
Intel® Edison Board
Homelab

Students:

Salvatore Campanella
Alessandra Morelli Ciarelli
Andrea Di Bartolomeo
Valentina D’Orazio

PhD Luigi Pomante
PhD Student Vittoriano Muttillo

Summary

2

1. About Intel® Edison Development Platform
2. About Intel® Edison Kit for Arduino
3. Assemble your board
4. About Intel® Edison Board
5. Connect your Board
6. About Grove Starter Kit for Arduino
7. Software libraries, repositories and sensors limitation
8. Installing drivers, software libraries and more
9. Useful tips
10. Basics examples
11. Cloud

Homelab Intel® Edison Board

1. About Intel Edison
Development
Platform

3Homelab Intel® Edison Board

• Dual-core Intel® Atom™ processor at 500 MHz
• 1 GB DDR3 RAM, 4 GB eMMC flash
• 40 multiplexed GPIO interfaces
• Bluetooth* 4.0, Wi-Fi*
• Yocto Project*, Brillo*
• Arduino* compatible
• Open-source software development environment
• C/C++, Python*, Node.js*, HTML5, JavaScript*

About Intel Edison Development Platform

4

Designed to lower the barriers to entry for a range of inventors,

entrepreneurs and consumer product designers to rapidly

prototype and produce “Internet of Things” (IoT) and wearable

computing products.

Homelab Intel® Edison Board

2.About Intel® Edison
Kit for Arduino

5Homelab Intel® Edison Board

About Intel® Edison Kit for Arduino

6

Intel® Edison compute module

Arduino* expansion board

Assembly hardware

Micro-B USB to Standard-B USB cables (x 2)

Direct current (DC) power supply

Homelab Intel® Edison Board

3.Assemble your
board

7Homelab Intel® Edison Board

1. Place the Intel Edison module within the

white outline on your expansion board

2. Press down on the Intel Edison compute

module

3. Use the two hex nuts (included in the

package) to secure the module to the

expansion board.

Assemble your board

8

1

2 3

Homelab Intel® Edison Board

Assemble your board

9

4. Now you have to install the plastic

spacers.

5. Your Arduino expansion board should

look like the photo

4

5

Homelab Intel® Edison Board

4.About Intel® Edison
Board

10Homelab Intel® Edison Board

Microswitch:
You can switch between USB host mode and USB device mode
using the microswitch.

• Device mode: you can use your board as a computer
peripheral using a micro-USB cable, program the board over
USB, mount the on-board flash memory like a disk drive, and
more.

• Host mode: In host mode, you can plug USB peripherals
with a standard-sized USB cable (such as mice, keyboards,
and the like) into the board.

Middle USB port (Micro A type):
This port is used for

• 5V power
• programming the Intel Edison board using the Arduino IDE
• reading/writing to the onboard flash memory
• using Ethernet over USB

Edge port (Micro A Type):
This port is used for shell access via serial communication over
USB.

About Intel® Edison Board

11

External power supply connected:
A 7-15 volt DC power supply is plugged into the power
barrel connector for stable and reliable power. External
power is not always required but highly recommended.

Standard USB port:
This port is for regular connections of USB peripherals,
such as mice, keyboards, and more.

Homelab Intel® Edison Board

5.Connect your
Board

12Homelab Intel® Edison Board

USB Device Mode vs USB Host Mode

Before connecting USB cables to an Intel Edison board, you should know how to power the board and the

difference between USB device mode and USB host mode.

• Host mode: the board acts like a computer. A USB peripheral (such as a mouse, keyboard, or webcam)

can be plugged into the Intel® Edison board.

• Device mode: the board acts as a computer peripheral to your computer.

Connect the Intel Edison board to your computer while in device mode in order to:

• Supply 5V power to the board

• Read/write to the on-board flash memory from your computer like a disk drive
• Program the board over USB using the Arduino IDE
• Program the Intel Edison board using the Intel System Studio IoT Edition IDEs
• Below, you can see how to setting the USB mode.

Connect your Board

13Homelab Intel® Edison Board

Device Mode

The microswitch is toggled down towards the two

micro USB ports. A USB cable with a micro-B type

connector can now be plugged into the top micro USB

port and the other end plugged into your computer.

Host Mode
The microswitch is toggled up towards the standard

USB port. A USB peripheral with a standard type

connector can now be plugged into the USB port

above the hardware slider. In addition, you must supply

7-15 V DC external power via the DC power barrel.

Connect your Board

14Homelab Intel® Edison Board

UART/Serial
Connect to the shell on your Intel Edison board using a

serial connection via Terminal or PuTTY.

Plug a USB cable with a micro-B type connector into

the bottom micro USB port, and the other end to your

computer.

Important
In all the experiments you will use only the USB Device

mode and the USB UART/serial mode, as shown before.

Connect your Board

15Homelab Intel® Edison Board

Power the board
External power is not always required but highly

recommended.

In many cases, you can use only USB for power.

However, if you are experiencing unexpected behavior, your

computer's USB port may not be reliably supplying power to

the board.

A green LED should light up and stay lit when the device

mode and/or DC power supply cables are connected.

Troubleshooting

- The green LED does not light up. Check your power

supply and/or cable connections.

- The green LED is turning on and off. Use an external

DC power supply or a powered USB hub. If you are

connected to a laptop, plug in its AC adapter.

Connect your Board

16

Is the board ready?

Your board is fully initialized when your computer

mounts a new drive.

The board needs approximately one minute to go

through the entire Linux startup process.

If you do not see a new drive, it is likely that the board

isn’t getting enough power from the USB port.

Homelab Intel® Edison Board

6.About Grove
Starter Kit for
Arduino

17Homelab Intel® Edison Board

Modules that you can find in the kit:

• Grove – Button x 1

• Grove – Buzzer x 1

• Grove – LED x 3 (Green, Blue, Red)

• Grove – Sound Sensor x 1

• Grove – 3 Axis Digital Accelerometer x 1

• Grove – Touch Sensor x 1

• Grove – Light Sensor x 1

• Grove – Temperature Sensor x 1

• Grove – Base Shield V2 x 1

• Grove – LCD with RGB backlight x 1

• Grove – Rotary Angle Sensor x 1

About Grove Starter Kit for Arduino

18

Grove is a modular electronic platform for quick

prototyping. Every module has one function, such

as touch sensing, creating audio effect and so on.

Just plug the modules you need to the base shield,

then you are ready to test your idea

Homelab Intel® Edison Board

7.Software libraries,
repositories and
sensors limitation

19Homelab Intel® Edison Board

• C/C++ library with bindings to Python, Javascript

and Java to interface with the I/O on Galileo,

Edison and other platforms

• structured and sane API where port

names/numbering matches the board that you

are on

• makes easier for developers and sensor

producers to map their sensors and actuators on

top of supported hardware and to allow control of

low level communication protocol by high level

languages and constructs

Software libraries, repositories and sensors limitation

20

MRAA libraries API

Homelab Intel® Edison Board

• UPM repository provides software drivers for a

wide variety of commonly used sensors and

actuators. These software drivers interact with

the underlying hardware platform (or

microcontroller), as well as with the attached

sensors, through calls to MRAA APIs.

• Programmers can access the interfaces for

each sensor by including the sensor’s

corresponding header file and instantiating

the associated sensor class.

Software libraries, repositories and sensors limitation

21

UPM (Useful Packages & Modules) Sensor/Actuator repository for MRAA

• C++ interfaces have been defined for the

following sensor/actuator types, but they are

subject to change:

○ Light controller

○ Light sensor

○ Temperature sensor

○ Humidity sensor

○ Pressure sensor

○ Gas sensor

○ Analog to digital converter

Homelab Intel® Edison Board

8.Installing drivers,
software libraries
and more

22Homelab Intel® Edison Board

Download and Run the Setup Tool

1. Get the latest setup tool for Windows* 64-bit from: software.intel.com/iot/hardware/edison/downloads

Then, double-click the downloaded EXE file to launch the setup tool.

Installing drivers, software libraries and more

23

2. Install Drivers.

3. Flash Firmware

4. Enable Security

5. Connect Wi-Fi.

Homelab Intel® Edison Board

https://software.intel.com/iot/hardware/edison/downloads

Installing drivers, software libraries and more

24

Flashing your firmware
• When requested by the setup tool, plug in your board to your

computer in USB device mode.

• A USB cable with a micro-B type connector can now be

plugged into the top micro USB port, and the other end

plugged into your computer.

• The setup tool will attempt to flash your board. The entire

flashing process may take up to 10 minutes.

Troubleshooting

Due to many factors mainly related to USB drivers,

sometimes the setup tool cannot flash your board.

If you get an error message about an unsuccessful

image update while using the setup tool, use the

manual process for flashing your board.

Homelab Intel® Edison Board

Flashing your firmware manually

1. Download the pre-built Yocto* complete image from: software.intel.com/iot/hardware/edison/downloads

listed under the "Intel® Edison Board Firmware Software Release" heading.

2. Right-click on the downloaded ZIP file and select Extract.

The firmware image file contents will be extracted into a new folder named edison-iotdk-image-[release].

3. Download the latest copy of dfu-util.exe and libusb-1.0.dll from the dfu-util site: http://dfu-util.sourceforge.net/ .

4. Place dfu-util.exe and libusb-1.0.dll in the same folder you extracted the firmware image file to.

5. Open a new Windows Command Prompt window and use the command line to navigate to the folder you extracted the

firmware image to. For example:

Installing drivers, software libraries and more

25Homelab Intel® Edison Board

http://software.intel.com/iot/hardware/edison/downloads
http://dfu-util.sourceforge.net/

6. Run the flashall script, and then follow the onscreen prompts.

7. When requested by the script, plug in your board to your computer using the USB device mode.

8. The flashall script can take up to 5 minutes to complete the flashing process.

Troubleshooting

Do not power off or unplug your board during the flashing process

Unless requested by the script, interrupting the flashing process by unplugging the power cable may leave your

board in a non-working state.

Installing drivers, software libraries and more

26Homelab Intel® Edison Board

Set a Password and enable SSH

1. Click Enable Security.

2. You can set a custom name for your Intel Edison board. A unique device name will help in

identifying your board if there are multiple boards nearby, like at a hackathon or workshop.

Type a name for your board in the field, then click Set name. Once you see the confirmation message,

click Next.

3. Type a password for your board, then click Set password. Once you see the confirmation message,

click Next.

Installing drivers, software libraries and more

27Homelab Intel® Edison Board

Connect the board to your Wi-Fi Network

1. On the Set up options page, click Connect Wi-Fi. Wait up to one minute as your computer scans for available Wi-Fi

networks.

2. From the Detected networks drop-down list, select your network.

3. From the Security drop-down list, select the network's security type.

4. Provide your login and password information, then click Connect to connect your Wi-Fi network.

Once you're finished with the setup tool, you can close it.

The setup tool is not just for initial setup.

If you want to reflash or update the firmware on your Intel® Edison board in the future, change the device name or

password, or connect your board to Wi-Fi, you can re-run the setup tool.

Installing drivers, software libraries and more

28Homelab Intel® Edison Board

Choose IDE

Get started programming !!!

• Download the Intel® System Studio IoT Edition from this link.

• Intel System Studio IoT Edition depends on a Java Runtime Engine (JRE) to execute. You should

have the 64-bit version of Java SE Development Kit 8 (also called JDK version 1.8). Intel System

Studio IoT Edition also supports OpenJDK 8 and higher.

• You can download the JDK from Oracle at this link

• Install the 64-bit JDK (indicated by x64 in the download name), not the 32-bit (x86) version.

Installing drivers, software libraries and more

29Homelab Intel® Edison Board

https://software.intel.com/en-us/iot/tools-ide/ide
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Troubleshooting

If you do not have the correct JDK

installed, you may see a warning

message

Installing drivers, software libraries and more

30

Follow this steps to solve this problem:

• In the Intel System Studio IoT Edition, choose

Window > Preferences.

• Expand the Java category and click Installed JREs. A list

of installed JREs and JDKs displays.

• If your JDK is not included in the list, click Search.

Browse to and select the folder that contains the JDK,

then click OK. Your JDK is added and displayed in the

Installed JREs list.

• Select your JDK, then click OK.

• Close and relaunch the Intel System Studio IoT Edition

to confirm that the message does not reappear.

Homelab Intel® Edison Board

9.Useful tips

31Homelab Intel® Edison Board

Setting up serial terminal with PuTTY

1. Download the PuTTY terminal emulator and double-click the

putty.exe file to run it.

2. Configure the PuTTY menu as follows:

a. Under Connection type, select Serial

b. In the Serial line field, enter the COM# for your board.

c. In the Speed field, type 115200. Click Open.

3. When you see a blank screen, press the Enter key twice. A login prompt is displayed. At the login

prompt, type root and press Enter.

4. Press Enter when prompted for a password. You should see a terminal prompt.

Useful tips

32Homelab Intel® Edison Board

Creating an SSH connection in Intel System Studio IOT Edition

1. Choose Intel® IoT > Create Target Connection. The Intel IoT Target Connection dialog box opens.

2. From the list, select the board to connect to. If your board is not in the list, you can create your
connection manually, as follows:

○ Type a name for the connection in the Connection name field.

○ Type the board's name or IP address in the Target name or IP address field.

3. Click OK. Your connection is created and added to the Target SSH Connections tab.

4. For viewing SSH connections: choose Intel® IoT > Target SSH Connections View. The Target SSH
Connections tab displays, with a list of SSH connections that you have created. The first column
shows the connection's status, as follows:

○ Disconnected

○ Connecting

○ Connected

Useful tips

33Homelab Intel® Edison Board

5. Now you can create the SSH Connection. On the Target SSH Connections tab, right-click the

connection and select Connect

5. If a warning message about host authenticity displays, click Yes to continue connecting.

6. Enter your user-name and password, then click OK

7. If you see a message about synching libraries, click OK to synchronize the UPM and MRAA libraries

on your system with the libraries on your board. A success message displays when the connection is

complete. Click OK.

Useful tips

34Homelab Intel® Edison Board

Now, you are ready
to work with
your Board!

35Homelab Intel® Edison Board

10.Basics examples

36Homelab Intel® Edison Board

Basics examples - Blink led

37

Blink Led
This example show you how to toggle the on board
LED every second in an infinite loop.

• Requirements:
Intel Edison board using a UART/Serial connection

• Start project:

o Launch the file batch iss-iot-launcher,

o Open Eclipse and create a new Intel IoT
Project

o Choose «C/C++ Project» and press Next, then
choose «Empty C++ Project».

Homelab Intel® Edison Board

Establish the serial connection:

• if you don’t see any element under the Target

selection tab, means that you have not created

any serial connection. Create it following the

steps in the ‘Creating an SSH connection in Intel

System Studio IOT Edition’ in the ‘Useful Tips’

Section (section 9).

• Else, if the icon near pearl-edison[selected] is

red, it means that the connection is not

established. Double click on red icon to solve

the problem. The icon became green.

Basics examples - Blink led

38Homelab Intel® Edison Board

• Code - main.c file content

/*

* This code allows to the on board LED toggling every second, in an infinite loop

*/

#include "mraa.hpp"

#include <iostream>

#include <unistd.h>

int main(){

// Create a GPIO object from MRAA, using it

mraa::Platform platform = mraa::getPlatformType();

mraa::Gpio* d_pin = NULL;

switch (platform) {

case mraa::INTEL_EDISON_FAB_C:

d_pin = new mraa::Gpio(13, true, false);

break;

default:

std::cerr << "Unsupported platform, exiting" << std::endl;

//std::cerr is an ad-hoc output for errors/è un output apposta per gli errori

return mraa::ERROR_INVALID_PLATFORM;

}

Basics examples - Blink led

39Homelab Intel® Edison Board

if (d_pin == NULL) {

std::cerr << "Can't create mraa::Gpio object, exiting" << std::endl;

return mraa::ERROR_UNSPECIFIED;

}

// set the pin as output

if (d_pin->dir(mraa::DIR_OUT) != mraa::SUCCESS) {

std::cerr << "Can't set digital pin as output, exiting" << std::endl;

return MRAA_ERROR_UNSPECIFIED;

}

// loop forever toggling the on board LED every second

for (;;) {

d_pin->write(1);

sleep(1); //time «LED light on»

d_pin->write(0);

sleep(1); //time «LED light off»

}

return mraa::SUCCESS;

}

Basics examples - Blink led

40Homelab Intel® Edison Board

Analog Input

This example demonstrates how to read an analog voltage value from an input pin using the MRAA library.

• Requirements:

o The Intel Edison board using a UART/Serial connection

o Base shield

o 1 Grove button (Grove Base Shield Port A0)

• Start project:
Follow the same steps shown in the first example (Blink led) to create a new project on Eclipse and establish the serial

connection.

Basics examples - Analog Input

41Homelab Intel® Edison Board

• Code - main.c file content

/**

* Demonstrate how to read an analog voltage value from an input pin using the

* MRAA library. Any sensor that outputs a variable voltage can be used with

* this example code.

* Suitable ones in the Grove Starter Kit are the Rotary Angle Sensor, Light

* Sensor, Sound Sensor, Temperature Sensor.

* Analog sensor connected to pin A0 (Grove Base Shield Port A0)

*/

#include "mraa.hpp"

#include <iostream>

#include <unistd.h>

int main()

{

// Create an analog input object from MRAA using pin A0

mraa::Aio* a_pin = new mraa::Aio(0);

Basics examples - Analog Input

42Homelab Intel® Edison Board

if (a_pin == NULL) {

std::cerr << "Can't create mraa::Aio object, exiting" << std::endl;

return MRAA_ERROR_UNSPECIFIED;

}

// loop forever printing the input value every second

for (;;) {

uint16_t pin_value = a_pin->read();

std::cout << "analog input value " << pin_value << std::endl;

sleep(1);

}

return MRAA_SUCCESS;

}

Basics examples - Analog Input

43Homelab Intel® Edison Board

Basics examples - Analog Input

44

• If you don’t press the button, the values
are the following:

• Then press the button to obtain the
following values:

Homelab Intel® Edison Board

Digital Input/Output

This example shows how to read and write a digital value from an input pin to an output pin, using the MRAA

library.

• Requirements:

o Intel Edison board using a UART/Serial connection

o Base Shield

o 1 Grove Button (connected to the Grove Base Shield Port D4)

o 1 Grove Led (connected to the Grove Base Shield Port D6)

• Start project:

Follow the same steps shown in the first example (Blink led) to create a new project on Eclipse and establish the

serial connection.

• Code - main.c file content
/* Demonstrate how to read and write a digital value from an input pin and to an *output pin using the MRAA

library. Suitable ones in the Grove Starter Kit are the Button and a led. */

Basics examples - Digital Input/Output

45Homelab Intel® Edison Board

#include "mraa.hpp"

#include <iostream>

#include <unistd.h>

using namespace std;

int main()

{

// Check that we are running on Galileo or Edison

mraa::Platform platform = mraa::getPlatformType();

if ((platform != mraa::INTEL_GALILEO_GEN1) &&

(platform != mraa::INTEL_GALILEO_GEN2) &&

(platform != mraa::INTEL_EDISON_FAB_C)) {

std::cerr << "Unsupported platform, exiting" << std::endl;

return mraa::ERROR_INVALID_PLATFORM;

}

// Create two GPIO object from MRAA using pin 4 and 6. d_pin is the button, d_pin1 is the led

mraa::Gpio* d_pin = new mraa::Gpio(4);

mraa::Gpio* d_pin1 = new mraa::Gpio(6);

if (d_pin == NULL || d_pin1==NULL) {

std::cerr << "Can't create mraa::Gpio object, exiting" << std::endl;

return mraa::ERROR_UNSPECIFIED;

}

Basics examples - Digital Input/Output

46Homelab Intel® Edison Board

// Set the pin as input

d_pin->dir(mraa::DIR_IN);

// Set the pin as output

d_pin1->dir(mraa::DIR_OUT);

// Loop forever printing the digital input value every second

for (;;) {

//Read Button

int pin_value = d_pin->read();

std::cout << "value " << pin_value << std::endl;

sleep(1);

if(pin_value==1)

{

d_pin1->write(1);

sleep(3);

}else{

d_pin1->write(0);

sleep(1);

}

//LED write

}

return mraa::SUCCESS;

}

Basics examples - Digital Input/Output

47Homelab Intel® Edison Board

Interrupt

This example shows how to react on an external event with an ISR (Interrupt Service Routine), which will run

independently of the main program flow using the MRAA library. The counter counts the number of transitions

between the states of up/down of the button.

• Requirements:

o Intel Edison board using a UART/Serial connection

o Base Shield

o 1 Grove Button (Grove Base Shield Port D4)

• Start project:

Follow the same steps shown in the first example (Blink led) to create a new project on Eclipse and establish

the serial connection.

Basics examples - Interrupt

48Homelab Intel® Edison Board

• Code - main.c file content

/**

* Demonstrate how to react on an external event with an ISR (Interrupt Service

* Routine), which will run independently of the main program flow using the

* MRAA library.

* Any button or sensor that can generate a voltage transition from ground to

* Vcc or viceversa can be used with this example code.

* Suitable ones in the Grove Starter Kit are the Button and Touch Sensor.

*/

#include "mraa.hpp"

#include <iostream>

#include <unistd.h>

using namespace std;

// - digital in: input connected to digital pin 4 (Grove Base Shield Port D4)

// counter that will be updated by the interrupt routine

static volatile int counter = 0;

Basics examples - Interrupt

49Homelab Intel® Edison Board

// ISR, update the value of the counter

void interrupt(void * args) {

++counter;

}

int main()

{

// Check that we are running on Galileo or Edison

mraa::Platform platform = mraa::getPlatformType();

if ((platform != mraa::INTEL_GALILEO_GEN1) &&

(platform != mraa::INTEL_GALILEO_GEN2) &&

(platform != mraa::INTEL_EDISON_FAB_C)) {

std::cerr << "Unsupported platform, exiting" << std::endl;

return mraa::ERROR_INVALID_PLATFORM;

}

// Create a GPIO object from MRAA using pin 4

mraa::Gpio* d_pin = new mraa::Gpio(4);

if (d_pin == NULL) {

std::cerr << "Can't create mraa::Gpio object, exiting" << std::endl;

return mraa::ERROR_UNSPECIFIED;

}

Basics examples - Interrupt

50Homelab Intel® Edison Board

// Set the pin as input

if (d_pin->dir(mraa::DIR_IN) != mraa::SUCCESS) {

std::cerr << "Can't set digital pin as input, exiting" << std::endl;

return mraa::ERROR_UNSPECIFIED;

}

// Set the ISR, it will be executed on both edges (on Galileo Gen 1 only

// this mode is supported)

if (d_pin->isr(mraa::EDGE_BOTH, interrupt, NULL) != mraa::SUCCESS) {

std::cerr << "Can't assign ISR to pin, exiting" << std::endl;

return mraa::ERROR_UNSPECIFIED;

}

// Loop forever printing the counter value every second

for (;;) {

std::cout << "counter value " << counter << std::endl;

sleep(1);

}

return mraa::SUCCESS;

}

Basics examples - Interrupt

51Homelab Intel® Edison Board

Display temperature on LCD

In this example is shown how to update the temperature values and how to reflect the changes on the LCD.

Below are shown some features of the example:

❖ change LCD backlight color based on the measured temperature (a cooler color for low temperatures, a warmer one for
high temperatures)

❖ display current temperature

❖ record and display MIN and MAX temperatures

❖ reset MIN and MAX values if the button is being pushed

❖ blink the led to show the temperature was measured and data updated

• Requirements:

o Intel Edison board using a UART/Serial connection

o Grove Base Shield

o Grove Button (connected to the Grove Base Shield port D4)

o 1 Grove Led (connected to the Grove Base Shield port D3)

o Grove Temperature Sensor (connected to the Grove Base Shield port A0)

o Grove LCD (connected to any I2C on the Grove Base Shield)

Basics examples - Display temperature on LCD

52Homelab Intel® Edison Board

● Start project:

Follow the same steps shown in the first example (Blink led) to create a new project on Eclipse and

establish the serial connection.

Basics examples - Display temperature on LCD

53

Warning

Before compiling the code you need to add

additional linker flags, if you don’t already have

them: -lupm-i2clcd -lupm-grove. To do

this you have to right-click on project and select

properties and check if you can see the

respective library added under Cross G++

linker. Otherwise, if you don’t have them, add

the libraries to the linker:

Homelab Intel® Edison Board

• Code - main.c file content

/**

* This project template includes the starting code needed

* to use the various sensors that come with the Grove Starter Kit.

* Update the temperature values and reflect the changes on the LCD.

*

* - Grove LED (GroveLed) connected to the Grove Base Shield Port D3

* - Grove Button (GroveButton) connected to the Grove Base Shield Port D4

* - Grove Temperature Sensor (GroveTemp) connected to the Grove Base Shield Port A0

* - Grove LCD (Jhd1313m1) connected to any I2C on the Grove Base Shield

*/

#include "mraa.hpp"

#include "grove.hpp"

#include "jhd1313m1.h"

#include <climits>

#include <iostream>

#include <sstream>

#include <unistd.h>

using namespace std;

Basics examples - Display temperature on LCD

54Homelab Intel® Edison Board

/*

* Grove Starter Kit example

*

* Demonstrate the usage of various component types using the UPM library.

*

* - digital in: GroveButton connected to the Grove Base Shield Port D4

* - digital out: GroveLed connected to the Grove Base Shield Port D3

* - analog in: GroveTemp connected to the Grove Base Shield Port A0

* - I2C: Jhd1313m1 LCD connected to any I2C on the Grove Base Shield

*

* Additional linker flags: -lupm-i2clcd -lupm-grove

*/

/*

* Update the temperature values and reflect the changes on the LCD

* - change LCD backlight color based on the measured temperature,

* a cooler color for low temperatures, a warmer one for high temperatures

* - display current temperature

* - record and display MIN and MAX temperatures

* - reset MIN and MAX values if the button is being pushed

* - blink the led to show the temperature was measured and data updated

*/

Basics examples - Display temperature on LCD

55Homelab Intel® Edison Board

void temperature_update(upm::GroveTemp* temperature_sensor, upm::GroveButton* button,

upm::GroveLed* led, upm::Jhd1313m1 *lcd)

{

// minimum and maximum temperatures registered, the initial values will be

// replaced after the first read

static int min_temperature = INT_MAX;

static int max_temperature = INT_MIN;

// the temperature range in degrees Celsius,

// adapt to your room temperature for a nicer effect!

const int TEMPERATURE_RANGE_MIN_VAL = 18;

const int TEMPERATURE_RANGE_MAX_VAL = 31;

// other helper variables

int temperature; // temperature sensor value in degrees Celsius

float fade; // fade value [0.0 .. 1.0]

uint8_t r, g, b; // resulting LCD backlight color components [0 .. 255]

std::stringstream row_1, row_2; // LCD rows

// update the min and max temperature values, reset them if the button is

// being pushed

temperature = temperature_sensor->value();

Basics examples - Display temperature on LCD

56Homelab Intel® Edison Board

if (button->value() == 1) {

min_temperature = temperature;

max_temperature = temperature;

} else {

if (temperature < min_temperature) {

min_temperature = temperature;

}

if (temperature > max_temperature) {

max_temperature = temperature;

}

}

// display the temperature values on the LCD

row_1 << "Temp " << temperature << " ";

row_2 << "Min " << min_temperature << " Max " << max_temperature << " ";

lcd->setCursor(0,0);

lcd->write(row_1.str());

lcd->setCursor(1,0);

lcd->write(row_2.str());

Basics examples - Display temperature on LCD

57Homelab Intel® Edison Board

// set the fade value depending on where we are in the temperature range

if (temperature <= TEMPERATURE_RANGE_MIN_VAL) {

fade = 0.0;

} else if (temperature >= TEMPERATURE_RANGE_MAX_VAL) {

fade = 1.0;

} else {

fade = (float)(temperature - TEMPERATURE_RANGE_MIN_VAL) /

(TEMPERATURE_RANGE_MAX_VAL - TEMPERATURE_RANGE_MIN_VAL);

}

// fade the color components separately

r = (int)(255 * fade);

g = (int)(64 * fade);

b = (int)(255 * (1 - fade));

// blink the led for 50 ms to show the temperature was actually sampled

led->on();

usleep(50000);

led->off();

// apply the calculated result

lcd->setColor(r, g, b);

}

Basics examples - Display temperature on LCD

58Homelab Intel® Edison Board

int main()

{

// check that we are running on Galileo or Edison

mraa::Platform platform = mraa::getPlatformType();

if ((platform != mraa::INTEL_GALILEO_GEN1) &&

(platform != mraa::INTEL_GALILEO_GEN2) &&

(platform != mraa::INTEL_EDISON_FAB_C)) {

std::cerr << "Unsupported platform, exiting" << std::endl;

return mraa::ERROR_INVALID_PLATFORM;

}

// button connected to D4 (digital in)

upm::GroveButton* button = new upm::GroveButton(4);

// led connected to D3 (digital out)

upm::GroveLed* led = new upm::GroveLed(3);

// temperature sensor connected to A0 (analog in)

upm::GroveTemp* temp_sensor = new upm::GroveTemp(0);

// LCD connected to the default I2C bus

upm::Jhd1313m1* lcd = new upm::Jhd1313m1(0);

Basics examples - Display temperature on LCD

59Homelab Intel® Edison Board

// simple error checking

if ((button == NULL) || (led == NULL) || (temp_sensor == NULL) || (lcd == NULL)) {

std::cerr << "Can't create all objects, exiting" << std::endl;

return mraa::ERROR_UNSPECIFIED;

}

// loop forever updating the temperature values every second

for (;;) {

temperature_update(temp_sensor, button, led, lcd);

sleep(1);

}

return mraa::SUCCESS;

}

Basics examples - Display temperature on LCD

60Homelab Intel® Edison Board

Light sensor and buzzer

This example uses a light sensor; when the light sensor senses

that the light is off, the buzzer sounds.

• Requirements:

o Intel Edison board using a UART/Serial connection

o Base Shield

o 1 Grove Light Sensor (Grove Base Shield Port A0)

o 1 Buzzer (Grove Base Shield Port D5)

• Start project:

Follow the same steps shown in the first example (Blink led) to create

a new project on Eclipse and establish the serial connection.

Include the related buzzer library and the light sensor library with an

alternative way: click on IoT Sensor Support, search sound, select

buzzer than search light/proximity/IR and select grove:

Basics examples - Light sensor and buzzer

61Homelab Intel® Edison Board

• Code - main.c file content

//When the light sensor senses that the light is off, the buzzer sounds.

#include <iostream>

#include <signal.h>

#include <unistd.h>

#include <buzzer.h>

#include <grove.h>

using namespace std;

int main() {

int chord[] = { DO, RE, MI };

// Create the light sensor object using AO pin on analogic

upm::GroveLight* light = new upm::GroveLight(0);

// create Buzzer instance in ~5 PWM

upm::Buzzer* sound = new upm::Buzzer(5);

// Read the input and print both the raw value and a rough lux value,

// waiting one second between readings

Basics examples - Light sensor and buzzer

62Homelab Intel® Edison Board

while(1) {

std::cout << light->name() << " raw value is " << light->raw_value() <<", which is roughly " << light->value()

<< " lux" << std::endl;

sleep(1);

if(light->value()==1 || light->value()==2){

// print sensor name

std::cout << sound->name() << std::endl;

//play buzzer

for (int chord_ind = 0; chord_ind < 3; chord_ind++) {

// play each note for one second

std::cout << sound->playSound(chord[chord_ind], 1000000) << std::endl;

usleep(25000);

sound->stopSound();

}

}else{

//stop buzzer

sound->stopSound();

}

}

}

Basics examples - Light sensor and buzzer

63Homelab Intel® Edison Board

11.Cloud*
*Valentina D’Orazio, ‘’Analisi e sviluppo di librerie Cloud-oriented per tecnologie Intel IoT’’, 2016

64Homelab Intel® Edison Board

Introduction

• A cloud computing refers to a delivery paradigm of

computing resources, such as storage, processing or

transmission of data, characterized by the on-demand

availability through the Internet from a set of pre-existing and

configurable resources.

• This guide contains steps to connect and upload data from

your Intel® IoT Platform to a cloud.

• Will be analyzed different available solutions:

○ Intel IoT Analytics. (Unfortunately discontinued)

○ IBM Bluemix IoT

○ Amazon Web Services

○ Microsoft Azure.

Cloud

65Homelab Intel® Edison Board

Communication Protocols

• The main architectural models for a network are peer-to-peer and

client-server. Peer-to-peer architecture is used for the MQTT

protocol while client-server architecture is used for the Cloud.

• Messages exchange between processes is done through a

software interface called socket. It allows to access to the

communication channel by means of a port. In the protocol stack

ISO/OSI, sockets provide the connection interface between the

Application and Transport layer.

Cloud

66

• Both protocols offer a reliable connection service using the transport layer of the communication protocol TCP/IP.

• HTTP is a protocol at the application layer of the protocol stack ISO/OSI. It defines the format and sequence of messages

exchanged between browser and web server. The typical usage of HTTP is for request exchange and response messages

composed of a header and a body.

Homelab Intel® Edison Board

Cloud

67

MQTT Protocol

• MQ Telemetry Transport is a simple and lightweight

messaging protocol at the application level in the stack

protocol ISO/OSI that use the transport protocol TCP/IP.

• It’s designed to minimize the bandwidth and it allows you to

create a reliable client/server architecture.

• Each connection occurs through the broker, which is able to

manage up thousands of clients MQTT connected

simultaneously and filter all received messages, authenticates

and authorizes the client.

• The client can perform two types of actions:

○ post messages to the broker action of PUBLISH,
○ receive messages from the broker, action of SUB-

SCRIBE.

Homelab Intel® Edison Board

Dashboard

• “IoT Analytics Dashboard” cloud is an Intel free service for managing and archiving of data provided by

“Intel Edison” platform.

• It provides a series of targeted resources to the IoT applications development, in particular:

○ user management: admin and guest

○ components management of Intel catalog

○ archiving of data from sensors/actuators

○ data analysis

○ graphic representation of data

○ assignment of rules for receiving alert

○ management reports via mailing services

○ remote management of actuator components

Cloud - Intel® IoT Analytics

68Homelab Intel® Edison Board

• You can reach the Dashboard login page at this link, and then register a new account or access with your

credentials.

• Once signed in you’ll see the following page.

Cloud - Intel® IoT Analytics

69

• “Devices” section shows both the

number of registered devices and

the number of those activated.

• “Last observations” keeps count of

the number of data sent, while

• “% of Transmitting Devices” keeps

the percentage of registered devices

that are broadcasting at a given

time.

Homelab Intel® Edison Board

https://dashboard.us.enableiot.com/ui/auth#/login

• In order to send measurements or actuations data to cloud you must create on it virtual component,

corresponding to the one mounted on board.

• By default the IoT Analytics Dashboard offers two sensor components (Humidity and Temperature) and

an actuator type (Powerswitch) visible in the “Catalog” section.

Cloud - Intel® IoT Analytics

70Homelab Intel® Edison Board

• You have to activate your device in order to start transmitting data to the Cloud. To do this follow the

procedure on Intel official guide at this link.

• If everything goes well, you should see the counter update on the homepage in the “Last observation”

section. In the next picture you can see an example of the homepage while the cloud receives data

from the board

Cloud - Intel® IoT Analytics

71Homelab Intel® Edison Board

https://software.intel.com/en-us/intel-iot-platforms-getting-started-cloud-analytics

• In “My Charts” section it is

possible to display,

depending on the

selected components, the

graphics of the stored

data, of which you can see

an example in the next

picture.

Cloud - Intel® IoT Analytics

72Homelab Intel® Edison Board

• IoT Analytics Dashboard supports REST interface making it possible to write software that runs on

various devices and send data to the Cloud.

• Intel provides iotkit-lib-c APIs, that allow access to the Cloud taking advantage of REST architecture

• the iotkit-agent process, preinstalled on board, runs in background on Edison and allows the user to

manage all the functionalities of the Cloud through simples terminal commands.

• When developing an application in C++ you can still use these agents invoking terminal commands

through function system.

• However this operating technique is inefficient because it doesn’t allow a rapid access to any errors and

the use of the APIs is not very intuitive and user-friendly.

• To obviate this inconvenience has been developed a new library, IoT Dapi, which will be described in

the next section.

Cloud - Intel® IoT Analytics

73Homelab Intel® Edison Board

Cloud - Intel® IoT Analytics

74

IoT DAPI Library functions:

• Connection to cloud: allows users to access the Cloud;after received token the device is first
registered and then activated using the activation code

• Check device activation: checks if device is active, otherwise it runs the procedure to request a new
activation code by returning the boolean true

• Add a component: allows to add a type of sensor component to the Cloud, through the creation of
the component in the catalog and its association to the board

• Send data to cloud: allows to send to cloud the data relating to a component registered in the
catalog

• Add rules: define on the Cloud a rule that can monitor the observations made by the board

• Digits count: utility function that returns the number of digits in an integer number

Homelab Intel® Edison Board

Mosquitto Library functions:

On board is pre-installed a mosquitto library that implements the MQTT protocol.

Below will be described the main client side functions used

• Initialization data structure: initializes the data structure containing the information to connect to the
broker

• Event management: callback: allows you to assign the callback function on_message for receiving and
managing of messages

• Authentication: allows to set the username and password for connection authentication to the broker

• Connection to broker: allows to start the connection to the broker

• Subscribe action: creates a topic and assigns it to a service quality index

• Threading: allows to manage the connection between clients and brokers through a
dedicated thread

Cloud - Intel® IoT Analytics

75Homelab Intel® Edison Board

Experimentation

In this section will be presented a simple IoT application that uses: IoT DAPI library

to connect to the Cloud and the mosquitto library that implements the MQTT

protocol.

• monitoring and controlling the temperature of a room as a real smart

thermostat

• IoT DAPI library allows the connection to the Cloud and the interaction with it

by sending the data and including a catalog, a component or a rule

• through the MQTT protocol, it sends the temperature data and control the

switching on and switching off the heating

• update of the temperature data takes place every second

Cloud - Intel® IoT Analytics

76Homelab Intel® Edison Board

Below will be shown the code.

• Manage_dash_iot.h

#ifndef MANAGE_DASH_IOT_H_

#define MANAGE_DASH_IOT_H_

#ifdef __cplusplus

extern "C" {

#endif

#include "math.h"

#include <stdio.h> // C standard library

//manage device connection and registration

#include "src/iotkit.h"

#include "src/authorization.h"

#include "lib/test_util.h"

#include "src/device_management.h"

#include "src/rest.h"

Cloud - Intel® IoT Analytics

77Homelab Intel® Edison Board

//catalog

#include "src/account_management.h"

#include "src/data_api.h"

#include "src/component_catalog.h"

#include "src/alert_management.h" //catalog and rules

#include "src/rule_management.h" //rules

bool ConnectionCloud(char *username, char *password, char *id, char *gateway, char *name);

bool AddSensorComponent(char *cmp_name, char *cmp_version, char *cmp_nameversion,

char *cmp_type, char *cmp_datatype, char *cmp_format, char *cmp_unit, char *cmp_display,

int *errorAddSensorComponent);

bool SendDataToCloud(char *name_sensor, int value);

void Addrules(char* name, char* description, char* priority, char* type, char* status,

char* resetType, char* objtype, char* objtarget, char* populationId, char* componentDataType,

char* componentTypeNumber, char* keyname, char* keyvalue, char* ConditionType,

char* ConditionValues, char* ConditionOperator, char* chooseOperator);

bool checkDeviceActivated();

int contacifre(int value);

#ifdef __cplusplus

}

#endif

#endif /* MANAGE_DASH_IOT_H_ */

Cloud - Intel® IoT Analytics

78Homelab Intel® Edison Board

• manage_dash_iot.c

#include "manage_dash_iot.h"

/* This function allows connection to cloud. After loggin in with username and password,

* the user token is taken. Next the device is created and activated by the activation

* code. Activation process make the device registration on cloud and associates device to account

*/

bool ConnectionCloud(char *username, char *password, char *id, char *gateway,

char *name) {

char *response_token = NULL;

char *response_activation_device = NULL;

response_token = getUserJwtToken(username, password);

if (checkResponseValue(response_token, 200) == false) {

//token error detected, it returns false and so the error

return false;

}

//device creation

DeviceCreationObj *Device;

79

Cloud - Intel® IoT Analytics

Homelab Intel® Edison Board

Device = createDeviceCreationObject(id, gateway, name);

response_activation_device = createADevice(Device);

if(!checkDeviceActivated()){

return false;

}

return true;

}

//check if device is activated or not

bool checkDeviceActivated() {

char *response_activation_code = NULL;

char *response_activation_device = NULL;

//activation code: is valid for an hour and is updated if expired

bool isActivated = false;

isActivated = isDeviceActivated();

Cloud - Intel® IoT Analytics

80Homelab Intel® Edison Board

if (!isActivated) {

response_activation_code = renewActivationCode();

response_activation_device = activateADevice(

getActivationCode(response_activation_code));

if (checkResponseValue(response_activation_device, 201) == false) {

return false;

}

}

return true;

}

//Adds a sensor to cloud

bool AddSensorComponent(char *cmp_name, char *cmp_version,

char *cmp_nameversion, char *cmp_type, char *cmp_datatype,

char *cmp_format, char *cmp_unit, char *cmp_display,

int *errorAddSensorComponent) {

char *response_comp = NULL;

char *response_add_component = NULL;

bool isRegistered = false;

isRegistered = isSensorRegistered(cmp_name);

Cloud - Intel® IoT Analytics

81Homelab Intel® Edison Board

if (!isRegistered) {

ComponentCatalog *cmpObject = createComponentCatalogObject(cmp_name,

cmp_version, cmp_type, cmp_datatype, cmp_format, cmp_unit,

cmp_display);

addMinValue(cmpObject, -150.0f);

addMaxValue(cmpObject, 150.0f);

addCommandString(cmpObject, NULL);

response_comp = createAnComponentCatalog(cmpObject);

if (checkResponseValue(response_comp, 201) == false) {

*errorAddSensorComponent = 1;

return false;

}

response_add_component = addComponent(cmp_name, cmp_nameversion);

//printf("Response add component: %s\n", response_add_component);

if (checkResponseValue(response_add_component, 201) == false) {

*errorAddSensorComponent = 2;

return false;

}

}

return true;

}

Cloud - Intel® IoT Analytics

82Homelab Intel® Edison Board

/* Adds a rule. A rule is set. A rule is set when you want to be notified via an alert

* in a given situation: for example if temperature exceeds 25 degrees Celsius

*/

void Addrules(char* name, char* description, char* priority, char* type, char* status,

char* resetType, char* objtype, char* objtarget, char* populationId, char* componentDataType, char*

componentTypeNumber, char* keyname,

char* keyvalue, char* ConditionType, char* ConditionValues, char* ConditionOperator, char*

chooseOperator) {

char *response = NULL;

CreateRule *createRuleObj = NULL;

CreateRuleActions *createRuleActionObj = NULL;

CreateRuleConditionValues *createRuleConditionValuesObj = NULL;

createRuleObj = createRuleObject();

createRuleActionObj = createRuleActionObject();

createRuleConditionValuesObj = createRuleConditionValuesObject();

setRuleName(createRuleObj, name);

setRuleDescription(createRuleObj, description);

setRulePriority(createRuleObj, priority);

setRuleType(createRuleObj, type);

setRuleStatus(createRuleObj, status);

setRuleResetType(createRuleObj, resetType);

Cloud - Intel® IoT Analytics

83Homelab Intel® Edison Board

setRuleActionObjType(createRuleActionObj, objtype);

addRuleActionObjTarget(createRuleActionObj, objtarget);

setRuleActions(createRuleObj, createRuleActionObj);

addRulePopulationId(createRuleObj, populationId);

addConditionComponent(createRuleConditionValuesObj, componentDataType, componentTypeNumber);

addConditionComponent(createRuleConditionValuesObj, keyname, keyvalue);

setConditionType(createRuleConditionValuesObj, ConditionType);

addConditionValues(createRuleConditionValuesObj, ConditionValues);

setConditionOperator(createRuleConditionValuesObj, ConditionOperator);

setRuleConditionOp(createRuleObj, chooseOperator);

addRuleConditionValues(createRuleObj, createRuleConditionValuesObj);

response = createAnRule(createRuleObj);

}

Cloud - Intel® IoT Analytics

84Homelab Intel® Edison Board

/* This function sends data to cloud (temperature in this case). The first part of code (throught

* digitsCount function) transform integer number, sent by sensor, to char (required by SubmitData).

*/

bool SendDataToCloud(char *name_sensor, int value) {

char numtostr[digitsCount(value)];

snprintf(numtostr, digitsCount(value) + 1, "%d", value);

char *response_temperature;

response_temperature = submitData(name_sensor, numtostr);

if (checkResponseValue(response_temperature, 201) == false) {

return false;

}

return true;

}

Cloud - Intel® IoT Analytics

85Homelab Intel® Edison Board

//This utility function counts number of digits

int digitsCount(int value) {

int numberOfDigits = 0;

if (value == 0) {

return 1;

} else {

while (value != 0) {

value = value / 10;

numberOfDigits = numberOfDigits + 1;

}

}

return numberOfDigits;

}

Cloud - Intel® IoT Analytics

86Homelab Intel® Edison Board

• cloud_management.cpp

#include <iostream>

#include <sstream>

#include <stdio.h>

#include "mraa.hpp"

#include <stdlib.h>

#include <unistd.h>

#include <grove.hpp>

#include <string>

#include "manage_dash_iot.h"

#include <ssd1327.hpp>

#include <ssd1308.hpp>

#include <ssd1306.hpp>

#include <sainsmartks.hpp>

#include <lcm1602.hpp>

#include <eboled.hpp>

#include <mosquitto.h>

#include <jhd1313m1.hpp>

using namespace std;

bool status_led = false;

Cloud - Intel® IoT Analytics

87Homelab Intel® Edison Board

void power_led(struct mosquitto *mosq, void *userdata,

const struct mosquitto_message *message);

int main() {

//##

//###### Components initialization

//##

// LCD

upm::Jhd1313m1* lcd = new upm::Jhd1313m1(0);

// Led

mraa::Gpio* led = new mraa::Gpio(4, true, false);

if (led == NULL) {

std::cerr << "Can't create mraa::Gpio object, exiting" << std::endl;

return mraa::ERROR_UNSPECIFIED;

}

// set the pin as output

if (led->dir(mraa::DIR_OUT) != mraa::SUCCESS) {

std::cerr << "Can't set digital pin as output, exiting" << std::endl;

return MRAA_ERROR_UNSPECIFIED;

}

led->write(0);

Cloud - Intel® IoT Analytics

88Homelab Intel® Edison Board

led->write(0);

// temperature sensor

upm::GroveTemp* temp = new upm::GroveTemp(0);

//###

//#### mosquitto client initialization

//###

struct mosquitto *mosq;

//client mqtt struct initialization

mosq = mosquitto_new(NULL, true, NULL);

//for messages reception

mosquitto_message_callback_set(mosq, power_led);

//connection (client connection to server)

//server configuration:

//1 - mosquitto_passwd /etc/mosquitto/password <<user>> (creates the file with the hash for the password <<password>>)

//2 - modificare /etc/mosquitto/mosquitto.conf:

// - allow_anonymous false (so the server enables the reception of user pass tls ecc ..)

// - password_file /etc/mosquitto/password (links to server the file "password" created in /etc/mosquitto/)

Cloud - Intel® IoT Analytics

89Homelab Intel® Edison Board

mosquitto_username_pw_set(mosq, "<<user>>", "<<password>>");

int error = mosquitto_connect(mosq, "127.0.0.1", 1883, 50);

lcd->clear();

if (error != 0) {

lcd->setCursor(0, 0);

lcd->write("MQTTCLIENT");

lcd->setCursor(1, 0);

lcd->write("ERROR!! EXIT");

lcd->setColor(255, 0, 0);

sleep(10);

return 0;

} else {

lcd->setCursor(0, 0);

lcd->write("MQTT CLIENT");

lcd->setCursor(1, 0);

lcd->write("START!!");

lcd->setColor(0, 255, 0);

sleep(1);

}

Cloud - Intel® IoT Analytics

90Homelab Intel® Edison Board

// creation of topic "LIGHT"

mosquitto_subscribe(mosq, NULL, "LIGHT", 1);

// Start the thread associated with mosquitto client

mosquitto_loop_start(mosq);

//###

//#### Connection to IoT Analytics Dashboard

//###

iotkit_init();

//Connection to Cloud

bool connection = false;

int i = 1;

std::stringstream count;

while (!connection) {

lcd->clear();

lcd->setCursor(0, 0);

lcd->setColor(255, 255, 255);

lcd->write("Tentativo");

lcd->setCursor(1, 0);

Cloud - Intel® IoT Analytics

91Homelab Intel® Edison Board

count << "connection: " << i;

lcd->write(count.str());

connection = ConnectionCloud("<<yourAnalyticsEmailAccount>>",

"<<yourAnalyticsPassword>>", "12-34-56-78-91-11", "00-00-00-00-31-

00","<<deviceName>>");

if (!connection) {

if (i > 30) {

lcd->clear();

lcd->setCursor(0, 0);

lcd->setColor(255, 0, 0);

lcd->write("Errore");

lcd->setCursor(1, 0);

lcd->write("connection: Exit");

return 0;

}

sleep(5);

i++;

count.str("");

}

}

lcd->clear();

lcd->setCursor(0, 0);

Cloud - Intel® IoT Analytics

92Homelab Intel® Edison Board

lcd->write("IoT Analytics");

lcd->setCursor(1, 0);

lcd->write("Connected!");

lcd->setColor(0, 255, 0);

sleep(1);

// add sensor to cloud

bool sensor;

int errorAddSensorComponent = 0;

sensor = AddSensorComponent("temperature", "1.0", "temperature.v1.0",

"sensor", "Number", "float", "Degrees Celsius", "timeSeries",

&errorAddSensorComponent);

lcd->clear();

if (sensor) {

lcd->setCursor(0, 0);

lcd->write("Sens. Temp");

lcd->setCursor(1, 0);

lcd->write("Attivo!");

lcd->setColor(0, 255, 0);

sleep(1);

}

Cloud - Intel® IoT Analytics

93Homelab Intel® Edison Board

else {

if (errorAddSensorComponent == 1) {

lcd->autoscrollOn();

lcd->write("Unable to add the sensor catalog");

lcd->setColor(255, 0, 0);

sleep(10);

return 0;

}

if (errorAddSensorComponent == 2) {

lcd->autoscrollOn();

lcd->write("Can not bind to the sensor board");

lcd->setColor(255, 0, 0);

sleep(10);

return 0;

}

}

sleep(1);

//######################### application loop

//Addrules("Test Rule", "This is a test rule", "Medium", "Regular", "Active", "Automatic", "mail",

//"<<yourAnalyticsEmailAccount>>", "00-00-00-00-31-00", "dataType", "Number", "name", "Temperature",

//"basic", "25", ">", "OR");

Cloud - Intel® IoT Analytics

94Homelab Intel® Edison Board

for (;;) {

lcd->clear();

int celsius = temp->value();

char msg[3];

sprintf(msg, "%d", celsius);

mosquitto_publish(mosq, NULL, "temperature", strlen(msg), msg, 0,

false);

std::stringstream temperature_lcd;

temperature_lcd << "Temp: " << msg << " °C";

lcd->setCursor(0, 0);

lcd->write(temperature_lcd.str());

if (checkDeviceActivated()) {

if (SendDataToCloud("temperature", celsius)) {

lcd->setCursor(1, 0);

lcd->write("Send to Cloud");

lcd->setColor(0, 255, 0);

}

Cloud - Intel® IoT Analytics

95Homelab Intel® Edison Board

else {

lcd->setCursor(1, 0);

lcd->write("Cloud Error");

lcd->setColor(255, 0, 0);

}

} else {

lcd->setCursor(1, 0);

lcd->write("Re-activation error");

lcd->setColor(0, 255, 0);

}

if (status_led) {

led->write(1);

} else {

led->write(0);

}

sleep(1);

}

Cloud - Intel® IoT Analytics

96Homelab Intel® Edison Board

}

void power_led(struct mosquitto *mosq, void *userdata,

const struct mosquitto_message *message) {

if (message->payloadlen) {

char * payload= (char*)message->payload;

printf("%s \n", payload);

if (strcmp(message->topic, "LIGHT") == 0 && strcmp(payload, "ON") == 0) {

status_led = true;

}

if (strcmp(message->topic, "LIGHT") == 0

&& strcmp(payload, "OFF") == 0) {

status_led = false;

}

} else {

}

fflush(stdout);

}

Cloud - Intel® IoT Analytics

97Homelab Intel® Edison Board

Unfortunately Intel® Cloud Analytics have been discontinued. For this reason we couldn’t run the code, and

we had to move to other cloud solutions.

So in the next sections we will introduce these alternatives.

Cloud - Intel® IoT Analytics

98Homelab Intel® Edison Board

IBM Bluemix Internet of Things

Introduction

• Cloud platform as a service (PaaS) developed by IBM.

• Supports several programming languages and services

to build, run, deploy and manage applications on the

cloud.

• Based on Cloud Foundry open technology.

The project

• Open Eclipse IDE

• Create a new Intel IOT Project

• Choose an Empty C++ Project.

Cloud - IBM Bluemix Internet of Things

99Homelab Intel® Edison Board

• Code - cloudBlueMix.cpp file

/* Authors: Salvatore Campanella - Alessandra Morelli Ciarelli - Andrea Di Bartolomeo

* Copyright (c) 2016 Intel Corporation. */

extern "C" {

#include "MQTTClient.h"

}

#include "jhd1313m1.h"

#include "grove.hpp"

#include "mic.h"

#include "buzzer.h"

#include "stdlib.h"

#include <mraa.hpp>

#include <climits>

#include <iostream>

#include <sstream>

#include <unistd.h>

#include <string>

#include <iomanip>

#include <ssd1327.h>

#include <ssd1308.h>

Cloud - IBM Bluemix Internet of Things

100Homelab Intel® Edison Board

#include <ssd1306.h>

#include <sainsmartks.h>

#include <lcm1602.h>

#include <am2315.h>

#include <th02.h>

#include <lm35.h>

#include <otp538u.h>

/**

* @file

* @ingroup grove

* @brief Home_Supervisor

*

* The idea is to provide a system that is able to monitor and store in different clouds

* (in order to provide a comparison between the possible cloud solutions), temperature detected by a sensor.\n

* The program monitors this value and the user will be able to check his home’s temperature remotely.\n

*

* @hardware Sensors used:\n

* Jhd1313m1 LCD connected to any I2C on the Grove Base Shield\n

* GroveTemperature sensor connected to A0

*

* Additional linker flags: none

Cloud - IBM Bluemix Internet of Things

101Homelab Intel® Edison Board

*

* @date 15/11/2016

*/

const char * topic = "iot-2/evt/status/fmt/json";

const char * clientID = "d:<yourOrganizationID>:<yourDeviceType>:<yourDeviceID>";

// To authenticate with a token, set the username to "use-token-auth" and the

// password to the token which you get when you register your device in IBM Bluemix.

const char * username = "use-token-auth";

const char * password = "<yourAuthorizationToken>";

const char * host = "tcp://<yourOrganizationID>.messaging.internetofthings.ibmcloud.com:1883";

MQTTClient client;

// Set to 1 if you want to ensure that the message has been published

// QoS0 --> Message will be delivered zero or once

// QoS1 --> Message will be delivered at least once

// QoS2 --> Message will be delivered exactly once

#define MQTT_DEFAULT_QOS 0

/*

* Variables declaration

*/

Cloud - IBM Bluemix Internet of Things

102Homelab Intel® Edison Board

using namespace upm;

using namespace std;

int temperature; // temperature sensor value in degrees Celsius

int offset = 16; // temperature offset. Adapt it to your sensor offset

const int TEMPERATURE_RANGE_MIN_VAL = 15; // the temperature ranges are in degrees Celsius, adapt to your room temperature for

a nicer effect!

const int TEMPERATURE_RANGE_MAX_VAL = 35;

/*

* other helper variables

*/

bool press;

int len;

float fade; // fade value [0.0 .. 1.0], used to change the color of the LCD according to the temperature

uint8_t r, g, b; // resulting LCD backlight color components [0 .. 255]

/*

* Sensor objects

*/

upm::GroveTemp* temp_sensor = new upm::GroveTemp(0); // temperature sensor connected to A0 (analog in)

upm::Jhd1313m1* lcd = new upm::Jhd1313m1(0); // LCD connected to the default I2C bus ---> N.B. This works only with the

board's Vref=5V

Cloud - IBM Bluemix Internet of Things

103Homelab Intel® Edison Board

/*

* Temperature acquisition + LCD update

*/

int readings_update() {

temperature = temp_sensor->value(); // temperature acquisition from the temperature sensor

// display the temperature values on the LCD

std::stringstream row_1; // LCD rows

row_1 << "Temp:" << temperature << " ";

lcd->setCursor(0, 0);

lcd->write(row_1.str());

// set the fade value depending on where we are in the temperature range

if (temperature <= TEMPERATURE_RANGE_MIN_VAL) {

fade = 0.0;

} else if (temperature >= TEMPERATURE_RANGE_MAX_VAL) {

fade = 1.0;

} else {

fade = (float) (temperature - TEMPERATURE_RANGE_MIN_VAL)

/ (TEMPERATURE_RANGE_MAX_VAL - TEMPERATURE_RANGE_MIN_VAL);

}

Cloud - IBM Bluemix Internet of Things

104Homelab Intel® Edison Board

// fade the color components separately

r = (int) (255 * fade);

g = (int) (64 * fade);

b = (int) (255 * (1 - fade));

lcd->setColor(r, g, b); // apply to the LCD the calculated result

return temperature;

}

/*

* This function is called when a message has been successfully published

* to the server

* Note:This function is not called when messages are

* published at QoS0.

* @param context A pointer to the <i>context</i> value originally passed to

* MQTTClient_setCallbacks(), which contains any application-specific context.

* @param dt The ::MQTTClient_deliveryToken associated with

* the published message. Applications can check that all messages have been

* correctly published by matching the delivery tokens returned from calls to

* MQTTClient_publish() and MQTTClient_publishMessage() with the tokens passed

* to this callback.

*/

Cloud - IBM Bluemix Internet of Things

105Homelab Intel® Edison Board

void delivery_complete(void * context, MQTTClient_deliveryToken dt) {

printf("Publishing of message with token %d confirmed\n", dt);

}

/*

* This function will be called when the MQTT client lost the connection to the server

* @param context A pointer to the <i>context</i> value originally passed to

* MQTTClient_setCallbacks(), which contains any application-specific context.

* @param cause The reason for the disconnection.

* Currently, <i>cause</i> is always set to NULL.

*/

void connection_lost(void * context, char* cause) {

printf("Connection lost\n");

exit(MQTTCLIENT_DISCONNECTED);

}

int main() {

// check that we are running on Galileo or Edison

mraa::Platform platform = mraa::getPlatformType();

if ((platform != mraa::INTEL_GALILEO_GEN1)

&& (platform != mraa::INTEL_GALILEO_GEN2)

&& (platform != mraa::INTEL_EDISON_FAB_C)) {

Cloud - IBM Bluemix Internet of Things

106Homelab Intel® Edison Board

std::cerr << "Unsupported platform, exiting" << std::endl;

return mraa::ERROR_INVALID_PLATFORM;

}

// create the MQTT client

int rc = 0;

rc = MQTTClient_create(&client, const_cast<char *>(host),

const_cast<char *>(clientID), MQTTCLIENT_PERSISTENCE_NONE, NULL);

if (rc != MQTTCLIENT_SUCCESS) {

std::cerr << "Failed to create MQTT client, exiting" << std::endl;

exit(rc);

}

// setup call backs before connecting the client to the server

MQTTClient_setCallbacks(client, NULL, &connection_lost, NULL,

&delivery_complete);

MQTTClient_connectOptions data = MQTTClient_connectOptions_initializer;

data.username = const_cast<char *>(username);

data.password = const_cast<char *>(password);

// connect the client to the server

rc = MQTTClient_connect(client, &data);

if (rc != MQTTCLIENT_SUCCESS) {

Cloud - IBM Bluemix Internet of Things

107Homelab Intel® Edison Board

{ std::cerr << "Failed to connect MQTT client, exiting" << std::endl;

exit(rc);

}

// simple error checking

if ((temp_sensor == NULL) || (lcd == NULL)) {

std::cerr << "Can't create all objects, exiting" << std::endl;

return mraa::ERROR_UNSPECIFIED;

}

//Infinite loop

for (;;) {

//temperature_update(temp_sensor, led, lcd);

readings_update();

// Cloud update

// convert the message into JSON format

std::stringstream row_1;

row_1 << "{ \"temperature\": \"" << temperature << "\" }";

char payload[80];

sprintf(payload, "{ \"temperature\": \"%d\" }", temperature);

Cloud - IBM Bluemix Internet of Things

108Homelab Intel® Edison Board

int payloadlen = strlen(payload);

int retained = 0;

MQTTClient_deliveryToken dt;

int rc = MQTTClient_publish(client, const_cast<char *>(topic),

payloadlen, const_cast<char *>(payload), MQTT_DEFAULT_QOS,

retained, &dt);

if (rc == MQTTCLIENT_SUCCESS) {

printf("Waiting for message with token %d to be published...\n",

dt);

rc = MQTTClient_waitForCompletion(client, dt, 1000);

if (rc == MQTTCLIENT_SUCCESS) {

printf("Message with token %d published\n", dt);

} else {

std::cerr << "Failed to publish message with token " << dt

<< std::endl;

}

} else {

std::cerr << "Failed to publish message with token " << dt

<< std::endl;

}

Cloud - IBM Bluemix Internet of Things

109Homelab Intel® Edison Board

// wait for 0.5 sec

sleep(1);

}

printf("Stopping\n");

int timeout = 100;

MQTTClient_disconnect(client, timeout);

MQTTClient_destroy(&client);

return mraa::SUCCESS;

}

Cloud - IBM Bluemix Internet of Things

110Homelab Intel® Edison Board

How to create a connection and visualize

data

Set up a connection to IBM Bluemix using MQTT protocol.

• Create an account (IBM Bluemix Registration - Click on

Get Started Free Button)

• Log into the account

• Select New Dashboard if that option is presented, else go

to the next step.

• Add an Internet of things platform:

• Create a new application, select the Internet of

Things Platform

• Then type a name in the Service name Field

• Click Create

• Add a New Device:

Cloud - IBM Bluemix Internet of Things

111Homelab Intel® Edison Board

http://www.ibm.com/cloud-computing/bluemix

• Under Connect your devices on your left, click the Launch

dashboard button.

• This opens a new IBM Watson IoT Platform window.

• Select Device in the menu on your left, then, in the Device Types

tile, click the Add Device button.

• Click the Create device type button. This opens the Create

Device Type page.

• Fill the Name and Description fields and click Next.

• Specify the attributes for the template and click Next. (all of this

elements are optional)

• If necessary, add metadata and click Create.

Cloud - IBM Bluemix Internet of Things

112Homelab Intel® Edison Board

• Add a new device

o Select Browse on your left and click Add Device.

o From the Choose Device Type drop-down list, select the new

device type you created in the previous section, and click

Next.

• In the Device ID field, type the ID of your device (for example

myEdison) and click Next.

• If necessary, add metadata and click Next.

• In the Security step, auto-generate an authentication token by

clicking Next.

• Click Add in the summary step.

• Make a note of the Authentication Token displayed under Your

Device Credentials.

Cloud - IBM Bluemix Internet of Things

113Homelab Intel® Edison Board

• You should see the new device as shown in the image

• Click on the Device Item to see all the Device Information that

your program needs in order to connect to the MQTT server,

such as:

o Organization ID

o Device Type

o Device ID

o Authentication Method

o Authentication Token

• Set up Node-RED Device Simulator. Use Node-RED to send the

MQTT Device messages to your Watson IOT Platform.

o In Bluemix Dashboard, open Node-RED by selecting the

application or by clicking on the link shown on the app

item. (e.g. http:// myIoTApp.mybluemix.net).

Cloud - IBM Bluemix Internet of Things

114Homelab Intel® Edison Board

Cloud - IBM Bluemix Internet of Things

115

• Click on Go to your Node-RED flow editor.

• Double click on Blue Send to IBM IOT Platform node on

the Device simulation flow and:

o Verify that Authentication field contains Bluemix

Service

o Copy the Device Type from the one that you have

already registered

o Paste the Device ID from the one that you have

registered.

o Then click on Done.

• In the editor’s upper right angle of the Node-RED flow,

click on Deploy.

Homelab Intel® Edison Board

• Set Up the Temperature Monitor Node-RED Flow:

o Double click on the IBM IOT App In node in the Device

Simulation Flow.

o Modify Authentication to Bluemix Service

o Select All for Device Type, Device Id, Event and Format

o Then click on Done.

o Click on Deploy in the editor’s upper right angle.

• Convalidate the Device Connection

o Come back to Watson IOT Platform.

o Select Devices and Click on the name of the device that

you have created. You should see the page with the

device informations. In this way you can control the

Connection Status for your device. It will be

disconnected.

Cloud - IBM Bluemix Internet of Things

116Homelab Intel® Edison Board

• Without closing the Device Information Page (you’ll need

to see this information later), come back to your editor’s

Node-RED flow, click on the grey Send Data button to

generate a payload asset. The asset payload will contain

different kind of data.

• Click on debug on the right editor’s panel and verify that

messages are created.

• In the Device Informations page on your Watson IOT

Platform, verify that you are visualizing the same data

received by your device in Sensor Information Section.

Cloud - IBM Bluemix Internet of Things

117Homelab Intel® Edison Board

• Set up all the elements useful to view all data sent in real-time.

o Go to the Watson IOT Platform Dashboard in your browser.

o Select BOARDS. Click on Create New Board.

o Insert a name such as Temperature. Click on Create.

o Click on Add New Card.

 In Devices, select a real-time graph.

 Specify the data origin, control your device (e.g. myEdison), so click on Next.

 Connect a new Dataset with the followings values:

‒ Name: Temperature
‒ Event: status
‒ Property: temp
‒ Type: Float
‒ Unit: °C
‒ Precision: 2
‒ Min: 0
‒ Max: 50
‒ Click on Next.

Cloud - IBM Bluemix Internet of Things

118Homelab Intel® Edison Board

 Select the Card Overview (select L) and click on Next.

 Insert Card Informations (Temperature) and Confirm all the operations.

○ Now you should see the Temperature Card on your dashboard, that include the graph with the real-time

temperature data.

Before starting the execution of your Eclipse Cloud Application, you need to set the MQTT client parameters in the IDE.

• Go to Run configurations and, in the Commands to execute before application field, type the following:

chmod 755 /tmp/<Your app name>; export MQTT_SERVER="ssl://<Your organization

ID>.messaging.internetofthings.ibmcloud.com:8883"; export MQTT_CLIENTID="d:<Your organization ID>:<Your

device type>:<Your device ID>"; export MQTT_USERNAME="use-token-auth"; export MQTT_PASSWORD="<Your

authorization token>"; export MQTT_TOPIC="iot-2/evt/status/fmt/json"

• Click the Apply button to save these settings.

Click the Run Button to run the code in order to display sent data by your Intel Edison Board.

Cloud - IBM Bluemix Internet of Things

119Homelab Intel® Edison Board

• In IBM Watson IOT Platform, note that the Device

Status is now changed to Connected.

• Click on the device item to open its informations

page.

o Note that the device connection status is

confirmed to connected in the Connection

Information Section,

o Note all the values sent by the physical device

to the IOT Platform using the JSON format in the

Latest Events Section

Cloud - IBM Bluemix Internet of Things

120Homelab Intel® Edison Board

• Click on every single event and see all its detailed

information. Note the information in the JSON format.

• Go to the Node-RED editor tab, and note all the

formatted information sent by the device in debug on

the right panel.

Cloud - IBM Bluemix Internet of Things

121Homelab Intel® Edison Board

• Come back to IBM Watson IOT Platform tab and

click on Boards on the left menu.

• Select the board that previously created.

• Note the Cards, where are visualized all the values

sent by the Device to the Cloud Application.

• Add new cards to visualize data in different graphs at

the same time.

Cloud - IBM Bluemix Internet of Things

122Homelab Intel® Edison Board

Amazon Web Services

Cloud - Amazon Web Services

123

• cloud computing platform offered by Amazon

• collection of cloud computing services that make up an
on-demand computing platform

• more than 70 services including tools for the Internet of
things

• AWS is not a service, but a whole class of services

• IaaS and PaaS solutions

• AWS web console https://aws.amazon.com/it/

• free tier for the first year

• required a payment card to create an account

Homelab Intel® Edison Board

https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Computing_platform
https://aws.amazon.com/it/

Microsoft Azure

Cloud - Microsoft Azure

124

• cloud computing platform and infrastructure created by

Microsoft

• SaaS, PaaS and IaaS services

• supports many different programming languages, tools and

frameworks

• offers a lot of services, including Internet of Things (IoT): this

services help users capture, monitor and analyze IoT data

from sensors and other devices

• Azure IoT Suite provides tools like stream analytics

• allows login with the institutional account

• necessary to register a payment card to create resources

Homelab Intel® Edison Board

12.Conclusions

125Homelab Intel® Edison Board

Conclusions

126

In this work we have:

• explored the peculiarities and functionalities of the Intel®Edison Board and the Grove Starter Kit for

Arduino, illustrating the process of assembling, connecting and installing the board,

• shown MRAA libraries and UPM repository, used to develop all the experiment’s application code,

• shown a series of basic examples, in which have been used several sensors/actuators of Grove Starter

Kit,

• introduced the Cloud technology talking about two communication protocols used to reach our purpose:

HTTP and MQTT,

Homelab Intel® Edison Board

Homelab Intel® Edison Board

Conclusions

127

• explored Intel IoT Analytics and his Dashboard functionalities, and the libraries: IoT DAPI and

Mosquitto. The first one makes Intel APIs more user-friendly and facilitate the access to the services of

Cloud IoT Analytics Dashboard. Unfortunately Intel® Cloud Analytics have been discontinued, so we had

to move to other cloud solutions, such as IBM Bluemix, Amazon Web Services and Microsoft Azure,

• discovered that Amazon Web Services and Microsoft Azure is necessary to register a payment card to

use the services,

• discovered that IBM Bluemix Cloud solution allows you to work in total freedom with the services

available on the cloud platform after signing a trial account valid for 30 days. It’s a valid alternative to the

other Cloud Technology since it offers very advanced utilities in a very attractive working environment.

With respect to the Intel Technology, is very difficult to set up all the elements to get a working

application, for a person who approaches the world of Cloud for the first times.

Thanks for your
attention!

128Homelab Intel® Edison Board

