
UNIVERSITÀ DEGLI STUDI DELL’AQUILA

Embedded Systems (Dr. L. Pomante)

A.A. 2017/2018

HomeLab ARTY FPGA
(VHDL’s Exercises and Introduction to Vivado Design Suite)

Author

Eng. Giacomo valente (giacomo.valente@graduate.univaq.it)

Version 3.0: 05/10/2017

mailto:giacomo.valente@graduate.univaq.it

Index

Before start: preparation 4

Components 4

Required software 4

Time and feedbacks 4

Virtual Machine 4

ARTY 4

Communication test between Board and PC 4

Further investigations 5

Section 1: Simulation and Synthesis of simple combinatorial circuits 6

1.1 – VHDL Description of Half Adder 6

1.2 - Simulation 9

1.3 -Synthesis 10

1.3 – To Do 10

Section 2: Sequential circuits, I/O and constraints 12

2.1 – Counter 12

2.2 - Sequence detector (Finite State Machines - FSM) 14

2.3 – To Do 14

Section 3: PicoBlaze 15

3.1 – Input/Output and base of programming 15

3.2 – Further investigations 16

Section 4: Serial Communication 17

4.1 – PicoBlaze & UART 17

4.2 – Further Investigations 17

Section 5: References and useful readings 18

Before start: preparation
All the illustrated examples have been tested using VirtualBox on Windows 7 operating system. VirtualBox
is a program that, starting from a host operating system and a guest one, makes possible to run the latter on
the former by emulating it. In the case of test, Xubuntu 16.04 64 bits operating system has been run as guest
on the top of Windows 7 host. What is required to the host is that it is able to run VirtualBox: if the host were
a different operating system with respect to Windows 7 (e.g. Windows 8/8.1/10, Ubuntu, etc.), it would be
necessary only to install VirtualBox on these other hosts and run the guest on top.

Components
● ARTY Development Board
● USB A to Micro-B Cable

Required software
● Virtual Box [link]
● 30 day evaluation license for Vivado: in order to obtain this license, connect to Xilinx web site,

make a subscription and download the license file.
● puTTY [download], or any terminal emulator with serial console functionality (e.g. HyperTerminal,

minicom)

Time and feedbacks
In order to perform the homelab, one week is allowed. The board are provided on Friday during the
Embedded Systems lesson, and requests will be served in a First input/First Output fashion. Any feedback
about problems or suggestions would be highly appreciated.

Virtual Machine
Install Virtual Box on the host PC (download the latest version).

Import the Virtual Machine image (obtained from the Professor) on Virtual Box and launch the booting. On
the guest operating system, there are:

● Vivado Design Suite 2017.2

● Board description files to use ARTY development board

● Driver to communicate with ARTY development board

ARTY
Take a deep look to Reference Manual (RM) [link] and verify, before the beginning of the homelab, that the
board is properly configured. This means that the jumper configuration must be checked: a jumper serves as
connection between two points. In general, it can allow certain voltages to be applied in some parts of the
circuit, so take care when selecting jumper configurations: they can damage the board if not correctly set.
The rightness of the jumpers position can be checked on RM: select them in order to use the board with
JTAG connection.

https://www.virtualbox.org/wiki/Downloads
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
https://reference.digilentinc.com/reference/programmable-logic/arty/reference-manual?redirect=1

Communication test between Board and PC
Connect the board to the PC through USB cable, and it will be automatically powered-on.

Connect the ARTY board to the Virtual Machine by selecting it among the devices:

Open a shell on Xubuntu and check the connection of the board to the virtual machine by using:

djtgcfg enum

Now, check the connection of the board to Vivado:

● Set environment variables with the command:

source /opt/Xilinx/Vivado/2017.2/settings64.sh

● run Vivado with the command:

vivado

● Select Open Hardware Manager from the icons.

Select the link Open Target and click to Auto-Connect. The ARTY board has to be recognized by the
environment without errors.

Further investigations
● Standard IEEE 1149.1: Standard Test Access Port and Boundary-Scan Architecture (JTAG)

● ARTY board, documentation [link]

https://www.xilinx.com/products/boards-and-kits/arty.html#documentation

Section 1: Simulation and Synthesis of simple combinatorial
circuits
This section refers on how to use Vivado Design Suite for simulation and synthesis of a simple digital
circuit, the half adder.

1.1 – VHDL Description of Half Adder
The creation of a new project in Vivado and description of the half-adder come through the following steps:

● Exit from Vivado and re-launch it from linux shell

● Select Create New Project from icons

● Click Next and gives project name and project location (pay attention to select destination folders
without spaces in the folder name)

● Click Next and select RTL Project

● Click Next and Select VHDL Language and Mixed simulator. Do not add sources and click Next. Do
not add Existing IP and click Next. Do not add constraints and click next.

Select ARTY Board from the list and click next:

Review the settings and click finish.

Now the following screen will appear:

The screen is divided in various different areas:

● Source Window: it is located at the top of the environment by default, and it contains all the sources
associated to the project. For example, Design Sources represent HDL files (that can be VHDL or
Verilog), while Constraints Sources represent constraints files

● Flow Navigator Pane: it is located at the left of the environment by default, and it contains the main
steps that can be performed in a design with Vivado (such as Simulation, Synthesis, etc.)

The project just created does not contain source files. Add one by right clicking the mouse into source
window and selecting Add Sources.

Select Add or create design sources and click Next. Click on the green cross at the top left and select Create
File. Specify the name (e.g. half_adder, pay attention to not insert spaces in the file name) and click OK.
Then click Finish. A wizard will be opened: it allows to define module parameters (i.e. entity name and
architecture name).

After filling various fields keeping in mind the half adder structure, click OK to complete the source file
creation. Open the new generated source file by double clicking on it in the source window. Internal to this
file you can see that the structure of the VHDL code has been automatically set up. It is possible to note how
it is necessary only to write the architecture section (i.e. the functionality of the system). Complete the
description as seen during the course lesson:

ARCHITECTURE Behavioral OF half_adder IS

BEGIN

SUM <= A xor B;
CARRY <= A and B;

END Behavioral;

At this point, the description of half adder module is complete. Save the modified source file.

1.2 - Simulation

Verify that the behavior of the block is the one expected: i.e. perform a Behavioral simulation.
For this it is necessary to create a testbench to stimulate the described circuit. Add to the project another
source file, but now select Add or create simulation sources. Then create a new file from the top-left green
arrow and select Finish. Do not insert ports to the entity (it is a testbench):

From source window, select the testbench from Simulation Sources:

Consider the testbench contained in the homelab folder. In the code section it can be noted that a constant
period has been defined: this one can be used to define time interval variations of input signals. By means of
the process statement and the wait instruction, it is possible to model the desired signal input evolutions.
Examine, for example, the following piece of code and draw the equivalent timing diagrams. Then, add these
stimuli to the right section of the provided testbench file:

 A_stim_proc: process
 begin

wait for 100 ns;
SIG_A <='0';
wait for period;
SIG_A <='1';
wait for period;

 end process;

B_stim_proc: process
 begin

wait for 100 ns;

SIG_B <='0';
wait for 2*period;
SIG_B <='1';
wait for 2*period;

 end process;

Once defined input signals evolution, it is possible to run the simulation: in the flow navigator pane, select
Simulation Settings and check if Vivado Simulator is set and if the top module is the testbench that was
already written. Then, in the Simulation Tab, set the Simulation Runtime. At the end, select OK and select
Run Simulation and Run Behavioral Simulation in the flow navigator pane.
This last step will launch the XSim simulator, and this one will show automatically the timing diagrams of
the simulation process (click to various buttons to show waveforms with different levels of detail).

Check simulation results by verifying that half adder outputs behave good with respect to the inputs.

1.3 -Synthesis

Close XSim, go back to source window, select the half adder module and click on Run Synthesis in the flow
navigator pane. At the end, it is possible to check reports, to have a look on synthetized design or continue by
running Implementation.

1.3 – To Do
Try to develop VHDL description of the following combinatorial circuits:

- Multiplexer

- Demultiplexer

- Decoder

- Coder

Verify that the circuit behavior is correct by means of behavioral simulation. Keep in mind that the
description is not uniquely and that if the circuit is simulatable, it does not imply that it is synthesizable. Be
aware only to the simulation results, not the implementation.

Section 2: Sequential circuits, I/O and constraints
In a development board, like ARTY, the FPGA is surrounded with hardware components (e.g. UART ->
USB converters, VGA, PMODs, LEDs, switch buttons, push buttons, etc.). For the use of this components, it
must be possible to connect the implemented blocks into FPGA with external hardware.

In this section, a first sequential circuit into FPGA will be realized, and how to show the outputs by means of
LEDs placed on the board will be illustrated [5].

2.1 – Counter
Create a new project in Vivado (e.g. named homelab_counter), still targeting the ARTY board, and add a
new source file having the entity named hl_counter. The possible structure of the counter is reported in the
homelab folder. It is possible to note that it is necessary to generate a “slow clock”, otherwise the frequency
of the counting would be too fast and it will not be visible to human eye through a LED. Try to answer to the
following question: if you don’t generate slow clock, shall you see the LED forever on or forever off?

Once defined the architecture of the counter, it is possible to go to next phase. At the middle of work, it is
possible to perform a behavioral simulation. For this sake, a testbench has to be defined, in the same manner
of the last exercise (i.e. the half adder), and the counter has to be instantiated into this one and properly
excited. Pay attention to the fact that, after simulation launch, by default one is able to look at the behavior of
input and output of the top-level section of the system, that is the entity: remember that a slow clock has been
used internally to the counter, in order to have the ability to show the LED blinking on the board. From the
simulation point of view, this could require a very long simulation time. In order to check the functionality
with smaller simulation time, one can have a look to the internal signals of the counter module. This can be
done by navigating into XSim through Object Tab and Scope Tab, and by dragging and drop necessary
signals. Note that the simulation should be re-launched in order to include these signals.

Going toward the implementation phase, remember that after the downloading of the bitstream on the FPGA,
the counter outputs drive directly LEDs sited on the board. In order to do this, some constraints have to be
defined for the implementation by operating on Xilinx Design Constraints (XDC). An XDC file is a list of
functions written in TCL language [link] that allows to make some operations targeting constraints in the
Vivado Design Suite. Constraints can be of different types: board constraints, timing constraints, etc. In this
contest, the interesting is on board constraints. The way (not the unique) to operate with constraint, in this
context, is to start from a single XDC file that contains all the board constraints related to the ARTY board,
initially commented out. In order to use this XDC file, it must be downloaded from the Digilent repository
[link]. Have a look on the internal of the file, and note a list of TCL commands. The ARTY board has
various inputs and outputs elements, as indicated in RM. Considering that the counter has 1 clock input, 1
reset input, 1 counter output (composed of 4 bits), there is the need of 1 input clock (e.g. provided by an
oscillator), 1 input reset (e.g. a push-button) and 4 output counter (e.g. 4 LEDs). After checking that these
elements are available on the board, the XDC file can be imported into the project:

● Going in the source pane and adding a source

● Selecting Add or Create Constraints

● Adding the XDC file using the top-left green cross (set the Copy constraints files into the project)

● Clicking Finish

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_4/ug835-vivado-tcl-commands.pdf
https://github.com/Digilent/Arty/tree/master/Resources/XDC

Now the XDC file can be modified, in order to make required board connections. In particular, the following
lines can be commented out:

● Connect the clock:

set_property -dict { PACKAGE_PIN E3 IOSTANDARD LVCMOS33 } [get_ports { clk }]

● Connect the output:

set_property -dict { PACKAGE_PIN H5 IOSTANDARD LVCMOS33 } [get_ports { count_out[0] }]

set_property -dict { PACKAGE_PIN J5 IOSTANDARD LVCMOS33 } [get_ports { count_out[1] }]

set_property -dict { PACKAGE_PIN T9 IOSTANDARD LVCMOS33 } [get_ports { count_out[2] }]

set_property -dict { PACKAGE_PIN T10 IOSTANDARD LVCMOS33 } [get_ports { count_out[3]
}]

● Connect the reset:

set_property -dict { PACKAGE_PIN D9 IOSTANDARD LVCMOS33 } [get_ports { reset }]

The synthesis process and bitstream generation can be completed now, by clicking on Generate Bitstream in
the flow navigator pane. At the end, board can be connected to the PC and to the Virtual Machine. The
FPGA configuration can be done by using Hardware Manager, in particular:

● selecting Open Hardware Manager in the screen at the end of bitstream generation or in the flow
navigator pane

● clicking on Open Target and asking for auto-connection

● Clicking on Program Device and selecting the bitstream generated file (located in the runs/impl_1
folder of the project tree).

At the end of operation, the LEDs 0-3 on the board should illuminate according to counter evolution. It can
be tested also the reset by pushing the BTN0 push-button.

2.2 - Sequence detector (Finite State Machines - FSM)

In this section, it will be illustrated how to realize a circuit able to detect an exact binary sequence on the
input line. Suppose that a synchronous detector has to be realized, therefore data input line (X) and clock
signal are expected as inputs: data will then be read in the rising edge of the clock. The output (Y) will be
equal to 1 only when the sequence is detected.

Using the HDL for system description, XDC for constraints and Vivado Design Suite for implementation,
the task is to implement a system that solves the problem and verify the functionality using two switch to
“simulating” respectively the clock signal and input signal.

The following state diagram describes a sequence detector in which the detected word on the serial port
(101) is “hardcoded”.

A draft of VHDL code for a Finite State Machine (Moore type, i.e. the output is determined only by the
current machine state, and the next machine state is determined by the input and the current machine state)
that implements the behavior of the previous diagram.is provided into the homelab folder. The definition of
an enumerated data type is convenient for the state representation. It is left as exercise the completion of the
project (by assigning XDC to specify the right connection between sequence detector, board LEDs and board
switches and perform the FPGA configuration in the same manner of the previous exercise).

2.3 – To Do
Simulate the GCD of the VHDL lesson: do it for every kind of hardware description, i.e. behavioral, RTL
with FSMD and RTL with FSM and datapath. You already have the files, or you have the necessary
knowledge to implement missing parts.

Section 3: PicoBlaze
PicoBlaze is an 8 bit RISC soft processor distributed by Xilinx. The following examples are related to the
use of this one. Files related to PicoBlaze can be downloaded [link].

3.1 – Input/Output and base of programming
The PicoBlaze is provided by Xilinx in the form of HDL code, together with documentation [link]
(remember that the Artix 7 FPGA is used on ARTY board).

The downloaded file is composed by different elements, for example:

● kcpsm6.vhd file that represents the PicoBlaze soft-processor description
● PicoBlaze documentation
● Necessary tools for the use of PicoBlaze, including the assembler

In order to use PicoBlaze, the following steps are required:

● Start a Vivado project

● Add PicoBlaze description into the project (kcpsm6.vhd)

● Write a program to be assembled by the assembler and executed by PicoBlaze; create a text file with
a list of PicoBlaze instructions, for example a program that read inputs and write them in outputs:

; read from switches and display to the LEDs

start: INPUT s0,00

OUTPUT s0,01

JUMP start

Save this file with .psm extension, for example test.psm.

● Generate the ROM containing instructions to be executed using the kcpsm6.exe program on a
Windows operating system. In order to do this, a command window has to be started, then reach the
executable folder of the assembler and finally launch the program with the following syntax:

kcpsm6.exe _name_of_psm_file.psm

The utility generates various files: the test.vhd file corresponds to the VHDL description of the instruction
ROM containing the program previously written in assembly. After importing the test.vhd file into project,
there are 2 blocks: the soft-processor and its instruction memory. Specifically, the small assembly program
previously reported reads input data (from 0x00 address) and copies them to the output (to 0x01 address)
indefinitely. Input and output instructions use the s0 register for data buffering. The 2 blocks have to be
instantiated and inserted in a higher-level module. Then, the functionality of the design can be verified, for
example, by connecting 4 input lines and 4 output lines of PicoBlaze respectively to board switches and
LEDs. In this mode, the PicoBlaze is used to detect the change of position of the switches (passed to on) and
turn on LEDs.

In order to instantiate correctly a PicoBlaze into a higher level module, it is necessary to record the input and
output data in two temporary registers (synchronous accessible on the base of the address lines and processor

https://www.xilinx.com/member/forms/download/design-license.html?cid=2cd4c68c-fe20-435b-9cce-6018f8f19e76&filename=KCPSM6_Release9_30Sept14.zip
http://www.xilinx.com/products/intellectual-property/picoblaze.htm

read and write strobe). An example of the top-module is reported in embedded_pico.vhd file contained in the
homelab folder. Before provide the synthesis, specify the right pin connections of input and output by means
of constraints. At the end, test all the system on the FPGA.

3.2 – Further investigations
Modify the previous written program including different instructions with respect input/output (e.g. try to use
the flow control instructions). Verify the functionality by implementing the system on FPGA.

Section 4: Serial Communication
Xilinx provides source files for an UART controller together with PicoBlaze: these ones are contained into
the UART_and_PicoTerm folder of the downloaded archive. It is possible to use this core to realize a serial
communication between PC and the soft-processor. Read the documentation contained in the different
folders, in particular in the UART_and_PicoTerm folder, in order to better understand the UART IP-core.

4.1 – PicoBlaze & UART
To demonstrate the functionality of the UART controller, it can be analyzed how to add to PicoBlaze the
transmission section [6]. The exercise completion with addition of receiver section is left to the reader.

Create a new project and unzip the archive containing PicoBlaze files into the main project directory. Import
the following files into the project:

- kcpsm6.vhd: the PicoBlaze
- uart_tx6.vhd: wrapper that contains components of UART transmission section;

The assembly program contained in the homelab folder (test_uart.psm) causes the PicoBlaze transmission
(indefinitely loop) of a character string on the serial port. As done on the Section 3, start from the provided
program file and copy it into the assembler folder. Then repeat the ROM generation procedure. Once
obtained the test.vhd file, import it into to the project. At this point there are all the necessary components to
verify serial communications: a processor, an UART transmitter and a program memory (ROM) containing
instructions to send the processor data to the UART. Create a top-level for the project, in which instantiate
various components and connect them in right manner. There is an example code in the home folder
(embedded_pico.vhd): in this example, the baud rate generator has been configured to work at 38400 bps
speed. The top-level has one input line (clock signal) and one output line (UART TX line). There is a
USB-UART connector on the board, that can be used to output what is transmitted by PicoBlaze. In the XDC
file, it is possible to define the connection of the clock to the oscillator and of the txd signal to the
USB-UART controller (pay attention to the fact that on XDC file the direction is intended from the
USB-UART controller, so the txd has to be connected to the receiver pin). After synthesis execution and
device configuration, use a terminal emulator (e.g. puTTY) to listen to the serial port. Select the proper serial
interface and specify the right communication settings. After port opening, the sent message from the
PicoBlaze should be printed (that is a kind of “Hello”).

4.2 – Further Investigations
Implement the UART receiver section.

Section 5: References and useful readings
[1] ARTY Reference Manual [link]

[2] Pong P. Chu – FPGA Prototyping by VHDL Examples - Wiley

[3] VHDL Tutorial – Learn by examples [link]

[4] PicoBlaze User Guide [link]

[5] 4- Bit Counter with Xilinx ISE 9.2 and Spartan 3E [link] – tutorial that has inspired the example 3.1

[6] Ultra-Compact UART Macros for Spartan-6, Virtex-6 and 7-Series, Ken Chapman [link]

Acknowledgements

We would like to thank Fabio Federici, Walter Tiberti, Gianni Rea, Federico Angeloni, Mattia Micozzi,
Celestino De Crescente Pinti, Marco Mirabilio, Nazzareno Valente and Donatella Zimei for the support to
solve some issues.

https://reference.digilentinc.com/reference/programmable-logic/arty/reference-manual?redirect=1
http://esd.cs.ucr.edu/labs/tutorial/
http://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf
https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjE2vySgNPPAhVBlhQKHfuZDbQQFggeMAA&url=https%3A%2F%2Fforums.xilinx.com%2Fxlnx%2Fattachments%2Fxlnx%2FNewUser%2F10490%2F1%2Flab_manual_tutorial.pdf&usg=AFQjCNGBndkjFxGKgwnqDSMZlTEDlqDvNw&sig2=tv_pS0UrYxzXhuWxD1z3VA
http://www.xilinx.com/ipcenter/processor_central/picoblaze/member/KCPSM6_Release9_30Sept14.zip

