
EMBEDDED SYSTEMS 2016/2017 [6/9 credits course]

8 T/F questions: 0.5 points for right answers, -0.25 points for wrong ones, and 0 for no answer

3 open questions: up to 2 points for right and complete answers

1 C4uC exercise: up to 10 points for right and complete solutions

Available time: 120 minutes

Name:__

TRUE or FALSE?

1) An embedded system is always designed to be as general-purpose as possible.

2) To exploit a Digital Signal Processor it is needed a specific compiler.

3) The opportunity to perform preemption of kernel processes allows to avoid the priority inversion problem.

4) The Instruction Set Architecture of a Single Purpose Processor is normally customizable.

5) The Intel 8051 model used in the homelab has more than 2 input/output ports.

6) I2C is a multi-master protocol.

7) It is possible to use floating-point arithmetic also on processors without a FPU.

8) If the utilization factor of a task set is greater than 1, the task set can be scheduled.

OPEN QUESTIONS (answers shall not be longer than 2 pages)

1) What are the main Processors Technologies and their differences?

2) Describe the RM and EDF scheduling algorithms and highlight their differences.

3) Given the following code, complete the sequence diagram (reporting comments, if needed), indicating all
the (possible) calls and events in the first 1000 ms of execution (after the first indicated event).

configuration BlinkAppC
{
}
implementation
{
 components MainC, BlinkC, LedsC;
 components new TimerMilliC() as Timer0;
 components new TimerMilliC() as Timer1;
 components new TimerMilliC() as Timer2;

 BlinkC -> MainC.Boot;

 BlinkC.Timer0 -> Timer0;
 BlinkC.Timer1 -> Timer1;
 BlinkC.Timer2 -> Timer2;
 BlinkC.Leds -> LedsC;
}

module BlinkC()
{
 uses interface Timer<TMilli> as Timer0;
 uses interface Timer<TMilli> as Timer1;
 uses interface Timer<TMilli> as Timer2;
 uses interface Leds;
 uses interface Boot;
}
implementation
{
 event void Boot.booted()
 {
 call Timer0.startPeriodic(200);
 call Timer1.startPeriodic(350);
 call Timer2.startPeriodic(950);
 }

 event void Timer0.fired()
 {
 call Leds.led0Toggle();
 }

 event void Timer1.fired()
 {
 call Leds.led1Toggle();
 }

 event void Timer2.fired()
 {
 call Leds.led2Toggle();
 }
}

C4uC (with reference to DidArch_v1.1)

A [up to 1 point]
Develop a C program that:

- receives sequences of natural numbers (in the range 0-254) from the Input Device and writes them
ASAP on the Output Device

o each sequence is terminated by the value 0xFF
o the minimum delay between two input elements is 50 ms

 this is true also for 0xFF

B [up to 2 points]
Starting from the previous C program, develop a modification/extension that:

- for each sequence, evaluate the max number of consecutive equal numbers and writes it on P0 at the
end of the sequence itself

o define how to manage possible overflows

C [up to 3 points]
Starting from the previous C program, develop a modification/extension that:

- if the delay between any two elements of a sequence is greater than 250 ms, writes ASAP an error
code (i.e., 0xEE) on P1

o the program shall always continue to run
o 0xFF is not considered an element of a sequence
o P1 shall be normally kept to 0x00
o P1 shall be reset to 0x00 at the beginning of a new sequence

D [up to 4 points]
Starting form the previous C program, develop a modification/extension that:

- for each sequence that doesn’t generate en error, write on P1 the duration of the sequence at the end
of the sequence itself

o 0xFF is not considered an element of a sequence
o P1 shall be normally kept to 0x00
o P1 shall be reset to 0x00 at the beginning of a new sequence
o define a proper time granularity and related errors
o define how to manage possible overflows
o briefly discuss about time granularity/errors/overflows (and possible modifications to the

program to improve them) in the hypothesis that each sequence has a maximum length of 10
elements (other than 0xFF)

C4uC (with reference to DidArch_v1.1)
A) Develop a C program that:

- receives sequences of natural numbers (in the range 0-254) from the Input Device and writes them ASAP on the Output
Device

o each sequence is terminated by the value 0xFF
o the minimum delay between two input elements is 50 ms

 this is true also for 0xFF

Possible solution

Analysis
Given the fixed and known minimum delay between two inputs element we can reasonably suppose to manage I/O without the need
of any buffering, i.e. all the needed operations are performed in less than 50 ms. Moreover, we suppose DidArch as an architecture
that allows to fully use C features.

Design
We use int1 ISR to take data from INPUT device and transfer them to OUTPUT device (one at a time).

Implementation

#include <didarch.h>

void isr_int1()
{
 // This ISR starts when a data is ready from INPUT device
 // HYPOTESIS: ISR execution time plus the time needed to transmit data externally

// is less than 50 ms

 // Init

uint8 data=0;

 // Read data from the INPUT device
 data=peek(IN_DATA);

 // Signal to INPUT device that the read is done
 poke(IN_STATUS, 0x00);

 // If it is not the end of the sequence

// (N.B. 0xFF shall not be transmitted)
if (data!=0xFF)
{

 // Wait for OUTPUT device availability
// (due to the hypothesis this is optional)

 while (peek(OUT_STATUS)!=0x00);

 // Copy data to OUTPUT device
 poke(OUT_DATA, data);

 // Ask to the OUPUT device to write data externally
 poke(OUT_STATUS, 0x01);

 // No other checks are needed due to the hypothesis

}
}

void main()
{

// Enable int1
enable_int1();

// Needed to manage multiple sequences
while(1);

}

C4uC (with reference to DidArch_v1.1)
B) Starting from the previous C program, develop a modification/extension that:

- for each sequence, evaluate the max number of consecutive equal numbers and writes it on P0 at the end of the sequence
itself

o define how to manage possible overflows

Possible solution

Analysis
During a sequence we need to evaluate only the current “number of consecutive equal numbers” and the “max number of consecutive
equal numbers” so there is no need to store the whole sequence but it is sufficient to store such two numbers. However, the variables
used for this can give rise to overflow since the max length of the input sequence is not a priori defined. So, if an overflow is detected,
an error is signaled by writing a 0x01 value on P0 (since equal consecutive numbers are 0 or at least 2, 0x01 is not a valid value for
max). Such a value will be used also in the case of a null sequence (i.e. two consecutive 0xFF).

Design
We add directly into int1 ISR the statements needed to implement the new features. Since it is a simple computation we can consider
still valid the hypothesis about the ISR duration (i.e. ISR exe time < 50 ms).

Implementation
#include <didarch.h>

void isr_int1()
{
 // This ISR starts when a data is ready from INPUT device
 // HYPOTESIS: ISR execution time plus the time needed to transmit data externally

// is less than 50 ms

// Init
 uint8 data;

 // Used to store data for comparison (init to 0xFF since it is not a valid data)

static uint8 data_old=0xFF

// Number of consecutive equal numbers in a sequence
// (when we found the first couple of equal numbers count shall be 2,
// so we init cont to 1 and we use 0 to detect possible overflow, see later)
static cont=1;

// Max of consecutive equal numbers in a sequence
static uint8 max=0;

 // Overflow detection
 static uint8 overflow=FALSE;

 // New sequence start
 uint8 new=TRUE;

// Reset P0 when a new sequence is starting
if (new==TRUE)
{

P0=0x00;
new=FALSE;
// It is in this point to be quite far from the P0 write
// that happens at the end of the sequence (see later)

}

 // Read data from the INPUT device
 data=peek(IN_DATA);

 // Signal to INPUT device that the read is done
 poke(IN_STATUS, 0x00);

 // If it is not the end of the sequence

// (N.B. 0xFF shall not be transmitted)
if (data!=0xFF)
{

 // Wait for OUTPUT device availability
// (due to the hypothesis this is optional)

 while (peek(OUT_STATUS)!=0x00);

 // Copy data to OUTPUT device
 poke(OUT_DATA, data);

 // Ask to the OUPUT device to write data externally
 poke(OUT_STATUS, 0x01);

 // No other checks are needed due to the hypothesis

 // MAX/OVERFLOW detection
 // N.B. Meanwhile OUTPUT device is transmitting…
 if (data==data_old) // Two equal numbers in sequence

{
 // Update

cont++;
 data_old=data;

 // Since cont starts from 1…

if (cont==0) overflow=TRUE; // In this case no need to check max
 else if (cont>max) max=cont;

// N.B. Max cannot be in overflow if it is not so also count
}
else cont=1; //Reset cont when numbers are different

}
else
{
 // Write on P0
 if ((overflow==TRUE)||(data_old==0xFF)) P0=0x01;
 else P0=max;

 // Reset
 data_old=0xFF;

count=1;
max=0;
overflow=FALSE;
new=TRUE; // P0=0x00 here would be to near to the previous P0 writing

}
}

void main()
{
 // Init

P0=0x00;
// LIMITATION: by using 0x00 as init value for P0 it is not explicitly
// recognizable a sequence composed of no (i.e. 0) consecutive equal numbers.
// Anyway this still satisfies the requirements! 
// Other choices would have other problems…

// Enable int1
enable_int1();

// Needed to manage multiple sequences
while(1);

}

C4uC (with reference to DidArch_v1.1)
C) Starting from the previous C program, develop a modification/extension that:

- if the delay between any two elements of a sequence is greater than 250 ms, writes ASAP an error code (i.e., 0xEE) on P1
o the program shall always continue to run
o 0xFF is not considered an element of a sequence
o P1 shall be normally kept to 0x00
o P1 shall be reset to 0x00 at the beginning of a new sequence

Possible solution

Analysis
We can use a 250 ms one shot timer like a sort of watchdog. If the timer fires then we have to signal an error.

Design
We use a timer, with prescaler 32, with the COMPARE register set to 93750 (i.e. 12000000/32=375000 for a 1s and so
375000/4=93750 for 250 ms). int3 ISR is used to signal the error. Inside int1 ISR we need to stop the timer on time, to run it again
and to manage possible errors!

Implementation
#include <didarch.h>

// GLOBAL (since it is used in different ISRs)
uint8 timeout;

// UTIL: set the internal COMPARE register
void set_COMPARE(uint8 B1, uint8 B2, uint8 B3, uint8 B4)
{

poke(T32_DATA, B1);
 poke(T32_STATUS, 0x02);
 while (peek(T32_STATUS)!=0xF0);

 poke(T32_DATA, B2);
 poke(T32_STATUS, 0x03);
 while (peek(T32_STATUS)!=0xF0);

 poke(T32_DATA, B3);
 poke(T32_STATUS, 0x04);
 while (peek(T32_STATUS)!=0xF0);

 poke(T32_DATA, B4);
 poke(T32_STATUS, 0x05);
 while (peek(T32_STATUS)!=0xF0);
}

void isr_int3()
{
 timeout=TRUE;
}

void isr_int1()
{
 // This ISR starts when a data is ready from INPUT device
 // HYPOTESIS: ISR execution time plus the time needed to transmit data externally

// is less than 50 ms

// Init
 uint8 data;

 // Used to store data for comparison (init to 0xFF since it is not a valid data)

static uint8 data_old=0xFF

// Number of consecutive equal numbers in a sequence
// (when we found the first couple of equal numbers count shall be 2,
// so we init cont to 1 and we use 0 to detect possible overflow, see later)
static cont=1;

// Max of consecutive equal numbers in a sequence

static uint8 max=0;

 // Overflow detection
 static uint8 overflow=FALSE;

 // New sequence start
 uint8 new=TRUE;

 // A data is arrived: stop the timer!
 poke(T32_STATUS, 0x00);
 while(poke(T32_STATUS)!=0xF0);

// (Re)start the one shot timer
poke(T32_STATUS, 0x07);

// Reset P0 when a new sequence is starting
if (new==TRUE)
{

P0=0x00;
// It is in this point to be quite far from the P0 write
// that happens at the end of the sequence (see later)

new=FALSE;

}

 // Read data from the INPUT device
 data=peek(IN_DATA);

 // Signal to INPUT device that the read is done
 poke(IN_STATUS, 0x00);

 // If it is not the end of the sequence

// (N.B. 0xFF shall not be transmitted)
if (data!=0xFF)
{

 // Timeout is an error only if it happens between two valid numbers!
// 0xFF is not considered an element of a sequence!

 if (timeout=TRUE) P1=0xEE;

 // Wait for OUTPUT device availability

// (due to the hypothesis this is optional)
 while (peek(OUT_STATUS)!=0x00);

 // Copy data to OUTPUT device
 poke(OUT_DATA, data);

 // Ask to the OUPUT device to write data externally
 poke(OUT_STATUS, 0x01);

 // No other checks are needed due to the hypothesis

 // MAX/OVERFLOW detection
 // N.B. Meanwhile OUTPUT device is transmitting…
 if (data==data_old) // Two equal numbers in sequence

{
 // Update

cont++;
 data_old=data;

 // Since cont starts from 1…

if (cont==0) overflow=TRUE; // In this case no need to check max
 else if (cont>max) max=cont;

// N.B. Max cannot be in overflow if it is not so also count
}
else cont=1; //Reset cont when numbers are different

}
else
{
 // Write on P0
 if ((overflow==TRUE)||(data_old==0xFF)) P0=0x01;

 else P0=max;

 // Reset
 data_old=0xFF;

count=1;
max=0;
overflow=FALSE;
new=TRUE;
// P0=0x00 here would be too near to the previous P0 writing
P1=0x00;
timeout=FALSE;

}
}

void main()
{
 // Init

P0=0x00;
// LIMITATION: by using 0x00 as init value for P0 it is not explicitly
// recognizable a sequence composed of no (i.e. 0) consecutive equal numbers.
// Anyway this still satisfies the requirements! 
// Other choices would have other problems…
P1=0x00;
timeout=FALSE;

// Set the timer (93750 -> 00 01 6E 36)
set_COMPARE(00, 01, 6E, 36);

// Enable int1
enable_int1();
enable_int3();

// Needed to manage multiple sequences
while(1);

}

C4uC (with reference to DidArch_v1.1)
D) Starting form the previous C program, develop a modification/extension that:

- for each sequence that doesn’t generate an error, write on P1 the duration of the sequence at the end of the sequence itself
o 0xFF is not considered an element of a sequence
o P1 shall be normally kept to 0x00
o P1 shall be reset to 0x00 at the beginning of a new sequence
o define a proper time granularity and related errors
o define how to manage possible overflows
o briefly discuss about time granularity/errors/overflows (and possible modifications to the program to improve

them) in the hypothesis that each sequence has a maximum length of 10 elements (other than 0xFF)
Possible solution

Analysis
We need two time granularities. One to measure the 250 ms interval between pairs of input and one to measure the duration of the
whole sequence (limited by the 8 bits port). So, we can set the HW timer with a 10 ms period and use two SW timers: one for tens of
ms and one for seconds. So, time intervals will be measured with a max error of +/- 10 ms (if this is too much we can consider a
period of 1 ms by carefully evaluating its overhead) while sequence duration will be in seconds (error +/- 1 s). This allows to
measure up to 254 seconds (0xFF will be used to signal timeout and overflow). If valid sequences are limited to 10 elements we can
directly use the “tens of ms” timer also for time duration (in fact, 250 ms * 10 = 2500 -> 250 tens of ms). In the following
implementation we will consider the general case.

Design
We use a timer, with prescaler 32, with the COMPARE register set to 3750 (i.e. 12000000/32=375000 for a 1s and so
375000/100=3750 for 10 ms). int3 ISR is used to update two counters. Inside int1 ISR we need to acquire timestamps to measure
time intervals and to print time duration of the whole sequence. We assume that there is no ISR nesting allowed so that, during int1
ISR, SW timers will not change.

Implementation
#include <didarch.h>

// GLOBAL (since it is used in different ISRs)
uint8 tenofms;
uint8 seconds;

// UTIL: set the internal COMPARE register
void set_COMPARE(uint8 B1, uint8 B2, uint8 B3, uint8 B4)
{

poke(T32_DATA, B1);
 poke(T32_STATUS, 0x02);
 while (peek(T32_STATUS)!=0xF0);

 poke(T32_DATA, B2);
 poke(T32_STATUS, 0x03);
 while (peek(T32_STATUS)!=0xF0);

 poke(T32_DATA, B3);
 poke(T32_STATUS, 0x04);
 while (peek(T32_STATUS)!=0xF0);

 poke(T32_DATA, B4);
 poke(T32_STATUS, 0x05);
 while (peek(T32_STATUS)!=0xF0);
}

void isr_int3()
{
 // Note: the ISR is atomic
 // Increment SW timers
 tenofms++;
 if (tenofms==99)
 {
 tenofms=0;
 if(seconds<255) seconds++; // 255 means overflow

}
}

void isr_int1()
{
 // This ISR starts when a data is ready from INPUT device

 // HYPOTESIS: ISR execution time plus the time needed to transmit data externally
// is less than 50 ms

// Init

 uint8 data;

 // Used to store data for comparison (init to 0xFF since it is not a valid data)

static uint8 data_old=0xFF

// Number of consecutive equal numbers in a sequence
// (when we found the first couple of equal numbers count shall be 2,
// so we init cont to 1 and we use 0 to detect possible overflow, see later)
static cont=1;

// Max of consecutive equal numbers in a sequence
static uint8 max=0;

 // Overflow detection
 static uint8 overflow=FALSE;

 // New sequence start
 uint8 new=TRUE;

 // Variable for timestamps
 uint8 t_start_tms=0, t_start_s_0;

// Reset P0, SW timers and timestamps when a new sequence is starting
if (new==TRUE)
{

P0=0x00;
P1=0x00;
// They are in this point to be quite far from the P0/P1 writes
// that happen at the end of the sequence (see later)

new=FALSE;

// Reset SW timers and timestamps
tenofms=0;

 seconds=0;
t_start_tms=0;
t_start_s=0;

}

 // Read data from the INPUT device
 data=peek(IN_DATA);

 // Signal to INPUT device that the read is done
 poke(IN_STATUS, 0x00);

 // If it is not the end of the sequence

// (N.B. 0xFF shall not be transmitted)
if (data!=0xFF)
{

 // Timeout is an error only if it happens between two valid numbers!
// 0xFF is not considered an element of a sequence!

 // If time interval (i.e. current time - timestamp)
// between 2 inputs > 25 tens of ms then it is too late!
if (((seconds*100+tenofms)-(t_start_s*100+t_start_tms))>25)

 {
 // Timeout

P1=0xFF;
}
else
{

// Take a new timestamp
t_start_s=seconds;
t_start_tms=tenofms;

}

 // Wait for OUTPUT device availability

// (due to the hypothesis this is optional)
 while (peek(OUT_STATUS)!=0x00);

 // Copy data to OUTPUT device
 poke(OUT_DATA, data);

 // Ask to the OUPUT device to write data externally
 poke(OUT_STATUS, 0x01);

 // No other checks are needed due to the hypothesis

 // MAX/OVERFLOW detection
 // N.B. Meanwhile OUTPUT device is transmitting…
 if (data==data_old) // Two equal numbers in sequence

{
 // Update

cont++;
 data_old=data;

 // Since cont starts from 1…

if (cont==0) overflow=TRUE; // In this case no need to check max
 else if (cont>max) max=cont;

// N.B. Max cannot be in overflow if it is not so also count
}
else cont=1; //Reset cont when numbers are different

}
else
{
 // Write on P0
 if ((overflow==TRUE)||(data_old==0xFF)) P0=0x01;
 else P0=max;

 // Write on P1
 P1=seconds;

 // Reset
 data_old=0xFF;

count=1;
max=0;
overflow=FALSE;
new=TRUE;
// P0=0x00 and P1=0x00 here would be too near to the previous writings

}
}

void main()
{
 // Init

P0=0x00;
// LIMITATION: by using 0x00 as init value for P0 it is not explicitly
// recognizable a sequence composed of no (i.e. 0) consecutive equal numbers.
// Anyway this still satisfies the requirements! 
// Other choices would have other problems…
P1=0x00;
tenofms=0;
seconds=0;

// Set the timer (3750 -> 00 00 0E A6)
set_COMPARE(00, 00, 0E, A6);

// Enable int1
enable_int1();
enable_int3();

// Start the periodic timer
poke(T32_STATUS, 0x06);

// Needed to manage multiple sequences
while(1);

}

