomposition, ordering, design, 

and implementation of the tasks needed to perform the overall workload (task parallel or data parallel 

decomposition) must consider the target platform. This is to ensure that the work created for each of 

the tasks will be of sufficient size to keep the cores busy and be correctly balanced between the 

multiple cores. Previously, we illustrated in the prior scalar multiplication operation that a task could 

be created for each element of the matrix to perform the design operation. For this specific example, 

this would likely never be done here for various reasons: 

 The allocation of a task for each cell of the matrix to one of the cores would simply not scale 

for a matrix of any practical sizex 

 The overhead introduced by parallelization would likely not outperform the serialized code 

This underscores the point that determining the proper sizing (or granularity) of the tasks is non-trivial. 

For software engineers performing this activity for the first time, this might involve some trial and 

error after the parallelization of the application is shown to be correct. There are also heuristics which 

can aid in estimating granularity which may be available for the target platform, parallelization 

libraries, or languages used for the parallelization effort. For example, Thread Building Blocksxi 

recommends a “grainsize” (an indicator of granularity for the number of instructions to execute in the 

body of a task) of 10,000 to 100,000 instructions. 

After conducting a parallelization exercise on the source code, revisit the assessment loop (Figure 1) to 

confirm that the expected results for speed-up occurred and that the regression test for the application 

passed. 
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3.5 High-Level Design 

After comprehending the algorithmic intent and serial implementation of a program, it is appropriate 

to begin the high-level design for a parallel implementation of the application. The intent of the high-

level design phase is to partition the application into separate regions which expose work to run in 

parallel. Dependencies between regions will limit this parallelism. Additionally, characteristics of the 

target run time will practically limit the amount of work which can be done in parallel. Choose an 

appropriate granularity of decomposition which can be efficiently mapped onto the parallel run-time 

environment. 

3.5.1 Task Parallel Decomposition 

Task parallel decomposition enables different tasks to run in parallel. The different tasks may read 

shared data, but they produce independent results. In an example image recognition application 

(Figure 4), four separate identification tasks share the same input image data. Each task is specialized 

to identify different objects in the image. Once all four tasks have been completed, the aggregate data 

may be processed by downstream operations. 

 

 

Figure 4.Task parallel image processing example. 

 

For a given processing platform, the different ‘identify’ tasks may have different execution times. 

Though the four tasks may all be run in parallel, if identifying words, things, and places are each three 

times faster than identifying people, it may make sense to run the word, thing, and place identification 

tasks one after another in parallel with the slower people identification task. This type of load 

balancing is an example of how task parallel decomposition may need to be scheduled properly to 

most effectively utilize the available processing resources. 
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3.5.2 Data Parallel Decomposition 

Data parallel decomposition focuses on partitioning input data into separate regions and the same task 

is run in parallel on the different data regions. In another example image recognition application 

(Figure 5), each pixel in the output image is calculated using some corresponding combination of input 

pixels. An output pixel computation may share input pixels with its neighbors, but each output pixel 

can be computed independently of all others. 

 

Figure 5. Data parallel image processing example. 

 

Though each pixel may be computed in parallel, the granularity of decomposition must match the 

available resources. For example, if there are 8 logical processor cores available, the image could be 

sliced into 8 independent regions. Within a region, the pixels would be computed serially, but the 

regions themselves would all be computed in parallel. Data decomposition can inherently deliver a 

natural load balancing process. When the task being computed takes the same amount of time per pixel, 

which represents a static workload, then the data can be divided into equal segments to balance the 

load. 

3.5.3 Pipelined Decomposition 

Pipelined decomposition may be considered a type of hybrid task-data decomposition whereby each 

task may be decomposed into separate functional stages. Each stage processes a subset of the overall 

data and passes its results to the next stage. Though each stage processes its data serially, all stages run 

in parallel to increase the processing throughput. 

In an example imaging edge-detection application, it consists of a number of stages: pixel correction, 

image smoothing, and Sobelxii edge detection (Figure 6). With pipelined decomposition, a pixel block 

enters the pipeline at the correction stage and emerges after Sobel. As a data block moves from the 

first stage to the second, the next data block may enter the first stage. All three stages can run in 

parallel, each working on a different block of data at a different stage in the algorithm. 
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Figure 6. Pipelined edge detection 

Ideally, pipeline decomposition requires the number of stages to be matched to the available 

processing resources. The overall throughput of the pipeline is also limited by the slowest pipeline 

stage. In the example above, the smoothing function requires the most work, and for each data block, 

the correction and Sobel functions must idle until the smoothing function completes. The smoothing 

function’s speed determines the overall performance of the parallel implementation. Recursively 

parallelizing the smoothing function may shorten its execution time and better balance the pipeline. 

3.5.4 SIMD Processing 

Most modern processors include some type of vector operations, termed single instruction, multiple 

data (SIMD) operations. A SIMD instruction enables the same operation to be applied to multiple data 

items in parallel. An example instruction might multiply four pairs of eight-bit data values, storing the 

result as four sixteen-bit data values. This type of low-level parallelism is often used within loops to 

increase the work per iteration. Where possible, this instruction-level parallelism should be applied 

first followed by the task level data decomposition previously discussed. 

3.5.5 Data Dependencies 

When algorithms are implemented serially, there is a well-defined operation order which can be very 

inflexible. In the edge detection example, for a given data block, the Sobel cannot be computed until 

after the smoothing function completes. For other sets of operations, such as within the correction 

function, the order in which pixels are corrected may be irrelevant. 

Dependencies between data reads and writes determine the partial order of computation. There are 

three types of data dependencies which limit the ordering: true data dependencies, anti-dependencies, 

and output dependencies (Figure 7). 
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Figure 7. Three types of data dependency examples  

(the dependencies are highlighted in red): a) data dependency; b) anti-dependency; and c) output dependency. 

 

True data dependencies imply an ordering between operations in which a data value may not be read 

until after its value has been written. These are fundamental dependencies in an algorithm, although it 

might be possible to refactor algorithms to minimize the impact of this data dependency. 

Anti-dependencies have the opposite relationship and can possibly be resolved by variable renaming. 

In an anti-dependency, a data value cannot be written until the previous data value has been read. In 

Figure 7b, the final assignment to A cannot occur before B is assigned, because B needs the previous 

value of A. In the final assignment, variable A is renamed to D, then the B and D assignments may be 

reordered. 

Renaming may increase storage requirements when new variables are introduced if the lifetimes of the 

variables overlap as code is parallelized. Anti-dependencies are common occurrences in sequential 

code. For example, intermediate variables defined outside the loop may be used within each loop 

iteration. This is fine when operations occur sequentially. The same variable storage may be 

repeatedly reused. However, when using shared memory, if all iterations were run in parallel, they 

would be competing for the same shared intermediate variable space. One solution would be to have 

each iteration use its own local intermediate variables. Minimizing variable lifetimes through proper 

scoping helps to avoid these dependency types. 

The third type of dependency is an output dependency. In an output dependency, writes to a variable 

may not be reordered if they change the final value of the variable that remains when the instructions 

are complete. In Figure 7c, the final assignment to A may not be moved above the first assignment, 

because the remaining value will not be correct. 

Parallelizing an algorithm requires both honoring dependencies and appropriately matching the 

parallelism to the available resources. Algorithms with a high amount of data dependencies will not 

parallelize effectively. When all anti-dependencies are removed and still partitioning does not yield 

acceptable performance, consider changing algorithms to find an equivalent result using an algorithm 

which is more amenable to parallelism. This may not be possible when implementing a standard with 

strictly prescribed algorithms. In other cases, there may be effective ways to achieve similar results. 
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3.6 Communication and Synchronization 

Data dependencies establish a set of ordering requirements which must be enforced to ensure proper 

operation. Diverse parallel programming models use different techniques to ensure proper ordering. 

3.6.1 Shared Memory 

In a shared memory system, the individual processing units may locally cache memory, but the system 

must maintain a consistent view of shared memory between the processors (Figure 8). With caches, 

the silicon cost of maintaining a coherent view of memory can become very high if cache lines must 

be shared between processors. Proper data layout in memory can minimize this penalty. 

 

Figure 8. Processing units share the same data memory. 

Multiple threads of execution are used to run multiple tasks simultaneously. Data which is shared 

between tasks must also be properly synchronized by the developer in the application (i.e. locks) to 

ensure dependency relationships are properly maintained. In an example, threads T0 and T1 may both 

need to read and write variable ‘A’ (Figure 9). Without synchronization, the order of reads and writes 

between the two threads is unpredictable, and three different outcomes are possible. 
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Figure 9. Shared data synchronization. 

Mutual exclusion through locks and semaphores is a common technique to ensure that only one thread 

at a time may execute code which encompasses certain critical dependencies. While one thread holds a 

lock for a critical section, other threads are blocked from entering, which if allowed, could violate 

dependencies involving data shared between the sections. In the example of Figure 9, properly locking 

the critical sections ensures that ‘A’ always receives 3 as a final value. 

Generally, each processor runs one thread at a time. More threads may be created across the processor 

cores. When one thread blocks while waiting for the lock to clear, the operating system may wake up 

another ready thread to take its place. 

The cost of acquiring and releasing a lock can be significant. Locks serialize code, so locking large 

critical sections will inhibit parallelism. On the other hand, using frequent, low-level locking may 

impose a large penalty for synchronization. The cost of creating and destroying completed tasks is also 

significant, so once again, the granularity of tasks and locking should match the available resources. 

3.6.2 Distributed Memory 

With distributed memory systems, memory is not shared between systems and each processor 

manages its own local memory (Figure 10). Communication of data between tasks running on 

different processors is accomplished by sending and receiving data between them, often termed 

message-passing. While the thread programming model is appropriate for shared memory, the 

message passing model may be used with either distributed or shared memory systems. 

In the distributed memory model, data must be explicitly shared between tasks. Synchronization 

between tasks can be achieved by synchronous send-receive semantics. A receiving task will block 

until the sending data is available. Alternatively, asynchronous send-receive semantics can be used 

where the receiving task can check or be notified when data is available without blocking. This 

permits overlap of computation and communication leading to significant performance gains. 
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Figure 10. Distributed memory architecture. 

Relative to shared memory, distributed memory represents a higher overhead for communication, both 

in the setup and tear down of a message and in explicit copying of data, so message passing should be 

optimized for both functions. 

3.7 Load Balancing 

The amount of work per computation may be fixed or it will depend on the input data. Work which is 

fixed, is termed a static workload, and may be partitioned during design time. Consider the edge 

detection example discussed previously. In data decomposition, the workload is the same for all pixels, 

and the parallelism scales easily across available processors. 

What would happen if the run time of the smoothing function was dependent on the input data? For 

example, regions with slowly varying pixel values might take fewer compute cycles to smooth, while 

regions with rapidly changing pixel values might require extra processing. This type of workload 

varies dynamically depending on the pixel values - equally-sized pixel regions may contain very 

different workloads. Consider an image with widely varying pixels on the top half and a uniform color 

in the bottom half. If the work is split between two tasks, top and bottom and each running on separate 

processors, the bottom half will finish well in advance of the top half, and the bottom processor will 

idle. 

With unpredictable workloads, the schedule can only be statistically optimized. In this case, dividing 

the work into smaller regions might improve the processing efficiency because the differences 

between neighboring workloads will be less. As the work is divided into smaller tasks, the cost of 

communication can become a significant portion of the task run time and must be considered in 

determining the best task sizes. Run times using thread pools or work stealing provide built-in support 

for dynamic load-balancing. 

Task, data, and pipeline decompositions should always consider how to balance the workloads 

between regions. Static workloads are easy to analyze, while dynamic workloads will require 
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statistical considerations to find a good level of granularity which both matches the available resources 

and alleviates the workload mismatches. 

3.8 Decomposition Approaches 

The high-level design process decomposes the algorithm into separate processing regions, taking the 

data dependencies, communication, and synchronization requirements into consideration, and then 

performs load balancing to establish an efficient partitioning for implementation. 

3.8.1 Top-Down or Bottoms-Up 

There are two main approaches to decompose an algorithm - top-down and bottom-up. In a top-down 

approach, the algorithm is decomposed into separate regions. Some regions will remain serial, while 

other regions may be decomposed using task, data, and pipelined decompositions. Use profiling 

information from high-level analysis to identify the most beneficial regions to be decomposed. After 

each decomposition effort, the parallel performance can be estimated. If not enough performance is 

achieved, then regions can be further subdivided trying to find additional parallelism. 

Some regions will easily decompose into many fine-grained regions, and there will be a tradeoff of 

granularity and overhead. Data decomposing an image into pixels might be an extreme example of 

fine-grained implementation. The number of available cores, overhead of creating and destroying tasks, 

and communication and synchronization overhead become a significant cost. 

As we described previously, profiling information from high-level analysis identifies the most 

important hot spot regions. To gain the most benefit, concentrate on parallelizing the hot spots that 

consume relatively large amounts of execution time. A true bottom-up approach will start with the 

finest grained partitioning for hot spot regions and progressively move up to encompass larger regions, 

maintaining a balance between partitioning and overhead. Once a suitable granularity is established, a 

larger region can be assembled in parallel from the smaller regions until achieving a satisfactory 

estimated performance level. 

3.8.2 Hybrid Decomposition 

Decompositions may be applied hierarchically to best match the available and type of processing 

resources. For example, consider a two-stage pipeline decomposition in which the first stage is 6 times 

slower than the second (Figure 11). Therefore, the initial pipeline decomposition will focus on the 

slower first stage. 

Using data decomposition and assuming sufficient processing resources, it may be possible to move 

six data blocks in parallel through the first stage, which can then run serially through the second stage 

in the same amount of time, effectively balancing the pipeline and optimizing the throughput. 
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Figure 11. Example depicts 2-stage pipeline combining data and pipeline decomposition. 

 

3.9 Parallel Design in Modeling 

In some application areas, it may be necessary to undertake the analysis and high-level design of 

parallelism in the modeling phase because algorithms are designed on special modeling tools that 

automatically generate C code. For example, in recent control systems, mathematical modeling tools 

such as MATLAB/Simulink® are utilized. Owing to the use of these tools, Model-Based Development 

(MBD) has become prevalent, wherein algorithms are designed and simulated using the modeling tools, 

and implementation is performed with the automatically generated code by using these tools. In this 

design flow, given that high-level design and analysis with automatically generated code are sometimes 

futile, it is indispensable to design parallelism in modeling. 

 

Model-Based Parallelization (MBP) can be used for this purpose. In many modeling tools, data flow 

block diagrams are utilized to represent models. Figure 12 shows an example of Simulink model for the 

Fibonacci function (𝑓𝑛+1 = 𝑓𝑛 + 𝑓𝑛−1) and comparison of 𝑓𝑛/𝑓𝑛−1 with its convergence value, with is 

also called the golden ratio. In this diagram, the blocks marked by 1/𝑧 are unit delays that keep values 

of 𝑓𝑛 and 𝑓𝑛−1. At each step, the calculation initializes with the reading of the values of 𝑓𝑛 and 𝑓𝑛−1 at 

the unit delays marked (S). Then, the values of 𝑓𝑛+1 and 𝑓𝑛 at the unit delays marked (T) and the 

calculated values at output ports marked (T) are stored and outputted. The diagram explicitly shows data 

dependency; task parallel decomposition creates a model partitioning problem, which considers load 

balancing, inter-core communication, and computation orders with start and end points (Figure 13). In 

addition, there is a way to draw data parallelism using special blocks such as “For Iterator” blocks in 

Simulink. Therefore, MBP might be useful for the analysis and high-level design of parallelism in 

modeling. 
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Figure 12. Model for Fibonacci function 

 

 

 

Figure 13. Model partitioning. 
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CHAPTER 4: IMPLEMENTATION AND LOW-

LEVEL DESIGN 
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4.1 Introduction 

Parallel implementations are highly platform architecture dependent. For a set of representative 

architectures, this chapter discusses the choice of parallel implementation technology (such as 

threading or message-passing) and recommended implementation techniques (such as incremental 

refinement and serial consistency). Good implementations properly realize high-level design metrics, 

ease debugging, and reduce latent bugs. 

4.2 Thread Based Implementations 

Threads are a basic means of expressing parallelism in a software program and it can be viewed as a 

lightweight process that the operating system creates, manages, and destroys via a specific mechanism. 

Independent of the mechanism, the goal is to improve application responsiveness, use machines with 

multiple processors more efficiently, and improve the program structure and efficiency. Historically, 

many implementations of threading systems are usually centered around specific platforms or user 

requirements. The two basic threading models can be described as user level threads (ULT) and kernel 

level threads (KLT). 

For user-level threads, the user is responsible for scheduling and managing the threads, although the 

kernel manages the process but is unaware of the threads. However, if a ULT makes a call into the 

kernel, the entire process will block. For KLTs, the kernel must schedule each thread and maintains 

information about each thread. Process blocking is done on a per thread basis. Hybrid ULT/KLT 

threading is implemented on platforms such as Linux and Solaris (Figure 14). 

 

Figure 14. Hybrid threading model. 
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Threads are created and controlled via function calls for creation, destruction, synchronization, 

scheduling, and process interaction. 

Other basic properties of threads include: 

 A thread does not know what thread created it. 

 All threads in the same process share the same address space. 

 Threads in the same process, share instructions, data, file descriptors, signals and signal 

handlers. 

 Each thread has a unique thread ID, set of registers and stack pointer, stack for local variables 

and return addresses, a signal mask, priority and its return value. 

4.3. Kernel Scheduling 

The kernel is programmed to schedule the processes and threads on a machine according to its internal 

scheduling algorithm. Certain effects from the kernel scheduling threads can be observed: 

 The kernel will switch control between threads based on the scheduling algorithm and the state 

of the machine 

 The kernel will save and restore the context of the thread - known as a context switch. This has 

a detrimental effect on the performance of the software because of the inherent overhead, 

adversely affecting the behavior of the underlying microprocessor and cache state. 

 Kernel scheduling is non-deterministic and does not reliably schedule threads in any particular 

order 

  

4.4 About Pthreads 

POSIX threads (Pthreads) is an application programming interface (API) for creating and 

manipulating threads. The standard defines roughly 100 primitives with optional components and 

implementation dependent semantics. Implementations of this API are available on most POSIX-

compliant platforms including Solaris, MAC OS X, HP-UX, FreeBSD, GNU/Linux, and others. 

Windows also benefits from a pthreads-w32 project that supports a subsetxiii of the API. The API is 

usually provided as a library that forms a layer between the user and the kernel. Although this MPP 

guide features C++ language examples, the Pthreads library can be accessed from many other 

languages such as C and Fortran. 

Even though POSIX compliant platforms feature Pthreads, some implementations are incomplete or 

don’t conform to the specification. Some API calls may not have underlying operating system kernel 
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support and do not appear in the library of a given platform - check the platform-specific 

documentation while developing threaded software. 

Beyond this document there are several classic textsxiv xv xvi that cover Pthreads in great depth and even 

more on-line tutorials. 

4.5 Using Pthreads 

pthread programs written in C or C++ must include the Pthreads header file to use any of the API 

functions (#include <pthread .h>). On most Unix-like platforms, ‘−lpthread’ is typically used to 

link the library with the user binary file. 

Each Pthreads function call takes an opaque variable (object) as a function parameter. The thread 

library uses this parameter to track the state of that object/resource. For instance the pthread_create 

call takes a pthread_t type that contains, amongst other things, the ID of the thread. This ID can be 

retrieved via the pthread_self call. 

Most Pthreads functions return a value indicating the success, failure or status of the call. Check these 

values and deal with them appropriately. 

The Pthreads function categories are outlined in Table 1. We will introduce most of this API and its 

applicability later in the chapter. 

Function prefix Function 

pthread_ Thread Management 

pthread_attr_ Thread attributes 

pthread_mutex_ Mutexes 

pthread_mutexattr_ Mutex Attributes 

pthread_cond_ Condition variable 

pthread_condattr_ Condition variable 

attributes 

pthread_key_ Thread specific data 

pthread_rwlock_ read/write locks 

pthread_barrier_ Barriers 
Table 1. Pthreads functions. 

4.6 Dealing with Thread Safety 

In order for any code to be thread safe, take specific precautions to prevent multiple threads from 

accessing a shared resourcexvii. Some precautions include a) all accesses must have no effect on the 

resource; b) all accesses are idempotent - the order of operations does not affect the outcome; and c) 

only one access is allowed at a time. 
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Any shared memory location that will be encountered by more than one thread of execution must be 

protected by a synchronization mechanism for writes where all but one thread are mutually excluded 

from accessing the resource. When more than one thread accesses a resource (seemingly) 

simultaneously and there is one writer, a race condition will arise because the outcome depends upon 

the relative execution order of each thread. 

Any portion of code that must be synchronized and protected by mutual exclusion is called a critical 

section. Furthermore, construct the protection mechanism (Figure 15) so that all threads execute the 

entry and exit routines before entering and exiting the critical section. 

 

Figure 15. Critical section protection requirements. 

For Pthreads, unprotected global or static variables are particularly troublesome and should be avoided. 

Threads that allocate memory on the stack can take advantage of the thread’s stack space offering 

automatic privacy. Many functions return a pointer to static data, which can be a problem, but this can 

be remedied by allocating memory on the heap and returning a pointer. Using thread-safe variants of 

library function calls is also recommended. Furthermore, any third-party libraries should be vetted for 

thread safety and thread-safe calls should be used. 

4.7 Implementing Synchronizations and Mutual Exclusion 

Mutual exclusion is enforced when no two threads are in their critical section at the same time. 

Additionally, this means that deadlock freedom and starvation freedom must be maintained (Table 

2xviii). Many initial attempts were made to solve this problem (Dijkstra and Dekker Algorithms)xix xx xxi 

and later efforts are popularxxii xxiii xxiv with Petersen’s Algorithm xxv being most popular (there are also 

some interesting myths about mutex algorithmsxxvi). 
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Mutual Exclusion 
No two processes are in their critical sections at the 

same time 

Deadlock-freedom 

If a process is trying to enter its critical section, then 

some process, not necessarily the same one, 

eventually enters its critical section 

Starvation-freedom 
If a process is trying to enter its critical section, then 

this process must eventually enter its critical section 

Table 2. Mutual Exclusion Properties. 

In normal operation, threads compete for resources, cooperate to share them, or cooperate amongst 

themselves via some type of communication method to guarantee a certain outcome. Depending on the 

interaction between threads, there are many opportunities for the programmer to fall prey to race 

conditions, deadlocks, and starvation. 

Deadlockxxvii is a situation that arises when two threads are both holding a resource that the other 

needs to continue and they are both waiting on the other to release it. However, without external 

interference there is no possibility to release the resource and it ends up in a situation termed circular 

waiting. This can usually be prevented by verification of the lock ordering - the order in which locks 

are acquired and released. One rule of thumb is to acquire locks in ascending order and release in 

descending order. When using C++, concepts such as RAII (Resource Acquisition Is Initialization), 

leveled locking, and lock guards/scope locks can be helpful to avoid missing locksxxviii. Figure 16 

illustrates a common C++ scope-locking technique. When an object goes out of scope, it’s destroyed. 

The ScopeLock class destructor ensures that the mutex is unlocked when the object is destroyed 

because the mutex unlock is called in the destructor of the object as the stack is wound down. 

 

Figure 16. A common C++ scope-locking technique. 

Starvation can happen when attempting to enforce mutual exclusion in a heavily contended critical 

section. The kernel may schedule two threads in such a way that a third thread must wait indefinitely 

for a shared resource, thereby starving it and making no progress. Thus, one of the goals of certain 

locks is to be fair, thereby preventing starvation. 
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4.8 Mutex, Locks, Nested Locks 

Using Pthreads, one can implement synchronization and mutual exclusion using specific Pthreads calls. 

This mutex, which will effectively protect the critical section, however, without proper 

implementation, the mutex is still subject to deadlock and starvation. The programmer is responsible 

for guaranteeing that all uses of the shared resource are protected by a mutex. In Pthreads, only one 

thread may lock the mutex object at the same time. Any thread that tries to lock the mutex object will 

block until the thread that holds the mutex releases the object. At this point, one of the threads - not 

necessarily the thread that arrived first - will be allowed to enter the critical section. 

Rules of thumb for critical sections: 

 Time - Make the critical section as short as possible – some instructions take longer to execute. 

 Space - Execute the minimal amount of instructions during the lock. 

 Do not lock any section of code that executes undeterministically. 

 When dealing with containers that hold data, lock data items and structures whenever possible, 

as opposed to the entire container - balance this against granularity concerns. 

4.9 Using a Mutex 

To use a mutex, it’s necessary to first initialize it and destroy it when finished. This resource 

initialization/destruction paradigm is common throughout Pthreads (Figure 17). 
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Figure 17. A partial example of initializing and locking a critical section with a mutex. 

4.10 Condition Variables 

Condition variables are a method of enforcing mutual exclusion based on a change in a variable. For 

example, one can create a bounded buffer, shared queue, or software FIFO using two condition 

variables and a mutex (Figure 18). A C++ class is created that wraps a standard library queue object 

and uses the ScopeLock class to enforce lock discipline. 
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Figure 18. Simple concurrent queue using two condition variables and a mutex. 
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4.11 Levels of Granularity 

Granularity is the ratio of computation to communication in a parallel program. A program will 

typically have sections that are computing and sections that are communicating, whereby 

communication means anything related to controlling, locking, and destroying threads. There are two 

basic types of granularity in parallel computing; fine-grained and coarse-grained. 

Fine-grained parallelism is small amounts of work done or that there is a low computation to 

communication ratio. This can facilitate load balancing, but relatively large amounts of time will be 

spent coordinating the events and communicating their outcome to the other threads. It’s also possible 

to produce a situation where there is more communication than computation, such as when the 

program spends most of its time in the kernel dealing with mutexes or condition variables. 

Coarse-grained parallelism is where there is a high computation to communication ratio. This might 

indicate that the performance would increase, but depending on the algorithm’s implementation, it 

may require more effort to achieve a reasonable load balance across a given machine. 

For deciding on the appropriate granularity, a useful rule of thumb is that there must be enough work 

to amortize the cost of communication over the computation. Start with a coarse-grained approach and 

look for opportunities to implement fine-grained parallelism. More parallelism is usually better, but 

this alone is not the determining factor for performance. This balance is usually dependent on the 

scheduling strategies, algorithm implementation, the computation to communication ratioxxix, as well 

as the available processing resources. Maximum performance is only realized after considerable 

experimentation and applied performance tuning. Additionally, the number of concurrent work items 

should be close to the number of cores in the machine to avoid over-subscription. 

When using most Pthreads primitives, the library will ask the kernel to help it perform the task, which 

in turn causes its own set of performance problems. Have an idea of the relative overhead for Pthreads 

calls. This knowledge combined with understanding the potential concurrency in the software 

(Amdahl’s/Gustavson’s Law)xxx will help with the optimization process. 
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4.12 Implementing Task Parallelism 

Task parallelism implies that each task is executed with a separate thread and the threads are mapped 

to different processors or nodes on a parallel computer. The threads may communicate with each other 

to pass data as part of the program structure. It’s likely that tasks are different and that the algorithm 

has imposed control and data flow dependencies, thereby ordering the tasks and limiting the amount of 

parallelism. 

Implementing task parallelism with Pthreads is: 

 Creating or identifying a group of program functions that will be used as tasks - called thread 

functions 

 Creating the threads that will execute the thread functions and passing the necessary data to the 

functions 

 Joining with and retrieving the results returned from the thread functions, if any 

 Minimally, all critical sections must be protected – this pertains to locations where shared 

resources will be changed by at least one thread and accessed by others 

4.13 Creation and Join 

Threads are created and joined using the pthread_create and pthread_join calls ("joining" is 

one way to accomplish synchronization between threads). Threads can also pass to and receive 

information from the calling thread, allowing threads to communicate. In the following example 

(Figure 19), illustrating the creating and joining of threads, we are passing a thread number to the 

thread. With a small modification, we could retrieve the value returned using the pthread_exit 

call in the thread function using the second parameter of pthread_join. 



 

 Multicore Programming Practices Guide  Page 50 

 

 

Figure 19. Pthreads creation and join. 

4.14 Parallel Pipeline Computation 

As previously discussed, a pipeline is a collection of sequentially-executed tasks, whereby the input of 

the first task is obtained from some data source and the result of one stage is fed to the next. Each 

pipeline stage represents one parallel task. The pipeline consists of three separate phases: 1) Receive (a 

task); 2) Compute (perform some computation on the task); and 3) Send (send the task to the next 

stage).  

A parallel pipeline system has temporal and data dependencies (Figure 20), therefore synchronization 

at the output of each stage might need to be considered. 
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Figure 20. Parallel pipeline system with temporal and data dependencies. 

A pipeline can be created using the Queue concept introduced earlier, where each stage in the pipeline 

is separated by a queue object. Each stage has one or more threads that remove a data item from the 

previous queue, perform some work and then place the data object in the queue of the next block. 

4.15 Master/Worker Scheme 

The master/worker scheme is a technique that can be used for a task pool with dynamic task 

distribution (Figure 21). A master thread passes work to worker threads and collects the results. In this 

scheme, the many-to-one communication system enables the master to evenly distribute the work by 

supplying a worker with a new task each time a result is collected. It’s also possible to give many tasks 

to a worker, provided this does not affect load balancing. 

 

Figure 21. Master/worker scheme supports dynamic task distribution. 

The master/worker system relies on the relatively smooth operation of the master thread which is 

responsible for collecting results and emitting tasks. When a large number of workers are used, the 

master thread may become overloaded. Conversely, allowing the worker threads to perform more 
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work (coarse-grained approach) might limit the dynamic nature of the system and affect load 

balancing. To combat these problems, it’s possible to set up a hierarchy of master/worker thread 

systems as a tree, with worker processes as the tree’s leaves and sub-masters as the inner nodes. 

4.16 Divide and Conquer Scheme 

The divide and conquer scheme is an important algorithmic expression used to solve many sorting, 

computational geometry, graph theory, and numerical problems. It has three distinct phases. 

1) Divide Phase - A problem is split into one or more independent sub-problems of smaller size 

2) Conquer Phase - Each sub-problem is solved recursively or directly 

3) Combine Phase - The sub-solutions are combined to a solution of the original problem instance 

In the divide-and-conquer model, one or more threads perform the same task in parallel (SPMD 

model). There is no master thread and all run independently. Recursive calls can be made concurrently 

only if the calls write to different parts of the program’s memory. Divide and conquer algorithms are 

subject to load-balancing problems when using non-uniform sub-problems, but this can be resolved if 

the sub-problems can be further reduced. 

4.17 Task Scheduling Considerations 

The determination of task granularity is a partitioning problem. The program must be decomposed into 

a set of tasks suitable for parallel executionxxxi. The ‘grain size’ can be defined as a series of 

instructions organized as a task. Depending on the language, this may be a function or a loop body. 

An efficient use of the available resources on a parallel system requires enough tasks to spread over 

the processor cores allowing tasks to execute in parallel. The programmer must determine the optimal 

task size that will give the shortest execution time. The larger the task size, the less parallelism that is 

available on a given machine. A smaller task size will result in greater parallel overhead 

(communication and synchronization) 

The general solution to the granularity problem is NP-completexxxii, but it’s possible to find a near 

optimal solution to a sub-problemxxxiii. Techniques such as task packingxxxiv xxxv and work stealingxxxvi 
xxxvii are also beneficial to arrive at a tuned scheduling algorithm. 

4.18 Thread Pooling 

A thread pool is a collection of threads that will perform a given function or task. Primarily, this 

technique allows the programmer to reuse threads and avoid the overhead of creating and destroying 
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threads multiple times. The programmer may control the pool dynamics and size, although it 

frequently depends on the system state, such as the number of tasks or available processors. The pool 

is tuned to provide the best performance given the load and machine characteristics.  

4.19 Affinity Scheduling 

Depending on the algorithm, resource acquisition/management scheme, and the workload, certain 

threads may benefit from having their affinity set to specific processors. In some instances the 

operating system kernel will have support for scheduling threads based on power, cache, CPU, or 

other resources. For example, the kernel may be able to detect that a thread will benefit from continued 

execution on a given processor based on the cache usage (i.e. to avoid cache flushing and refilling). 

This cache-aware version is known as cache affinity scheduling. 

On most processor architectures, migration of threads across cache, memory, or processor boundaries 

is expensive (i.e. TLB flush, cache invalidation) and can reduce program performance. The 

programmer is able to set affinities for certain threads to take advantage of shared caches, interrupt 

handing, and to match computation with data (locality). Additionally, by setting the affinity to a single 

CPU and excluding other threads from using that CPU, and that processor is dedicated to running that 

thread only, and takes that processor out of the pool of resources that the OS can allocate. When the 

affinity scheduling is manually controlled, the programmer should carefully design the affinity 

scheduling scheme to ensure efficiency. 

Each operating system will use different calls to set affinity, binding the thread to the processor - for 

Linux, it’s sched_setaffinity and pthread_setaffinity_np (np refers to non-portable); for Solaris it’s 

processor_bind. Both have similar semantics. 

In the following example that shows the function call for cache affinity scheduling (Figure 22), the 

mask is a bitmap of all the cores in the machine (Figure 23). If sched_setaffinity is called again later 

with a different mask value, the OS migrates the thread to the requested processor. 

 

Figure 22. Code snippet using bitmap mask for cache affinity scheduling. 
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Figure 23. Affinity mask. 

4.20 Event Based Parallel Programs 

Use an event based coordination approach if an application can be decomposed into groups of semi-

independent tasks that interact in an irregular manner and if the interaction between them is 

determined by the flow of data between them (which implies ordering constraints between the tasks). 

These tasks, and their interaction, can be implemented to execute concurrently. This approach does not 

have a restriction to a linear structure or a restriction that the flow of data is uni-directional, however, 

the interaction can take place at irregular and sometimes unpredictable intervals. 

Using a laundromat as an example, where there are a number of washers and dryers available for use, 

people arrive with their laundry at random times. Each person is directed by an attendant to an 

available washing machine (if one exists) or queued if all are busy. Each washing machine processes 

one load of laundry at a time. The goal is to compute, for a given distribution of arrival times, the 

average time a load of laundry spends in the system (wash time plus any time waiting for an available 

machine) and the average length of the queue. The "events" in this system include loads of laundry 

arriving at the attendant, loads of laundry being directed to the washing machines, and loads of 

laundry leaving the washing machines. Think of this as "source" and "sink" objects to make it easier to 

model loads of laundry arriving and leaving the facility. Also, the attendant must be notified when 

loads of laundry leave the washing machines so that it knows whether the machines are busy. 

Viewing this from a programming perspective, as opposed to conventional programming where a 

program is written as a sequence of actions, in event-based programming the application developer 

writes a set of event handlers. Incoming events activate these event handlers. When the number of 

interacting processes is large, understanding a program that is coded as a series of responses to many 

different events is difficult. At any moment, one single process may be interacting with dozens of 

other processes, and each of these interactions may require its own state information. This necessitates 

the need for abstractions to coordinate interacting processes. 
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4.21 Implementing Loop Parallelism 

Loop parallelism (Data Parallelism) is potentially the easiest type of parallelism to implement, while 

achieving the best speed-up and scalability (Figure 24). By dividing the loop iteration space by the 

number of processors, each thread has an equal share of the work. If the loop iterations do not have 

any dependencies and the iteration space is large enough, good scalability can be achieved. 

Additionally, this implies that each loop iteration takes relatively the same amount of time and the 

program might be free of load-balancing problems. 

 

Figure 24. An example of loop parallelism using Pthreads. 
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4.22 Aligning Computation and Locality 

Locality is one of the key considerations for performance oriented codes. Application performance 

degrades as memory access latency becomes high relative to processor cycle times. To avoid this, keep 

data close to the processor that is performing the computation. Furthermore, the program must be 

structured in such a way as to allow the microprocessor caches to make most efficient use of memory. 

There are two types of locality involved: 1) Temporal locality (a memory location used is likely to be 

used again); and 2) Spacial locality (if a data item is referenced, the neighboring data locations may 

also be used). 

There are many techniques for locality optimization of codes. For example, cache blocking is 

reorganizing data objects to fit in the microprocessor cache. Loop tiling is also a technique to break a 

loop’s iteration space into smaller blocks thereby insuring that the data of interest stays in the cache. 

4.22.1 NUMA Considerations 

Non-uniform Memory Access (NUMA) architectures are popular in many modern microprocessors. A 

NUMA architecture is where the entire memory space is shared but each processor is connected to a 

node with a dedicated memory controller (Figure 25). This allows system designers to build larger 

systems, but the programmer must take greater care with data and memory affinity because off-node 

data access times will be greater than accesses time within a node. Since access time to memory is not 

uniform, specific code optimizations are necessary to guarantee performance. 

 

Figure 25. With NUMA architecture, each processor core connects to a node with dedicated memory. 
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4.22.2 First-Touch Placement 

First-touch placement allocates memory on the NUMA architecture containing the processor that first 

touches (writes to) the memory. A first-touch memory placement policy can greatly improve the 

performance of applications where data accesses are made mostly to the memory local to each 

processor. First-touch placement is the default on most Unix like operating systems and it usually 

supports an API that allows for the manipulation of the placement policies. 

Programmers must take care to initialize their data structures using the thread that will also perform 

the computation. This will ensure that memory is placed closest to the node when the thread is 

executing. Additionally, to guarantee the best memory performance, threads should be pinned to the 

processor on the node where the memory of interest is located. 

4.23 Message Passing Implementations 

The Multicore Association (MCA) has created two specifications that address the area of inter-process 

communications (IPC) between CPUs in a multicore system. These specifications include the 

Multicore Communications API (MCAPI®) and the Multicore Resource Management API (MRAPI®). 

To understand how MCAPI might fit into your system, look at how to divide the system and its 

resources among the available operating systems and CPUs. The system itself must be designed both 

with the hardware and software in mind. What are the system requirements? What is the minimum 

latency needed to process a datagram? Are there any deterministic requirements that must be adhered 

to? Can the application be parallelized? 

It’s important to note the differences between asymmetric multiprocessing (AMP) and symmetric 

multiprocessing (SMP). In some situations, SMP hardware is best used by running a single operating 

system across all cores. However, sometimes it can be advantageous to distribute several operating 

system instances (similar to AMP systems) across cores in an SMP system. In addition, it might be 

optimal to run an application directly on a CPU without an operating system, otherwise known as a 

“bare-metal” application. 

After determining that using AMP is advantageous, or deemed a requirement in your system design, 

there must be an inter-processor communication (IPC) mechanism for passing messages between those 

instances. MCAPI specifically deals with message passing between nodes in the system. MCAPI can 

be used at a very low layer to pass messages between operating systems, making it possible to abstract 

away the hardware differences and uniqueness from the application.  

4.23.1 MCAPI 

There are three primary concepts to understand with MCAPI: a node, an endpoint, and a channel. An 

MCAPI implementation passes messages between nodes; where a node can be a CPU, an operating 
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system instance, a thread, or a process. Initialization software establishes each node and creates a set 

of endpoints for inter-node communication. The system designer must decide the appropriate 

configuration; your system can have different types of nodes. For example, two operating systems can 

run side-by-side on separate CPU combinations. In this example, the first operating system could 

support five processes running on that CPU. On the second operating system, you might consider the 

entire operating system as a single node. 

There are two types of inter-node communication: connection-less and connected. A connection-less 

endpoint can receive communication from many different nodes at any time. A connected channel is 

when communication passes between two distinct endpoints; no other nodes can connect to that 

endpoint. 

A channel can be either “socket-like” in its message passing, where all messages appear in their 

transmitted order. Alternatively, channels can be “scalar-based” where a simple integer message will 

be passed between endpoints. For example, a video frame would be passed in its entirety as a datagram, 

whereas a command can be passed as a scalar. 

By using MCAPI at a very low layer to pass messages between operating systems, you can abstract 

away all of the hardware differences and uniqueness from the application. Check out the MCAPI 

programming source code example in Appendix. This example involves a printer function with two 

operating systems (Android and Nucleus), and includes a flow chart with initialization and the 

message process. 

4.23.2 MRAPI 

MRAPI deals with resources, such as sharing memory and synchronizing objects between processing 

nodes or operating system instances. Memory sharing APIs allow a single block of memory, owned by 

one operating system, to be shared among several nodes in a system. These APIs can enforce only one 

writer or multiple readers, which can access the memory block at any time. 

Synchronization APIs provide applications running on different nodes with the ability to synchronize 

their activities. An MRAPI semaphore is a system-wide semaphore that can be accessed by any node 

in the system, preventing access by multiple nodes to a shared resource. 

 

4.23.3 MCAPI and MRAPI in Multicore Systems 

Let's look at how MCAPI/MRAPI can be used in a multicore system to provide the necessary 

intercommunication framework between nodes. In this example we have four cores, each of which is 

allocated a set amount of memory from main memory. In addition, there are memory regions shared 

by all cores. 
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In the first step, MRAPI initializes any shared memory region that will be accessible between the 

system’s nodes. Next, during MCAPI initialization, the MRAPI shared memory is distributed to each 

of the endpoints or channels that have been established between each of node. These nodes can be 

local or remote, but the shared memory region must be used in order to pass messages between nodes. 

Interrupts may be used to interrupt current node processing in order to minimize system latency for 

higher priority communications. 

The combination of using MCAPI and MRAPI together is a compelling approach that allows full-

featured APIs to be implemented in an AMP system across any of the system’s nodes. This even 

includes nodes that are remote to all other nodes, but must be passed through intermediate nodes to get 

data to its destination by setting up a route. The way your system is architected will either enable or 

impair the ability to pass messages efficiently throughout the system. 

 

4.23.5 Using a Hybrid Approach 

Using standard POSIX threads inside a node and using MCAPI with MRAPI between nodes, you can 

develop a system architecture that allows high portability between varied systems. However, when 

load balancing between nodes (a thread of execution migrates to another node), the API would change 

because what once was local is now remote, or vice versa. The solution is to use MCAPI/MRAPI for 

all messaging between threads as well as nodes. If the communications do not leave the node, the 

MCAPI/MRAPI layer would translate into native message passing such as POSIX on the node. While 

this adds another layer of abstraction in using MCAPI/MRAPI on a single node, it adds the benefit of 

being able to load balance across nodes, using MCAPI/MRAPI as a common API for all types of inter-

/intra-node communications. However, if you need to maximize CPU efficiency, then while using 

MCAPI/MRAPI as a communications layer allows for future flexibility in system architecture, its 

benefit may be superseded by the need for speed. 

During development, you can use MCAPI/MRAPI APIs on a single operating system instance, with 

either a single or multiple nodes, with all the appropriate endpoints, and with all the appropriate tasks, 

and the algorithm will run. This is an easy way to test the application on a single core operating system 

node, prior to the multicore hardware being available. Although it does not test all the parallel 

threading, it does allow the logical nature of the algorithms to be tested.  
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4.24 Task-based Implementations 

4.24.1 MTAPI 

Besides MCAPI and MRAPI, the Multicore Association defined MTAPI, a set of interfaces for task 

management in embedded systems. MTAPI allows to split complex computations into fine-grained tasks 

that can be executed in parallel. Threads are usually too heavy-weight for that purpose, since context 

switches consume a significant amount of time. Moreover, programming with threads is complex and 

error-prone due to concurrency issues such as race conditions and deadlocks. 

While task schedulers are nowadays widely used, especially in desktop and server applications, they are 

typically limited to a single operating system running on a homogeneous multicore processor. System-

wide task management in heterogeneous systems must be realized explicitly via communication 

mechanisms. MTAPI addresses these issues by providing an API which allows parallel software to be 

designed in a straightforward way, covering homogeneous and heterogeneous multicore architectures. It 

abstracts from the hardware details and lets software developers focus on the application. 

MTAPI provides two basic programming models, tasks and queues, which can be implemented in 

software or hardware (Figure 26). Tasks are fine-grained pieces of work executed locally (on a multicore 

processor) or on a remote node, e.g. an accelerator. For that purpose, MTAPI provides mechanisms to 

pass data to the remote node and back to the calling node. Queues can be used to control the scheduling 

policy for related tasks. For example, order-preserving queues ensure that subsequent tasks are executed 

sequentially. 

 

Figure 26. Basic MTAPI programming models 

Figure 27 depicts a sample architecture based on MTAPI utilizing the CPU, a DSP, and a GPU. Each of 

them is represented by one or more MTAPI nodes (one core of the CPU is reserved for special purposes, 

e.g. processing real-time tasks, and constitutes an own node). From an application perspective, executing 

a task on such a system is accomplished via unified interfaces hiding the specific characteristics of the 

different hardware units. 

Tasks Queues
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Figure 27. Example for MTAPI-based architecture 

In the following, we describe the main concepts of MTAPI in more detail: 

Node: An MTAPI node is an independent unit of execution. A node can be a process, a thread, a thread 

pool, a general purpose processor or an accelerator. 

Job and Action: A job is an abstraction representing the work and is implemented by one or more actions. 

The MTAPI system binds tasks to the most suitable actions during runtime. 

Task: An MTAPI task is an instance of a job together with its data environment. Since tasks are fine 

granular pieces of work, numerous tasks can be created, scheduled, and executed in parallel. A task can 

be offloaded to a neighboring node other than its origin node depending on the action binding. 

Group: MTAPI groups are defined for synchronization purposes. A group is similar to a barrier in other 

task models. Tasks attached to the same group must be completed before the next step by calling an API 

function (mtapi_group_wait). 

An MTAPI-compliant scheduler distributes tasks among the available processing units and combines the 

results after synchronization. However, during creation, the task does not know with which action it will 

be associated. MTAPI provides a dynamic binding policy between tasks and actions. This allows it to 

schedule jobs on more than one hardware type, where the scheduler is responsible for balancing the load. 

Depending on where a task is located, it is either a local task (if it is implemented by an action residing 

on the same node) or a remote task. Figure 28 shows an example for the relationship between tasks and 

actions. In the example, Tasks 1 and 2 refer to Job A, which is implemented by Actions I and II on 
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remote nodes. In contrast, Task 3 accomplished by Job B is executed on the same node as the 

application (Action III). 

 

Figure 28. MTAPI tasks, jobs, and actions 

4.24.2 EMB² 

In this section, we give a brief overview of the Embedded Multicore Building Blocksxxxviii (EMB²), an 

open source C/C++ library for the development of parallel applications based on MTAPI. EMB² has 

been specifically designed for embedded systems and the typical requirements that accompany them, 

such as predictable memory consumption and support for timing-critical applications. Besides a task 

scheduler, EMB² provides basic parallel algorithms, concurrent data structures, and skeletons for 

implementing dataflow-based applications (Figure 29). 
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Figure 29. EMB² components 

Figure 30 shows an example for task creation and synchronization (for convenience, we use C++ 

wrappers for the corresponding MTAPI functions). The main function first gets a reference to the 

current node. By calling Start, it then creates a task that executes the function work in parallel to 

main. Finally, it waits for the task to finish. Instead of an ordinary function, we could also pass a job 

to Start in order to execute an action on an accelerator. Note that the function work takes as 

parameter a reference to an object of type TaskContext, which provides information about the status 

of the task and can be used to set an error code to be returned by Wait.  

                                              

Figure 30. Example for task creation and synchronization 

The algorithms provided by EMB² can be used for more complex computations such as parallel loops. 

They split the computations to be performed into tasks, which are executed by the MTAPI task 

scheduler. Suppose, for example, we are given a range of integers and want to double each of them. In 

principle, one could apply the operation to all elements in parallel as there are no data dependencies. 

However, this results in unnecessary overhead if the number of elements is greater than the number of 

available processor cores. A better solution is to partition the range into blocks and to process the 
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using namespace embb::mtapi; 
 
void work(TaskContext& task_context) { 
  // do work ... 
} 
 
int main() { 
  Node& node = Node::GetInstance(); 
  Task task = node.Start(&work); 
  // do something... 
  mtapi_status_t status = task.Wait(); 
  // check status ... 
} 
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elements of a block sequentially. With the ForEach construct, users do not have to care about the 

partitioning of the range into chunks of reasonable size, since this is done automatically. Similar to the 

C++ Standard Library’s for_each function, it is sufficient to pass the operation in form of a function 

object or a lambda function (Figure 31). 

                 

Figure 31. Example for parallel loop 

Similar to the previous example (Figure 30), we could also pass a job to the loop instead of a lambda 

function. This way, it is even possible to process the elements of a range on different compute units, e.g. 

the CPU and a GPU, where the task scheduler automatically distributes the load by means of dynamic 

action binding. 

For further information and examples, the reader is referred to the MTAPI specificationxxxix and the 

EMB² websitexl. 

 

 

std::vector<int> v; 

// initialize v ... 

embb::algorithms::ForEach(v.begin(), v.end(), [] (int& x) {x *= 2;}); 
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CHAPTER 5: DEBUG 
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5.1 Introduction 

The adoption of multicore systems requires programmers to have a better understanding of how to 

effectively design, write, and debug parallel programs. Parallelism introduces complexities that are 

exacerbated by potentially non-deterministic and asynchronous tasks interleaved by the system 

scheduler. This makes debugging difficult, since concurrency related bugs may not manifest 

themselves in every application execution and consecutive runs of the same application may yield 

different results. 

5.2 Parallel Processing Bugs 

In addition to requiring proficiency in parallel and multi-threaded software design and development, 

parallel programming on multicore platforms requires developers to better understand and coordinate 

between available resources to ensure application stability and enhanced performance. 

Threads in a multi-threaded parallel application may be arbitrarily interleaved in time, potentially 

resulting in different possible instruction interleaving with different threads of execution. The issues 

encountered in multi-threaded applications includexli: 

1. Thread stalls caused by a thread locking a resource for a long period which causes other 

threads requiring the locked resource to wait for a long time. 

2. Thread convoying results from thread stalls, where multiple threads may wait to acquire a lock. 

As threads wait for locks to be released, the system switches through all runnable, blocked 

threads. 

3. Data races (Figure 32): result from two concurrent threads performing conflicting accesses 

with no explicit mechanism implemented to prevent simultaneous access. Synchronization and 

critical sections may be used to correct data races. Unnecessary synchronization must be 

avoided to prevent negative impact on application performance. 

4. Deadlocks caused by locking hierarchies, resulting from all threads being blocked as each 

thread waits on an action by another thread. 

5. Livelocks : caused by threads detecting and recovering from deadlock, as processes/threads 

constantly change with respect to one another, trigger the deadlock detection algorithm. 
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The code sample in Figure 32 shows two functions, where one function contains a data race and the 

second function shows how to fix the data race. The first function, thread_broken, is spawned twice by 

the main routine. This function increments the global variable, global_broken. Since the read and 

increment is not atomic, it is possible for one thread to read the original value (zero) while the other 

thread is in the process of incrementing it and writing the value back to memory. The latter increment 

occurs on a stale value with the resulting write not showing the fact that the variable global_broken 

should have incremented twice. 

The second function, thread_fix, shows how to resolve the data race issue. A mutex is created and 

protects access to the increment of global_fix. The mutex serializes access to the code between the 

pthread_mutex_lock call where the mutex is acquired and the pthread_mutex_unlock call, where the 

mutex is released. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 32. Code sample shows data race condition. 

  

1 int global_broken; 

 

2 static void* thread_broken(void* p) { 

3   global_broken++; 

4 }  

5  

6 int global_fix; 

7 static pthread_mutex_t mutex; 

8  

9 static void* thread_fix(void* p) { 

10   pthread_mutex_lock(&mutex); 
11   global_fix++; 
12   pthread_mutex_unlock(&mutex); 
13 } 
14  
15 int main(int argc, char *argv[]) 
16 { 
17   pthread_t threadID1, threadID2, threadID3, threadID4; 
18  
19   global_broken = 0; 
20   pthread_create(&threadID1, NULL, thread_broken, NULL); 
21   pthread_create(&threadID2, NULL, thread_broken, NULL); 
22  
23   global_fix = 0; 
24   pthread_mutex_init(&mutex, NULL); 
25   pthread_create(&threadID3, NULL, thread_fix, NULL); 
26   pthread_create(&threadID4, NULL, thread_fix, NULL); 
27  

} 
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The code sample in Figure 33 shows an occurrence of deadlock. The function, deadlock, acquires a 

mutex, but does not release it. The main function attempts to acquire the lock and stalls indefinitely 

because the deadlock function never releases. 

 

 

 

 

 

 

 

 

Figure 33. Code sample showing a Deadlock condition. 

 

Livelocks are similar to deadlocks, and are a special case of resource starvation. In livelocks, there is a 

constant change in the states of the processes with respect to one other, preventing either one of them 

from progressing. Livelocks occur in algorithms which detect and recover from deadlocks, repeatedly 

triggering the deadlock detection algorithm. Livelocks can be prevented by allowing only one process to 

take action. 

 

A livelock occurs when a request for an exclusive lock for a shared resource is repeatedly denied, since 

a series of overlapping shared locks, continue to interfere with each other. At the end two or more 

threads may continue to execute, with neither one making any progress. One example of livelock occurs 

when two or more processes or threads are set to repeat a set of actions until a given condition tests true. 

However, the two processes or threads may cancel each other’s actions before testing for the condition, 

causing all of them to perpetually re-start. The threads (or processes) are not blocked, they simply 

change their respective states, in response to changes in the other thread(s) (or process(es)), preventing 

all of them from making any progress. 

 

1 int global; 

2 static pthread_mutex_t mutex; 

3  

4 static void* deadlock(void* p) { 

5   pthread_mutex_lock(&mutex); 

6   global++; 

7 } 

8  

9 int main(int argc, char *argv[]) 

10 { 
11   pthread_t threadID1; 
12  
13   global = 0; 
14    
15   pthread_mutex_init(&mutex, NULL); 
16   pthread_create(&threadID1, NULL, deadlock, NULL); 
17  
18   pthread_mutex_lock(&mutex); 
19   global++; 
20  

} 
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Another example of livelocks may occur where atomic thread safety is enforced. For example, one 

thread locks the system and goes to sleep. Another thread attempting to access data, spins over the same 

instructions, until it automatically goes to sleep. 

 

5.3 Debug Tool Support 

Tools supporting multi-threaded code debugging, should at a minimum, support switching between 

threads and examination of thread state during a debugging session. The enhanced complexity of 

multithreaded applications results from factors such as non-deterministic thread scheduling and pre-

emption, and dependencies between control flow and dataxlii. Non-deterministic execution of multiple 

instruction streams, from runtime thread scheduling and context switching, generally stems from the 

operating system’s scheduler. Debuggers may mask issues caused by thread interactions, such as 

deadlocks and race conditions. Factors such as thread priority, processor affinity, thread execution 

state, and starvation time can affect the resources and execution of threads. 

Thread-related bugs are difficult to find due to their non-determinism and certain bugs may only be 

observed when threads execute in a specific order. The more common threading bugs include data 

races, deadlocks, and thread stalls. Synchronization may solve data races, but may result in thread 

stalls and deadlocks. 

A number of approaches are available for debugging concurrent systems including traditional 

debugging and event based debugging. Traditional debugging (breakpoint debugging) has been 

applied to parallel programs, where one sequential debugger is used per parallel process. These 

debuggers can only provide limited information when several processes interact. Event-based 

debuggers (or monitoring debuggers) provide some replay functionality for multi-threaded 

applications, but can result in high overhead. Debuggers may display control flow, using several 

approaches such as textual presentation of data, time process diagrams, or animation of program 

executionxliii. 

The use of a threading API may impact the selection of a debugger. Using OpenMP, for example, 

requires the use of an OpenMP-aware debugger, which can access information such as constructs and 

types of OpenMP variables (private, shared, thread private) after threaded code generation. 

In general, the use of scalar optimizations may negatively impact the quality of debug information. In 

order to improve the quality of available debugging information, it may be desirable to deselect some 

of the advanced optimizations. Examples of the impact of serial optimization on debugging includexliv: 

 Sequential stepping through inlined source code may display different source locations and 

lead to confusion. 
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 Code motion (where the code is moved out of the loop) may lead to interspersed code from 

different locations. 

 The use of base pointer by optimized x86 applications may lead to incorrect back tracking. 

Commonly used Linux based application debuggers include dbx and gdb, which are thread aware. 

5.4 Static Code Analysis 

Static code analysis is performed on source code without executing the application or considering a 

specific input and without requiring any instrumentation of the code or development of test cases. 

Static code analysis exhaustively explores all execution paths, inclusive of all data ranges to ensure 

correctness properties such as absence of deadlock and livelock. Static code analysis tools cannot 

model absolute (wall-clock) time but can model relative time and temporal ordering. One method of 

implementing static code analysis uses a directed control flow graph developed from the program’s 

syntax tree. The constraints associated with variables are assigned to the nodes of the tree. Nodes 

represent program points and the flow of control is represented by edges. Typical errors detected by 

using analysis based on the control flow graph include: 

 Illegal number or type of arguments 

 Non-terminating loops 

 Inaccessible code 

 Un-initialized variables and pointers 

 Out of bounds array indices 

 Illegal pointer access to a variable or structure 

Static deadlock detection tools look for violations of reasonable programming practices, and 

approaches have been based on type systems, dataflow analysis and model checking. Type systems are 

syntactic frameworks for classifying phrases according to types of values computed. Type checkers 

evaluate well typed programs for deadlocks. These require annotations and they do not scale well to 

large systems. 

In dataflow analysis call graph analysis is used to check for deadlock patterns. A static lock order 

graph is computed and cycles are reported as possible deadlocks. The analysis provides information 

such as type information, constant values, and nullness. Dataflow algorithms generally use information 

from conditional tests. 

Model checking systematically checks all schedules and assumes the input program has finite and 

tractable state-space. Modeling software applications use the source code to detect potential errors. 

These models can be analyzed for behavioral characteristics. Due to the large number of possible 

interleavings in a multithreaded application, model checking is computationally expensive and does 

not scale well to large programs, thereby limiting its applicabilityxlv xlvi xlvii. 
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The use of static code analysis tools helps maintain code quality. Their integration in the build process 

is recommended to help identify potential issues earlier in the development process. When using a 

static code analysis tool: 

1. Use verbosity options if possible. Analyzing source code with many instances of multiple 

issues can be overwhelming. Research phasing in new checks as more critical issues are 

addressed. 

2. Beware of false positives. Static analysis cannot guarantee 100% accuracy so confirm reported 

issues before enacting source code changes. 

3. Static code analysis complements the development and debugging process, but it is not 

intended to be a replacement for a mature development and testing process - use it in 

conjunction with other debug techniques. 

5.5 Dynamic Code Analysis 

Dynamic code analysis is performed by executing programs built on physical hardware or a virtual 

processor. Issues can be detected much more precisely using code instrumentation and memory 

operation analysis. Dynamic code analysis tools are generally easy to automate with a low rate of false 

positives. For dynamic testing to be effective, the test input must be selected to exercise proper code 

coverage. 

In the context of multithreading, the following recommendations should help in identifying thread-

related bugs when using a dynamic thread analysis toolxlviii: 

1. Benchmarks should exercise the application’s threaded sections - tools cannot identify and 

analyze threading issues unless the threaded code is executed. 

2. Use a code coverage tool to ensure the test suite runs through and the dynamic analysis tool 

adequately exercises key code regions. 

3. Use a non-optimized debug version of the application that includes symbol and line number 

information. 

4. Limit instrumentation added to the application. If threading is restricted to a specific area of the 

application, it may not be necessary to instrument the entire application. 

5. If possible, test both optimized and non-optimized versions of the application. If certain bugs 

are only detected in the optimized version of the application then selected optimizations 

should be re-visited to ensure that none are contributing to the spurious bugs. 

6. If binary instrumentation is used the binary should be relocatable. 

Following are some tips for using dynamic code analysis tools: 

 Limit working set size 

 Start by analyzing frequently observed variables in the tool output. 

 Beware of false positives 
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Examples of open source dynamic thread analysis tools based upon Valgrind include ThreadSanitizer, 

Helgrind, and DRDxlix. 

5.6 Active Testing 

Active testing consists of two phases. In the first phase, static and/or dynamic code analyzers are used 

to identify concurrency related issues, such as atomicity violations, data races, and deadlock. This 

information is then provided as input to the scheduler to minimize false positives from the concurrency 

issues identified during the static and dynamic code analysis. One such tool that uses this approach is 

CalFuzzerl. 

5.7 Software Debug Process 

Software debug of embedded multi-processing and multi-threaded applications is a difficult problem 

and demands a rigorous software development process that maximizes the detection of bugs with 

minimal effort. The following steps propose a phased debug process that evolves initially from a serial 

version of the application to one containing parallel tasks and execution on the targeted multicore 

processor: 

1. Debug a serial version of the application. 

2. Use defensive coding practices when parallelizing serial applications. 

3. Debug a parallel version executing serially. 

4. Debug a parallel version using an increasing number of parallel tasks. 

5.7.1 Debug a Serial Version of the Application 

In applications that take advantage of multicore processors, bugs can be divided into two categories: 1) 

general bugs unrelated to parallel processing; and 2) parallel processing bugs. Since debugging 

parallelized applications is inherently more difficult than debugging a serial application, start by 

debugging the application’s serial version to find and fix all bugs unrelated to the parallel 

implementation. Traditional debug techniques should suffice to find these issues; detailing these 

techniques is out of this document’s scope. 

It may be more difficult to create a serial version for applications that will ultimately execute on 

heterogeneous multicore processors. In these cases, a library that emulates the execution in software 

can be used. 
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5.7.2 Use Defensive Coding Practices 

The same well-known coding practices that minimize general bugs also help to minimize parallel 

processing bugs and should be used.li Three specific multicore development recommendations are 1) 

enable logging, 2) parameterize the parallelism, and 3) add synchronization points. Enabling logging 

involves adding source code that tracks the application’s state and associates it with time and task. 

Parameterizing the application’s parallelism involves adding code that allows the easy modification of 

the number of parallel tasks used in the application’s execution. In general, this recommendation helps 

future attempts at scaling the performance of your application as well as the debug benefits mentioned 

here. Synchronization points are detailed later in this chapter. 

5.7.3 Debug Parallel Version While Executing Serially 

Once completing the initial parallel implementation, debug it while using minimal parallelism. This 

step relies upon the ability to easily parameterize the parallelism, as discussed in the previous step. 

The topic of serial consistency is discussed later in this chapter. 

This step may not apply to applications which use threading for latency, such as the case when 

threading a GUI for responsiveness executing on a single core processor. 

For applications that execute on heterogeneous multicore processors, it may not be possible to execute 

serially. Alternatively, limiting the parallel execution as much as possible can be effective. For 

example, limit the parallel execution to one task per type of processor core. 

5.7.4 Debug Parallel Version Using an Increasing Number of Parallel 

Tasks 

After debugging the serial execution of the parallel version, incremental increase the amount of 

parallelism. Again, this step assumes the ability to parameterize the parallelism. Debug a version that 

executes on a dual-core processor, then a quad-core processor, and so on. 

5.8 Code Writing and Debugging Techniques 

This section details several of the specific recommendations discussed in the proceeding section: 

 Serial consistency 

 Logging 

 Synchronization Points 

 Thread Verification 

 Simulation 

 Stress Testing 
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5.8.1 Serial Consistency 

Enforce serial consistency to ease the transition from a serial version to a parallel version. Serial 

consistency is a property of code where the serial and parallel versions of the code are similar enough 

that they can be easily swapped in and out. The following example represents both a serial version and 

parallel version of the image filtering application (Figure 34). The serial and parallel versions of the 

program are respectively enabled through the following compilation commands: 

 gcc –DNUM_THREADS=1 app.c 

 gcc –DNUM_THREADS=2 app.c 

In the parallel version (NUM_THREADS=2), the number of threads used is two, set by the command 

line definition of NUM_THREADS during compilation. The function, FilterImage(), only includes the 

code to divide the data space based upon the total number of threads. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 34. Serial consistency example. 

  

char **image; 

int size_x, size_y; 

 

void *CreateThreads(void *arg) 

{ 

 pthread_t threads[NUM_THREADS]; 

 int i = 0; 

 for (i = 0; i < NUM_THREADS; ++i) { 

  if (pthread_create(&(threads[i]), NULL, FilterImage, 

  (void*)i)){ 

   ErrorMessage("pthread_create failed!\n"); 

  } 

 } 

 for (i = 0; i < NUM_THREADS; ++i) { 

  if (pthread_join(threads[i], NULL)) { 

   ErrorMessage("pthread_join failed!\n"); 

  } 

 } 

 CleanExit(0); 

 return NULL; 

} 

void* FilterImage(void *id) 

{ 

 int cpu_num = (int)id; 

 int start_y, end_y; 

 /* Assume size_y % NUM_THREADS = 0 */ 

 start_y = (size_y / NUM_THREADS) * cpu_num; 

 end_y = (start_y + (size_y / NUM_THREADS)) - 1; 

 /* Filter Image */ 

 

} 
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5.8.2 Logging (Code Instrumentation for Meta Data Send and Receive) 

A good technique for tracking the status and ordering of events in an application is the use of trace 

buffers in your code to create logs during execution time. The practice involves creation of a trace 

buffer which allows recording of an identifier, timestamp, and a message into a log that can be 

retrieved after execution and used to trace application execution in case of a problem. When using 

trace buffers, be careful where access to the trace buffer is placed in the application - synchronization 

controlling access to the trace buffer may mask concurrency bugs. 

 

Figure 35 implements a log of size LOG_SIZE and lists the function, event_record(), which adds a log 

entry. Notice the mutex around the increment of the array increment, id_count. Time is obtained via a 

system time() function, which is assumed to be thread safe. Clock cycle information may be used if 

finer granularity is desired. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Logging example. 

 

5.8.3 Synchronization Points 

Synchronization points are specified locations in your application where a given task waits until other 

tasks have reached another specified location, exemplified in Figure 34. The thread executing 

CreateThreads() uses pthread_join() to wait on the other threads that are executing FilterImage(). 

#define LOG_SIZE 1024 

#define MSG_SIZE 64 

typedef struct log_entry_s { 

 unsigned int task_id; 

 time_t timestamp; 

 char message[MSG_SIZE]; 

} log_entry; 

log_entry event_log[LOG_SIZE]; 

 

int id_count = -1; 

 

int event_record(char *message) { 

 time_t temp_time = time(NULL); 

 pthread_mutex_lock (&mut); 

 id_count++; 

 id_count = id_count % LOG_SIZE; 

 pthread_mutex_unlock (&mut); 

 event_log[id_count].task_id = (unsigned int)pthread_self(); 

 event_log[id_count].timestamp = temp_time; 

 strncpy(event_log[id_count].message, message, MSG_SIZE); 

 event_log[id_count].message[MSG_SIZE-1] = ‘\0’; 

 return 1; 

} 
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Synchronization points and logging can be used throughout your application to help the programmer 

understand the state of an executing application. Beware: use of synchronization points in program 

hotspots should be avoided because of potential performance impacts. 

5.8.4 Dynamic Analysis Techniques Summary 

Dynamic analysis tools use a dynamic analysis of an application as it executes. In the context of 

multithreading and finding data races, for example, the tool watches all memory accesses during 

threaded execution. By comparing the addresses accessed by different threads, and whether or not 

those accesses are protected by some form of synchronization, read-write and write-write conflicts can 

be found. Dynamic analysis will catch obvious errors of accessing the variables visible to multiple 

threads as well as memory locations accessed indirectly through pointers. 

Typical dynamic analysis tools use instrumentation which can be inserted directly into the binary file 

(binary instrumentation) just before the analysis run or inserted at compilation time (source 

instrumentation). Further information on instrumentation and verification technology can be found in 

the paper by Banerjee et al.lii 

5.8.5 Simulation Techniques Summary 

A simulator is a software tool that mimics the final device hardware and can help find potential 

problems at two points during development. First, many embedded projects will need software 

developed in advance of hardware availability and thus use a simulator for the hardware platform. 

Early use of simulators can serve as a platform to test and debug your concurrent applications. Second, 

simulators are easily reconfigured and can be used to perform stress testing. 

5.8.6 Stress Testing 

As previously stated, concurrency bugs are nondeterministic. Therefore, an application that takes 

advantage of multicore processors may execute correctly on a dual-core processor, but then fail on a 

quad-core processor, or vice versa. Stress testing increases the chances of finding concurrency 

problems in your code and involves varying the number of threads or tasks used in executing the 

application. In addition, system parameters such as number of cores or latency of various system 

components can be varied. 

Effective use of stress testing involves varying the above mentioned parameters and seeing if the 

application behaves incorrectly. This can help catch anomalies that may rarely occur on the actual 

hardware due to timing dependencies. 
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CHAPTER 6: PERFORMANCE 

  



 

 Multicore Programming Practices Guide  Page 78 

 

6.1 Performance 

Multicore architectures have important sensitivity to the structure of codes. Parallel execution incurs 

many overheads that limit the expected execution time benefits. In this chapter we describe software 

application tuning practices to avoid or reduce the performance impact of the main bottlenecks. 

However, through the use of performance benchmarks we will discuss the bottlenecks that are 

associated with the implementation of the processor architecture as well as operating system 

dependencies. We will not be addressing parallel I/O, OS level (e.g. dynamic memory allocations, 

process scheduling), and low-level communications (e.g. DMA transfer efficiencies) optimizations 

since these are usually peculiar to each embedded system - there is typically considerable room for 

improvement at these levels. This chapter also does not explicitly address hybrid parallel programming 

that mixes two or more parallel programming models, although these should be considered to optimize 

performance. 

As you will see, performance improvements with the use of a multicore processor depend on the 

software algorithms and their implementations. Ideally, parallel problems may realize speedup factors 

near the number of cores, or possibly even more if the problem is split up to fit within each core's 

cache(s), which avoids the use of the much slower main system memory. However, many applications 

cannot be greatly accelerated unless the application developer spends a large amount of effort to re-

factor the entire application. 

6.2 Amdahl’s Law, Speedup, Efficiency, Scalability 

Performance measurement of parallel systems is stated in terms of speedup, which is the ratio 



SP 
T1

TP  

where 



T1 is the execution time using one core, 



TP is the execution time using P cores, and the goal is 

to obtain a speedup of P. To characterize a parallel program’s behavior, we usually refer to its 

efficiency (



EP ): 



EP 
T1

P TP  

A parallel program makes full use of the hardware when the efficiency is 1. It is said to be scalable 

when the efficiency remains close to 1 as the number of cores increases. Scalability is rarely achieved 

when increasing the number of cores without increasing the amount of work to perform. 

Amdahl’s law states that the sequential part of the execution limits the potential benefit from 

parallelization. The execution time TP using P cores is given by: 
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TP  seqT1  (1 seq) *
T1

P  

where seq (in [0,1]) is a percentage of execution that is inherently sequential. For instance, if seq=0.5 

the potential speedup of a parallel execution is limited to 2. Usually, scalability is achieved by 

increasing the problem size because the ratio seq decreases with the growth of the problem to process. 

6.3 Using Compiler Flags 

Before considering parallelism to achieve higher performance, the sequential execution must first be 

efficient. The following sections will address sequential code tuning, and we’ll start with a look at 

utilizing compiler flags. 

Compilers implement many optimizations that must be activated using compilation flags, with the 

most common and straightforward ones being –O1, -O2, -O3, going from local to more extensive 

optimizations. These flags activate a set of optimizations that are also set or unset by more specific 

flags. The most aggressive optimization mode is usually not set by default since it can greatly increase 

compilation time, as well as debug effort. 

More complex specific flags allow for inter-procedural optimizations, profile-guided optimizations, 

automatic vectorization or parallelization, or to help program analysis (no alias flags, etc…). Some 

flags deal with specific functional areas (floating point, function inlining, etc.). All these flags must be 

tested because their impact on performance may vary significantly from one application to another. 

Here are a few global remarks: 

1. When setting the debugging flag ‘-g’, some compilers limit the extent of optimization 

performed to preserve some debugging capabilities. Alternatively, some compilers may reduce 

debugging information when increasing the optimization level. 

2. Finding the right combination of optimization flags can be burdensome because it’s a manual 

process. 

3. The highest level of optimizations (e.g. -O3) does not always produce the fastest code because 

in this mode, the compiler tends to make tradeoffs between optimizations, sometimes making 

incorrect choices (especially due to the lack of runtime data). 

4. Optimizations may change the program results (e.g. different floating-point rounding). 

5. Compilers must produce correct code. When an optimization is not proven safe, it is discarded. 

After a slight rewriting (e.g. removing pointer aliasing), the compiler may be able to apply an 

optimization. 
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6.4 Serial Optimizations 

Serial optimizations consist of rewriting the application code to help the compiler by highlighting 

instruction level parallelism and data level parallelism for vectorization as well as providing 

information on data structures. The first part of this section is devoted to aliasing information. Then 

we present a large class of restructuring techniques that mainly apply to loops. Finally, we address 

SIMD instructions. 

6.4.1 Restrict Pointers 

Many compiler optimizations are inhibited by spurious data dependencies due to potential memory 

aliasing between pointers that should not be used unnecessarily. When it is not possible to avoid these 

pointers, use restrict pointers (introduced in the ISO/IEC 9899:1999 standard) to declare that a pointer 

is the only one pointing to its memory region. This assists the compiler in its ‘alias analysis’. Figure 36 

provides an example showing that without the restricted pointer indication (‘restrict’ keyword) the 

compiler would have to assume that parameters dest and src can overlap (i.e. are aliased). As a 

consequence, many optimizations involving reordering of reads and writes will not be performed

 

Figure 36. Code sample restricting pointers. 

Here are a few global remarks: 

1. C++ doesn't support restrict yet. Restriction on aliasing can also be indicated using compiler 

flags (e.g. ‘fno-alias’ or ‘fargument-noalias’), but these options should be used with care since 

they may break your application software. 

2. If aliasing exists and restricted pointers indicate otherwise, this may introduce difficulties in 

finding bugs (especially if the activation of debug reduces optimization and hides the bug). 

3. Some compilers generate multiple code variants (one assuming aliasing and another without 

aliasing) in the absence of aliasing knowledge. This may have an impact on code size. 

6.4.2 Loop Transformations 

Loops are typically the hotspots of most applications and many loop transformations have been 

proposed to organize the sequence of computations and memory accesses to better fit the processor 

internal structure. 

/* File: restrict.c */ 

 

void f (int* restrict dest, int * restrict src, int n) { 

 int i; 

 for (i=0;i < n; i++){ 

  dest[i]=src[i]; 

 } 

} 
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Figure 37 shows ‘unroll-and-jam’, a powerful transformation to exhibit instruction level parallelism 

(ILP) as well as decrease the number of memory accesses. The outer loop is unrolled inside the inner 

loop: this exhibits a common sub-expression v[j] and increases the number of independent operations 

inside the loop body. Be aware that loop transformations cannot always be safely applied. For example, 

ensure that you preserve dependencies (see Chapter 3) that constrain execution ordering. 

 

 

Figure 37. Sample code showing the unroll-and-jam loop transformation. 

Here are a few global remarks: 

1. Some transformations can be implemented using compiler-specific pragmas (e.g. #pragma 

unroll(2)). 

2. Hand-checking the validity of loop transformations is necessary but not always trivial. 

3. Performing loop transformations by hand may make the code target specific and thus difficult 

to read and maintain. 

6.4.3 SIMD Instructions, Vectorization 

SIMD instructions, such as SSE and AltiVec, provide a powerful way to improve performance 

because they process in parallel a vector of data compacted into registers. For example, a 128-bit 

register can be seen as a vector of two 64-bit words or a vector of four 32-bit words. 

Methods to exploit such instructions may include writing inline assembly code, using a C intrinsic 

library, or letting the compiler automatic vectorization technology generate the SIMD instructions. 

/* File: unrollandjam.c */ 

 

//original code 

void fori (int dest[100][100], int src[100][100], int v[]){ 

 int i,j; 

 for (i=0;i < 100; i++){ 

  for (j=0;j < 100;j++){ 

   dest[i][j] = src[i][j] * v[j]; 

  } 

 } 

} 

// after unroll-and-jam 

void ftrans (int dest[100][100], int src[100][100], int v[]){ 

 int i,j; 

 for (i=0;i < 100; i = i+2){ 

  for (j=0;j < 100;j++){ 

   int t = v[j]; 

   dest[i+0][j] = src[i+0][j] * t; 

   dest[i+1][j] = src[i+1][j] * t; 

  } 

 } 

} 
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Figure 38 shows example code using the SSE intrinsic library (‘m128d’ are vectors of 2 double 

floating-point data). The SSE instructions are used via the intrinsic functions mm_load_pd, 

mm_mul_pd, mm_add_pd, and mm_store_pd. The SSE version produces two results per iteration 

instead of one. 

 

Figure 38. Example code using the SSE intrinsic library. 

Here are a few global remarks: 

1. On some processors, SIMD memory access instructions have data alignment requirements that 

can be specified using compiler pragmas. 

2. In the simplest cases, the compiler automatically generates vector code that use SIMD 

instructions. 

3. It’s difficult to maintain hand-written assembly code. The use of intrinsics in high-level 

language is preferable. 

4. Saturated arithmetic, predicated operations, and masked operations, when available, can be 

very useful to enhance performance. 

6.5 Adapting Parallel Computation Granularity 

As discussed in Chapter 3, parallel execution always incurs some overhead resulting from functions 

such as task start-up time, inter-task synchronization, data communications, hardware bookkeeping 

(e.g. memory consistency), software overhead (libraries, tools, runtime system, etc.), and task 

termination time. 

/* File: simd.c */ 

 

//original code 

void daxpy( unsigned int N, double alpha, double *X, double *Y ) { 

 int i; 

 for( i = 0 ; i < N ; i++ ) { 

  Y[i] = alpha*Y[i] + X[i]; 

 } 

} 

//SSE code 

void daxpySSE( unsigned int N, double alpha, double *X, double *Y) { 

// m128d is two 64 bit float. 

m128d alphav = _mm_set1_pd(alpha); 

int i; 

for( i = 0 ; i < N ; i+=2 ) { 

  __m128d Yv   = _mm_load_pd(&Y[i]); 

  __m128d Xv   = _mm_load_pd(&X[i]); 

  __m128d mulv  = _mm_mul_pd(alphav, Xv); 

  __m128d computv = _mm_add_pd(mulv, Yv); 

  _mm_store_pd(&Y[i], computv); 

 } 

} 
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As a general rule, small tasks (fine grain) are usually inefficient. In most implementations, there is a 

tradeoff between having enough tasks to keep all cores busy and having enough computation in each 

task to amortize the overhead. For example, Figure 39 shows the computation structure of ‘Divide and 

Conquer’ approaches for algorithms such as sorting, computational geometry, or FFT. The function 

divideAndConquer recursively spawns tasks (parallel_combine) and when reaching a small enough 

basecase, no new tasks are created. The granularity is tuned by fixing the size of the basecase. 

 

Figure 39. Divide and Conquer approach. 

When dealing with sequences of loop nests, many techniques can be used to tune the granularity. 

Conceptually, these techniques are easy to understand, but in practice it is complex to get the 

implementation details correct. 

The following transformations can be used to increase task computation load: 

 Transformations called ‘loop fusion’ (a.k.a. loop merging) is where consecutive loops with 

independent computation are gathered into a unique loop. This transformation decreases the 

loop overhead and allows for better instruction overlap. Although it can potentially increase 

cache misses due to conflicts and cause register spilling, fused loops using the same arrays can 

improve data locality. 

 Loop tiling transformations (a.k.a. loop blocking) divide the iteration space of a loop nest in 

blocks that usually make better use of cache memories. 

 Loop interchange transformations can be used to make the innermost parallel loop the 

outermost one, but should be carefully used in order to adversely affect data locality (see 

Section 6.11 Improving Data Locality). 

The following transformations can be used to increase the number of tasks: 

/* File: granularity.c */ 

 

void divideAndConquer (int *p){ 

 pthread_t t1,t2; 

 if (basecase(p)){ 

   p[3] = basesolve(p); 

 } else { 

  int p1[3],p2[3]; 

  get_part1(p1,p); 

  pthread_create(&t1,NULL,(void *(*)(void *)) divideAndConquer,p1); 

  get_part2(p2,p); 

  pthread_create(&t2,NULL,(void *(*)(void *)) divideAndConquer,p2); 

  pthread_join(t1,NULL); 

  pthread_join(t2,NULL); 

  p[3] = parallel_combine(p1,p2); 

 } 

} 
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 With a loop distribution transformation (a.k.a. loop splitting): The body of a loop is split to 

create numerous loops. This transformation is also used to separate serial computation from the 

parallel ones gathered in a single loop body. 

 Loop coalescing are where nested loops are gathered into a single loop. 

Here are a few global remarks: 

1. Better data locality is usually achieved by using larger tasks. 

2. Larger tasks can result in more load unbalancing. 

3. When there are more threads/tasks than cores, many synchronizations (e.g. barrier) or global 

communication operations have degraded behavior. 

6.6 Improving Load Balancing 

Good load balancing is imperative to achieve scaling. When tasks have variable duration times (for 

example, because the amount of computations is input data dependent), static scheduling may result in 

load unbalance. A first step to balance the load may be to split the work into a number of tasks that is 

significantly larger than the number of cores. This can be followed by choosing a dynamic task 

scheduling strategy (e.g. work stealing scheduling) to allocate the work on the idle cores while the 

parallel computation continues. 

Here are a few global remarks: 

1. Achieving adequate load balancing may conflict with improving data locality, and may require 

a tradeoff. 

2. With OpenMP, dynamic scheduling strategies are available under the “schedule” clause for 

parallel loops. 

3. Dynamic task scheduling strategies usually incur more overhead and are less scalable than 

static scheduling strategies since they require some global synchronization. 

6.7 Removing Synchronization Barriers 

A synchronization barrier causes a thread to wait until the other threads have reached the barrier and 

are used to ensure that variables needed at a given execution point are ready to be used. Over-

synchronizing can negatively impact performance and barriers should be placed to ensure that data 

dependencies are respected and/or where the execution frequency is the lowest. 

Here are a few global remarks: 

1. Removing synchronization barriers can introduce race conditions when done improperly. 
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2. A barrier can be used to replace creating and destroying threads multiple times when dealing 

with a sequence of tasks (i.e. replacing join and create threads). 

3. Barriers are also used to flush memory transactions to ensure that the memory contents are up-

to-date. 

4. Some barriers are implicit in some programming APIs such as OpenMP. 

 

6.8 Avoiding Locks/Semaphores 

Typically, locks are used to prevent multiple threads’ simultaneous access to some shared data or code 

sections (i.e. mutual exclusion). Locks are usually implemented using semaphores (aka mutexes). 

Locks are expensive and should be avoided as much as possible. There are two main strategies when 

using locks: 

1. Fine granularity locking consists of protecting atomic data with a mutex in the low-level access 

functions (e.g. each record of a database). Using this approach, high-level functions are not 

concerned about locking, however, the number of mutexes can be very high thereby increasing 

the risk of deadlocks. 

2. High-level locking is where data is organized in large areas (e.g. a database) protected by a 

single mutex. Although there is less risk of deadlock, the performance penalty can be large 

since accesses to the atomic data of the entire area are serialized. 

An efficient tradeoff can be achieved by organizing a global data structure into buckets and using a 

separate lock for each bucket. With an efficient partitioning, the contention on locks can be 

significantly reduced. Another approach is to make each thread compute on private copies of a value 

and synchronize only to produce the global result. 

Here are a few contexts where locks can be avoided: 

1. Use of locks to implement global operations such as reductions. 

2. Use of locks to mutex on shared data that can be privatized. 

3. Spinning on shared variables to wait for an event may waste memory bandwidth. 

Here are a few global remarks: 

1. Trying locks in a non-blocking way before entering a mutex code section (and switching to a 

different job) can help avoid thread idle time. 

2. Too many locks may be the cause of tricky deadlock situations. 

3. Some architectures provide atomic memory read/write that can be used to replace locks. 
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6.9 Avoiding Atomic Sections 

An atomic section is a set of consecutive statements that can only be run by one thread at a time, and 

they may be used to implement reductions. Atomic sections have similar issues as mutexes. 

6.10 Optimizing Reductions 

Global commutative and associative reductions (such as additions and multiplications) can be 

implemented in an efficient parallel scheme in replacement to the simple use of an atomic section 

(Figure 40). 

 

Figure 40. Parallel reductions. 

/* File: reduction.c */ 

 

// ON ALL CORES/THREADS 

void worker1(int *dp, int src1[], int src2[], int bg, int ed) { 

 int i,j; 

 for (i=bg;i < ed; i++){ 

  int t; 

  t += src1[i] * src2[i]; 

// START ATOMIC SECTION 

  pthread_mutex_lock(dp_mutex); 

  *dp += t; 

  pthread_mutex_unlock(dp_mutex); 

// END ATOMIC SECTION 

 } 

} 

 

//ALTERNATIVE IMPLEMENTATION 

 

// ON ALL CORES/THREADS 

void worker2 (int t[],int src1[], int src2[], int bg, int ed){ 

 int i,j; 

 for (i=bg;i < ed; i++){ 

  t[MYCOREorTHREADNUMBER] += src1[i] * src2[i]; 

 } 

} 

 

// ON THE MAIN CORE/THREAD 

. . . 

  for (i=0; i < NBCORE; i++){ 

   dp = dp + t[i]; 

  } 

. . . 
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Here are a few global remarks: 

1. Most parallel programming APIs provide efficient operations such as reduction and prefix. 

2. Parallel reductions change rounding computations, which may generate non-reproducible 

results depending on the number of processors cores. 

6.11 Improving Data Locality 

This section describes the issues concerning caches and covers both coherent and non-coherent cases. 

Because the types of optimizations presented here may limit the application range or affect the trade-

off of portability, the interface design and the operation strategy must be carefully considered. The 

reader should refer to Section 4.19 Affinity Scheduling, as this is also an important topic related to 

data locality and optimization of cache usage. 

6.11.1 Cache Coherent Multiprocessor Systems 

At a high level, multicore processors can be implemented with a shared memory model and/or a 

distributed memory model. The cache memories in shared memory systems can have copies of main 

memory contents and therefore, a cache coherence protocol must be used to keep every cache's 

behavior consistent, or coherent, as if the processors were directly attached to the main memory. 

6.11.2 Improving Data Distribution and Alignment 

Data distribution can be used to improve data alignment for better resource utilization and 

performance. To reduce communication cost, keep data as close as possible to the associated processor 

core. In other words, the data to be processed should be kept "local" to the processor core. This may 

involve the programmer's effort to implement data redistribution, data restructuring, and data 

prefetching. 

In multicore processors, we can consider data distribution and alignment for both the shared and 

distributed memory models. In either case, the programmer should consider the strategy of data 

distribution in the main memory to reduce extra communication. 

For example, assume an unaligned data structure comprised of 16 bytes. This data structure would 

require two transfers with a shared-memory processor whose coherence unit (cache line) is 16 bytes 

wide. This unaligned data structure would also causes extra transfers in heterogeneous multicore 

systems whose minimal DMA transfer granularity is 16 bytes, since most of these systems require that 

DMA transfers are aligned to a minimum size. 
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As an example, in codec applications, where image frames are processed in rectangular block units, 

transferring each block may involve more transfers than would be needed if the blocks are aligned. 

Sometimes programmers reorganize the entire image frame so that a rectangular block of the image 

can be transferred in a minimal number of transfers. This approach has a trade-off on performance 

because the reorganization requires extra overhead. Heterogeneous multicore systems that use a small 

scratchpad memory can use software techniques to reduce the communication cost. 

Programmers should be aware of prefetching effects when designing for data distribution. Since the 

data is transferred to the processor in units larger than single word blocks, this could result in extra 

words being transferred at the same time. If the requesting processor uses the extra words before the 

words are changed by other processors or replaced by the requesting processor, additional data transfer 

is not needed; this is referred to as the "prefetching effect" (this also applies to single-core systems but 

the effect is more significant in multicore systems). 

6.11.3 Avoiding False Sharing 

In the situation described above, if the extra pre-fetched words are not needed and another processor in 

this cache-coherent, shared memory system must immediately change the words, this extra transfer has 

a negative impact on system performance and energy consumption. This symptom is called "false 

sharing". 

In cache-coherent, shared memory systems, in order to reduce the occurrence of coherence operations 

and to exploit data locality (fetch once, reuse many times), cores share the memory in a coherence unit 

with specific size (typically anywhere from 32 to 256 bytes, depending on the processor and system 

architecture). 

In a cache coherent system, which adopts one of the popular cache coherent protocols such as MSI and 

MESIliii, only one core at a time can write to a specific cache line. The copies of a cache line cached 

by other cores in read-only modes ("Shared" state in MESI protocol) must be invalidated before being 

written, while a cache line can be shared among cores as long as all accesses to it are read. 

False sharing means that coherence operations occur between two or more cores, for data not actually 

shared by the cores. For example, Core0 tries to write to a shared memory location x and Core1 tries to 

read from a shared memory location y, where both x and y addresses happen to be on the same cache 

line (coherence unit). When Core0 performs write operations to location x and Core1 tries to read from 

location y, and if the write operations and read operations are interleaved in time, the system can suffer 

from false sharing. 

False sharing, and its performance-degrading effect, can be illustrated in three steps (Figure 41): 1) the 

cache line A, which contains both words x and y, is read by Core1 and the copy of A becomes read-

only on Core0; 2) the cache line A is invalidated on Core1 when Core0 performs a write operation on 

cache line A; and 3) when the Core1 wants to read word y, a cache miss occurs in the closest level 

cache to Core1, and while the latest copy of cache line A is transferred to Core1, Core0's cache line A 
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is downgraded to read-only mode. If word x and word y had resided in different cache lines, then this 

could have avoided cache misses caused by false sharing. 

 

Figure 41. False sharing situation. 

Since false sharing only occurs when one or more cores tries to write to the same cache line, care must 

be taken when the frequently written data locations reside on the same cache line with other less 

related data. Specifically, avoid collecting synchronization variables in one compact data structure. 

While this may forego readability, it will result in better performance. 

A simple way to resolve false sharing is to pad the cache line so that frequently written data can reside 

on different cache lines. For example, suppose that in ‘struct test { int x; int y; }’ that x is frequently 

written by Core0 (Figure 42). We can pad the structure to avoid false sharing at the cost of extra 

memory space. 

Figure 42. Cache-line padding example. 

Figure 42 demonstrates a conceptual example and the actual system-dependent directives for 

alignment are not shown. Compilers may provide pragmas or library functions for memory alignment, 

such as memalign(), but the expression and behavior are system-dependent. To avoid performance 

degradation and waste of memory space, it is desirable to collect data accessed by a specific core 

(thread) into the same or neighboring cache lines. 

The programmer should consider the effect of automatic prefetching, a feature supported by modern 

processor architectures, whereby neighboring cache lines are prefetched according to the program's 

access pattern. However, false sharing avoidance, while meeting other criteria, is not always an easy 

task. 

Cache line A

word x

Core 0

L1 cache

Core 1

L1 cache

word y

struct test 

{ 

int x; 

unsigned char 

padding[CACHE_LINE_SIZE - 

sizeof(int)]; 

int y; 

}; 
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6.11.4 Cache Blocking (or Data Tiling) Technique 

In cache-coherent systems, the memory can be reorganized to maximize temporal and spatial locality. 

This technique, called ‘cache blocking’, improves program performance by attempting to decrease the 

cache-miss rates by increasing the reuse of data present in the cache. When the data size exceeds the 

cache size, loading new data evicts older data, thereby increasing the cache miss rates. Using cache 

blocking, loop nests are restructured such that the computation proceeds in contiguous chunks chosen 

to fit the cache. 

In an example of cache blocking (Figure 43), the original loop computes the total sum of a 4-Mbyte 

input_data array 100 times, and the loop with cache blocking breaks the 4-Mbyte input_data into 

multiple chunks that fit within the 32KB cache block size. Due to the large size input_data, the cache 

hit rate is significantly improved. 
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Figure 43. Cache blocking example. 

  

Original Loop 

 

#define TOTAL_SIZE 4194304 /* 4 MB */ 

#define LOOP_NUM 100 

int i, j; 

int sum = 0; 

int input_data[TOTAL_SIZE] = { 0, 1, }; 

/* Before cache blocking */ 

for(j = 0; j < LOOP_NUM; j++) 

{ 

   for(i = 0; i < TOTAL_SIZE; i++) 

   { 

       sum += input_data[i]; 

   } 

} 

Loop with Cache Blocking 

#define TOTAL_SIZE 4194304 /* 4 MB */ 

#define LOOP_NUM 100 

#define CACHE_BLOCK_SIZE 32768 /* CACHE_BLOCK_SIZE divides evenly into 

TOTAL_SIZE */ 

#define BLOCK_NUM (TOTAL_DATA_SIZE/CACHE_BLOCK_SIZE) /* 128 */ 

int i, j, k; 

int sum = 0; 

int input_data[TOTAL_SIZE] = { 0, 1, }; 

/* Cache blocking */ 

for(k = 0; k < BLOCK_NUM; k++) 

{ 

   for(j = 0; j < LOOP_NUM; j++) 

   { 

     for(i = k * CACHE_BLOCK_SIZE; i < ( k + 1 ) * CACHE_BLOCK_SIZE; 

i++) 

     {   

     sum += input_data[i]; 

     } 

   } 

} 
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6.11.5 Software Cache Emulation on Scratch-Pad Memories (SPM) 

Most heterogeneous multicore systems do not support cache coherence on the hardware accelerator 

(i.e. DSP), but instead, typically have a scratchpad memory local to the accelerator core. This 

approach can reduce energy consumption and complex cache coherence circuits. The data transfer 

between the scratchpad memory and the system's main memory is typically handled by means such as 

DMA. The core waiting for the completion of the DMA transfer can suffer from degraded 

performance and should use latency hiding techniques such as double buffering (See 6.1 Performance). 

A compiler can also be used to analyze the access pattern and make the appropriate data mapping. 

These techniques are appropriate for regular data access patterns, such as sequential or stride accesses. 

For indirect references or irregular access patterns that cannot be predicted by simple calculation, these 

techniques may fail to reduce the latency. 

Emulating a cache using software (henceforth referred to software cacheliv) is a method to attempt to 

hide these communication latencies involved in irregular access patterns. To maximize spatial locality 

in irregular access patterns, the software cache maintains the already fetched copies of memory for 

reuse. In other words, software can be used to emulate a direct-mapped cache or n-way set associative 

cache which behaves logically similar to a hardware cache. However, unlike hardware caches which 

do not incur a penalty on a cache hit, the software cache must check if the requested cache line is kept 

in local storage (scratchpad memory) even with a cache hit, making it difficult to achieve performance 

comparable to hardware caches. 

For example, assume a software cache invoked as: 

X = SOFTWARE_CACHE_READ(SYSTEM_MEMORY_ADDRESS) 
 

Even when there is no change in SYSTEM_MEMORY_ADDRESS, the cache hit check routine is called 

whenever executing this code fragment. For best performance, when developing an efficient cache-hit 

check mechanism or access-localization technique, treat any subsequent accesses after a cache hit as 

local memory accesses (scratchpad memory accesses). To achieve better performance based on access 

patterns, the cache algorithm should analyze the access pattern and prefetch the cache lines that will be 

used with high probability in the future. 

As an example, consider the processing of a 2-dimensional image in a rectangular block unit. A 

software cache can be designed to exploit 2-dimensional spatial locality so that the cache hit check can 

be performed only once per rectangular block. 

As implemented in software, the cache’s structure (associativity, line size, indexing scheme) and 

replacement algorithms can be flexibly decided at compile- or run-time. Since these parameter types 

are closely related to performance, it is possible to use several software caches with different 

parameter sets within one application. 
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6.11.6 Scratch-Pad Memory (SPM) Mapping Techniques at Compile Time 

Mapping techniques for architectures with SPM are very powerful, but require compile-time 

analyzable code. Most importantly, array data flow analysis (geometrical/polyhedral analysis) is 

applied to identify and explore the application’s data reuse. Combined with task level parallelization, 

this can provide a viable mapping solution for multicore architectures with SPMs for statically 

analyzable applications. Such a solution can avoid false sharing by identifying the exact array 

locations used by each core and making local copies to its SPM. 

6.12 Enhancing Thread Interactions 

Because of insufficient shared resources (e.g. off-chip memory bandwidthlv) and the overhead of data 

synchronization, a parallelized application can perform worse when running on a multicore processor, 

as compared to a single-core processor. Although future multicore processors will have more available 

memory bandwidth, these systems can still suffer performance degradation because of the improper 

distribution of memory bandwidth to the cores. Techniques, generally known as ‘Quality of Service’ 

(QoS), that control the activity of bandwidth-consuming threads, can be considered so that higher 

priority threads can gain access to memory. However, most QoS proposals require hardware support 

and when not available, a programmer should consider using software to control memory access 

behavior. For example, with producer-consumer memory access patterns, a software-based memory 

access controlling mechanism is proposed M. Alvarez, A. Ramirez, A. Azevedo, C.H. Meenderinck, 

B.H.H. Juurlink, M. Valerolvi. This technique inspects the shared queue between a producer and 

consumers and limits the number of active cores for the consumer task in order to allocate more 

bandwidth to the producer which is a higher-priority task in terms of memory access. 

If the shared queue length is too short, the producer may lack the memory bandwidth and the 

mechanism will reduce the number of cores for the consumer task. On the other hand, if the shared 

queue length is too long, the mechanism increases the number of cores for the consumer task to 

accelerate the consumer-side processing. Figure 44 shows the effect of applying a shared queue on a 

parallel H.264 decode running on a quad-core processor (the solid line represents the enhanced 

speedup delivered by this technique). 
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Figure 44. Performance comparison utilizing queue-based memory access. 

 

Many applications benefit from using multi-threading; but when the performance of an application is 

limited by the contention for the shared data or bus bandwidth, additional threads do not improve 

performance. Instead, these threads only waste on-chip power. Thus, for power-efficient and high-

performance execution, it is important to choose the right number (and distribution) of threads. 
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6.13 Reducing Communication Overhead 

We have already discussed how communications (i.e. message passing) can severely slow down 

parallel programs, and should be avoided when possible, even at the cost of extra computing. 

Communications time, Tcom, based on message passing can usually be expressed as: 



Tcom (n)     n  

where n is the size of the message,  the startup time due to the latency, and  the time for sending one 

data unit limited by the available bandwidth. Because of the non-trivial, start-up time, it is usually 

better to gather many small messages into larger ones when possible to increase the effective 

communications bandwidth. 

Here are a few general remarks on communication: 

1. Sending non-contiguous data is usually less efficient than sending contiguous data. 

2. Do not use messages that are too large. Some APIs (e.g. MPI implementation) may switch 

protocols when dealing with very large messages. 

3. In some cases, the layout of processes/threads on cores may affect performance due to the 

communication network latency and the routing strategy. 

6.14 Overlapping Communication and Computation 

Using asynchronous communication primitives or double buffering techniques to overlap 

communication and computation can increase performance (up to 2x). Synchronous communications 

(also referred to as blocking) make the sender wait until the communication has completed. On the 

other hand, asynchronous communication (non-blocking) primitives do not require the sender and 

receiver to “rendezvous”. The data transfer starts as soon as the sender orders it, which can continue to 

work while the communication is taking place. This communication mode achieves interleaving of 

computation and communication but is expensive in terms of memory space because the data sent 

must potentially be stored on the receiver or sender side before being used. 

Here are a few general remarks on message passing: 

1. Message-passing techniques on shared memory systems are not always efficient compared 

with direct memory-to-memory transfers; this is due to the extra memory copies required to 

implement the sending and receiving operations. State-of-the-art implementations avoid 

memory copies for large messages by using zero-copy protocols. 

2. When the receive operation is ready before the corresponding post, it enables the message 

passing API (e.g. MCAPI) to store received data directly in the destination, thus saving the cost 

of buffering the data. 
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Double buffering uses two memory buffers to mask communication latency. The computation is 

performed on one buffer while the other is filled by asynchronous communication with the next data. 

The buffers are swapped at each step. 

6.15 Collective Operations 

Point-to-point communication involves two tasks, a sender and a receiver. When dealing with global 

communication schemes, a point-to-point communication implementation may be very inefficient. 

Most communication APIs propose collective operations that involve a group of tasks (Figure 45). 

Optimizing communications may consist of using common collective operations such as scan, 

reductions, broadcast, scatter, or gather. Many collective operations have at least log2(P) steps (P is 

the number of cores), and as a consequence, they are expensive operations that should be avoided. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45. Example code broadcasting data with MPI. 

  

/* File: collectiveOperations.c */ 

//NAÏVE BROADCASTING OF DATA WITH POINT TO POINT MESSAGE 

… 

if (me == sender){ 

// start sending data to every other tasks 

 for (i=0;i<nbtask;i++){ 

 if (i != me){ 

   send(data); 

 } 

 } 

} else { 

// receive data from sender 

 for (i=0;i<nbtask;i++){ 

 if (i != sender){ 

   receive(data); 

 } 

 } 

} 

 

#include "mpi.h" 

//BROADCASTING DATA WITH MPI 

… 

MPI_Bcast (&data, 1, MPI_INT, sender, MPI_COMM_WORLD); 
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6.16 Using Parallel Libraries 

This section provides a list of parallel libraries which can help reduce programmer development time, 

promote code portability and reuse, and improve code performance. 

 Native thread libraries 

o Microsoft Win32 and COM Threads 

o POSIX threads 

o Various UNIX, Linux flavors, including Apple MacOS- Wind River VxWorks API, 

Enea OSE API 

 Explicit control parallel APIs 

o MPI 

o MCAPI, MTAPI, TIPC, LINX 

o Apple Grand Central fit 

 Managed runtime systems 

o Microsoft .NET Task Parallel Library 

o Java Concurrency – java.lang.Thread 

o Python thread library 

 Libraries already threaded and/or thread-safe 

o Intel Math Kernel Library 

o Intel Integrated Performance Primitives 

 Threading abstractions 

o Intel Threading Building Blocks 

o OpenMP 

o Microsoft Parallel Patterns Library & Concurrency Runtime 

o Boost thread library 

o Embedded Multicore Building Blocks (EMB2) 

 Esoteric 

o Haskell, Erlang, Linda, F#, Cg, HLSL, RapidMind 

o OZ/Mozart 

o CodePlay's C++ compilers 

o Scala 

 Parallel Linear Algebra Libraries 

o ATLAS, BLACS, PBLAS, LAPACK, ScaLAPACK 

6.17 Multicore Performance Analysis 

At the high level, there are really two types of multicore performance analysis – homogeneous and 

heterogeneous. For the latter, you can synthetically analyze each of the individual compute elements 

separately. But to get the more realistic behavior, you would have to utilize more real-world applications 
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that would allow the heterogeneous compute elements to work cooperatively in parallel. For the former 

approach, you want to use benchmarks that can show scalability by ramping up the core utilization from 

single core to x cores (where x is the maximum number of cores in the processor). The industry 

organization, EEMBC, has produced several suites of standardized benchmarks to support this analysis 

(these are referred to as MultiBench, CoreMark-Pro, AutoBench 2.0, and FPMark), but they are 

functionally similar except for the specific code kernels that they contain (for simplicity, we’ll just 

reference the MultiBench). This section will focus on the overall functionality of these benchmarks, 

supported by a series of results obtained. 

The key element of MultiBench is the Multi-Instance Test Harness (MITH) that provides both a 

framework for coordinating scalability analysis, as well as an abstraction layer to facilitate porting to 

different platforms. Using the code kernels (such as angle-to-time computation, finite impulse response 

filtering, IP packet checking, image rotation, and video encoding), MITH provides a method to analyze 

compute scalability through a platform framework that can link together these individual kernels into 

workloads with varying degrees of complexity.  

MITH supports two types of parallelism: worker and context. Worker parallelism is analogous to data 

decomposition. In MITH, kernels are referred to as work items. Parallel elements in a work item are 

referred to as workers. For example, the image rotation kernel is parallelized by data decomposition: 

splitting up the scan-lines across a specified number of workers. Context level parallelism allows the 

user to set the number of workload instances to run concurrently. For example, a context of 8 would 

cause MITH to launch 8 concurrent instances of the same workload, which may or may not be the 

optimal set up for an 8-core processor. Contexts are synonymous with task-level parallelism. If one 

context is used, the kernels inside the workload execute serially on one logical core. If the user chooses 

to run more than one context, the kernels will execute in parallel across the logical cores assigned by the 

O/S schedulerlvii. However, even if the contexts execute serially, the workers inside the benchmark may 

execute in parallel. 

The two types of parallelism may also be combined. For example, on a four-core machine, it is possible 

to launch two image rotation kernel contexts, and then instruct MITH to use two workers per kernel. The 

following diagrams illustrate the relationship between contexts and workers on a four-core machine. 

(NOTE: The XCMD= statements above the diagrams refer to the corresponding Makefile configuration 

options for the benchmark run.) In the diagram, each workload is comprised of three kernels (or work 

items), K1, K2 and K3, and each Kernel may have one or more workers, [W1 … Wn]. 
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Figure 46. The relationship between contexts and workers on a four-core machine. 
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All MITH-based benchmark suites utilize two performance metrics for comparing configurations and 

platforms: 

Throughput - defined in iterations per second, each platform executes a workload a specific number of 

times per second. The user adjusts the number of contexts to find the optimal throughput for each 

workload for the given hardware. 

Performance Scaling - this unit-less value defines how well performance scales with more computing 

resources assigned to the workloads. This is done by comparing a workload running with a single 

worker to that same workload with multiple workers. The user adjusts the number of workers to find the 

optimal scaling for each workload. 

Using MultiBench as an example, it consists of three separate marks: MultiMark, ParallelMark, and 

MixMark. Each of these marks are comprised of approximately two dozen workloads. 

MultiMark 

MultiMark consolidates the best throughput using workloads with only one work item, each of which 

uses only one worker. The calculated throughput factor is 10 times the geometric mean of the iterations 

per second achieved with the best configuration for each workload (Note: 10 is a multiplication factor). 

Each work item uses only one worker (-w1), and multiple copies of the task can be performed in parallel 

to take advantage of concurrent hardware resources (-cN). All workloads in this mark use a 4MByte 

datasetlviii. 

ParallelMark 

This mark consolidates the best throughput of workloads with only one work item that each use multiple 

workers. The calculated throughput factor is 10 times the geometric mean of the iterations per second 

achieved with the best configuration for each workload (Note: 10 is a multiplication factor). Only one 

work item may be executed at a time, and multiple workers may be used to take advantage of concurrent 

hardware resources (-wN). All workloads in this mark use a 4MB dataset. 

MixMark 

MixMark is perhaps the most telling mark, it consolidates the best throughput of workloads with 

multiple different work items. These workloads are closest to workloads run on actual systems. The 

calculated throughput factor is 10 times the geometric mean of the iterations per second achieved with 

the best configuration for each workload (Note: 10 is a multiplication factor). All workloads in this mark 

use a 4MB dataset. 

Sample scores on a simulated platform with 16 cores (Figure 47) show some interesting information 

even without diving into the details of specific workloads. For example, consider the fact that the 

MultiMark Scaling Factor is 8.9 rather than a number closer to 16, which one might hope for with 16 
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cores. This factor strongly hints that the system can use only about half of the computing resources 

available to it on any particular problem.  

  

Throughput 

Factor 

Scale 

Factor 

MultiMark 10.9 8.9 

ParallelMark 10.5 4.7 

MixMark 4.5 8.8 

Figure 47. Sample scores on a simulated 16-core platform. 

This limitation is likely related to memory bottlenecks, as single-worker workloads have very little 

synchronization and thus are less dependent on the synchronization efficiency of the platform and 

operating system. A more detailed examination of the individual results may be needed to yield more 

answers and highlight the trends better than a single-number representation can. 

Figure 48 compares the results from two dual-core platforms. Note the significant difference in the 

Performance Factors between these two platforms. While both platforms use Linux and GCC and both 

have the same core frequency, they are based on different processor architectures with different memory 

hierarchies. Platform #1 has a shared L2 cache while Platform #2 has separate L2 caches. 

 

 Platform #1 Platform #2 

 

Performance Factor Scale Factor Performance Factor Scale Factor 

MultiMark 33.3 1.9 24.7 1.8 

ParallelMark 24.8 1.9 13.8 1.7 

MixMark 11.8 1.7 7.2 1.5 

Figure 48. Sample scores from two dual-core platforms running at 2 GHz 

Basic analysis of the results show that platform #1 is 30% faster on MultiMark and 80% faster on 

ParallelMark. Insights into why the performance is so different don’t necessarily require sophisticated 

performance analysis tools. Often, simply looking deeper into the specific scores of different workloads 

and correlating those with architectural differences can be enough to figure out where the differences 

come from. For example, synchronization overhead and cache coherency traffic both result in the 

significantly lower ParallelMark for Platform #2. 
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Additional Throughput Results With Scaling 

The combined effect of using all these workloads provides a comprehensive view of multicore processor 

behavior. For this purpose, the following will demonstrate the combined throughput using the 

AutoBench 2.0. The chart below provides some of the basic parameters of two processors, neither of 

which are automotive processors by any stretch of the imagination, but they are interesting to analyze 

because of the relatively high number of cores). 

 

 NXP QorIQ T2040 Intel Xeon CPU E5-2676 v3 

Operating Frequency 1800 MHz 2400 MHz 

Number of cores 4 (8 virtual) 12 (24 virtual) 

L1 (kbytes) 32/32 32/32 

L2 1Mbyte 12x256kbytes 

 

The first set of results (Figure 49) shows the number of iterations/second for the overall AutoBench 2.0 

(taking the geometric mean of all workloads in this suite).  

Where in Cx-4y, X = number of contexts launched (1, 2, 4, or 8); controls core utilization; Y = size of 

dataset per context (4k or 4M). The ‘P’ suffix indicates the perfect scaling result from a single core. The 

goal here is not to compare these two processors, but to demonstrate how much different architectures 

can scale. In Figure 50 with the 4Mbyte data sizes, the overall performance is significantly reduced as 

expected, as is the overall scaling as the number of contexts launched reaches 4 or greater. 
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Figure 49. Scaling with 4kbyte data sizes. 

 

 

Figure 50. Scaling with 4Mbyte data sizes. 
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CHAPTER 7: FUNDAMENTAL DEFINITIONS 
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7.1 Fundamental Definitions Introduction 

The diverse communities involved in multicore programming present a challenge when 

communicating guidelines and practices, as each community generally has its own set of vocabulary 

and definitions. Unfortunately, most communities use the same vocabulary but with few overlaps in 

definitions. To avoid unnecessary confusion, this section presents the most commonly reused terms 

and their definitions. All terms are presented alphabetically in this section, which also presents 

additional terms that may be unfamiliar but are less likely to suffer from multiple definitions. 

7.2 Fundamental Multicore Definitions (Hardware) 

These definitions refer only to the static hardware that makes up a system and do not imply anything 

about the software or runtime configuration of the system. 

Accelerator: integrated circuit block implementing some specific functionality. Generally, an 

accelerator is designed to run faster than a software implementation of the same functionality run on a 

processor core. Accelerators may be programmable or configurable but do not implement a general 

purpose ISA. 

Asymmetric Homogeneous Multi-*: homogeneous multi-* with more than one micro-architecture 

implemented in different processor cores that use the same ISA. 

Coarse-grain Multi-threading (CMT): processor core with more than one context that share 

resources but only one context can execute code at a time. Execution of the multiple contexts is time 

sliced by cycle, memory access, or some other mechanism. An example of a CMT processor is the Sun 

UltraSPARC T2 (“Niagara 2”) processor. The C in CMT may also stand for Cooperative or Chip 

without change in definition. 

Context: program-counter and set of registers within a processor core capable of executing a program. 

Contexts are frequently referred to as threads or strands in hardware documentation and can be thought 

of as a “logical” processor. Contexts may be defined to only support some levels in the privilege 

hierarchy (user-level to kernel-level to hypervisor-level). 

Heterogeneous Multi-*: multi-* implementing more than one ISA. 

Homogeneous Multi-*: multi-* where all processor cores implement the same ISA. This does not 

imply that the software is AMP, SMP, or a combination thereof, only that that hardware is 

homogeneous. 

Many-Core Processor: multicore processor with a large number of cores (typically greater than 16). 

Multi-*: multicore processor, multicore system, or multi-processor system. Multi-* systems are often 

referred to as Parallel Systems and their use as Parallel Computing. 
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Multicore Processor: computer chip comprised of two or more processor cores. Also referred to in 

hardware literature as a Chip Multi-Processor (CMP). 

Multicore System: computer with one or more multicore processors. 

Multi-Processor System: computer with more than one processor core available to the end user. 

N-way System or N-core System: computer with N contexts consisting of either more than one 

processor or one processor with more than one context or core. 

NxM-way System or NxM-core System: computer with N processors and M contexts or cores per 

processor. The next logical step of an NxMxL-way system with N processors and M cores per 

processor and L contexts per core is not used. 

Processor (CPU): one or more processor cores implemented on one or more chips, in a single 

package from the end user perspective. 

Processor Core: integrated circuit block implementing an instruction set (ISA), producing a unit that 

is user-programmable. 

Simultaneous Multi-threading (SMT): processor core with more than one context that share 

resources within the processor core where multiple contexts can execute code at the same time. A 

single-core SMT processor and a multicore processor differ in that the SMT contexts share resources 

within the processor core while the multicore contexts do not. Either may share resources outside of 

the processor core. An example of a SMT processor is the Intel Pentium with Hyperthreading. An 

example of a Multicore SMT processor, meaning a processor where there are multiple processor cores 

each of which is individually SMT, are the Intel Core i7 based processors. 

Symmetric Homogeneous Multi-*: homogeneous multi-* where all the processor cores have the 

same micro-architecture (and the same ISA). 

System on a Chip (SoC): single chip containing at least one processor and at least one non-processor 

device of relevance to the system design, such as computation accelerators, memory controllers, timers, 

or similar. In general, SoC tends to refer to highly integrated chips that can indeed work as a complete 

or almost complete system in their own right (adding external memory should be sufficient). 

7.3 Fundamental Multicore Definitions (Configuration) 

These definitions refer only to the dynamic configuration of a system and do not necessarily imply 

anything about the hardware making up the system or about software running on the system. 

Local Memory: physical storage that is only accessible from a subset of a system. An example is the 

memory associated with each SPE in the Cell BE processor from Sony/Toshiba/IBM. It is generally 
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necessary to state what portion of the system the memory is local to as memory may be local to a 

processor core, a processor, an SoC, an accelerator, or a board. 

Shared Memory: physical storage that is accessible from multiple parts of a system. As with local 

memory, it is generally necessary to state what system portions share the memory. 

7.4 Fundamental Multicore Definitions (Software) 

These definitions refer only to the software that runs on a system and may not imply anything about 

the hardware or runtime configuration of the system. 

Application: program or programs that combine to compute a value or provide a service. 

Asymmetric Multiprocessing (AMP): MP or MP and MT application running on a heterogeneous 

multi-* or a homogeneous multi-* where not all processor cores have a similar view of the system or 

share the same main memory. 

Concurrent Tasks: two or more tasks operating at the same time. No relation among the tasks other 

than that they execute at the same time is implied. 

Multi-threaded (MT) Application: application with at least one process containing more than one 

thread. 

Multiprocessing (MP) Application: application consisting of more than one process, each with its 

own mapping from virtual to physical addresses. The processes may use an operating system to 

dynamically share one or more contexts or may be statically mapped to separate contexts. 

Parallel Tasks: concurrent tasks from the same application. 

Process: program running on one or more contexts with a specific mapping between virtual and 

physical addresses. Conceptually, a process contains an instruction pointer, register values, a stack, 

and a region of reserved memory that stays active throughout the life of a process. 

Program: compiled code that can run on a processor. 

Symmetric Multiprocessing (SMP): MP or MT application running on a homogeneous multi-* 

where all processor cores have a similar view of the system and share the same main memory. 

Task: unit of work with in a process. Depending on coding style, a task may be performed by a 

process, a thread, or the use of an accelerator. 

Thread: part of a process running on exactly one context. 
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APPENDIX A: MPP ARCHITECTURE OPTIONS 

The appendices provide additional summary information, focusing more on open source or non-

commercial solutions. 

Assumptions: 

 An open standard and/or implementation is available. 

 Implementations are available for more than one platform or operating system. 

A.1 Homogeneous Multicore Processor with Shared Memory 

 Widely used architecture, with support for a number of APIs. 

 Uses same processor cores with the same instruction sets and same data structures; memory is 

used for inter-process communication. 

 Shared memory is typically accessed through a bus, which generally uses a locking mechanism 

to control simultaneous access to a memory location by multiple cores. 

 Shared memory facilitates inter-core communication with minimal overhead, and allows 

passing data by reference. 

 Shared memory may become a bottleneck as the number of cores simultaneously accessing the 

shared memory increases. This bottleneck makes this memory architecture less scalable, 

compared to non-shared memory architectures. 

 Thread scheduling is easier on simultaneous multithreaded homogeneous core platforms with 

shared memory. 

 Shared memory systems are suited for array-based multithreaded applications which typically 

share data heavily, which generally makes thread scheduling easier and efficient on nearby 

CPUs with common caches. 

 Homogeneous Multicores are more suited for dynamic task mapping and data parallelism. 

 Shared Memory Parallel nodes have several well-established parallel programming models, 

such as Posix Threads (Pthreads) and OpenMP. 

 Until recently, this model was not as common across embedded devices. 
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A.2 Heterogeneous multicore processor with a mix of shared 

and non-shared memory 

 Heterogeneous architectures with a mixed memory model have until recently, been common in 

embedded systems. 

 Shared memory is used in addition to message exchange by cores for synchronization. 

 These architectures may require a higher learning curve, since programming on such systems 

may be platform specific. 

 In general, one processor is primarily used to handle serial and administrative tasks, the other 

cores are generally of the same type, with a path to the serial processor, and their own memory 

network. These systems have historically evolved from multimedia computing, with each 

having its own programming environment. 

A.3 Homogeneous Multicore Processor with Non-shared Memory 

 This architecture is well suited for data parallel applications due to the relative independence of 

threads which generally share only a small amount of data at certain communication points. 

 This model is common in clusters for high performance computing. 

A.4 Heterogeneous Multicore Processor with Non-shared 

Memory 

 Until recently, this architecture has been more common in embedded systems. 

 These are generally specialized application-specific processors, with each processor having a 

different instruction set and data structures. 

 Static task mapping is generally used on these systems. 

 Message passing is used between the cores. 

A.5 Heterogeneous Multicore Processor with Shared Memory 

 The choice and use of this architecture varies between different industry segments and target 

applications. 

 Heterogeneity of cores may add the complexity of having different instruction sets and data 

structures. 
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APPENDIX B: PROGRAMMING API OPTIONS 

Assumptions: 

 An open standard and/or implementation is available. 

 Implementations are available for more than one platform or operating system. 

B.1 Shared Memory, Threads-based Programming 

B.1.1 Pthreads (POSIX Threads) 

 A standard for threads which defines an API for creating, manipulating, and managing threads, 

and for synchronizing between threads using mutexes and signals. 

 Defined as a set of C language programming types and procedure calls. It is implemented with 

a pthread.h header/include file and a thread library. Special compiler support is not required. 

 Most commonly used on Unix-like POSIX systems such as Linux and Solaris. A subset of 

Pthreads APIs is also available for Microsoft Windows (pthreads-w32). 

B.1.2 GNU Pth (GNU Portable Threads) 

 A POSIX/ANSI-C based library for Unix platforms. 

 It provides non-preemptive, priority-based scheduling for multithreading inside event-driven 

applications. All threads are run in server application address space. Each thread has its own 

program counter, run-time stack, signal mask, and errno (error number) variable. It also 

provides optional Pthreads API. 

 Threads are managed by a priority and event based non-preemptive scheduler. It uses an M:1 

mapping to kernel space threads. Scheduling is done by the GNU Pth library and the kernel is 

not aware of the M threads in user space. This precludes utilization of SMP, as kernel 

dispatching would be necessary. 

 GNU Pth is not very widely used. 
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B.1.3 OpenMP (Open Multiprocessing) 

 An API which supports multi-platform, shared memory, multiprocessing programming in C, 

C++, and Fortran on multiple architectures. 

 Consists of a set of compiler directives, library routines, and run time environment variables. 

 Uses fork-join parallelism, whereby master thread spawns a team of threads as needed. Uses 

synchronization to impose order and protect shared data access. 

 Global variables are shared among threads. Stack variables in functions/subprograms called 

from parallel regions, and automatic variables in a statement block are private. 

 Use of OpenMP requires an OpenMP compatible compiler and thread-safe library routines. 

 Using OpenMP requires the use of an OpenMP aware debugger which can access information 

related to OpenMP constructs and types. 

B.1.4 Threading Building Blocks (TBB) 

 Also known as Intel Threading Building Blocks 

 A portable C++ template library, with higher level, task-based parallelism which abstracts 

platform details and threading mechanisms for performance and scalability. 

 Uses templates, relying on compile-time polymorphism. 

 Implements task-stealing to balance parallel workloads across processing cores. 

 Consists of data structures and algorithms for accessing multiple processors by treating 

operations as tasks using dynamic allocation to cores with the use of a run-time engine. 

B.1.5 Protothreads (PT) 

 Extremely lightweight, stackless threads designed for memory-constrained systems. Provides 

linear code execution for event-driven systems implemented in C. 

 Can be used with or without an underlying OS for blocking event handlers. Provides sequential 

control flow without complex state machines or full multi-threading 

 There is no thread-local data in Protothreads and scheduling is done manually. Threads are 

scheduled by calling the thread function with appropriate thread state. 

 

  

B.1.5 Embedded Multicore Building Blocks (EMB²) 

 Open source C/C++ library for implementing compute-intensive applications 

 Designed for embedded systems (key requirements: predictable memory consumption, support 

for timing-critical applications) 

http://en.wikipedia.org/wiki/Multiprocessing
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 Based on the Multicore Task Management API (MTAPI) 

 Provides scheduler for fine-grained tasks, generic parallel algorithms, templates for stream 

processing, and concurrent containers 

Supports heterogeneous systems consisting of different kinds of compute units (e.g., CPU, GPU, 

DSP, FPGA). 

B.2 Distributed Memory, Message-Passing Programming 

B.2.1 Multicore Communications API (MCAPI) 

 A message-passing standardized API for communication and synchronization between closely 

distributed cores and/or processors in closely distributed embedded systems. Target systems 

will span multiple dimensions of heterogeneity. 

B.2.2 Message Passing Interface (MPI) 

 A widely available library specification for message-passing, designed for high performance 

on massively parallel machines and workstation clusters. Supports point-to-point and collective 

communication, and provides a message-passing API, with protocol/semantic specifications of 

feature functionality in an implementation. 

 Provides essential virtual topology, synchronization, and inter-process communication in a 

language-independent manner, with language-specific bindings, and some language-specific 

features. 

 Running the same program on each node requires explicit control logic. 

B.2.3 Web 2.0 

 Web 2.0 infrastructure includes server software, content syndication, messaging protocols, 

standards-oriented browsers with plugins /extensions and various client applications. 

 Allows users to build on Web 1.0 iterative facilities, to provide “network as platform”, 

enabling software applications’ execution through a browser. 
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B.3 Platform-specific Programming 

B.3.1 Open Computing Language (OpenCL) 

 C-based framework for programs executing on heterogeneous platforms. Includes a language 

for writing kernels and APIs for defining/controlling a heterogeneous platform. It defines 

hardware and numerical precision requirements. 

 Uses task-based and data-based parallelism and implements a relaxed consistency, shared 

memory model. It provides distinct address spaces which can be collapsed. 

 The standard is expected to continue to mature over time. 
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APPENDIX C: PARALLEL PROGRAMMING 

DEVELOPMENT LIFECYCLE 

C. 1 Introduction to Parallel Tool Categories 

A number of tools can be used to assist programmers in migrating existing sequential applications to 

multicore platforms. Figure 51 provides a high level view of the workflow between the various 

categories of toolslix. Performance bottlenecks which impact both serial and parallel applications 

should be removed prior to parallelizing an application. Appendix B contains additional information 

about threading APIs. A brief introduction to the tool categories identified in Figure 51 is provided 

below. 
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Figure 51. Workflow between the various tool categories. 

 

C.1.1 Compilers 

A number of compilers are available for compiling applications, depending upon the choice of the 

threading API. As indicated in Figure 51, the compiler may modify code for generating trace 

information, using either source-to-source, static binary, or dynamic instrumentation. Source-to-source 

instrumentation modifies source code prior to pre-processing and compilation. Static binary 

instrumentation modifies compiled binary code prior to execution. 

C.1.2 Static Code Analyzers 

Static code analyzers, used to detect issues which may be missed during functional testing, analyze 

source code without executing the application. The analyzers model the software applications using 

the source code and exhaustively explore all execution paths. Typical errors detected include illegal 

number or type of arguments, non-terminating loops, inaccessible code, un-initialized variables and 

pointers, out-of-bound array indices, and illegal access to a variable or structure. Integration of static 
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code analyzers in the build process is recommended to help identify issues early in the development 

process. 

C.1.3 Debuggers 

Complexities resulting from non-deterministic thread scheduling and pre-emption, and dependencies 

between control flow and data flow, can make debugging multithreaded applications more 

complicated. In addition, issues caused by thread interactions, such as deadlocks and race conditions, 

may also be masked by the use of debuggers. 

Debuggers for concurrent systems may use a number of approaches, including traditional debugging 

and event-based debugging. In traditional debugging (or break-point debugging), one sequential 

debugger is used per parallel process, which limits the information that can be made available by these 

debuggers. Event-based (or monitoring debuggers) provide better replay functionality for multi-

threaded applications, but may have more overhead. The use of a given threading API may impact the 

choice of debuggers. 

C.1.4 Dynamic Binary Instrumentation 

Dynamic binary instrumentation (DBI) is used to gain insight in the runtime behavior of a binary 

application. Instrumentation code is injected which executes as part of the application instruction 

stream. DBI only explores executed code paths. Two common approaches are light-weight DBI and 

heavy-weight DBI. Architecture specific instruction stream and state are used in light-weight DBIs, 

whereas, an abstraction of instruction stream and state is used by heavy-weight DBIs. Compared to 

light-weight DBIs, heavy-weight DBIs are more portable across architectures. 

C.1.5 Dynamic Program Analysis 

Dynamic program analyzers check program properties at runtime, which helps identify problem 

sources much faster than extensive stress testing. Dynamic analysis may be done using either hardware 

or a virtual processor. These tools are generally easy to automate and have a low false positive rate. 

For dynamic analysis to be effective, selected test input should be used to exercise good code coverage. 

C.1.6 Active Testing 

Active testing uses both static and dynamic code analyzers to identify concurrency related issues (e.g. 

atomicity violations, data races, and deadlocks). The output from static and dynamic code analyzers is 

provided as input to the scheduler to minimize false positives from concurrency related issues 

identified during analysis. 
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C.1.7 Profiling and Performance Analysis 

Profilers are used to facilitate efficient utilization of system resources and to optimize program 

decomposition by inspecting the behavior of running programs, and to help identify issues which may 

impact performance and execution. Either active or passive profiling approaches can be used. In active 

profiling, execution behavior may be recorded using callbacks to the trace collection engine. Passive 

profiling uses external entities, such as a probe or a modified runtime environment, to inspect control 

flow and execution state. In general, modification of the measured system is not required for passive 

profiling. 

Profilers can provide behavioral data for the executed control paths. Code coverage may be improved 

by using multiple application runs with carefully selected input data and artificial fault injection. 

When selecting a profiler, the programmer must understand if the profiler requires specific hardware 

support, whether the profiler does system-wide profiling, or if the focus is only on user applications. In 

addition, the profilers may be designed to analyze utilization of select system resources, such as thread 

profiling, call stack sampling, memory profiling, cache profiling, and heap profiling. 

C.1.8 System-wide Performance Data Collection 

In order to best utilize system resources, programmers must be able to access system-wide resource 

usage data and relate this information to application performance. Standardized APIs can help 

facilitate access to low level system data by performance analyzers and profilers. 
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Initialize MCAPI with a call to mcapi_initialize()

Create Local endpoints:

Local_send

Local_receive

Local_ResourceMonitor

With mcapi_create_endpoint()

Open endpoint for receive packet operation with

mcapi_open_pktchan_recv_i()

Wait for Receive endpiont to be opened with

mcapi_wait()

Get remote endpoint information with

mcapi_get_endpoint()

Connect up the remote endpoint with the local 

endpint to establish packet channel with

mcapi_connect_pktchan_i()

Wait for connection to be established with

mcapi_wait()

Open up a packet channel for the send side with

mcapi_open_pktchan_send_i()

Wait for tx side to open up with

mcapi_wait()

Get the resource monitor endpint

mcapi_get_endpoint()

Initialization 

Sequence

Receive message from foreign node with

mcapi_pktchan_recv()

Free the received buffer with

mcapi_pktchan_free()

Send message to foreign node with

mcapi_pktchan_send()

 Message Process

Process received 

message

Create a response 

message

Complete?

Cleanup mcapi with

mcapi_finalize()

No

Yes

Proceed to 

Message 

Process
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/*************** 

* Include Files 

****************/ 

… 

/* IPC */ 

#include   "mcapi/inc/mcapi.h"       

 

/************** 

IPC connection 

***************/ 

 

/* MCAPI definitions */ 

 

#define  LOCAL_NODEID  1 

#define  REMOTE_NODEID  0 

 

static const struct  

  

 

[**UNRESOLVED****UNRESOLVED****UNRESOLVED****UNRESOLVED**]ports[2] = { 

[**UNRESOLVED**],[**UNRESOLVED**]}; 

 

mcapi_pktchan_recv_hndl_t send_handle; 

mcapi_pktchan_recv_hndl_t recv_handle; 

mcapi_endpoint_t   local_rm_endpoint; 

mcapi_endpoint_t   remote_rm_endpoint; 

 

/*********************************************************************** 

* 

*   FUNCTION 

* 

*       Initialization 

* 

*   DESCRIPTION 

* 

*       This task initializes the IPC. 

* 

***********************************************************************/ 

void  Initialization() 

 

  

 {mcapi_version_tmcapi_version;mcapi_status_tmcapi_status;mcapi_endpoint_tloca

l_send_endpoint;mcapi_endpoint_tlocal_recv_endpoint;mcapi_endpoint_tremote_recv_end

point;mcapi_request_trequest;size_tsize;/* Initialize MCAPI 

*/mcapi_initialize(LOCAL_NODEID, &mcapi_version, &mcapi_status);/* Create a local 

send endpoint for print job processing. */if(mcapi_status == 

MCAPI_SUCCESS)[**UNRESOLVED**] 

   

 /* Create a local receive endpoint for print job processing. */ 

 if(mcapi_status == MCAPI_SUCCESS) 

  

  

[**UNRESOLVED**] 

   

 /* Create a local send endpoint for resource monitor. */ 

 if(mcapi_status == MCAPI_SUCCESS) 
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[**UNRESOLVED**] 

    

 /* Open receive side */  

 if(mcapi_status == MCAPI_SUCCESS) 

  

  

[**UNRESOLVED**] 

   

 /* Wait for the rx side to open. */ 

 mcapi_wait(&request, &size, &mcapi_status, 0xFFFFFFFF); 

   

 /* Wait till foreign endpoint is created */ 

 if(mcapi_status == MCAPI_SUCCESS) 

  

  

[**UNRESOLVED**] 

   

 /* Connect node 0 transmitter to node 1 receiver */ 

 if(mcapi_status == MCAPI_SUCCESS) 

  

  

[**UNRESOLVED**r] 

   

 /* Wait for the connect call to complete. */ 

 mcapi_wait(&request, &size, &mcapi_status, 0xFFFFFFFF); 

   

 printf("Connected \r\n"); 

   

 /* Open transmit side */ 

 if(mcapi_status == MCAPI_SUCCESS) 

  

  

[**UNRESOLVED**] 

   

 /* Wait for the tx side to open */ 

 mcapi_wait(&request, &size, &mcapi_status, 0xFFFFFFFF); 

   

 /* Get the remote resource monitor endpoint */ 

 remote_rm_endpoint = mcapi_get_endpoint(REMOTE_NODEID, 

ports[REMOTE_NODEID].rm_rx, &mcapi_status); 

  

 if(mcapi_status == MCAPI_SUCCESS) 

  

  

[r**UNRESOLVED**] 

} 
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/*********************************************************************** 

* 

*   FUNCTION 

* 

*       Sample 

* 

*   DESCRIPTION 

* 

*       This task receives a job and responds to job over MCAPI.  

* 

* 

***********************************************************************/ 

void  Sample() 

 

  

 {STATUSstatus;mcapi_status_tmcapi_status;UINT32size;UINT32bytesReceived,type,

cmd;unsigned char *in_buffer;unsigned char 

out_buffer[MAX_SIZE];mcapi_uint64_ttmp;/* Receive image from foreign node 

*/mcapi_pktchan_recv(recv_handle, (void **)in_buffer,(size_t*)&size, 

&mcapi_status);/* Do something with MCAPI buffer */… /* Free MCAPI buffer 

*/if(mcapi_status == MCAPI_SUCCESS)[**UNRESOLVED**] 

    

 … 

 /* Respond to message with data to send in out_buffer */ 

 mcapi_pktchan_send(send_handle, out_buffer, MAX_SIZE, &mcapi_status); 

 if(mcapi_status != MCAPI_SUCCESS) 

  

   

[n] 

    

 if ( /* Complete then clean up */ ) 

    

  

  {/* Finalize current nodes MCAPI instantiation 

*/mcapi_finalize(&mcapi_status);if(mcapi_status != MCAPI_SUCCESS)[n] 

 } 

} 
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