
Didactical Architecture v1.1

Embedded Systems

2

Didactical Architecture

Core

EEPROM
(0x0000-0x7FFF)

Output DeviceInput Device
IN_STATUS IN_DATA

SRAM
(0x8000-0xFF00)

Int1Int2

12 MHz
Internal

Oscillator

32-bit Timer
T32_STATUS T32_DATA

Int3

P0 P1
Int4

OUT_STATUS OUT_DATA

3

Didactical Architecture

• 12 MHz Internal Oscillator
• 8-bit Core
• 16-bit Address Bus, 8-bit Data Bus
• 32 KB EEPROM, 32 KB SRAM
• 2 8-bit I/O Ports

– P0, P1
• P0 generates an interrupt (if enabled) when written from the

external world

4

Didactical Architecture

• 4 Fixed Interrupt Pins
– Management

• void enable_allint(), void disable_allint()
• void enable_int1(), void disable_int1(), etc.

– Default: disabled

– ISR
• void isr_int1(), void isr_int2(), void isr_int3(), void isr_int4()

• Memory Mapped I/O
– 8-bit devices registers are mapped to 0xFF00-0xFFFF

• Input Device, Output Device, 32-bit Timer

5

Didactical Architecture

• Input Device
– Registers

• IN_STATUS (status/commands)
• IN_DATA (data)

– IN_STATUS is normally 0x00 and it is set to 0x01 by the device
itself when an external data is ready in IN_DATA

– Who reads the data has to write a 0x00 in IN_STATUS to
signal that the data has been read

» If a new data arrives while there is a read still to be done the new
data is lost

– The device generates an interrupt (if enabled) when a data is
ready

6

Didactical Architecture

• Output Device
– Registers

• OUT_STATUS (status/commands)
• OUT_DATA (data)

– OUT_STATUS is set to 0x01 to ask to the device to write
externally the data in OUT_DATA

» OUT_STATUS is set to 0x00 by the device to signal that the write
has been done

– To write a new data it is needed to wait for the completion of
the previous write

» Changing OUT_DATA too early could lead to unpredictable results
– The output device generates an interrupt (if enabled) when a

write has been completed

7

Didactical Architecture

• Timer32 Device
– Registers

• T32_STATUS (status/commands)
• T32_DATA (data)

– T32_STATUS default value is 0xF0
» i.e. Timer NOT running

– T32_STATUS shall be set to 0x00 to stop the timer
» T32_STATUS is set to 0xF0 by the device to signal that the

operation has been done

8

Didactical Architecture

• Timer32 Device
– Registers

• T32_STATUS (status/commands)
• T32_DATA (data)

– T32_STATUS shall be set to 0x01 to set the pre-scaler (internal
register T32_PRE) to the value indicated in T32_DATA

» Available values are: 1 (default), 2, 4, 8, 16, 32
» Not available values are considered as 1
» T32_STATUS is set to 0xF0 by the device to signal that the

operation has been done
» Changing pre-scaler when the timer is running could lead to

unpredictable results
» Changing T32_DATA too early could lead to unpredictable results

9

Didactical Architecture

• Timer32 Device
– Registers

• T32_STATUS (status/commands)
• T32_DATA (data)

– T32_STATUS shall be set to 0x02 to copy the value present in
T32_DATA in the first byte (i.e., MSB) of an internal
T32_COMPARE register

» 0x03 for the second one, 0x04 for the third one, 0x05 for the fourth
one (i.e. the LSB)

» Changing T32_COMPARE when the timer is running could lead to
unpredictable results

» T32_STATUS is set to 0xF0 by the device to signal that the
operation has been done

» Changing T32_DATA too early could lead to unpredictable results

4th BYTE (LSB)3rd BYTE2nd BYTE1st BYTE (MSB)T32_COMPARE

10

Didactical Architecture

• Timer32 Device
– Registers

• T32_STATUS (status/commands)
• T32_DATA (data)

– T32_STATUS shall be set to 0x06 to ask to the device to
generate a periodic interrupt when the internal counter reaches
the value in the internal T32_COMPARE register (then the
internal counter is reset to 0x00000000 immediately)

» T32_STATUS is set to 0xFF by the device to signal that the
operation has been started (i.e. the timer is running)

11

Didactical Architecture

• Timer32 Device
– Registers

• T32_STATUS (status/commands)
• T32_DATA (data)

– T32_STATUS is set to 0x07 to ask to the device to generate an
one-shot interrupt when the internal counter reaches the value
in the internal T32_COMPARE register (then the internal
counter is reset to 0x00000000 immediately)

» T32_STATUS is set to 0xFF by the device to signal that the
operation has been started (i.e. the timer is running)

» T32_STATUS is set to 0xF0 by the device to signal that the
operation has been concluded (i.e. the timer is not running)

12

Didactical Architecture

n

n

D.C.

D.C.

D.C.

D.C.

D.C.

D.C

T32_COMPARE

D.C.

D.C.

n

n

n

n

n

D.C
(Don’t Care!)

T32_DATA

After interrupt internal counter
is reset to 0x00000000

T32_STATUS=0xFF

After the interrupt:
T32_STATUS=0xF0

Generate an one-shot interrupt
when the internal counter

reaches the value of T32_COMPARE

None0x07

After interrupt internal counter
is reset to 0x00000000

T32_STATUS=0xFF
(Timer running)

Generate a periodic interrupt
when the internal counter

reaches the value of T32_COMPARE

None0x06

Changing T32_DATA too early
could lead to unpredictable results

T32_STATUS=0xF0Set the 4th byte of
T32_compare to n

Timer not running0x05

Changing T32_DATA too early
could lead to unpredictable results

T32_STATUS=0xF0Set the 3rd byte of
T32_compare to n

Timer not running0x04

Changing T32_DATA too early
could lead to unpredictable results

T32_STATUS=0xF0Set the 2nd byte of
T32_compare to n

Timer not running0x03

Changing T32_DATA too early
could lead to unpredictable results

T32_STATUS=0xF0Set the 1st byte of
T32_compare to n

Timer not running0x02

If (n != from 1,2,4,8,16,32) n=1

Changing T32_DATA too early
could lead to unpredictable results

T32_STATUS=0xF0
Set the prescaler to n

(T32_PRE=n)
Timer not running0x01

0xF0 is the default value
for T32_STATUS

T32_STATUS=0xF0Stop the timerNone0x00

CommentsPostActionPrerequisiteCommand
(T32_STATUS)

Timer 32 Overview

13

Didactical Architecture

• In didarch.h

#define TRUE 1
#define FALSE 0

typedef int8 … (don’t care!)
typedef uint8 … (don’t care!)
typedef int16 … (don’t care!)
typedef uint16 … (don’t care!)
typedef float16 … (don’t care!)

typedef PORT … (don’t care!)

14

Didactical Architecture

• In didarch.h

/* Input device data register */
#define IN_DATA … (don’t care!)
/* Input device status register */
#define IN_STATUS … (don’t care!)

/* Output device data register */
#define OUT_DATA … (don’t care!)
/* Output device status register */
#define OUT_STATUS … (don’t care!)

/* Timer32 data register */
#define T32_DATA … (don’t care!)
/* Output device status register */
#define T32_STATUS … (don’t care!)

15

Didactical Architecture

• In didarch.h
– I/O Primitives

• Memory-mapped I/O

char peek(int8 volatile *location)
{

return *location;
}

void poke(int8 *location, int8 newval)
{

(*location) = newval;
}

16

Didactical Architecture

• In didarch.h
– I/O Primitives

• Port-based I/O

char ppeek(int8 volatile port)
{

return port;
}

void ppoke(PORT port, int8 newval)
{

port = newval;
}

Port names can be used also as int8 variables

17

Exercises

• #1
– Develop a C program that writes on P1 the number of seconds

elapsed from the start of the system
• Make hypothesis on overflow management

• #2
– Develop a C program that receives 10 values (N) from the

Input Device and then sends them on P1 one at a second in
crescent order

• Try solutions with and without Input Devices interrupt

• #3
– Develop a C program that receives 10 values (N) from the

Input Device and sends their average to the Output Device
• Try solutions with and without interrupts

18

Exercises

• #4
– Develop a C program that receives a sequence of n (N) values

(N) terminated by 0xFF from the Input Device and send their
average to the Output Device

• Make hypothesis on n and on overflow management
• Try solutions with and without interrupts

• #5
– Develop a C program that receives 10 values (N) from the

Input Device, send them out on P1 with a frequency of 2 Hz in
descent order, and send their average to the Output Device.
Meanwhile, the program writes on P0 the number of seconds
elapsed from the start of the system

• Make hypothesis on overflow management
• Try solutions with and without I/O Devices interrupts

• …

19

Improvements

• Add peripherals
• Add timers
• Add WDT and reset
• Introduce buttons and led
• Add peripherals described in VHDL
• Bit banging
• Multi-core
• …

