
Chapter 4: Introduction To Real-Time Operating 
Systems  
4.1 Introduction 
A real-time operating system (RTOS) is key to many embedded systems today and, provides a 
software platform upon which to build applications. Not all embedded systems, however, are 
designed with an RTOS. Some embedded systems with relatively simple hardware or a small 
amount of software application code might not require an RTOS. Many embedded systems, 
however, with moderate-to-large software applications require some form of scheduling, and 
these systems require an RTOS.  

This chapter sets the stage for all subsequent chapters in this section. It describes the key 
concepts upon which most real-time operating systems are based. Specifically, this chapter 
provides  
§ a brief history of operating systems,  
§ a definition of an RTOS,  
§ a description of the scheduler,  
§ a discussion of objects,  
§ a discussion of services, and  
§ the key characteristics of an RTOS.  
 
4.2 A Brief History of Operating Systems  
In the early days of computing, developers created software applications that included low-level 
machine code to initialize and interact with the system's hardware directly. This tight integration 
between the software and hardware resulted in non-portable applications. A small change in the 
hardware might result in rewriting much of the application itself. Obviously, these systems were 
difficult and costly to maintain.  

As the software industry progressed, operating systems that provided the basic software 
foundation for computing systems evolved and facilitated the abstraction of the underlying 
hardware from the application code. In addition, the evolution of operating systems helped shift 
the design of software applications from large, monolithic applications to more modular, 
interconnected applications that could run on top of the operating system environment.  

Over the years, many versions of operating systems evolved. These ranged from general-
purpose operating systems (GPOS), such as UNIX and Microsoft Windows, to smaller and more 
compact real-time operating systems, such as VxWorks. Each is briefly discussed next.  

In the 60s and 70s, when mid-sized and mainframe computing was in its prime, UNIX was 
developed to facilitate multi-user access to expensive, limited-availability computing systems. 
UNIX allowed many users performing a variety of tasks to share these large and costly 
computers. multi-user access was very efficient: one user could print files, for example, while 
another wrote programs. Eventually, UNIX was ported to all types of machines, from 
microcomputers to supercomputers.  

In the 80s, Microsoft introduced the Windows operating system, which emphasized the personal 
computing environment. Targeted for residential and business users interacting with PCs through 
a graphical user interface, the Microsoft Windows operating system helped drive the personal-
computing era.  

Later in the decade, momentum started building for the next generation of computing: the post-
PC, embedded-computing era. To meet the needs of embedded computing, commercial 



RTOSes, such as VxWorks, were developed. Although some functional similarities exist between 
RTOSes and GPOSes, many important differences occur as well. These differences help explain 
why RTOSes are better suited for real-time embedded systems.  

Some core functional similarities between a typical RTOS and GPOS include:  
§ some level of multitasking,  
§ software and hardware resource management,  
§ provision of underlying OS services to applications, and  
§ abstracting the hardware from the software application.  

On the other hand, some key functional differences that set RTOSes apart from GPOSes include:  
§ better reliability in embedded application contexts,  
§ the ability to scale up or down to meet application needs,  
§ faster performance,  
§ reduced memory requirements,  
§ scheduling policies tailored for real-time embedded systems,  
§ support for diskless embedded systems by allowing executables to boot and run from 

ROM or RAM, and  
§ better portability to different hardware platforms. 

Today, GPOSes target general-purpose computing and run predominantly on systems such as 
personal computers, workstations, and mainframes. In some cases, GPOSes run on embedded 
devices that have ample memory and very soft real-time requirements. GPOSes typically require 
a lot more memory, however, and are not well suited to real-time embedded devices with limited 
memory and high performance requirements.  

RTOSes, on the other hand, can meet these requirements. They are reliable, compact, and 
scalable, and they perform well in real-time embedded systems. In addition, RTOSes can be 
easily tailored to use only those components required for a particular application.  

Again, remember that today many smaller embedded devices are still built without an RTOS. 
These simple devices typically contain a small-to-moderate amount of application code. The 
focus of this book, however, remains on embedded devices that use an RTOS.  
 
4.3 Defining an RTOS 
A real-time operating system (RTOS) is a program that schedules execution in a timely manner, 
manages system resources, and provides a consistent foundation for developing application 
code. Application code designed on an RTOS can be quite diverse, ranging from a simple 
application for a digital stopwatch to a much more complex application for aircraft navigation. 
Good RTOSes, therefore, are scalable in order to meet different sets of requirements for different 
applications.  

For example, in some applications, an RTOS comprises only a kernel, which is the core 
supervisory software that provides minimal logic, scheduling, and resource-management 
algorithms. Every RTOS has a kernel. On the other hand, an RTOS can be a combination of 
various modules, including the kernel, a file system, networking protocol stacks, and other 
components required for a particular application, as illustrated at a high level in Figure 4.1.  



 
Figure 4.1: High-level view of an RTOS, its kernel, and other components found in embedded 
systems.  

Although many RTOSes can scale up or down to meet application requirements, this book 
focuses on the common element at the heart of all RTOSes-the kernel. Most RTOS kernels 
contain the following components: 
§ Scheduler-is contained within each kernel and follows a set of algorithms that 

determines which task executes when. Some common examples of scheduling algorithms 
include round-robin and preemptive scheduling. 

§ Objects-are special kernel constructs that help developers create applications for real-
time embedded systems. Common kernel objects include tasks, semaphores, and message 
queues. 

§ Services-are operations that the kernel performs on an object or, generally operations 
such as timing, interrupt handling, and resource management. 

Figure 4.2 illustrates these components, each of which is described next. 



 
Figure 4.2: Common components in an RTOS kernel that including objects, the scheduler, and 
some services.  

This diagram is highly simplified; remember that not all RTOS kernels conform to this exact set of 
objects, scheduling algorithms, and services. 
 
4.4 The Scheduler  
The scheduler is at the heart of every kernel. A scheduler provides the algorithms needed to 
determine which task executes when. To understand how scheduling works, this section 
describes the following topics:  
§ schedulable entities,  
§ multitasking,  
§ context switching,  
§ dispatcher, and  
§ scheduling algorithms.  

4.4.1 Schedulable Entities  

A schedulable entity is a kernel object that can compete for execution time on a system, based on 
a predefined scheduling algorithm. Tasks and processes are all examples of schedulable entities 
found in most kernels.  

A task is an independent thread of execution that contains a sequence of independently 
schedulable instructions. Some kernels provide another type of a schedulable object called a 
process. Processes are similar to tasks in that they can independently compete for CPU 
execution time. Processes differ from tasks in that they provide better memory protection 
features, at the expense of performance and memory overhead. Despite these differences, for 
the sake of simplicity, this book uses task to mean either a task or a process.  

Note that message queues and semaphores are not schedulable entities. These items are inter-
task communication objects used for synchronization and communication. Chapter 6 discusses 
semaphores, and Chapter 7 discusses message queues in more detail.  



So, how exactly does a scheduler handle multiple schedulable entities that need to run 
simultaneously? The answer is by multitasking. The multitasking discussions are carried out in 
the context of uniprocessor environments.  

4.4.2 Multitasking  

Multitasking is the ability of the operating system to handle multiple activities within set deadlines. 
A real-time kernel might have multiple tasks that it has to schedule to run. One such multitasking 
scenario is illustrated in Figure 4.3.  

 
Figure 4.3: Multitasking using a context switch.  

In this scenario, the kernel multitasks in such a way that many threads of execution appear to be 
running concurrently; however, the kernel is actually interleaving executions sequentially, based 
on a preset scheduling algorithm (see “Scheduling Algorithms” on page 59). The scheduler must 
ensure that the appropriate task runs at the right time.  

An important point to note here is that the tasks follow the kernel’s scheduling algorithm, while 
interrupt service routines (ISR) are triggered to run because of hardware interrupts and their 
established priorities.  

As the number of tasks to schedule increases, so do CPU performance requirements. This fact is 
due to increased switching between the contexts of the different threads of execution.  

4.4.3 The Context Switch 

Each task has its own context, which is the state of the CPU registers required each time it is 
scheduled to run. A context switch occurs when the scheduler switches from one task to another. 
To better understand what happens during a context switch, let’s examine further what a typical 
kernel does in this scenario.  



Every time a new task is created, the kernel also creates and maintains an associated task 
control block (TCB). TCBs are system data structures that the kernel uses to maintain task-
specific information. TCBs contain everything a kernel needs to know about a particular task. 
When a task is running, its context is highly dynamic. This dynamic context is maintained in the 
TCB. When the task is not running, its context is frozen within the TCB, to be restored the next 
time the task runs. A typical context switch scenario is illustrated in Figure 4.3. 

As shown in Figure 4.3, when the kernel’s scheduler determines that it needs to stop running task 
1 and start running task 2, it takes the following steps:  

1. The kernel saves task 1’s context information in its TCB.  
2. It loads task 2’s context information from its TCB, which becomes the current thread of 

execution.  
3. The context of task 1 is frozen while task 2 executes, but if the scheduler needs to run 

task 1 again, task 1 continues from where it left off just before the context switch.  

The time it takes for the scheduler to switch from one task to another is the context switch time. It 
is relatively insignificant compared to most operations that a task performs. If an application’s 
design includes frequent context switching, however, the application can incur unnecessary 
performance overhead. Therefore, design applications in a way that does not involve excess 
context switching.  

Every time an application makes a system call, the scheduler has an opportunity to determine if it 
needs to switch contexts. When the scheduler determines a context switch is necessary, it relies 
on an associated module, called the dispatcher, to make that switch happen.  

4.4.4 The Dispatcher  

The dispatcher is the part of the scheduler that performs context switching and changes the flow 
of execution. At any time an RTOS is running, the flow of execution, also known as flow of 
control, is passing through one of three areas: through an application task, through an ISR, or 
through the kernel. When a task or ISR makes a system call, the flow of control passes to the 
kernel to execute one of the system routines provided by the kernel. When it is time to leave the 
kernel, the dispatcher is responsible for passing control to one of the tasks in the user’s 
application. It will not necessarily be the same task that made the system call. It is the scheduling 
algorithms (to be discussed shortly) of the scheduler that determines which task executes next. It 
is the dispatcher that does the actual work of context switching and passing execution control.  

Depending on how the kernel is first entered, dispatching can happen differently. When a task 
makes system calls, the dispatcher is used to exit the kernel after every system call completes. In 
this case, the dispatcher is used on a call-by-call basis so that it can coordinate task-state 
transitions that any of the system calls might have caused. (One or more tasks may have become 
ready to run, for example.)  

On the other hand, if an ISR makes system calls, the dispatcher is bypassed until the ISR fully 
completes its execution. This process is true even if some resources have been freed that would 
normally trigger a context switch between tasks. These context switches do not take place 
because the ISR must complete without being interrupted by tasks. After the ISR completes 
execution, the kernel exits through the dispatcher so that it can then dispatch the correct task.  

4.4.5 Scheduling Algorithms  

As mentioned earlier, the scheduler determines which task runs by following a scheduling 
algorithm (also known as scheduling policy). Most kernels today support two common scheduling 
algorithms:  
§ preemptive priority-based scheduling, and  
§ round-robin scheduling. 



The RTOS manufacturer typically predefines these algorithms; however, in some cases, 
developers can create and define their own scheduling algorithms. Each algorithm is described 
next.  

Preemptive Priority-Based Scheduling 
Of the two scheduling algorithms introduced here, most real-time kernels use preemptive priority-
based scheduling by default. As shown in Figure 4.4 with this type of scheduling, the task that 
gets to run at any point is the task with the highest priority among all other tasks ready to run in 
the system.  

 
Figure 4.4: Preemptive priority-based scheduling.  

Real-time kernels generally support 256 priority levels, in which 0 is the highest and 255 the 
lowest. Some kernels appoint the priorities in reverse order, where 255 is the highest and 0 the 
lowest. Regardless, the concepts are basically the same. With a preemptive priority-based 
scheduler, each task has a priority, and the highest-priority task runs first. If a task with a priority 
higher than the current task becomes ready to run, the kernel immediately saves the current 
task’s context in its TCB and switches to the higher-priority task. As shown in Figure 4.4 task 1 is 
preempted by higher-priority task 2, which is then preempted by task 3. When task 3 completes, 
task 2 resumes; likewise, when task 2 completes, task 1 resumes.  

Although tasks are assigned a priority when they are created, a task’s priority can be changed 
dynamically using kernel-provided calls. The ability to change task priorities dynamically allows 
an embedded application the flexibility to adjust to external events as they occur, creating a true 
real-time, responsive system. Note, however, that misuse of this capability can lead to priority 
inversions, deadlock, and eventual system failure.  

Round-Robin Scheduling  
Round-robin scheduling provides each task an equal share of the CPU execution time. Pure 
round-robin scheduling cannot satisfy real-time system requirements because in real-time 
systems, tasks perform work of varying degrees of importance. Instead, preemptive, priority-
based scheduling can be augmented with round-robin scheduling which uses time slicing to 
achieve equal allocation of the CPU for tasks of the same priority as shown in Figure 4.5.  

 
Figure 4.5: Round-robin and preemptive scheduling.  

With time slicing, each task executes for a defined interval, or time slice, in an ongoing cycle, 
which is the round robin. A run-time counter tracks the time slice for each task, incrementing on 



every clock tick. When one task’s time slice completes, the counter is cleared, and the task is 
placed at the end of the cycle. Newly added tasks of the same priority are placed at the end of the 
cycle, with their run-time counters initialized to 0.  

If a task in a round-robin cycle is preempted by a higher-priority task, its run-time count is saved 
and then restored when the interrupted task is again eligible for execution. This idea is illustrated 
in Figure 4.5, in which task 1 is preempted by a higher-priority task 4 but resumes where it left off 
when task 4 completes.  
 
4.5 Objects 
Kernel objects are special constructs that are the building blocks for application development for 
real-time embedded systems. The most common RTOS kernel objects are  
§ Tasks—are concurrent and independent threads of execution that can compete for CPU 

execution time.  
§ Semaphores—are token-like objects that can be incremented or decremented by tasks 

for synchronization or mutual exclusion.  
§ Message Queues—are buffer-like data structures that can be used for synchronization, 

mutual exclusion, and data exchange by passing messages between tasks. Developers 
creating real-time embedded applications can combine these basic kernel objects (as well as 
others not mentioned here) to solve common real-time design problems, such as 
concurrency, activity synchronization, and data communication. These design problems and 
the kernel objects used to solve them are discussed in more detail in later chapters.  

 
4.6 Services 
Along with objects, most kernels provide services that help developers create applications for 
real-time embedded systems. These services comprise sets of API calls that can be used to 
perform operations on kernel objects or can be used in general to facilitate timer management, 
interrupt handling, device I/O, and memory management. Again, other services might be 
provided; these services are those most commonly found in RTOS kernels.  
 
4.7 Key Characteristics of an RTOS 
An application's requirements define the requirements of its underlying RTOS. Some of the more 
common attributes are  
§ reliability,  
§ predictability,  
§ performance,  
§ compactness, and  
§ scalability.  

These attributes are discussed next; however, the RTOS attribute an application needs depends 
on the type of application being built.  

4.7.1 Reliability 

Embedded systems must be reliable. Depending on the application, the system might need to 
operate for long periods without human intervention.  

Different degrees of reliability may be required. For example, a digital solar-powered calculator 
might reset itself if it does not get enough light, yet the calculator might still be considered 
acceptable. On the other hand, a telecom switch cannot reset during operation without incurring 



high associated costs for down time. The RTOSes in these applications require different degrees 
of reliability.  

Although different degrees of reliability might be acceptable, in general, a reliable system is one 
that is available (continues to provide service) and does not fail. A common way that developers 
categorize highly reliable systems is by quantifying their downtime per year, as shown in Table 
4.1. The percentages under the 'Number of 9s' column indicate the percent of the total time that a 
system must be available.  

While RTOSes must be reliable, note that the RTOS by itself is not what is measured to 
determine system reliability. It is the combination of all system elements-including the hardware, 
BSP, RTOS, and application-that determines the reliability of a system.  
Table 4.1: Categorizing highly available systems by allowable downtime.1  

Number of 9s  Downtime per year  Typical application  

3 Nines (99.9%)  ~9 hours  Desktop 

4 Nines (99.99%)  ~1 hour  Enterprise Server 

5 Nines (99.999%)  ~5 minutes  Carrier-Class Server 

6 Nines (99.9999%)  ~31 seconds  Carrier Switch Equipment  

1 Source: 'Providing Open Architecture High Availability Solutions,' Revision 1.0, 
Published by HA Forum, February 2001. 

4.7.2 Predictability  
Because many embedded systems are also real-time systems, meeting time requirements is key 
to ensuring proper operation. The RTOS used in this case needs to be predictable to a certain 
degree. The term deterministic describes RTOSes with predictable behavior, in which the 
completion of operating system calls occurs within known timeframes.  

Developers can write simple benchmark programs to validate the determinism of an RTOS. The 
result is based on timed responses to specific RTOS calls. In a good deterministic RTOS, the 
variance of the response times for each type of system call is very small.  

4.7.3 Performance  

This requirement dictates that an embedded system must perform fast enough to fulfill its timing 
requirements. Typically, the more deadlines to be met-and the shorter the time between them-the 
faster the system's CPU must be. Although underlying hardware can dictate a system's 
processing power, its software can also contribute to system performance. Typically, the 
processor's performance is expressed in million instructions per second (MIPS).  

Throughput also measures the overall performance of a system, with hardware and software 
combined. One definition of throughput is the rate at which a system can generate output based 
on the inputs coming in. Throughput also means the amount of data transferred divided by the 
time taken to transfer it. Data transfer throughput is typically measured in multiples of bits per 
second (bps).  

Sometimes developers measure RTOS performance on a call-by-call basis. Benchmarks are 
written by producing timestamps when a system call starts and when it completes. Although this 
step can be helpful in the analysis stages of design, true performance testing is achieved only 
when the system performance is measured as a whole.  



4.7.4 Compactness  

Application design constraints and cost constraints help determine how compact an embedded 
system can be. For example, a cell phone clearly must be small, portable, and low cost. These 
design requirements limit system memory, which in turn limits the size of the application and 
operating system.  

In such embedded systems, where hardware real estate is limited due to size and costs, the 
RTOS clearly must be small and efficient. In these cases, the RTOS memory footprint can be an 
important factor. To meet total system requirements, designers must understand both the static 
and dynamic memory consumption of the RTOS and the application that will run on it.  

4.7.5 Scalability  

Because RTOSes can be used in a wide variety of embedded systems, they must be able to 
scale up or down to meet application-specific requirements. Depending on how much functionality 
is required, an RTOS should be capable of adding or deleting modular components, including file 
systems and protocol stacks.  

If an RTOS does not scale up well, development teams might have to buy or build the missing 
pieces. Suppose that a development team wants to use an RTOS for the design of a cellular 
phone project and a base station project. If an RTOS scales well, the same RTOS can be used in 
both projects, instead of two different RTOSes, which saves considerable time and money.  
 
4.8 Points to Remember  
Some points to remember include the following:  
§ RTOSes are best suited for real-time, application-specific embedded systems; GPOSes 

are typically used for general-purpose systems.  
§ RTOSes are programs that schedule execution in a timely manner, manage system 

resources, and provide a consistent foundation for developing application code.  
§ Kernels are the core module of every RTOS and typically contain kernel objects, 

services, and scheduler.  
§ Kernels can deploy different algorithms for task scheduling. The most common two 

algorithms are preemptive priority-based scheduling and round-robin scheduling.  
§ RTOSes for real-time embedded systems should be reliable, predictable, high 

performance, compact, and scalable.  
 
 



Chapter 5: Tasks 
5.1 Introduction 
Simple software applications are typically designed to run sequentially , one instruction at a time, 
in a pre-determined chain of instructions. However, this scheme is inappropriate for real-time 
embedded applications, which generally handle multiple inputs and outputs within tight time 
constraints. Real-time embedded software applications must be designed for concurrency.  

Concurrent design requires developers to decompose an application into small, schedulable, and 
sequential program units. When done correctly, concurrent design allows system multitasking to 
meet performance and timing requirements for a real-time system. Most RTOS kernels provide 
task objects and task management services to facilitate designing concurrency within an 
application.  

This chapter discusses the following topics:  
§ task definition,  
§ task states and scheduling,  
§ typical task operations,  
§ typical task structure, and  
§ task coordination and concurrency.  
 
5.2 Defining a Task  
A task is an independent thread of execution that can compete with other concurrent tasks for 
processor execution time. As mentioned earlier, developers decompose applications into multiple 
concurrent tasks to optimize the handling of inputs and outputs within set time constraints.  

A task is schedulable. As Chapter 4 discusses, the task is able to compete for execution time on 
a system, based on a predefined scheduling algorithm. A task is defined by its distinct set of 
parameters and supporting data structures. Specifically, upon creation, each task has an 
associated name, a unique ID, a priority (if part of a preemptive scheduling plan), a task control 
block (TCB), a stack, and a task routine, as shown in Figure 5.1). Together, these components 
make up what is known as the task object.  

 
Figure 5.1: A task, its associated parameters, and supporting data structures.  



When the kernel first starts, it creates its own set of system tasks and allocates the appropriate 
priority for each from a set of reserved priority levels. The reserved priority levels refer to the 
priorities used internally by the RTOS for its system tasks. An application should avoid using 
these priority levels for its tasks because running application tasks at such level may affect the 
overall system performance or behavior. For most RTOSes, these reserved priorities are not 
enforced. The kernel needs its system tasks and their reserved priority levels to operate. These 
priorities should not be modified. Examples of system tasks include:  
§ initialization or startup task—initializes the system and creates and starts system 

tasks,  
§ idle task—uses up processor idle cycles when no other activity is present,  
§ logging task—logs system messages,  
§ exception-handling task—handles exceptions, and  
§ debug agent task—allows debugging with a host debugger. Note that other system 

tasks might be created during initialization, depending on what other components are 
included with the kernel.  

The idle task, which is created at kernel startup, is one system task that bears mention and 
should not be ignored. The idle task is set to the lowest priority, typically executes in an endless 
loop, and runs when either no other task can run or when no other tasks exist, for the sole 
purpose of using idle processor cycles. The idle task is necessary because the processor 
executes the instruction to which the program counter register points while it is running. Unless 
the processor can be suspended, the program counter must still point to valid instructions even 
when no tasks exist in the system or when no tasks can run. Therefore, the idle task ensures the 
processor program counter is always valid when no other tasks are running.  

In some cases, however, the kernel might allow a user-configured routine to run instead of the 
idle task in order to implement special requirements for a particular application. One example of a 
special requirement is power conservation. When no other tasks can run, the kernel can switch 
control to the user-supplied routine instead of to the idle task. In this case, the user-supplied 
routine acts like the idle task but instead initiates power conservation code, such as system 
suspension, after a period of idle time.  

After the kernel has initialized and created all of the required tasks, the kernel jumps to a 
predefined entry point (such as a predefined function) that serves, in effect, as the beginning of 
the application. From the entry point, the developer can initialize and create other application 
tasks , as well as other kernel objects, which the application design might require.  

As the developer creates new tasks, the developer must assign each a task name, priority, stack 
size, and a task routine. The kernel does the rest by assigning each task a unique ID and creating 
an associated TCB and stack space in memory for it.  
 
5.3 Task States and Scheduling  
Whether it's a system task or an application task, at any time each task exists in one of a small 
number of states, including ready, running, or blocked. As the real-time embedded system runs, 
each task moves from one state to another, according to the logic of a simple finite state machine 
(FSM). Figure 5.2 illustrates a typical FSM for task execution states, with brief descriptions of 
state transitions.  



 
Figure 5.2: A typical finite state machine for task execution states.  

Although kernels can define task-state groupings differently, generally three main states are used 
in most typical preemptive-scheduling kernels, including:  
§ ready state-the task is ready to run but cannot because a higher priority task is 

executing.  
§ blocked state-the task has requested a resource that is not available, has requested to 

wait until some event occurs, or has delayed itself for some duration.  
§ running state-the task is the highest priority task and is running.  

Note some commercial kernels, such as the VxWorks kernel, define other, more granular states, 
such as suspended, pended, and delayed. In this case, pended and delayed are actually sub-
states of the blocked state. A pended task is waiting for a resource that it needs to be freed; a 
delayed task is waiting for a timing delay to end. The suspended state exists for debugging 
purposes. For more detailed information on the way a particular RTOS kernel implements its FSM 
for each task, refer to the kernel's user manual.  

Regardless of how a kernel implements a task's FSM, it must maintain the current state of all 
tasks in a running system. As calls are made into the kernel by executing tasks, the kernel's 
scheduler first determines which tasks need to change states and then makes those changes.  

In some cases, the kernel changes the states of some tasks, but no context switching occurs 
because the state of the highest priority task is unaffected. In other cases, however, these state 
changes result in a context switch because the former highest priority task either gets blocked or 
is no longer the highest priority task. When this process happens, the former running task is put 
into the blocked or ready state, and the new highest priority task starts to execute.  

The following describe the ready, running, and blocked states in more detail. These descriptions 
are based on a single-processor system and a kernel using a priority-based preemptive 
scheduling algorithm.  

5.3.1 Ready State 

When a task is first created and made ready to run, the kernel puts it into the ready state. In this 
state, the task actively competes with all other ready tasks for the processor's execution time. As 
Figure 5.2 shows, tasks in the ready state cannot move directly to the blocked state. A task first 
needs to run so it can make a blocking call , which is a call to a function that cannot immediately 
run to completion, thus putting the task in the blocked state. Ready tasks, therefore, can only 
move to the running state. Because many tasks might be in the ready state, the kernel's 
scheduler uses the priority of each task to determine which task to move to the running state.  



For a kernel that supports only one task per priority level, the scheduling algorithm is 
straightforward-the highest priority task that is ready runs next. In this implementation, the kernel 
limits the number of tasks in an application to the number of priority levels.  

However, most kernels support more than one task per priority level, allowing many more tasks in 
an application. In this case, the scheduling algorithm is more complicated and involves 
maintaining a task-ready list . Some kernels maintain a separate task-ready list for each priority 
level; others have one combined list.  

Figure 5.3 illustrates, in a five-step scenario, how a kernel scheduler might use a task-ready list to 
move tasks from the ready state to the running state. This example assumes a single-processor 
system and a priority-based preemptive scheduling algorithm in which 255 is the lowest priority 
and 0 is the highest. Note that for simplicity this example does not show system tasks, such as 
the idle task.  

 
Figure 5.3: Five steps showing the way a task-ready list works.  

In this example, tasks 1, 2, 3, 4, and 5 are ready to run, and the kernel queues them by priority in 
a task-ready list. Task 1 is the highest priority task (70); tasks 2, 3, and 4 are at the next-highest 
priority level (80); and task 5 is the lowest priority (90). The following steps explains how a kernel 
might use the task-ready list to move tasks to and from the ready state:  

1. Tasks 1, 2, 3, 4, and 5 are ready to run and are waiting in the task-ready list.  
2. Because task 1 has the highest priority (70), it is the first task ready to run. If nothing 

higher is running, the kernel removes task 1 from the ready list and moves it to the running 
state.  

3. During execution, task 1 makes a blocking call. As a result, the kernel moves task 1 to 
the blocked state; takes task 2, which is first in the list of the next-highest priority tasks 
(80), off the ready list; and moves task 2 to the running state.  

4. Next, task 2 makes a blocking call. The kernel moves task 2 to the blocked state; takes 
task 3, which is next in line of the priority 80 tasks, off the ready list; and moves task 3 to 
the running state.  

5. As task 3 runs, frees the resource that task 2 requested. The kernel returns task 2 to the 
ready state and inserts it at the end of the list of tasks ready to run at priority level 80. Task 
3 continues as the currently running task.  



Although not illustrated here, if task 1 became unblocked at this point in the scenario, the kernel 
would move task 1 to the running state because its priority is higher than the currently running 
task (task 3). As with task 2 earlier, task 3 at this point would be moved to the ready state and 
inserted after task 2 (same priority of 80) and before task 5 (next priority of 90).  

5.3.2 Running State 

On a single-processor system, only one task can run at a time. In this case, when a task is moved 
to the running state, the processor loads its registers with this task's context. The processor can 
then execute the task's instructions and manipulate the associated stack.  

As discussed in the previous section, a task can move back to the ready state while it is running. 
When a task moves from the running state to the ready state, it is preempted by a higher priority 
task. In this case, the preempted task is put in the appropriate, priority-based location in the task-
ready list, and the higher priority task is moved from the ready state to the running state.  

Unlike a ready task, a running task can move to the blocked state in any of the following ways:  
§ by making a call that requests an unavailable resource,  
§ by making a call that requests to wait for an event to occur, and  
§ by making a call to delay the task for some duration.  
§ In each of these cases, the task is moved from the running state to the blocked state, as 

described next.  

5.3.3 Blocked State 

The possibility of blocked states is extremely important in real-time systems because without 
blocked states, lower priority tasks could not run. If higher priority tasks are not designed to block, 
CPU starvation can result.  

CPU starvation occurs when higher priority tasks use all of the CPU execution time and lower 
priority tasks do not get to run.  

A task can only move to the blocked state by making a blocking call, requesting that some 
blocking condition be met. A blocked task remains blocked until the blocking condition is met. (It 
probably ought to be called the un blocking condition, but blocking is the terminology in common 
use among real-time programmers.) Examples of how blocking conditions are met include the 
following:  
§ a semaphore token (described later) for which a task is waiting is released,  
§ a message, on which the task is waiting, arrives in a message queue, or  
§ a time delay imposed on the task expires. 

When a task becomes unblocked, the task might move from the blocked state to the ready state if 
it is not the highest priority task. The task is then put into the task-ready list at the appropriate 
priority-based location, as described earlier.  

However, if the unblocked task is the highest priority task, the task moves directly to the running 
state (without going through the ready state) and preempts the currently running task. The 
preempted task is then moved to the ready state and put into the appropriate priority-based 
location in the task-ready list.  
 
5.4 Typical Task Operations  
In addition to providing a task object, kernels also provide task-management services . Task-
management services include the actions that a kernel performs behind the scenes to support 
tasks, for example, creating and maintaining the TCB and task stacks.  



A kernel, however, also provides an API that allows developers to manipulate tasks. Some of the 
more common operations that developers can perform with a task object from within the 
application include:  
§ creating and deleting tasks,  
§ controlling task scheduling, and  
§ obtaining task information. 

Developers should learn how to perform each of these operations for the kernel selected for the 
project. Each operation is briefly discussed next.  

5.4.1 Task Creation and Deletion  

The most fundamental operations that developers must learn are creating and deleting tasks, as 
shown in Table 5.1.  
Table 5.1: Operations for task creation and deletion.  

Operation  Description  

Create  Creates a task 

Delete  Deletes a task  

Developers typically create a task using one or two operations, depending on the kernel’s API. 
Some kernels allow developers first to create a task and then start it. In this case, the task is first 
created and put into a suspended state; then, the task is moved to the ready state when it is 
started (made ready to run).  

Creating tasks in this manner might be useful for debugging or when special initialization needs to 
occur between the times that a task is created and started. However, in most cases, it is sufficient 
to create and start a task using one kernel call.  

The suspended state is similar to the blocked state, in that the suspended task is neither running 
nor ready to run. However, a task does not move into or out of the suspended state via the same 
operations that move a task to or from the blocked state. The exact nature of the suspended state 
varies between RTOSes. For the present purpose, it is sufficient to know that the task is not yet 
ready to run.  

Starting a task does not make it run immediately; it puts the task on the task-ready list.  

Many kernels also provide user-configurable hooks , which are mechanisms that execute 
programmer-supplied functions, at the time of specific kernel events. The programmer registers 
the function with the kernel by passing a function pointer to a kernel-provided API . The kernel 
executes this function when the event of interest occurs. Such events can include:  
§ when a task is first created,  
§ when a task is suspended for any reason and a context switch occurs, and  
§ when a task is deleted. 

Hooks are useful when executing special initialization code upon task creation, implementing 
status tracking or monitoring upon task context switches, or executing clean-up code upon task 
deletion.  

Carefully consider how tasks are to be deleted in the embedded application. Many kernel 
implementations allow any task to delete any other task. During the deletion process, a kernel 
terminates the task and frees memory by deleting the task’s TCB and stack.  



However, when tasks execute, they can acquire memory or access resources using other kernel 
objects. If the task is deleted incorrectly, the task might not get to release these resources. For 
example, assume that a task acquires a semaphore token to get exclusive access to a shared 
data structure. While the task is operating on this data structure, the task gets deleted. If not 
handled appropriately, this abrupt deletion of the operating task can result in:  
§ a corrupt data structure, due to an incomplete write operation,  
§ an unreleased semaphore, which will not be available for other tasks that might need to 

acquire it, and  
§ an inaccessible data structure, due to the unreleased semaphore. 

As a result, premature deletion of a task can result in memory or resource leaks.  

A memory leak occurs when memory is acquired but not released, which causes the system to 
run out of memory eventually. A resource leak occurs when a resource is acquired but never 
released, which results in a memory leak because each resource takes up space in memory. 
Many kernels provide task-deletion locks, a pair of calls that protect a task from being 
prematurely deleted during a critical section of code.  

This book discusses these concepts in more detail later. At this point, however, note that any 
tasks to be deleted must have enough time to clean up and release resources or memory before 
being deleted.  

5.4.2 Task Scheduling  

From the time a task is created to the time it is deleted, the task can move through various states 
resulting from program execution and kernel scheduling. Although much of this state changing is 
automatic, many kernels provide a set of API calls that allow developers to control when a task 
moves to a different state, as shown in Table 5.2. This capability is called manual scheduling .  
Table 5.2: Operations for task scheduling.  

Operation  Description  

Suspend  Suspends a task 

Resume  Resumes a task 

Delay  Delays a task 

Restart  Restarts a task 

Get Priority  Gets the current task’s priority 

Set Priority  Dynamically sets a task’s priority 

Preemption lock  Locks out higher priority tasks from preempting the current 
task 

Preemption unlock  Unlocks a preemption lock  

Using manual scheduling, developers can suspend and resume tasks from within an application. 
Doing so might be important for debugging purposes or, as discussed earlier, for suspending a 
high-priority task so that lower priority tasks can execute. 

A developer might want to delay (block) a task, for example, to allow manual scheduling or to wait 
for an external condition that does not have an associated interrupt. Delaying a task causes it to 
relinquish the CPU and allow another task to execute. After the delay expires, the task is returned 
to the task-ready list after all other ready tasks at its priority level. A delayed task waiting for an 



external condition can wake up after a set time to check whether a specified condition or event 
has occurred, which is called polling.  

A developer might also want to restart a task, which is not the same as resuming a suspended 
task. Restarting a task begins the task as if it had not been previously executing. The internal 
state the task possessed at the time it was suspended (for example, the CPU registers used and 
the resources acquired) is lost when a task is restarted. By contrast, resuming a task begins the 
task in the same internal state it possessed when it was suspended.  

Restarting a task is useful during debugging or when reinitializing a task after a catastrophic error. 
During debugging, a developer can restart a task to step through its code again from start to 
finish. In the case of catastrophic error, the developer can restart a task and ensure that the 
system continues to operate without having to be completely reinitialized.  

Getting and setting a task’s priority during execution lets developers control task scheduling 
manually. This process is helpful during a priority inversion , in which a lower priority task has a 
shared resource that a higher priority task requires and is preempted by an unrelated medium-
priority task. (Priority inversion is discussed in more detail in Chapter 16). A simple fix for this 
problem is to free the shared resource by dynamically increasing the priority of the lower priority 
task to that of the higher priority task—allowing the task to run and release the resource that the 
higher priority task requires—and then decreasing the former lower priority task to its original 
priority.  

Finally, the kernel might support preemption locks , a pair of calls used to disable and enable 
preemption in applications. This feature can be useful if a task is executing in a critical section of 
code : one in which the task must not be preempted by other tasks.  

5.4.3 Obtaining Task Information 

Kernels provide routines that allow developers to access task information within their applications, 
as shown in Table 5.3. This information is useful for debugging and monitoring.  
Table 5.3: Task-information operations.  

Operation  Description  

Get ID  Get the current task’s ID 

Get TCB  Get the current task’s TCB  

One use is to obtain a particular task’s ID, which is used to get more information about the task 
by getting its TCB. Obtaining a TCB, however, only takes a snapshot of the task context. If a task 
is not dormant (e.g., suspended), its context might be dynamic, and the snapshot information 
might change by the time it is used. Hence, use this functionality wisely, so that decisions aren’t 
made in the application based on querying a constantly changing task context.  
 
5.5 Typical Task Structure  
When writing code for tasks, tasks are structured in one of two ways:  
§ run to completion, or  
§ endless loop. 

Both task structures are relatively simple. Run-to-completion tasks are most useful for 
initialization and startup. They typically run once, when the system first powers on. Endless-loop 
tasks do the majority of the work in the application by handling inputs and outputs. Typically, they 
run many times while the system is powered on.  



5.5.1 Run-to-Completion Tasks  

An example of a run-to-completion task is the application-level initialization task, shown in Listing 
5.1. The initialization task initializes the application and creates additional services, tasks, and 
needed kernel objects. 
Listing 5.1: Pseudo code for a run-to-completion task.  
 

RunToCompletionTask () 
{ 
       Initialize application 
       Create ‘endless loop tasks' 
       Create kernel objects 
       Delete or suspend this task 
} 
 
 

The application initialization task typically has a higher priority than the application tasks it creates 
so that its initialization work is not preempted. In the simplest case, the other tasks are one or 
more lower priority endless-loop tasks. The application initialization task is written so that it 
suspends or deletes itself after it completes its work so the newly created tasks can run.  

5.5.2 Endless-Loop Tasks  

As with the structure of the application initialization task, the structure of an endless loop task can 
also contain initialization code. The endless loop's initialization code, however, only needs to be 
executed when the task first runs, after which the task executes in an endless loop, as shown in 
Listing 5.2.  

The critical part of the design of an endless-loop task is the one or more blocking calls within the 
body of the loop. These blocking calls can result in the blocking of this endless-loop task, allowing 
lower priority tasks to run.  
Listing 5.2: Pseudo code for an endless-loop task.  
 

EndlessLoopTask () 
{ 
       Initialization code 
       Loop Forever  
       { 
              Body of loop 
              Make one or more blocking calls 
       } 
} 
 
 

 



5.6 Synchronization, Communication, and Concurrency 
Tasks synchronize and communicate amongst themselves by using intertask primitives , which 
are kernel objects that facilitate synchronization and communication between two or more threads 
of execution. Examples of such objects include semaphores, message queues, signals, and 
pipes, as well as other types of objects. Each of these is discussed in detail in later chapters of 
this book.  

The concept of concurrency and how an application is optimally decomposed into concurrent 
tasks is also discussed in more detail later in this book. For now, remember that the task object is 
the fundamental construct of most kernels. Tasks, along with task-management services, allow 
developers to design applications for concurrency to meet multiple time constraints and to 
address various design problems inherent to real-time embedded applications.  
 
5.7 Points to Remember 
Some points to remember include the following:  
§ Most real-time kernels provide task objects and task-management services that allow 

developers to meet the requirements of real-time applications.  
§ Applications can contain system tasks or user-created tasks, each of which has a name, 

a unique ID, a priority, a task control block (TCB), a stack, and a task routine.  
§ A real-time application is composed of multiple concurrent tasks that are independent 

threads of execution, competing on their own for processor execution time.  
§ Tasks can be in one of three primary states during their lifetime: ready, running, and 

blocked.  
§ Priority-based, preemptive scheduling kernels that allow multiple tasks to be assigned to 

the same priority use task-ready lists to help scheduled tasks run.  
§ Tasks can run to completion or can run in an endless loop. For tasks that run in endless 

loops, structure the code so that the task blocks, which allows lower priority tasks to run.  
§ Typical task operations that kernels provide for application development include task 

creation and deletion, manual task scheduling, and dynamic acquisition of task information.  
 
 



Chapter 6: Semaphores 
6.1 Introduction 
Multiple concurrent threads of execution within an application must be able to synchronize their 
execution and coordinate mutually exclusive access to shared resources. To address these 
requirements, RTOS kernels provide a semaphore object and associated semaphore 
management services.  

This chapter discusses the following:  
§ defining a semaphore,  
§ typical semaphore operations, and  
§ common semaphore use.  
 
6.2 Defining Semaphores 
A semaphore (sometimes called a semaphore token) is a kernel object that one or more threads 
of execution can acquire or release for the purposes of synchronization or mutual exclusion.  

When a semaphore is first created, the kernel assigns to it an associated semaphore control 
block (SCB), a unique ID, a value (binary or a count), and a task-waiting list, as shown in Figure 
6.1.  

 
Figure 6.1: A semaphore, its associated parameters, and supporting data structures.  

A semaphore is like a key that allows a task to carry out some operation or to access a resource. 
If the task can acquire the semaphore, it can carry out the intended operation or access the 
resource. A single semaphore can be acquired a finite number of times. In this sense, acquiring a 
semaphore is like acquiring the duplicate of a key from an apartment manager—when the 
apartment manager runs out of duplicates, the manager can give out no more keys. Likewise, 
when a semaphore’s limit is reached, it can no longer be acquired until someone gives a key 
back or releases the semaphore.  

The kernel tracks the number of times a semaphore has been acquired or released by 
maintaining a token count, which is initialized to a value when the semaphore is created. As a 
task acquires the semaphore, the token count is decremented; as a task releases the semaphore, 
the count is incremented.  

If the token count reaches 0, the semaphore has no tokens left. A requesting task, therefore, 
cannot acquire the semaphore, and the task blocks if it chooses to wait for the semaphore to 



become available. (This chapter discusses states of different semaphore variants and blocking in 
more detail in "Typical Semaphore Operations" on page 84, section 6.3.)  

The task-waiting list tracks all tasks blocked while waiting on an unavailable semaphore. These 
blocked tasks are kept in the task-waiting list in either first in/first out (FIFO) order or highest 
priority first order.  

When an unavailable semaphore becomes available, the kernel allows the first task in the task-
waiting list to acquire it. The kernel moves this unblocked task either to the running state, if it is 
the highest priority task, or to the ready state, until it becomes the highest priority task and is able 
to run. Note that the exact implementation of a task-waiting list can vary from one kernel to 
another.  

A kernel can support many different types of semaphores, including binary, counting, and mutual-
exclusion (mutex) semaphores.  

6.2.1 Binary Semaphores  

A binary semaphore can have a value of either 0 or 1. When a binary semaphore’s value is 0, the 
semaphore is considered unavailable (or empty); when the value is 1, the binary semaphore is 
considered available (or full ). Note that when a binary semaphore is first created, it can be 
initialized to either available or unavailable (1 or 0, respectively). The state diagram of a binary 
semaphore is shown in Figure 6.2.  

 
Figure 6.2: The state diagram of a binary semaphore.  

Binary semaphores are treated as global resources, which means they are shared among all 
tasks that need them. Making the semaphore a global resource allows any task to release it, even 
if the task did not initially acquire it.  

6.2.2 Counting Semaphores  

A counting semaphore uses a count to allow it to be acquired or released multiple times. When 
creating a counting semaphore, assign the semaphore a count that denotes the number of 
semaphore tokens it has initially. If the initial count is 0, the counting semaphore is created in the 
unavailable state. If the count is greater than 0, the semaphore is created in the available state, 
and the number of tokens it has equals its count, as shown in Figure 6.3.  

 
Figure 6.3: The state diagram of a counting semaphore.  



One or more tasks can continue to acquire a token from the counting semaphore until no tokens 
are left. When all the tokens are gone, the count equals 0, and the counting semaphore moves 
from the available state to the unavailable state. To move from the unavailable state back to the 
available state, a semaphore token must be released by any task.  

Note that, as with binary semaphores, counting semaphores are global resources that can be 
shared by all tasks that need them. This feature allows any task to release a counting semaphore 
token. Each release operation increments the count by one, even if the task making this call did 
not acquire a token in the first place.  

Some implementations of counting semaphores might allow the count to be bounded. A bounded 
count is a count in which the initial count set for the counting semaphore, determined when the 
semaphore was first created, acts as the maximum count for the semaphore. An unbounded 
count allows the counting semaphore to count beyond the initial count to the maximum value that 
can be held by the count’s data type (e.g., an unsigned integer or an unsigned long value).  

6.2.3 Mutual Exclusion (Mutex) Semaphores  

A mutual exclusion (mutex) semaphore is a special binary semaphore that supports ownership, 
recursive access, task deletion safety, and one or more protocols for avoiding problems inherent 
to mutual exclusion. Figure 6.4 illustrates the state diagram of a mutex.  

 
Figure 6.4: The state diagram of a mutual exclusion (mutex) semaphore.  

As opposed to the available and unavailable states in binary and counting semaphores, the 
states of a mutex are unlocked or locked (0 or 1, respectively). A mutex is initially created in the 
unlocked state, in which it can be acquired by a task. After being acquired, the mutex moves to 
the locked state. Conversely, when the task releases the mutex, the mutex returns to the 
unlocked state. Note that some kernels might use the terms lock and unlock for a mutex instead 
of acquire and release. 

Depending on the implementation, a mutex can support additional features not found in binary or 
counting semaphores. These key differentiating features include ownership, recursive locking, 
task deletion safety, and priority inversion avoidance protocols.  

Mutex Ownership 
Ownership of a mutex is gained when a task first locks the mutex by acquiring it. Conversely, a 
task loses ownership of the mutex when it unlocks it by releasing it. When a task owns the mutex, 
it is not possible for any other task to lock or unlock that mutex. Contrast this concept with the 
binary semaphore, which can be released by any task, even a task that did not originally acquire 
the semaphore.  



Recursive Locking 
Many mutex implementations also support recursive locking , which allows the task that owns the 
mutex to acquire it multiple times in the locked state. Depending on the implementation, recursion 
within a mutex can be automatically built into the mutex, or it might need to be enabled explicitly 
when the mutex is first created.  

The mutex with recursive locking is called a recursive mutex . This type of mutex is most useful 
when a task requiring exclusive access to a shared resource calls one or more routines that also 
require access to the same resource. A recursive mutex allows nested attempts to lock the mutex 
to succeed, rather than cause deadlock , which is a condition in which two or more tasks are 
blocked and are waiting on mutually locked resources. The problem of recursion and deadlocks is 
discussed later in this chapter, as well as later in this book.  

As shown in Figure 6.4, when a recursive mutex is first locked, the kernel registers the task that 
locked it as the owner of the mutex. On successive attempts, the kernel uses an internal lock 
count associated with the mutex to track the number of times that the task currently owning the 
mutex has recursively acquired it. To properly unlock the mutex, it must be released the same 
number of times.  

In this example, a lock count tracks the two states of a mutex (0 for unlocked and 1 for locked), 
as well as the number of times it has been recursively locked (lock count > 1). In other 
implementations, a mutex might maintain two counts: a binary value to track its state, and a 
separate lock count to track the number of times it has been acquired in the lock state by the task 
that owns it.  

Do not confuse the counting facility for a locked mutex with the counting facility for a counting 
semaphore. The count used for the mutex tracks the number of times that the task owning the 
mutex has locked or unlocked the mutex. The count used for the counting semaphore tracks the 
number of tokens that have been acquired or released by any task. Additionally, the count for the 
mutex is always unbounded, which allows multiple recursive accesses.  

Task Deletion Safety  
Some mutex implementations also have built-in task deletion safety. Premature task deletion is 
avoided by using task deletion locks when a task locks and unlocks a mutex. Enabling this 
capability within a mutex ensures that while a task owns the mutex, the task cannot be deleted. 
Typically protection from premature deletion is enabled by setting the appropriate initialization 
options when creating the mutex.  

Priority Inversion Avoidance 
Priority inversion commonly happens in poorly designed real-time embedded applications. Priority 
inversion occurs when a higher priority task is blocked and is waiting for a resource being used by 
a lower priority task, which has itself been preempted by an unrelated medium-priority task. In this 
situation, the higher priority task’s priority level has effectively been inverted to the lower priority 
task’s level.  

Enabling certain protocols that are typically built into mutexes can help avoid priority inversion. 
Two common protocols used for avoiding priority inversion include:  
§ priority inheritance protocol—ensures that the priority level of the lower priority task 

that has acquired the mutex is raised to that of the higher priority task that has requested the 
mutex when inversion happens. The priority of the raised task is lowered to its original value 
after the task releases the mutex that the higher priority task requires.  



§ ceiling priority protocol—ensures that the priority level of the task that acquires the 
mutex is automatically set to the highest priority of all possible tasks that might request that 
mutex when it is first acquired until it is released.  

When the mutex is released, the priority of the task is lowered to its original value.  

Chapter 16 discusses priority inversion and both the priority inheritance and ceiling priority 
protocols in more detail. For now, remember that a mutex supports ownership, recursive locking, 
task deletion safety, and priority inversion avoidance protocols; binary and counting semaphores 
do not.  
 
6.3 Typical Semaphore Operations  
Typical operations that developers might want to perform with the semaphores in an application 
include:  
§ creating and deleting semaphores,  
§ acquiring and releasing semaphores,  
§ clearing a semaphore’s task-waiting list, and  
§ getting semaphore information. 

Each operation is discussed next.  

6.3.1 Creating and Deleting Semaphores  

Table 6.1 identifies the operations used to create and delete semaphores.  
Table 6.1: Semaphore creation and deletion operations.  

Operation  Description 

Create  Creates a semaphore  

Delete  Deletes a semaphore  

Several things must be considered, however, when creating and deleting semaphores. If a kernel 
supports different types of semaphores, different calls might be used for creating binary, counting, 
and mutex semaphores, as follows:  
§ binary—specify the initial semaphore state and the task-waiting order.  
§ counting—specify the initial semaphore count and the task-waiting order.  
§ mutex—specify the task-waiting order and enable task deletion safety, recursion, and 

priority-inversion avoidance protocols, if supported.  

Semaphores can be deleted from within any task by specifying their IDs and making semaphore-
deletion calls. Deleting a semaphore is not the same as releasing it. When a semaphore is 
deleted, blocked tasks in its task-waiting list are unblocked and moved either to the ready state or 
to the running state (if the unblocked task has the highest priority). Any tasks, however, that try to 
acquire the deleted semaphore return with an error because the semaphore no longer exists.  

Additionally, do not delete a semaphore while it is in use (e.g., acquired). This action might result 
in data corruption or other serious problems if the semaphore is protecting a shared resource or a 
critical section of code.  

6.3.2 Acquiring and Releasing Semaphores  

Table 6.2 identifies the operations used to acquire or release semaphores.  
Table 6.2: Semaphore acquire and release operations.  



Operation  Description  

Acquire  Acquire a semaphore token 

Release  Release a semaphore token  

The operations for acquiring and releasing a semaphore might have different names, depending 
on the kernel: for example, take and give , sm_p and sm_v , pend and post , and lock and unlock 
. Regardless of the name, they all effectively acquire and release semaphores.  

Tasks typically make a request to acquire a semaphore in one of the following ways:  
§ Wait forever—task remains blocked until it is able to acquire a semaphore.  
§ Wait with a timeout—task remains blocked until it is able to acquire a semaphore or 

until a set interval of time, called the timeout interval , passes. At this point, the task is 
removed from the semaphore’s task-waiting list and put in either the ready state or the 
running state.  

§ Do not wait—task makes a request to acquire a semaphore token, but, if one is not 
available, the task does not block.  

Note that ISRs can also release binary and counting semaphores. Note that most kernels do not 
support ISRs locking and unlocking mutexes, as it is not meaningful to do so from an ISR. It is 
also not meaningful to acquire either binary or counting semaphores inside an ISR.  

Any task can release a binary or counting semaphore; however, a mutex can only be released 
(unlocked) by the task that first acquired (locked) it. Note that incorrectly releasing a binary or 
counting semaphore can result in losing mutually exclusive access to a shared resource or in an 
I/O device malfunction.  

For example, a task can gain access to a shared data structure by acquiring an associated 
semaphore. If a second task accidentally releases that semaphore, this step can potentially free a 
third task waiting for that same semaphore, allowing that third task to also gain access to the 
same data structure. Having multiple tasks trying to modify the same data structure at the same 
time results in corrupted data.  

6.3.3 Clearing Semaphore Task-Waiting Lists  

To clear all tasks waiting on a semaphore task-waiting list, some kernels support a flush 
operation, as shown in Table 6.3.  
Table 6.3: Semaphore unblock operations.  

Operation  Description  

Flush  Unblocks all tasks waiting on a semaphore  

The flush operation is useful for broadcast signaling to a group of tasks. For example, a 
developer might design multiple tasks to complete certain activities first and then block while 
trying to acquire a common semaphore that is made unavailable. After the last task finishes doing 
what it needs to, the task can execute a semaphore flush operation on the common semaphore. 
This operation frees all tasks waiting in the semaphore’s task waiting list. The synchronization 
scenario just described is also called thread rendezvous, when multiple tasks’ executions need to 
meet at some point in time to synchronize execution control.  



6.3.4 Getting Semaphore Information  

At some point in the application design, developers need to obtain semaphore information to 
perform monitoring or debugging. In these cases, use the operations shown in Table 6.4.  
Table 6.4: Semaphore information operations.  

Operation  Description  

Show info  Show general information about semaphore 

Show blocked tasks  Get a list of IDs of tasks that are blocked on a semaphore  

These operations are relatively straightforward but should be used judiciously, as the semaphore 
information might be dynamic at the time it is requested.  
 
6.4 Typical Semaphore Use  
Semaphores are useful either for synchronizing execution of multiple tasks or for coordinating 
access to a shared resource. The following examples and general discussions illustrate using 
different types of semaphores to address common synchronization design requirements 
effectively, as listed:  
§ wait-and-signal synchronization,  
§ multiple-task wait-and-signal synchronization,  
§ credit-tracking synchronization,  
§ single shared-resource-access synchronization,  
§ recursive shared-resource-access synchronization, and  
§ multiple shared-resource-access synchronization. 

Note that, for the sake of simplicity, not all uses of semaphores are listed here. Also, later 
chapters of this book contain more advanced discussions on the different ways that mutex 
semaphores can handle priority inversion.  

6.4.1 Wait-and-Signal Synchronization  

Two tasks can communicate for the purpose of synchronization without exchanging data. For 
example, a binary semaphore can be used between two tasks to coordinate the transfer of 
execution control, as shown in Figure 6.5.  

 
Figure 6.5: Wait-and-signal synchronization between two tasks.  

In this situation, the binary semaphore is initially unavailable (value of 0). tWaitTask has higher 
priority and runs first. The task makes a request to acquire the semaphore but is blocked because 
the semaphore is unavailable. This step gives the lower priority tSignalTask a chance to run; 
at some point, tSignalTask releases the binary semaphore and unblocks tWaitTask. The 
pseudo code for this scenario is shown in Listing 6.1.  
Listing 6.1: Pseudo code for wait-and-signal synchronization  
 

tWaitTask ( ) 
{ 
                : 



                Acquire binary semaphore token 
                : 
} 
 
tSignalTask ( ) 
{ 
                : 
                Release binary semaphore token 
                : 
} 
 
 

Because tWaitTask's priority is higher than tSignalTask's priority, as soon as the semaphore 
is released, tWaitTask preempts tSignalTask and starts to execute.  

6.4.2 Multiple-Task Wait-and-Signal Synchronization  

When coordinating the synchronization of more than two tasks, use the flush operation on the 
task-waiting list of a binary semaphore, as shown in Figure 6.6.  

 
Figure 6.6: Wait-and-signal synchronization between multiple tasks.  

As in the previous case, the binary semaphore is initially unavailable (value of 0). The higher 
priority tWaitTasks 1, 2, and 3 all do some processing; when they are done, they try to 
acquire the unavailable semaphore and, as a result, block. This action gives tSignalTask a 
chance to complete its processing and execute a flush command on the semaphore, effectively 
unblocking the three tWaitTasks, as shown in Listing 6.2. Note that similar code is used for 
tWaitTask 1, 2, and 3.  
Listing 6.2: Pseudo code for wait-and-signal synchronization.  
 

tWaitTask () 
{ 
              : 
              Do some processing specific to task Acquire binary 
semaphore token  
              : 
} 
 
tSignalTask () 
{ 



              : 
              Do some processing Flush binary semaphore's task-waiting 
list 
              : 
} 
 
 

Because the tWaitTasks' priorities are higher than tSignalTask's priority, as soon as the 
semaphore is released, one of the higher priority tWaitTasks preempts tSignalTask and 
starts to execute.  

Note that in the wait-and-signal synchronization shown in Figure 6.6 the value of the binary 
semaphore after the flush operation is implementation dependent. Therefore, the return value of 
the acquire operation must be properly checked to see if either a return-from-flush or an error 
condition has occurred.  

6.4.3 Credit-Tracking Synchronization  

Sometimes the rate at which the signaling task executes is higher than that of the signaled task. 
In this case, a mechanism is needed to count each signaling occurrence. The counting 
semaphore provides just this facility. With a counting semaphore, the signaling task can continue 
to execute and increment a count at its own pace, while the wait task, when unblocked, executes 
at its own pace, as shown in Figure 6.7.  

 
Figure 6.7: Credit-tracking synchronization between two tasks.  

Again, the counting semaphore's count is initially 0, making it unavailable. The lower priority 
tWaitTask tries to acquire this semaphore but blocks until tSignalTask makes the 
semaphore available by performing a release on it. Even then, tWaitTask will waits in the 
ready state until the higher priority tSignalTask eventually relinquishes the CPU by making a 
blocking call or delaying itself, as shown in Listing 6.3. 
Listing 6.3: Pseudo code for credit-tracking synchronization.  
 

tWaitTask () 
{ 
              : 
              Acquire counting semaphore token 
              : 
} 
 
 
tSignalTask () 
{ 
              : 
              Release counting semaphore token 



              : 
} 
 
 

Because tSignalTask is set to a higher priority and executes at its own rate, it might increment 
the counting semaphore multiple times before tWaitTask starts processing the first request. 
Hence, the counting semaphore allows a credit buildup of the number of times that the 
tWaitTask can execute before the semaphore becomes unavailable.  

Eventually, when tSignalTask's rate of releasing the semaphore tokens slows, tWaitTask 
can catch up and eventually deplete the count until the counting semaphore is empty. At this 
point, tWaitTask blocks again at the counting semaphore, waiting for tSignalTask to release 
the semaphore again.  

Note that this credit-tracking mechanism is useful if tSignalTask releases semaphores in 
bursts, giving tWaitTask the chance to catch up every once in a while.  

Using this mechanism with an ISR that acts in a similar way to the signaling task can be quite 
useful. Interrupts have higher priorities than tasks. Hence, an interrupt's associated higher priority 
ISR executes when the hardware interrupt is triggered and typically offloads some work to a lower 
priority task waiting on a semaphore.  

6.4.4 Single Shared-Resource-Access Synchronization 

One of the more common uses of semaphores is to provide for mutually exclusive access to a 
shared resource. A shared resource might be a memory location, a data structure, or an I/O 
device-essentially anything that might have to be shared between two or more concurrent threads 
of execution. A semaphore can be used to serialize access to a shared resource, as shown in 
Figure 6.8.  

 
Figure 6.8: Single shared-resource-access synchronization.  

In this scenario, a binary semaphore is initially created in the available state (value = 1) and is 
used to protect the shared resource. To access the shared resource, task 1 or 2 needs to first 
successfully acquire the binary semaphore before reading from or writing to the shared resource. 
The pseudo code for both tAccessTask 1 and 2 is similar to Listing 6.4.  
Listing 6.4: Pseudo code for tasks accessing a shared resource.  
 

tAccessTask () 
{ 
              : 
              Acquire binary semaphore token 
              Read or write to shared resource 
              Release binary semaphore token 



              : 
} 
 
 

This code serializes the access to the shared resource. If tAccessTask 1 executes first, it 
makes a request to acquire the semaphore and is successful because the semaphore is 
available. Having acquired the semaphore, this task is granted access to the shared resource and 
can read and write to it.  

Meanwhile, the higher priority tAccessTask 2 wakes up and runs due to a timeout or some 
external event. It tries to access the same semaphore but is blocked because tAccessTask 1 
currently has access to it. After tAccessTask 1 releases the semaphore, tAccessTask 2 is 
unblocked and starts to execute.  

One of the dangers to this design is that any task can accidentally release the binary semaphore, 
even one that never acquired the semaphore in the first place. If this issue were to happen in this 
scenario, both tAccessTask 1 and tAccessTask 2 could end up acquiring the semaphore 
and reading and writing to the shared resource at the same time, which would lead to incorrect 
program behavior.  

To ensure that this problem does not happen, use a mutex semaphore instead. Because a mutex 
supports the concept of ownership, it ensures that only the task that successfully acquired 
(locked) the mutex can release (unlock) it.  

6.4.5 Recursive Shared-Resource-Access Synchronization  

Sometimes a developer might want a task to access a shared resource recursively. This situation 
might exist if tAccessTask calls Routine A that calls Routine B, and all three need access to 
the same shared resource, as shown in Figure 6.9.  

 
Figure 6.9: Recursive shared- resource-access synchronization.  

If a semaphore were used in this scenario, the task would end up blocking, causing a deadlock. 
When a routine is called from a task, the routine effectively becomes a part of the task. When 
Routine A runs, therefore, it is running as a part of tAccessTask. Routine A trying to acquire the 
semaphore is effectively the same as tAccessTask trying to acquire the same semaphore. In 
this case, tAccessTask would end up blocking while waiting for the unavailable semaphore 
that it already has.  

One solution to this situation is to use a recursive mutex. After tAccessTask locks the mutex, 
the task owns it. Additional attempts from the task itself or from routines that it calls to lock the 
mutex succeed. As a result, when Routines A and B attempt to lock the mutex, they succeed 
without blocking. The pseudo code for tAccessTask, Routine A, and Routine B are similar to 
Listing 6.5.  
Listing 6.5: Pseudo code for recursively accessing a shared resource.  
 



tAccessTask () 
{ 
       : 
       Acquire mutex 
       Access shared resource 
       Call Routine A 
       Release mutex 
       : 
} 
 
Routine A () 
{ 
       : 
       Acquire mutex 
       Access shared resource 
       Call Routine B 
       Release mutex 
       : 
} 
 
Routine B () 
{ 
       : 
       Acquire mutex 
       Access shared resource 
       Release mutex  
       : 
} 
 
 

6.4.6 Multiple Shared-Resource-Access Synchronization  
For cases in which multiple equivalent shared resources are used, a counting semaphore comes 
in handy, as shown in Figure 6.10.  



 
Figure 6.10: Single shared-resource-access synchronization.  

Note that this scenario does not work if the shared resources are not equivalent. The counting 
semaphore's count is initially set to the number of equivalent shared resources: in this example, 
2. As a result, the first two tasks requesting a semaphore token are successful. However, the 
third task ends up blocking until one of the previous two tasks releases a semaphore token, as 
shown in Listing 6.6. Note that similar code is used for tAccessTask 1, 2, and 3.  
Listing 6.6: Pseudo code for multiple tasks accessing equivalent shared resources.  
 

tAccessTask () 
{ 
       : 
       Acquire a counting semaphore token 
       Read or Write to shared resource 
       Release a counting semaphore token 
       : 
} 
 
 

As with the binary semaphores, this design can cause problems if a task releases a semaphore 
that it did not originally acquire. If the code is relatively simple, this issue might not be a problem. 
If the code is more elaborate, however, with many tasks accessing shared devices using multiple 
semaphores, mutexes can provide built-in protection in the application design.  

As shown in Figure 6.9, a separate mutex can be assigned for each shared resource. When 
trying to lock a mutex, each task tries to acquire the first mutex in a non-blocking way. If 
unsuccessful, each task then tries to acquire the second mutex in a blocking way.  

The code is similar to Listing 6.7. Note that similar code is used for tAccessTask 1, 2, and 3.  
Listing 6.7: Pseudo code for multiple tasks accessing equivalent shared resources using 
mutexes.  
 

tAccessTask () 
{ 
       : 
       Acquire first mutex in non-blocking way 
            If not successful then acquire 2nd mutex in a blocking way 
       Read or Write to shared resource 



       Release the acquired mutex 
       : 
} 
 
 

Using this scenario, task 1 and 2 each is successful in locking a mutex and therefore having 
access to a shared resource. When task 3 runs, it tries to lock the first mutex in a non-blocking 
way (in case task 1 is done with the mutex). If this first mutex is unlocked, task 3 locks it and is 
granted access to the first shared resource. If the first mutex is still locked, however, task 3 tries 
to acquire the second mutex, except that this time, it would do so in a blocking way. If the second 
mutex is also locked, task 3 blocks and waits for the second mutex until it is unlocked.  
 
6.5 Points to Remember 
Some points to remember include the following:  
§ Using semaphores allows multiple tasks, or ISRs to tasks, to synchronize execution to 

synchronize execution or coordinate mutually exclusive access to a shared resource.  
§ Semaphores have an associated semaphore control block (SCB), a unique ID, a user-

assigned value (binary or a count), and a task-waiting list.  
§ Three common types of semaphores are binary, counting, and mutual exclusion (mutex), 

each of which can be acquired or released.  
§ Binary semaphores are either available (1) or unavailable (0). Counting semaphores are 

also either available (count =1) or unavailable (0). Mutexes, however, are either unlocked (0) 
or locked (lock count =1).  

§ Acquiring a binary or counting semaphore results in decrementing its value or count, 
except when the semaphore’s value is already 0. In this case, the requesting task blocks if it 
chooses to wait for the semaphore.  

§ Releasing a binary or counting semaphore results in incrementing the value or count, 
unless it is a binary semaphore with a value of 1 or a bounded semaphore at its maximum 
count. In this case, the release of additional semaphores is typically ignored.  

§ Recursive mutexes can be locked and unlocked multiple times by the task that owns 
them. Acquiring an unlocked recursive mutex increments its lock count, while releasing it 
decrements the lock count.  

§ Typical semaphore operations that kernels provide for application development include 
creating and deleting semaphores, acquiring and releasing semaphores, flushing 
semaphore’s task-waiting list, and providing dynamic access to semaphore information.  

 



Chapter 7: Message Queues 
7.1 Introduction 
Chapter 6 discusses activity synchronization of two or more threads of execution. Such 
synchronization helps tasks cooperate in order to produce an efficient real-time system. In many 
cases, however, task activity synchronization alone does not yield a sufficiently responsive 
application. Tasks must also be able to exchange messages. To facilitate inter-task data 
communication, kernels provide a message queue object and message queue management 
services.  

This chapter discusses the following:  
§ defining message queues,  
§ message queue states,  
§ message queue content,  
§ typical message queue operations, and  
§ typical message queue use.  
 
7.2 Defining Message Queues  
A message queue is a buffer-like object through which tasks and ISRs send and receive 
messages to communicate and synchornize with data. A message queue is like a pipeline. It 
temporarily holds messages from a sender until the intended receiver is ready to read them. This 
temporary buffering decouples a sending and receiving task; that is, it frees the tasks from having 
to send and receive messages simultaneously.  

As with semaphore introduced in Chapter 6, a message queue has several associated 
components that the kernel uses to manage the queue. When a message queue is first created, it 
is assigned an associated queue control block (QCB), a message queue name, a unique ID, 
memory buffers, a queue length, a maximum message length, and one or more task-waiting lists, 
as illustrated in Figure 7.1.  

 
Figure 7.1: A message queue, its associated parameters, and supporting data structures.  

It is the kernel’s job to assign a unique ID to a message queue and to create its QCB and task-
waiting list. The kernel also takes developer-supplied parameters—such as the length of the 
queue and the maximum message length—to determine how much memory is required for the 
message queue. After the kernel has this information, it allocates memory for the message queue 
from either a pool of system memory or some private memory space.  



The message queue itself consists of a number of elements, each of which can hold a single 
message. The elements holding the first and last messages are called the head and tail 
respectively. Some elements of the queue may be empty (not containing a message). The total 
number of elements (empty or not) in the queue is the total length of the queue . The developer 
specified the queue length when the queue was created.  

As Figure 7.1 shows, a message queue has two associated task-waiting lists. The receiving task-
waiting list consists of tasks that wait on the queue when it is empty. The sending list consists of 
tasks that wait on the queue when it is full. Empty and full message-queue states, as well as 
other key concepts, are discussed in more detail next.  
7.3 Message Queue States 
As with other kernel objects, message queues follow the logic of a simple FSM, as shown in 
Figure 7.2 When a message queue is first created, the FSM is in the empty state. If a task 
attempts to receive messages from this message queue while the queue is empty, the task 
blocks and, if it chooses to, is held on the message queue's task-waiting list, in either a FIFO or 
priority-based order.  

 
Figure 7.2: The state diagram for a message queue.  

In this scenario, if another task sends a message to the message queue, the message is 
delivered directly to the blocked task. The blocked task is then removed from the task-waiting list 
and moved to either the ready or the running state. The message queue in this case remains 
empty because it has successfully delivered the message.  

If another message is sent to the same message queue and no tasks are waiting in the message 
queue's task-waiting list, the message queue's state becomes not empty.  

As additional messages arrive at the queue, the queue eventually fills up until it has exhausted its 
free space. At this point, the number of messages in the queue is equal to the queue's length, 
and the message queue's state becomes full. While a message queue is in this state, any task 
sending messages to it will not be successful unless some other task first requests a message 
from that queue, thus freeing a queue element.  

In some kernel implementations when a task attempts to send a message to a full message 
queue, the sending function returns an error code to that task. Other kernel implementations 
allow such a task to block, moving the blocked task into the sending task-waiting list, which is 
separate from the receiving task-waiting list.  



 
Figure 7.3: Message copying and memory use for sending and receiving messages.  
 
7.4 Message Queue Content  
Message queues can be used to send and receive a variety of data. Some examples include:  
§ a temperature value from a sensor,  
§ a bitmap to draw on a display,  
§ a text message to print to an LCD,  
§ a keyboard event, and  
§ a data packet to send over the network. 

Some of these messages can be quite long and may exceed the maximum message length, 
which is determined when the queue is created. (Maximum message length should not be 
confused with total queue length, which is the total number of messages the queue can hold.) 
One way to overcome the limit on message length is to send a pointer to the data, rather than the 
data itself. Even if a long message might fit into the queue, it is sometimes better to send a 
pointer instead in order to improve both performance and memory utilization.  

When a task sends a message to another task, the message normally is copied twice, as shown 
in Figure 7.3 The first time, the message is copied when the message is sent from the sending 
task’s memory area to the message queue’s memory area. The second copy occurs when the 
message is copied from the message queue’s memory area to the receiving task’s memory area.  

An exception to this situation is if the receiving task is already blocked waiting at the message 
queue. Depending on a kernel’s implementation, the message might be copied just once in this 
case—from the sending task’s memory area to the receiving task’s memory area, bypassing the 
copy to the message queue’s memory area.  

Because copying data can be expensive in terms of performance and memory requirements, 
keep copying to a minimum in a real-time embedded system by keeping messages small or, if 
that is not feasible, by using a pointer instead.  
 
7.5 Message Queue Storage  
Different kernels store message queues in different locations in memory. One kernel might use a 
system pool, in which the messages of all queues are stored in one large shared area of memory. 
Another kernel might use separate memory areas, called private buffers, for each message 
queue.  

7.5.1 System Pools  

Using a system pool can be advantageous if it is certain that all message queues will never be 
filled to capacity at the same time. The advantage occurs because system pools typically save on 
memory use. The downside is that a message queue with large messages can easily use most of 
the pooled memory, not leaving enough memory for other message queues. Indications that this 



problem is occurring include a message queue that is not full that starts rejecting messages sent 
to it or a full message queue that continues to accept more messages.  

7.5.2 Private Buffers  

Using private buffers, on the other hand, requires enough reserved memory area for the full 
capacity of every message queue that will be created. This approach clearly uses up more 
memory; however, it also ensures that messages do not get overwritten and that room is 
available for all messages, resulting in better reliability than the pool approach.  
 
7.6 Typical Message Queue Operations  
Typical message queue operations include the following:  
§ creating and deleting message queues,  
§ sending and receiving messages, and  
§ obtaining message queue information.  

7.6.1 Creating and Deleting Message Queues  

Message queues can be created and deleted by using two simple calls, as shown in Table 7.1.  
Table 7.1: Message queue creation and deletion operations.  

Operation  Description  

Create  Creates a message queue 

Delete  Deletes a message queue  

When created, message queues are treated as global objects and are not owned by any 
particular task. Typically, the queue to be used by each group of tasks or ISRs is assigned in the 
design.  

When creating a message queue, a developer needs to make some initial decisions about the 
length of the message queue, the maximum size of the messages it can handle, and the waiting 
order for tasks when they block on a message queue.  

Deleting a message queue automatically unblocks waiting tasks. The blocking call in each of 
these tasks returns with an error. Messages that were queued are lost when the queue is deleted.  

7.6.2 Sending and Receiving Messages  

The most common uses for a message queue are sending and receiving messages. These 
operations are performed in different ways, some of which are listed in Table 7.2 .  
Table 7.2: Sending and receiving messages.  

Operation  Description  

Send  Sends a message to a message queue 

Receive  Receives a message from a message queue 

Broadcast  Broadcasts messages 



Sending Messages  
When sending messages, a kernel typically fills a message queue from head to tail in FIFO order, 
as shown in Figure 7.4. Each new message is placed at the end of the queue.  

 
Figure 7.4: Sending messages in FIFO or LIFO order.  

Many message-queue implementations allow urgent messages to go straight to the head of the 
queue. If all arriving messages are urgent, they all go to the head of the queue, and the queuing 
order effectively becomes last-in/first-out (LIFO). Many message-queue implementations also 
allow ISRs to send messages to a message queue. In any case, messages are sent to a 
message queue in the following ways:  
§ not block (ISRs and tasks),  
§ block with a timeout (tasks only), and  
§ block forever (tasks only). 

At times, messages must be sent without blocking the sender. If a message queue is already full, 
the send call returns with an error, and the task or ISR making the call continues executing. This 
type of approach to sending messages is the only way to send messages from ISRs, because 
ISRs cannot block.  

Most times, however, the system should be designed so that a task will block if it attempts to 
send a message to a queue that is full. Setting the task to block either forever or for a specified 
timeout accomplishes this step. (Figure 7.5). The blocked task is placed in the message queue’s 
task-waiting list, which is set up in either FIFO or priority-based order.  



 
Figure 7.5: FIFO and priority-based task-waiting lists.  

In the case of a task set to block forever when sending a message, the task blocks until a 
message queue element becomes free (e.g., a receiving task takes a message out of the queue). 
In the case of a task set to block for a specified time, the task is unblocked if either a queue 
element becomes free or the timeout expires, in which case an error is returned.  

Receiving Messages  
As with sending messages, tasks can receive messages with different blocking policies—the 
same way as they send them—with a policy of not blocking, blocking with a timeout, or blocking 
forever. Note, however, that in this case, the blocking occurs due to the message queue being 
empty, and the receiving tasks wait in either a FIFO or prioritybased order. The diagram for the 
receiving tasks is similar to Figure 7.5, except that the blocked receiving tasks are what fills the 
task list.  

For the message queue to become full, either the receiving task list must be empty or the rate at 
which messages are posted in the message queue must be greater than the rate at which 
messages are removed. Only when the message queue is full does the task-waiting list for 
sending tasks start to fill. Conversely, for the task-waiting list for receiving tasks to start to fill, the 
message queue must be empty.  

Messages can be read from the head of a message queue in two different ways:  
§ destructive read, and  
§ non-destructive read. 

In a destructive read, when a task successfully receives a message from a queue, the task 
permanently removes the message from the message queue’s storage buffer. In a non-
destructive read, a receiving task peeks at the message at the head of the queue without 
removing it. Both ways of reading a message can be useful; however, not all kernel 
implementations support the non-destructive read.  

Some kernels support additional ways of sending and receiving messages. One way is the 
example of peeking at a message. Other kernels allow broadcast messaging, explained later in 
this chapter.  



7.6.3 Obtaining Message Queue Information  

Obtaining message queue information can be done from an application by using the operations 
listed in Table 7.3. 
Table 7.3: Obtaining message queue information operations.  

Operation  Description  

Show queue info  Gets information on a message queue 

Show queue’s task-waiting list  Gets a list of tasks in the queue’s task-waiting list  

Different kernels allow developers to obtain different types of information about a message 
queue, including the message queue ID, the queuing order used for blocked tasks (FIFO or 
priority-based), and the number of messages queued. Some calls might even allow developers to 
get a full list of messages that have been queued up.  

As with other calls that get information about a particular kernel object, be careful when using 
these calls. The information is dynamic and might have changed by the time it’s viewed. These 
types of calls should only be used for debugging purposes.  
 
7.7 Typical Message Queue Use 
The following are typical ways to use message queues within an application:  
§ non-interlocked, one-way data communication,  
§ interlocked, one-way data communication,  
§ interlocked, two-way data communication, and  
§ broadcast communication. 

Note that this is not an exhaustive list of the data communication patterns involving message 
queues. The following sections discuss each of these simple cases.  

7.7.1 Non-Interlocked, One-Way Data Communication  

One of the simplest scenarios for message-based communications requires a sending task (also 
called the message source), a message queue, and a receiving task (also called a message 
sink), as illustrated in Figure 7.6.  

 
Figure 7.6: Non-interlocked, one-way data communication.  

This type of communication is also called non-interlocked (or loosely coupled), one-way data 
communication. The activities of tSourceTask and tSinkTask are not synchronized. 
TSourceTask simply sends a message; it does not require acknowledgement from tSinkTask.  

The pseudo code for this scenario is provided in Listing 7.1.  
Listing 7.1: Pseudo code for non-interlocked, one-way data communication.  
 

tSourceTask () 
{ 
               : 
               Send message to message queue 
               : 



} 
 
tSinkTask () 
{ 
               : 
               Receive message from message queue 
               : 
} 
 
 

If tSinkTask is set to a higher priority, it runs first until it blocks on an empty message queue. 
As soon as tSourceTask sends the message to the queue, tSinkTask receives the 
message and starts to execute again.  

If tSinkTask is set to a lower priority, tSourceTask fills the message queue with messages. 
Eventually, tSourceTask can be made to block when sending a message to a full message 
queue. This action makes tSinkTask wake up and start taking messages out of the message 
queue.  

ISRs typically use non-interlocked, one-way communication. A task such as tSinkTask runs 
and waits on the message queue. When the hardware triggers an ISR to run, the ISR puts one or 
more messages into the message queue. After the ISR completes running, tSinkTask gets an 
opportunity to run (if it’s the highest-priority task) and takes the messages out of the message 
queue.  

Remember, when ISRs send messages to the message queue, they must do so in a non-
blocking way. If the message queue becomes full, any additional messages that the ISR sends to 
the message queue are lost.  

7.7.2 Interlocked, One-Way Data Communication  

In some designs, a sending task might require a handshake (acknowledgement) that the 
receiving task has been successful in receiving the message. This process is called interlocked 
communication, in which the sending task sends a message and waits to see if the message is 
received.  

This requirement can be useful for reliable communications or task synchronization. For example, 
if the message for some reason is not received correctly, the sending task can resend it. Using 
interlocked communication can close a synchronization loop. To do so, you can construct a 
continuous loop in which sending and receiving tasks operate in lockstep with each other. An 
example of one-way, interlocked data communication is illustrated in Figure 7.7.  

 
Figure 7.7: Interlocked, one-way data communication.  

In this case, tSourceTask and tSinkTask use a binary semaphore initially set to 0 and a 
message queue with a length of 1 (also called a mailbox). tSourceTask sends the message to 



the message queue and blocks on the binary semaphore. tSinkTask receives the message and 
increments the binary semaphore. The semaphore that has just been made available wakes up 
tSourceTask. tSourceTask, which executes and posts another message into the message 
queue, blocking again afterward on the binary semaphore.  

The pseudo code for interlocked, one-way data communication is provided in Listing 7.2.  

The semaphore in this case acts as a simple synchronization object that ensures that 
tSourceTask and tSinkTask are in lockstep. This synchronization mechanism also acts as a 
simple acknowledgement to tSourceTask that it’s okay to send the next message.  

7.7.3 Interlocked, Two-Way Data Communication  

Sometimes data must flow bidirectionally between tasks, which is called interlocked, two-way 
data communication (also called full-duplex or tightly coupled communication). This form of 
communication can be useful when designing a client/server-based system. A diagram is 
provided in Figure 7.8.  

 
Figure 7.8: Interlocked, two-way data communication.  
Listing 7.2: Pseudo code for interlocked, one-way data communication.  
 

tSourceTask () 
{ 
              : 
              Send message to message queue 
              Acquire binary semaphore  
              : 
} 
 
tSinkTask () 
{ 
              : 
              Receive message from message queue 
              Give binary semaphore  
              : 
} 
 
 

In this case, tClientTask sends a request to tServerTask via a message queue. tServer-
Task fulfills that request by sending a message back to tClientTask.  

The pseudo code is provided in Listing 7.3.  
Listing 7.3: Pseudo code for interlocked, two-way data communication.  



 

tClientTask () 
{ 
              : 
              Send a message to the requests queue 
              Wait for message from the server queue 
              : 
} 
 
tServerTask () 
{ 
              : 
              Receive a message from the requests queue 
              Send a message to the client queue 
              : 
} 
 
 

Note that two separate message queues are required for full-duplex communication. If any kind of 
data needs to be exchanged, message queues are required; otherwise, a simple semaphore can 
be used to synchronize acknowledgement.  

In the simple client/server example, tServerTask is typically set to a higher priority, allowing it 
to quickly fulfill client requests. If multiple clients need to be set up, all clients can use the client 
message queue to post requests, while tServerTask uses a separate message queue to fulfill 
the different clients’ requests.  

7.7.4 Broadcast Communication  

Some message-queue implementations allow developers to broadcast a copy of the same 
message to multiple tasks, as shown in Figure 7.9.  

 
Figure 7.9: Broadcasting messages.  

Message broadcasting is a one-to-many-task relationship. tBroadcastTask sends the 
message on which multiple tSink-Task are waiting.  

Pseudo code for broadcasting messages is provided in Listing 7.4.  
Listing 7.4: Pseudo code for broadcasting messages.  
 

tBroadcastTask () 



{ 
               : 
               Send broadcast message to queue 
               : 
} 
 
Note: similar code for tSignalTasks 1, 2, and 3. 
 
tSignalTask () 
{ 
               : 
               Receive message on queue 
               : 
} 
 
 

In this scenario, tSinkTask 1, 2, and 3 have all made calls to block on the broadcast message 
queue, waiting for a message. When tBroadcastTask executes, it sends one message to the 
message queue, resulting in all three waiting tasks exiting the blocked state.  

Note that not all message queue implementations might support the broadcasting facility. Refer to 
the RTOS manual to see what types of message-queue-management services and operations 
are supported.  
 
7.8 Points to Remember  
Some points to remember include the following:  
§ Message queues are buffer-like kernel objects used for data communication and 

synchronization between two tasks or between an ISR and a task.  
§ Message queues have an associated message queue control block (QCB), a name, a 

unique ID, memory buffers, a message queue length, a maximum message length, and one 
or more task-waiting lists.  

§ The beginning and end of message queues are called the head and tail, respectively; 
each buffer that can hold one message is called a message-queue element.  

§ Message queues are empty when created, full when all message queue elements 
contain messages, and not empty when some elements are still available for holding new 
messages.  

§ Sending messages to full message queues can cause the sending task to block, and 
receiving messages from an empty message queue can cause a receiving task to block  

§ Tasks can send to and receive from message queues without blocking, via blocking with 
a timeout, or via blocking forever. An ISR can only send messages without blocking.  

§ The task-waiting list associated with a message-queue can release tasks (unblock them) 
in FIFO or priority-based order.When messages are sent from one task to another, the 
message is typically copied twice: once from the sending task’s memory area to the 
message queue’s and a second time from the message queue’s memory area to the task’s.  

§ The data itself can either be sent as the message or as a pointer to the data as the 
message. The first case is better suited for smaller messages, and the latter case is better 
suited for large messages.  



§ Common message-queue operations include creating and deleting message queues, 
sending to and receiving from message queues, and obtaining message queue information.  

§ Urgent messages are inserted at the head of the queue if urgent messages are 
supported by the message-queue implementation.  

§ Some common ways to use message queues for data based communication include non-
interlocked and interlocked queues providing one-way or two-way data communication.  

 



Chapter 8: Other Kernel Objects 
8.1 Introduction 
In addition to the key kernel objects, such as tasks, semaphores, and message queues, kernels 
provide many other important objects as well. Because every kernel is different, the number of 
objects a given kernel supports can vary from one to another. This chapter explores additional 
kernel objects common to embedded systems development, although the list presented here is 
certainly not all-inclusive. Specifically, this chapter focuses on:  
§ other kernel objects, including pipes, event registers, signals, and condition variables,  
§ object definitions and general descriptions,  
§ associated operations, and  
§ typical applications of each.  
 
8.2 Pipes 
Pipes are kernel objects that provide unstructured data exchange and facilitate synchronization 
among tasks. In a traditional implementation, a pipe is a unidirectional data exchange facility, as 
shown in Figure 8.1. Two descriptors, one for each end of the pipe (one end for reading and one 
for writing), are returned when the pipe is created. Data is written via one descriptor and read via 
the other. The data remains in the pipe as an unstructured byte stream. Data is read from the 
pipe in FIFO order.  

 
Figure 8.1: A common pipe—unidirectional.  

A pipe provides a simple data flow facility so that the reader becomes blocked when the pipe is 
empty, and the writer becomes blocked when the pipe is full. Typically, a pipe is used to 
exchange data between a data-producing task and a data-consuming task, as shown in Figure 
8.2. It is also permissible to have several writers for the pipe with multiple readers on it.  

 
Figure 8.2: Common pipe operation.  

Note that a pipe is conceptually similar to a message queue but with significant differences. For 
example, unlike a message queue, a pipe does not store multiple messages. Instead, the data 
that it stores is not structured, but consists of a stream of bytes. Also, the data in a pipe cannot be 
prioritized; the data flow is strictly first-in, first-out FIFO. Finally, as is described below, pipes 
support the powerful select operation, and message queues do not.  



8.2.1 Pipe Control Blocks  

Pipes can be dynamically created or destroyed. The kernel creates and maintains pipe-specific 
information in an internal data structure called a pipe control block . The structure of the pipe 
control block varies from one implementation to another. In its general form, a pipe control block 
contains a kernel-allocated data buffer for the pipe’s input and output operation. The size of this 
buffer is maintained in the control block and is fixed when the pipe is created; it cannot be altered 
at run time. The current data byte count, along with the current input and output position 
indicators, are part of the pipe control block. The current data byte count indicates the amount of 
readable data in the pipe. The input position specifies where the next write operation begins in 
the buffer. Similarly, the output position specifies where the next read operation begins. The 
kernel creates two descriptors that are unique within the system I/O space and returns these 
descriptors to the creating task. These descriptors identify each end of the pipe uniquely.  

Two task-waiting lists are associated with each pipe, as shown in Figure 8.3. One waiting list 
keeps track of tasks that are waiting to write into the pipe while it is full; the other keeps track of 
tasks that are waiting to read from the pipe while it is empty.  

 
Figure 8.3: Pipe control block.  

8.2.2 Pipe States  
A pipe has a limited number of states associated with it from the time of its creation to its 
termination. Each state corresponds to the data transfer state between the reader and the writer 
of the pipe, as illustrated in Figure 8.4.  

 
Figure 8.4: States of a pipe.  

8.2.3 Named and Unnamed Pipes  
A kernel typically supports two kinds of pipe objects: named pipes and unnamed pipes. A named 
pipe , also known as FIFO, has a name similar to a file name and appears in the file system as if 
it were a file or a device. Any task or ISR that needs to use the named pipe can reference it by 
name. The unnamed pipe does not have a name and does not appear in the file system. It must 
be referenced by the descriptors that the kernel returns when the pipe is created, as explained in 
more detail in the following sections.  



8.2.4 Typical Pipe Operations  

The following set of operations can be performed on a pipe:  
§ create and destroy a pipe,  
§ read from or write to a pipe,  
§ issue control commands on the pipe, and  
§ select on a pipe.  

Create and Destroy  
Create and destroy operations are available, as shown in Table 8.1.  
Table 8.1: Create and destroy operations.  

Operation  Description  

Pipe  Creates a pipe 

Open  Opens a pipe 

Close  Deletes or closes a pipe  

The pipe operation creates an unnamed pipe. This operation returns two descriptors to the calling 
task, and subsequent calls reference these descriptors. One descriptor is used only for writing, 
and the other descriptor is used only for reading.  

Creating a named pipe is similar to creating a file; the specific call is implementation-dependent. 
Some common names for such a call are mknod and mkfifo. Because a named pipe has a 
recognizable name in the file system after it is created, the pipe can be opened using the open 
operation. The calling task must specify whether it is opening the pipe for the read operation or 
for the write operation; it cannot be both.  

The close operation is the counterpart of the open operation. Similar to open, the close operation 
can only be performed on a named pipe. Some implementations will delete the named pipe 
permanently once the close operation completes.  

Read and Write  
Read and write operations are available, as shown in Table 8.2.  
Table 8.2: Read and write operations.  

Operation  Description  

Read  Reads from the pipe 

Write  Writes to a pipe  

The read operation returns data from the pipe to the calling task. The task specifies how much 
data to read. The task may choose to block waiting for the remaining data to arrive if the size 
specified exceeds what is available in the pipe. Remember that a read operation on a pipe is a 
destructive operation because data is removed from a pipe during this operation, making it 
unavailable to other readers. Therefore, unlike a message queue, a pipe cannot be used for 
broadcasting data to multiple reader tasks.  

A task, however, can consume a block of data originating from multiple writers during one read 
operation.  



The write operation appends new data to the existing byte stream in the pipe. The calling task 
specifies the amount of data to write into the pipe. The task may choose to block waiting for 
additional buffer space to become free when the amount to write exceeds the available space.  

No message boundaries exist in a pipe because the data maintained in it is unstructured. This 
issue represents the main structural difference between a pipe and a message queue. Because 
there are no message headers, it is impossible to determine the original producer of the data 
bytes. As mentioned earlier, another important difference between message queues and pipes is 
that data written to a pipe cannot be prioritized. Because each byte of data in a pipe has the 
same priority, a pipe should not be used when urgent data must be exchanged between tasks.  

Control  
Control operations are available, as shown in Table 8.3.  
Table 8.3: Control operations.  

Operation  Description  

Fcntl  Provides control over the pipe descriptor  

The Fcntl operation provides generic control over a pipe’s descriptor using various commands, 
which control the behavior of the pipe operation. For example, a commonly implemented 
command is the non-blocking command. The command controls whether the calling task is 
blocked if a read operation is performed on an empty pipe or when a write operation is performed 
on a full pipe.  

Another common command that directly affects the pipe is the flush command. The flush 
command removes all data from the pipe and clears all other conditions in the pipe to the same 
state as when the pipe was created. Sometimes a task can be preempted for too long, and when 
it finally gets to read data from the pipe, the data might no longer be useful. Therefore, the task 
can flush the data from the pipe and reset its state.  

Select  
Select operations are available, as shown in Table 8.4.  
Table 8.4: Select operations.  

Operation  Description  

Select  Waits for conditions to occur on a pipe  

The select operation allows a task to block and wait for a specified condition to occur on one or 
more pipes. The wait condition can be waiting for data to become available or waiting for data to 
be emptied from the pipe(s). Figure 8.5 illustrates a scenario in which a single task is waiting to 
read from two pipes and write to a third. In this case, the select call returns when data becomes 
available on either of the top two pipes. The same select call also returns when space for writing 
becomes available on the bottom pipe. In general, a task reading from multiple pipes can perform 
a select operation on those pipes, and the select call returns when any one of them has data 
available. Similarly, a task writing to multiple pipes can perform a select operation on the pipes, 
and the select call returns when space becomes available on any one of them.  



 
Figure 8.5: The select operation on multiple pipes.  

In contrast to pipes, message queues do not support the select operation. Thus, while a task can 
have access to multiple message queues, it cannot block-wait for data to arrive on any one of a 
group of empty message queues. The same restriction applies to a writer. In this case, a task can 
write to multiple message queues, but a task cannot block-wait on a group of full message 
queues, while waiting for space to become available on any one of them.  

It becomes clear then that the main advantage of using a pipe over a message queue for 
intertask communication is that it allows for the select operation.  

8.2.5 Typical Uses of Pipes 

Because a pipe is a simple data channel, it is mainly used for task-to-task or ISR-to-task data 
transfer, as illustrated in Figure 8.1 and Figure 8.2. Another common use of pipes is for inter-task 
synchronization.  

Inter-task synchronization can be made asynchronous for both tasks by using the select 
operation.  

In Figure 8.6, task A and task B open two pipes for inter-task communication. The first pipe is 
opened for data transfer from task A to task B. The second pipe is opened for acknowledgement 
(another data transfer) from task B to task A. Both tasks issue the select operation on the pipes. 
Task A can wait asynchronously for the data pipe to become writeable (task B has read some 
data from the pipe). That is, task A can issue a non-blocking call to write to the pipe and perform 
other operations until the pipe becomes writeable. Task A can also wait asynchronously for the 
arrival of the transfer acknowledgement from task B on the other pipe. Similarly, task B can wait 
asynchronously for the arrival of data on the data pipe and wait for the other pipe to become 
writeable before sending the transfer acknowledgement.  

 
Figure 8.6: Using pipes for inter-task synchronization.  
 



8.3 Event Registers  
Some kernels provide a special register as part of each task’s control block, as shown in Figure 
8.7. This register, called an event register, is an object belonging to a task and consists of a 
group of binary event flags used to track the occurrence of specific events. Depending on a given 
kernel’s implementation of this mechanism, an event register can be 8-, 16-, or 32-bits wide, 
maybe even more. Each bit in the event register is treated like a binary flag (also called an event 
flag) and can be either set or cleared.  

Through the event register, a task can check for the presence of particular events that can control 
its execution. An external source, such as another task or an ISR, can set bits in the event 
register to inform the task that a particular event has occurred.  

Applications define the event associated with an event flag. This definition must be agreed upon 
between the event sender and receiver using the event register.  

 
Figure 8.7: Event register.  

8.3.1 Event Register Control Blocks  
Typically, when the underlying kernel supports the event register mechanism, the kernel creates 
an event register control block as part of the task control block when creating a task, as shown in 
Figure 8.8.  



 
Figure 8.8: Event register control block.  

The task specifies the set of events it wishes to receive. This set of events is maintained in the 
wanted events register. Similarly, arrived events are kept in the received events register. The task 
indicates a timeout to specify how long it wishes to wait for the arrival of certain events. The 
kernel wakes up the task when this timeout has elapsed if no specified events have arrived at the 
task.  

Using the notification conditions, the task directs the kernel as to when it wishes to be notified 
(awakened) upon event arrivals. For example, the task can specify the notification conditions as 
“send notification when both event type 1 and event type 3 arrive or when event type 2 arrives.” 
This option provides flexibility in defining complex notification patterns.  

8.3.2 Typical Event Register Operations  

Two main operations are associated with an event register, the sending and the receiving 
operations, as shown in Table 8.5.  
Table 8.5: Event register operations.  

Operation  Description  

Send  Sends events to a task 

Receive  Receives events  

The receive operation allows the calling task to receive events from external sources. The task 
can specify if it wishes to wait, as well as the length of time to wait for the arrival of desired events 
before giving up. The task can wait forever or for a specified interval. Specifying a set of events 
when issuing the receive operation allows a task to block-wait for the arrival of multiple events, 
although events might not necessarily all arrive simultaneously. The kernel translates this event 
set into the notification conditions. The receive operation returns either when the notification 
conditions are satisfied or when the timeout has occurred. Any received events that are not 
indicated in the receive operation are left pending in the received events register of the event 
register control block. The receive operation returns immediately if the desired events are already 
pending.  



The event set is constructed using the bit-wise AND/OR operation. With the AND operation, the 
task resumes execution only after every event bit from the set is on. A task can also block-wait for 
the arrival of a single event from an event set, which is constructed using the bit-wise OR 
operation. In this case, the task resumes execution when any one event bit from the set is on.  

The send operation allows an external source, either a task or an ISR, to send events to another 
task. The sender can send multiple events to the designated task through a single send 
operation. Events that have been sent and are pending on the event bits but have not been 
chosen for reception by the task remain pending in the received events register of the event 
register control block.  

Events in the event register are not queued. An event register cannot count the occurrences of 
the same event while it is pending; therefore, subsequent occurrences of the same event are lost. 
For example, if an ISR sends an event to a task and the event is left pending; and later another 
task sends the same event again to the same task while it is still pending, the first occurrence of 
the event is lost.  

8.3.3 Typical Uses of Event Registers  

Event registers are typically used for unidirectional activity synchronization. It is unidirectional 
because the issuer of the receive operation determines when activity synchronization should take 
place. Pending events in the event register do not change the execution state of the receiving 
task.  

In following the diagram, at the time task 1 sends the event X to task 2, no effect occurs to the 
execution state of task 2 if task 2 has not yet attempted to receive the event.  

 

No data is associated with an event when events are sent through the event register. Other 
mechanisms must be used when data needs to be conveyed along with an event. This lack of 
associated data can sometimes create difficulties because of the noncumulative nature of events 
in the event register. Therefore, the event register by itself is an inefficient mechanism if used 
beyond simple activity synchronization.  

Another difficulty in using an event register is that it does not have a built-in mechanism for 
identifying the source of an event if multiple sources are possible. One way to overcome this 
problem is for a task to divide the event bits in the event register into subsets.  

The task can then associate each subset with a known source. In this way, the task can identify 
the source of an event if each relative bit position of each subset is assigned to the same event 
type.  

In Figure 8.9, an event register is divided into 4-bit groups. Each group is assigned to a source, 
regardless of whether it is a task or an ISR. Each bit of the group is assigned to an event type.  



 
Figure 8.9: Identifying an event source.  
 
8.4 Signals  
A signal is a software interrupt that is generated when an event has occurred. It diverts the signal 
receiver from its normal execution path and triggers the associated asynchronous processing.  

Essentially, signals notify tasks of events that occurred during the execution of other tasks or 
ISRs. As with normal interrupts, these events are asynchronous to the notified task and do not 
occur at any predetermined point in the task’s execution. The difference between a signal and a 
normal interrupt is that signals are so-called software interrupts, which are generated via the 
execution of some software within the system. By contrast, normal interrupts are usually 
generated by the arrival of an interrupt signal on one of the CPU’s external pins. They are not 
generated by software within the system but by external devices. Chapter 10 discusses interrupts 
and exceptions in detail.  

The number and type of signals defined is both system-dependent and RTOS-dependent. An 
easy way to understand signals is to remember that each signal is associated with an event. The 
event can be either unintentional, such as an illegal instruction encountered during program 
execution, or the event may be intentional, such as a notification to one task from another that it 
is about to terminate. While a task can specify the particular actions to undertake when a signal 
arrives, the task has no control over when it receives signals. Consequently, the signal arrivals 
often appear quite random, as shown in Figure 8.10.  

 
Figure 8.10: Signals.  

When a signal arrives, the task is diverted from its normal execution path, and the corresponding 
signal routine is invoked. The terms signal routine, signal handler, asynchronous event handler, 
and asynchronous signal routine are interchangeable. This book uses asynchronous signal 
routine (ASR). Each signal is identified by an integer value, which is the signal number or vector 
number.  



8.4.1 Signal Control Blocks  

If the underlying kernel provides a signal facility, it creates the signal control block as part of the 
task control block as shown in Figure 8.11.  

 
Figure 8.11: Signal control block.  

The signal control block maintains a set of signals—the wanted signals—which the task is 
prepared to handle. When a task is prepared to handle a signal, it is often said, “the task is ready 
to catch the signal.” When a signal interrupts a task, it is often said, “the signal is raised to the 
task.” The task can provide a signal handler for each signal to be processed, or it can execute a 
default handler that the kernel provides. It is possible to have a single handler for multiple types of 
signals.  

Signals can be ignored, made pending, processed (handled), or blocked.  

The signals to be ignored by the task are maintained in the ignored signals set. Any signal in this 
set does not interrupt the task.  

Other signals can arrive while the task is in the midst of processing another signal. The additional 
signal arrivals are kept in the pending signals set. The signals in this set are raised to the task as 
soon as the task completes processing the previous signal. The pending signals set is a subset of 
the wanted signals set.  

To process a particular signal, either the task-supplied signal handler can be used for signal 
processing or the default handler supplied by the underlying kernel can be used to process it. It is 
also possible for the task to process the signal first and then pass it on for additional processing 
by the default handler.  

A fourth kind of response to a signal is possible. In this case, a task does not ignore the signal but 
blocks the signal from delivery during certain stages of the task’s execution when it is critical that 
the task not be interrupted.  

Blocking a signal is similar to the concept of entering a critical section, discussed in Chapter 15. 
The task can instruct the kernel to block certain signals by setting the blocked signals set. The 
kernel does not deliver any signal from this set until that signal is cleared from the set.  

8.4.2 Typical Signal Operations  

Signal operations are available, as shown in Table 8.6.  
Table 8.6: Signal operations.  

Operation  Description  



Table 8.6: Signal operations.  

Operation  Description  

Catch  Installs a signal handler 

Release  Removes a previously installed handler 

Send  Sends a signal to another task  

Ignore  Prevents a signal from being delivered 

Block  Blocks a set of signal from being delivered 

Unblock  Unblocks the signals so they can be delivered  

A task can catch a signal after the task has specified a handler (ASR) for the signal. The catch 
operation installs a handler for a particular signal. The kernel interrupts the task’s execution upon 
the arrival of the signal, and the handler is invoked. The task can install the kernel-supplied 
default handler, the default actions, for any signal. The task-installed handler has the options of 
either processing the signal and returning control to the kernel or processing the signal and 
passing control to the default handler for additional processing. Handling signals is similar to 
handling hardware interrupts, and the nature of the ASR is similar to that of the interrupt service 
routine.  

After a handler has been installed for a particular signal, the handler is invoked if the same type of 
signal is received by any task, not just the one that installed it. In addition, any task can change 
the handler installed for a particular signal. Therefore, it is good practice for a task to save the 
previously installed handler before installing its own and then to restore that handler after it 
finishes catching the handler’s corresponding signal.  

Figure 8.12 shows the signal vector table, which the kernel maintains. Each element in the vector 
table is a pointer or offset to an ASR. For signals that don’t have handlers assigned, the 
corresponding elements in the vector table are NULL. The example shows the table after three 
catch operations have been performed. Each catch operation installs one ASR, by writing a 
pointer or offset to the ASR into an element of the vector table.  

 
Figure 8.12: The catch operation.  

The release operation de-installs a signal handler. It is good practice for a task to restore the 
previously installed signal handler after calling release.  

The send operation allows one task to send a signal to another task. Signals are usually 
associated with hardware events that occur during execution of a task, such as generation of an 



unaligned memory address or a floating-point exception. Such signals are generated 
automatically when their corresponding events occur. The send operation, by contrast, enables a 
task to explicitly generate a signal.  

The ignore operation allows a task to instruct the kernel that a particular set of signals should 
never be delivered to that task. Some signals, however, cannot be ignored; when these signals 
are generated, the kernel calls the default handler.  

The block operation does not cause signals to be ignored but temporarily prevents them from 
being delivered to a task. The block operation protects critical sections of code from interruption. 
Another reason to block a signal is to prevent conflict when the signal handler is already 
executing and is in the midst of processing the same signal. A signal remains pending while it’s 
blocked.  

The unblock operation allows a previously blocked signal to pass. The signal is delivered 
immediately if it is already pending.  

8.4.3 Typical Uses of Signals  

Some signals are associated with hardware events and thus are usually sent by hardware ISRs. 
The ISR is responsible for immediately responding to these events. The ISR, however, might also 
send a signal so that tasks affected by these hardware events can conduct further, task-specific 
processing.  

As depicted in Figure 8.10, signals can also be used for synchronization between tasks. Signals, 
however, should be used sparingly for the following reasons:  
§ Using signals can be expensive due to the complexity of the signal facility when used for 

inter-task synchronization. A signal alters the execution state of its destination task. Because 
signals occur asynchronously, the receiving task becomes nondeterministic, which can be 
undesirable in a real-time system.  

§ Many implementations do not support queuing or counting of signals. In these 
implementations, multiple occurrences of the same signal overwrite each other. For example, 
a signal delivered to a task multiple times before its handler is invoked has the same effect 
as a single delivery. The task has no way to determine if a signal has arrived multiple times.  

§ Many implementations do not support signal delivery that carries information, so data 
cannot be attached to a signal during its generation.  

§ Many implementations do not support a signal delivery order, and signals of various 
types are treated as having equal priority, which is not ideal. For example, a signal triggered 
by a page fault is obviously more important than a signal generated by a task indicating it is 
about to exit. On an equal-priority system, the page fault might not be handled first.  

§ Many implementations do not guarantee when an unblocked pending signal will be 
delivered to the destination task.  

Some kernels do implement real-time extensions to traditional signal handling, which allows  
§ for the prioritized delivery of a signal based on the signal number,  
§ each signal to carry additional information, and  
§ multiple occurrences of the same signal to be queued.  
 
8.5 Condition Variables  
Tasks often use shared resources, such as files and communication channels. When a task 
needs to use such a resource, it might need to wait for the resource to be in a particular state. 
The way the resource reaches that state can be through the action of another task. In such a 
scenario, a task needs some way to determine the condition of the resource. One way for tasks to 
communicate and determine the condition of a shared resource is through a condition variable. A 



condition variable is a kernel object that is associated with a shared resource, which allows one 
task to wait for other task(s) to create a desired condition in the shared resource. A condition 
variable can be associated with multiple conditions.  

As shown in Figure 8.13, a condition variable implements a predicate. The predicate is a set of 
logical expressions concerning the conditions of the shared resource. The predicate evaluates to 
either true or false. A task evaluates the predicate. If the evaluation is true, the task assumes that 
the conditions are satisfied, and it continues execution. Otherwise, the task must wait for other 
tasks to create the desired conditions.  

 
Figure 8.13: Condition variable.  

When a task examines a condition variable, the task must have exclusive access to that condition 
variable. Without exclusive access, another task could alter the condition variable's conditions at 
the same time, which could cause the first task to get an erroneous indication of the variable's 
state. Therefore, a mutex is always used in conjunction with a condition variable. The mutex 
ensures that one task has exclusive access to the condition variable until that task is finished with 
it. For example, if a task acquires the mutex to examine the condition variable, no other task can 
simultaneously modify the condition variable of the shared resource.  

A task must first acquire the mutex before evaluating the predicate. This task must subsequently 
release the mutex and then, if the predicate evaluates to false, wait for the creation of the desired 
conditions. Using the condition variable, the kernel guarantees that the task can release the 
mutex and then block-wait for the condition in one atomic operation, which is the essence of the 
condition variable. An atomic operation is an operation that cannot be interrupted.  

Remember, however, that condition variables are not mechanisms for synchronizing access to a 
shared resource. Rather, most developers use them to allow tasks waiting on a shared resource 
to reach a desired value or state.  

8.5.1 Condition Variable Control Blocks  

The kernel maintains a set of information associated with the condition variable when the variable 
is first created. As stated previously, tasks must block and wait when a condition variable's 
predicate evaluates to false. These waiting tasks are maintained in the task-waiting list. The 
kernel guarantees for each task that the combined operation of releasing the associated mutex 
and performing a block-wait on the condition will be atomic. After the desired conditions have 
been created, one of the waiting tasks is awakened and resumes execution. The criteria for 
selecting which task to awaken can be priority-based or FIFO-based, but it is kernel-defined. The 
kernel guarantees that the selected task is removed from the task-waiting list, reacquires the 
guarding mutex, and resumes its operation in one atomic operation. The essence of the condition 



variable is the atomicity of the unlock-and-wait and the resume-and-lock operations provided by 
the kernel. Figure 8.14 illustrates a condition variable control block.  

 
Figure 8.14: Condition variable control block.  

The cooperating tasks define which conditions apply to which shared resources. This information 
is not part of the condition variable because each task has a different predicate or condition for 
which the task looks. The condition is specific to the task. Chapter 15 presents a detailed 
example on the usage of the condition variable, which further illustrates this issue.  

8.5.2 Typical Condition Variable Operations  

A set of operations is allowed for a condition variable, as shown in Table 8.7.  
Table 8.7: Condition variable operations.  

Operation  Description  

Create  Creates and initializes a condition variable 

Wait  Waits on a condition variable  

Signal  Signals the condition variable on the presence of a condition 

Broadcast  Signals to all waiting tasks the presence of a condition  

The create operation creates a condition variable and initializes its internal control block.  

The wait operation allows a task to block and wait for the desired conditions to occur in the 
shared resource. To invoke this operation, the task must first successfully acquire the guarding 
mutex. The wait operation puts the calling task into the task-waiting queue and releases the 
associated mutex in a single atomic operation.  

The signal operation allows a task to modify the condition variable to indicate that a particular 
condition has been created in the shared resource. To invoke this operation, the signaling task 
must first successfully acquire the guarding mutex. The signal operation unblocks one of the 
tasks waiting on the condition variable. The selection of the task is based on predefined criteria, 
such as execution priority or system-defined scheduling attributes. At the completion of the signal 



operation, the kernel reacquires the mutex associated with the condition variable on behalf of the 
selected task and unblocks the task in one atomic operation.  

The broadcast operation wakes up every task on the task-waiting list of the condition variable. 
One of these tasks is chosen by the kernel and is given the guarding mutex. Every other task is 
removed from the task-waiting list of the condition variable, and instead, those tasks are put on 
the task-waiting list of the guarding mutex.  

8.5.3 Typical Uses of Condition Variables  

Listing 8.1 illustrates the usage of the wait and the signal operations.  
Listing 8.1: Pseudo code for wait and the signal operations.  
 

Task 1 
Lock mutex 
        Examine shared resource 
        While (shared resource is Busy) 
               WAIT (condition variable) 
        Mark shared resource as Busy 
Unlock mutex 
 
Task 2 
Lock mutex 
        Mark shared resource as Free 
        SIGNAL (condition variable) 
Unlock mutex 
 
 

Task 1 on the left locks the guarding mutex as its first step. It then examines the state of the 
shared resource and finds that the resource is busy. It issues the wait operation to wait for the 
resource to become available, or free. The free condition must be created by task 2 on the right 
after it is done using the resource. To create the free condition, task 2 first locks the mutex; 
creates the condition by marking the resource as free, and finally, invokes the signal operation, 
which informs task 1 that the free condition is now present.  

A signal on the condition variable is lost when nothing is waiting on it. Therefore, a task should 
always check for the presence of the desired condition before waiting on it. A task should also 
always check for the presence of the desired condition after a wakeup as a safeguard against 
improperly generated signals on the condition variable. This issue is the reason that the pseudo 
code includes a while loop to check for the presence of the desired condition. This example is 
shown in Figure 8.15.  



 
Figure 8.15: Execution sequence of wait and signal operations.  
 
8.6 Points to Remember  
Some points to remember include the following:  
§ Pipes provide unstructured data exchange between tasks.  
§ The select operation is allowed on pipes.  
§ Event registers can be used to communicate application-defined events between tasks.  
§ Events of the same type are not accumulated in the event register.  
§ The occurrence of an event in the event register does not change the execution state of 

the receiving task, unless the task is already waiting on that event.  
§ Tasks receive signals synchronously.  
§ The occurrence of a signal changes the execution state of the receiving task.  
§ Signals can be handled by user-defined actions or by system-defined default actions.  
§ Multiple occurrences of the same signal are not cumulative.  
§ A condition variable allows one task to wait until another task has placed a shared 

resource in a desired state or condition.  
§ A condition variable is used to synchronize between tasks but is not used as a 

mechanism to synchronize access to shared resources.  
 



Chapter 9: Other RTOS Services 
9.1 Introduction  
A good real-time embedded operating system avoids implementing the kernel as a large, 
monolithic program. The kernel is developed instead as a micro-kernel. The goal of the micro-
kernel design approach is to reduce essential kernel services into a small set and to provide a 
framework in which other optional kernel services can be implemented as independent modules. 
These modules can be placed outside the kernel. Some of these modules are part of special 
server tasks. This structured approach makes it possible to extend the kernel by adding additional 
services or to modify existing services without affecting users. This level of implementation 
flexibility is highly desirable. The resulting benefit is increased system configurability because 
each embedded application requires a specific set of system services with respect to its 
characteristics. This combination can be quite different from application to application.  

The micro-kernel provides core services, including task-related services, the scheduler service, 
and synchronization primitives. This chapter discusses other common building blocks, as shown 
in Figure 9.1.  

 
Figure 9.1: Overview.  
 
9.2 Other Building Blocks  
These other common building blocks make up the additional kernel services that are part of 
various embedded applications. The other building blocks include the following:  
§ TCP/IP protocol stack,  
§ file system component,  
§ remote procedure call component,  
§ command shell,  
§ target debut agent, and  
§ other components.  

9.2.1 TCP/IP Protocol Stack  

The network protocol stacks and components, as illustrated in Figure 9.2, provide useful system 
services to an embedded application in a networked environment. The TCP/IP protocol stack 



provides transport services to both higher layer, well-known protocols, including Simple Network 
Management Protocol (SNMP), Network File System (NFS), and Telnet, and to user-defined 
protocols. The transport service can be either reliable connection-oriented service over the TCP 
protocol or unreliable connectionless service over the UDP protocol. The TCP/IP protocol stack 
can operate over various types of physical connections and networks, including Ethernet, Frame 
Relay, ATM, and ISDN networks using different frame encapsulation protocols, including the 
point-to-point protocol. It is common to find the transport services offered through standard 
Berkeley socket interfaces.  

 
Figure 9.2: TCP/IP protocol stack component.  

9.2.2 File System Component  

The file system component, as illustrated in Figure 9.3, provides efficient access to both local and 
network mass storage devices. These storage devices include but are not limited to CD-ROM, 
tape, floppy disk, hard disk, and flash memory devices. The file system component structures the 
storage device into supported formats for writing information to and for accessing information 
from the storage device. For example, CD-ROMs are formatted and managed according to ISO 
9660 standard file system specifications; floppy disks and hard disks are formatted and managed 
according to MS-DOS FAT file system conventions and specifications; NFS allows local 
applications to access files on remote systems as an NFS client. Files located on an NFS server 
are treated exactly as though they were on a local disk. Because NFS is a protocol, not a file 
system format, local applications can access any format files supported by the NFS server. File 
system components found in some real-time RTOS provide high-speed proprietary file systems in 
place of common storage devices.  



 
Figure 9.3: File system component.  

9.2.3 Remote Procedure Call Component  

The remote procedure call (RPC) component allows for distributed computing. The RPC server 
offers services to external systems as remotely callable procedures. A remote RPC client can 
invoke these procedures over the network using the RPC protocol. To use a service provided by 
an RPC server, a client application calls routines, known as stubs, provided by the RPC client 
residing on the local machine.  

The RPC client in turn invokes remote procedure calls residing in the RPC server on behalf of the 
calling application. The primary goal of RPC is to make remote procedure calls transparent to 
applications invoking the local call stubs. To the client application, calling a stub appears no 
different from calling a local procedure. The RPC client and server can run on top of different 
operating systems, as well as different types of hardware. As an example of such transparency, 
note that NFS relies directly upon RPC calls to support the illusion that all files are local to the 
client machine.  

To hide both the server remoteness, as well as platform differences from the client application, 
data that flows between the two computing systems in the RPC call must be translated to and 
from a common format. External data representation (XDR) is a method that represents data in 
an OS- and machine-independent manner. The RPC client translates data passed in as 
procedure parameters into XDR format before making the remote procedure call. The RPC server 
translates the XDR data into machine-specific data format upon receipt of the procedure call 
request. The decoded data is then passed to the actual procedure to be invoked on the server 
machine. This procedure's output data is formatted into XDR when returning it to the RPC client. 
The RPC concept is illustrated in Figure 9.4.  



 
Figure 9.4: Remote procedure calls.  

9.2.4 Command Shell  
The command shell , also called the command interpreter , is an interactive component that 
provides an interface between the user and the real-time operating system. The user can invoke 
commands, such as ping , ls , loader , and route through the shell. The shell interprets 
these commands and makes corresponding calls into RTOS routines. These routines can be in 
the form of loadable program images, dynamically created programs (dynamic tasks), or direct 
system function calls if supported by the RTOS. The programmer can experiment with different 
global system calls if the command shell supports this feature. With this feature, the shell can 
become a great learning tool for the RTOS in which it executes, as illustrated in Figure 9.5.  

 
Figure 9.5: RTOS command shell.  

Some command shell implementations provide a programming interface. A programmer can 
extend the shell's functionality by writing additional commands or functions using the shell's 
application program interface (API). The shell is usually accessed from the host system using a 
terminal emulation program over a serial interface. It is possible to access the shell over the 
network, but this feature is highly implementation-dependent. The shell becomes a good 
debugging tool when it supports available debug agent commands. A host debugger is not 
always available and can be tedious to set up. On the other hand, the programmer can 
immediately begin debugging when a debug agent is present on the target system, as well as a 
command shell.  

9.2.5 Target Debug Agent  

Every good RTOS provides a target debug agent. Through either the target shell component or a 
simple serial connection, the debug agent offers the programmer a rich set of debug commands 
or capabilities. The debug agent allows the programmer to set up both execution and data access 



break points. In addition, the programmer can use the debug agent to examine and modify 
system memory, system registers, and system objects, such as tasks, semaphores, and 
message queues. The host debugger can provide source-level debug capability by interacting 
with the target debug agent. With a host debugger, the user can debug the target system without 
having to understand the native debug agent commands. The target debug agent commands are 
mapped into host debugger commands that are more descriptive and easier to understand. Using 
an established debug protocol, the host debugger sends the user-issued debug commands to the 
target debug agent over the serial cable or the Ethernet network. The target debug agent acts on 
the commands and sends the results back to the host debugger. The host debugger displays the 
results in its user-friendly debug interface. The debug protocol is specific to the host debugger 
and its supported debug agent. Be sure to check the host debugging tools against the supported 
RTOS debug agents before making a purchase.  

9.2.6 Other Components  

What has been presented so far is a very small set of components commonly found in available 
RTOS. Other service components include the SNMP component. The target system can be 
remotely managed over the network by using SNMP. The standard I/O library provides a common 
interface to write to and read from system I/O devices. The standard system library provides 
common interfaces to applications for memory functions and string manipulation functions. These 
library components make it straightforward to port applications written for other operating systems 
as long as they use standard interfaces. The possible services components that an RTOS can 
provide are limited only by imagination. The more an embedded RTOS matures the more 
components and options it provides to the developer. These components enable powerful 
embedded applications programming, while at the same time save overall development costs. 
Therefore, choose the RTOS wisely.  
 
9.3 Component Configuration  
The available system memory in many embedded systems is limited. Therefore, only the 
necessary service components are selected into the final application image. Frequently 
programmers ask how to configure a service component into an embedded application. In a 
simplified view, the selection and consequently the configuration of service components are 
accomplished through a set of system configuration files. Look for these files in the RTOS 
development environment to gain a better understanding of available components and applicable 
configuration parameters.  

The first level of configuration is done in a component inclusion header file. For example, call it 
sys_comp.h , as shown in Listing 9.1.  
Listing 9.1: The sys_comp.h inclusion header file.  
 

#define INCLUDE_TCPIP       1 
#define INCLUDE_FILE_SYS    0 
#define INCLUDE_SHELL       1 
#define INCLUDE_DBG_AGENT   1 
 
 

In this example, the target image includes the TCP/IP protocol stack, the command shell, and the 
debug agent. The file system is excluded because the sample target system does not have a 
mass storage device. The programmer selects the desired components through sys_comp.h.  

The second level of configuration is done in a component-specific configuration file, sometimes 
called the component description file. For example, the TCP/IP component configuration file could 



be called net_conf.h, and the debug agent configuration file might be called the dbg_conf.h. 
The component-specific configuration file contains the user-configurable, component-specific 
operating parameters. These parameters contain default values. Listing 9.2 uses net_conf.h.  
Listing 9.2: The net_conf.h configuration file.  
 

#define NUM_PKT_BUFS       100 
#define NUM_SOCKETS         20 
#define NUM_ROUTES          35 
#define NUM_NICS            40 
 
 

In this example, four user-configurable parameters are present: the number of packet buffers to 
be allocated for transmitting and receiving network packets; the number of sockets to be allocated 
for the applications; the number of routing entries to be created in the routing table used for 
forwarding packets; and the number of network interface data structures to be allocated for 
installing network devices. Each parameter contains a default value, and the programmer is 
allowed to change the value of any parameter present in the configuration file. These parameters 
are applicable only to the TCP/IP protocol stack component.  

Component-specific parameters must be passed to the component during the initialization phase. 
The component parameters are set into a data structure called the component configuration 
table. The configuration table is passed into the component initialization routine. This level is the 
third configuration level. Listing 9.3 shows the configuration file named net_conf.c , which 
continues to use the network component as the example.  
Listing 9.3: The net_conf.c configuration file.  
 

#include "sys_comp.h" 
#include "net_conf.h" 
 
#if (INCLUDE_TCPIP) 
struct net_conf_parms  params; 
params.num_pkt_bufs = NUM_PKT_BUFS; 
params.num_sockets  = NUM_SOCKETS; 
params.num_routes   = NUM_ROUTES; 
params.num_NICS     = NUM_NICS; 
 
tcpip_init(&params); 
 
#endif  
 
 

The components are pre-built and archived. The function tcpip_init is part of the component. 
If INCLUDE_TCPIP is defined as 1 at the time the application is built, the call to this function 
triggers the linker to link the component into the final executable image. At this point, the TCP/IP 
protocol stack is included and fully configured.  



Obviously, the examples presented here are simple, but the concepts vary little in real systems. 
Manual configuration, however, can be tedious when it is required to wading through directories 
and files to get to the configuration files. When the configuration file does not offer enough or 
clear documentation on the configuration parameters, the process is even harder. Some host 
development tools offer an interactive and visual alternative to manual component configuration. 
The visual component configuration tool allows the programmer to select the offered components 
visually. The configurable parameters are also laid out visually and are easily editable. The 
outputs of the configuration tool are automatically generated files similar to sys_comp.h and 
net_conf.h. Any modification completed through the configuration tool regenerates these files.  
 
9.4 Points to Remember  
Some points to remember include the following:  
§ Micro-kernel design promotes a framework in which additional service components can 

be developed to extend the kernel's functionalities easily.  
§ Debug agents allow programmers to debug every piece of code running on target 

systems.  
§ Developers should choose a host debugger that understands many different RTOS 

debug agents.  
§ Components can be included and configured through a set of system configuration files.  
§ Developers should only include the necessary components to safeguard memory 

efficiency.  
 



Chapter 14: Modularizing An Application For 
Concurrency 
14.1 Introduction  
Many activities need to be completed when designing applications for real-time systems. One 
group of activities requires identifying certain elements. Some of the more important elements to 
identify include:  

1. system requirements,  

2. inputs and outputs,  

3. real-time deadlines,  

4. events and event response times,  

5. event arrival patterns and frequencies,  

6. required objects and other components,  

7. tasks that need to be concurrent,  

8. system schedulability, and  

9. useful or needed synchronization protocols for inter-task communications. 

Depending on the design methodologies and modeling tools that a design team is using, the list 
of steps to be taken can vary, as well as the execution order. Regardless of the methodology, 
eventually a design team must consider how to decompose the application into concurrent tasks 
(Step 7).  

This chapter provides guidelines and discussions on how real-time embedded applications can 
be decomposed. Many design teams use formalized object-oriented development techniques and 
modeling languages, such as UML, to model their real-time systems initially. The concepts 
discussed in this section are complementary to object-oriented design approaches; much 
emphasis is placed on decomposing the application into separate tasks to achieve concurrency. 
Through examples, approaches to decomposing applications into concurrent tasks are discussed. 
In addition, general guidelines for designing concurrency in a real-time application are provided.  

These guidelines and recommendations are based on a combination of things-lessons learned 
from current engineering design practices, work done by H. Gomaa, current UML modeling 
approaches, and work done by other researchers in the real-time field. Our guidelines provide 
high-level strategies on proceeding with decomposing real-time applications for concurrency. Our 
recommendations, on the other hand, are specific strategies focusing on the implementation of 
concurrency. Both the guidelines and recommendations might not necessarily cover every 
exception that can arise when designing a real-time embedded application. If two guidelines or 
recommendations appear to contain opposing thoughts, they should be treated as constituting a 
tradeoff that the designer needs to consider.  

At the completion of the application decomposition process, robust systems must validate the 
schedulability of the newly formed tasks. Quantitative schedulability analysis on a real-time 
system determines whether the system as designed is schedulable. A real-time system is 
considered schedulable if every task in the system can meet its deadline.  



This chapter also focuses on the schedulability analysis (Step 8). In particular, the chapter 
introduces a formal method known as Rate Monotonic Analysis (RMA).  
 
14.2 An Outside-In Approach to Decomposing Applications  
In most cases, designers insist on a set of requirements before beginning work on a real-time 
embedded system. If the requirements are not fully defined, one of the first activities is to ensure 
that many of these requirements are solidified. Ambiguous areas also need to be fleshed out. The 
detailed requirements should be captured in a document, such as a Software Requirements 
Specification (SRS). Only then can an engineering team make a reasonable attempt at designing 
a system. A high-level example of a mobile phone design is provided to show how to decompose 
an application into concurrent units of execution.  

Commonly, decomposing an application is performed using an outside-in approach . This 
approach follows a process of identifying the inputs and outputs of a system and expressing them 
in a simple high-level context diagram. A context diagram for the mobile application is illustrated 
in Figure 14.1. The circle in the center of the diagram represents the software application. 
Rectangular boxes represent the input and output devices for this application. In addition, arrows, 
labeled with meaningful names, represent the flow of the input and output communications. For 
the sake of simplicity, not all components (i.e., battery, input for hands-free ear plug, input for 
external power, and power on/off button) are illustrated.  

 
Figure 14.1: High-level context diagram of a mobile handheld unit.  

The diagram shows that mobile handset application provides interfaces for the following I/O 
devices:  
§ antenna,  
§ speaker,  
§ volume control,  
§ keypad,  
§ microphone, and  
§ LCD. 

The following inputs are identified:  
§ RF input,  
§ volume input,  
§ keypad input, and  
§ microphone input. 

The following outputs are identified:  
§ RF output,  
§ speaker output, and  
§ LCD output.  

After the inputs and outputs are identified, a first cut at decomposing the application can be 
made. Figure 14.2 shows an expanded diagram of the circle identifying some of the potential 
tasks into which the application can decompose. These tasks are along the edges of the newly 



drawn application, which means they probably must interact with the outside world. Note that 
these tasks are not the only ones required, but the process provides a good starting point. Upon 
further analysis, additional tasks may be identified, or existing tasks may be combined as more 
details are considered.  

 
Figure 14.2: Using the outside-in approach to decompose an application into tasks.  

Some inputs and outputs in a handheld mobile device can require more than one dedicated task 
to handle processing. Conversely, in some cases, a single task can handle multiple devices. 
Looking at the example, the antenna can have two tasks assigned to it-one for handling the 
incoming voice channel and one for handling the outgoing voice channel. Printing to the LCD can 
be a relatively simple activity and can be handled with one task. Similarly, sampling the input 
voice from the microphone can also be handled with one task for now but might require another 
task if heavy computation is required for sampling accuracy. Note that one task can handle the 
input keys and the volume control. Finally, a task is designated for sending the output to the 
speaker.  

This example illustrates why the decomposition method is called outside-in: an engineering team 
can continue this way to decompose the overall application into tasks from the outside in.  
 
14.3 Guidelines and Recommendations for Identifying 
Concurrency  
The outside-in approach to decomposing an application is an example of one practical way to 
identify types of concurrent tasks that are dependent on or interact with I/O devices. The mobile 
handset example expands a high-level context diagram to determine some of the obvious tasks 
required to handle certain events or actions. Further refinement of this diagram would yield 
additional tasks. More formalized ways of identifying concurrency exist, however. Many 
guidelines are provided in this section to help the reader identify concurrency in an application. 
First, let's introduce a couple of concepts that are important to understanding concurrency.  

14.3.1 Units of Concurrency  

It is important to encapsulate concurrency within an application into manageable units. A unit of 
concurrency can be a task or a process; it can be any schedulable thread of execution that can 
compete for the CPU's processing time. Although ISRs are not scheduled to run concurrently with 
other routines, they should also be considered in designing for concurrency because they follow a 
preemptive policy and are units of execution competing for CPU processing time. The primary 
objective of this decomposition process is to optimize parallel execution to maximize a real-time 
application's performance and responsiveness. If done correctly, the result can be a system that 
meets all of its deadlines robustly and responsively. If done incorrectly, real-time deadlines can 
be compromised, and the system's design may not be acceptable.  



14.3.2 Pseudo versus True Concurrent Execution  

Concurrent tasks in a real-time application can be scheduled to run on a single processor or 
multiple processors. Single-processor systems can achieve pseudo concurrent execution, in 
which an application is decomposed into multiple tasks maximizing the use of a single CPU. It is 
important to note that on a single-CPU system, only one program counter (also called an 
instruction pointer ) is used, and, hence, only one instruction can be executed at any time. Most 
applications in this environment use an underlying scheduler's multitasking capabilities to 
interleave the execution of multiple tasks; therefore, the term pseudo concurrent execution is 
used.  

In contrast, true concurrent execution can be achieved when multiple CPUs are used in the 
designs of real-time embedded systems. For example, if two CPUs are used in a system, two 
concurrent tasks can execute in parallel at one time, as shown in Figure 14.3. This parallelism is 
possible because two program counters (one for each CPU) are used, which allows for two 
different instructions to execute simultaneously.  

 
Figure 14.3: Pseudo and true concurrent (parallel) execution.  

In the case of multiple CPU systems, the underlying RTOS typically is distributed, which means 
that various components, or copies of RTOS components, can execute on different CPUs. On 
such systems, multiple tasks can be assigned to run on each CPU, just as they do on single-CPU 
systems. In this case, even though two or more CPUs allow true concurrent execution, each CPU 
might actually be executing in a pseudo-concurrent fashion.  

Unless explicitly stated, this book refers to both pseudo and true parallel execution as concurrent 
execution for the sake of simplicity.  

Following the outside-in approach, certain types of tasks can be identified near the application 
edge (i.e., where an application needs to create an interface with an I/O device), whereas other 
tasks can be internal to the application. From the mobile handheld example, if a design team 
were to further decompose the application, these internal tasks would be identified. Applications, 
such as calculator or calendar programs, are some examples of internal tasks or groupings of 
tasks that can exist within the overall handheld mobile application. These internal tasks are 
decoupled from the I/O devices; they need no device-specific information in order to run  

14.3.3 Some Guidelines  

Guideline 1: Identify Device Dependencies  
§ Guideline 1a: Identify Active I/O Devices  
§ Guideline 1b: Identify Passive I/O Devices  

Guideline 2: Identify Event Dependencies  

Guideline 3: Identify Time Dependencies  
§ Guideline 3a: Identify Critical and Urgent Activities  



§ Guideline 3b: Identify Different Periodic Execution Rates  
§ Guideline 3c: Identify Temporal Cohesion  

Guideline 4: Identify Computationally Bound Activities  

Guideline 5: Identify Functional Cohesion  

Guideline 6: Identify Tasks that Serve Specific Purposes  

Guideline 7: Identify Sequential Cohesion  

Guideline 1: Identify Device Dependencies  
All real-time systems interface with the physical world through some devices, such as sensors, 
actuators, keyboards, or displays. An application can have a number of I/O devices interfacing to 
it. Not all devices, however, act as both input and output devices. Some devices can act just as 
inputs or just as outputs. Other devices can act as both. The discussions in this book refer to all 
of these devices as I/O devices.  

The outside-in approach focuses on looking at the I/O devices in a system and assigning a task 
to each device. The basic concept is that unsynchronized devices need separate handling. For 
simple device interactions, processing within an ISR may suffice; however, for additional device 
processing, a separate task or set of tasks may be assigned. Both active and passive I/O devices 
should be considered for identifying potential areas of an application that can be decomposed 
into concurrent tasks.  

As shown in Figure 14.4, hardware I/O devices can be categorized as two types:  
§ Active I/O devices  
§ Passive I/O devices 

 
Figure 14.4: Some general properties of active and passive devices.  

Active I/O devices generate interrupts to communicate with an application. These devices can 
generate interrupts in a periodic fashion or in synch with other active devices. These devices are 
referred to in this book as synchronous . Active devices can also generate interrupts 
aperiodically, or asynchronously, with respect to other devices. These devices are referred to in 
this book as asynchronous .  

Passive I/O devices do not generate interrupts. Therefore, the application must initiate 
communications with a passive I/O device. Applications can communicate with passive devices in 
a periodic or aperiodic fashion.  

Active devices generate interrupts whether they are sending input to or receiving output from the 
CPU. Active input devices send an interrupt to the CPU when the device has new input ready to 
be processed. The new input can be a large buffer of data, a small unit of data, or even no data at 
all. An example of the latter is a sensor that generates an interrupt every time it detects some 
event. On the other hand, an active output device sends an interrupt to the CPU when the device 



has finished delivering the previous output from the CPU to the physical world. This interrupt 
announces to the CPU and the application that the output device has completed the last request 
and is ready to handle the next request.  

Passive input or output devices require the application to generate the necessary requests in 
order to interact with them. Passive input devices produce an input only when the application 
requests. The application can make these requests either periodically or aperiodically. In the case 
of the former, the application runs in a periodic loop and makes a request every time through the 
loop, called polling a device . For aperiodic requests, the application makes the request only 
when it needs the data, based on an event asynchronous to the application itself, such as an 
interrupt from another device or a message from another executing task.  

Special care must be taken when polling a passive input device, especially when sampling a 
signal that has sharp valleys or peaks. If the polling frequency is too low, a chance exists that a 
valley or peak might be missed. If the polling frequency is too high, extra performance overhead 
might be incurred that uses unnecessary CPU cycles.  

Guideline 1a: Identify Active Devices  
Active input or output I/O devices use interrupts to communicate with real-time applications. 
Every time an active input device needs to send data or notification of an event to a real-time 
application, the device generates an interrupt. The interrupt triggers an ISR that executes the 
minimum code needed to handle the input. If a lot of processing is required, the ISR usually 
hands off the process to an associated task through an inter-task communication mechanism.  

Similarly, active output devices also generate interrupts when they need to communicate with 
applications. However, interrupts from active output devices are generated when they are ready 
to receive the next piece of data or notification of some event from the application. The interrupts 
trigger the appropriate ISR that hands off the required processing to an associated task using an 
inter-task communication mechanism.  

The diagram for both an active I/O device acting as an input or an output to an application and for 
a device generating interrupts in a synchronous or asynchronous manner is similar to the one 
illustrated in Figure 14.5.  

 
Figure 14.5: General communication mechanisms for active I/O devices.  

Some typical tasks that can result from identifying an active I/O device in a real-time application 
are listed in Table 14.1.  
Table 14.1: Common tasks that interface with active I/O devices.  

Task Type  Description  

Asynchronous Active 
Device I/O Task  

Assigned to active I/O devices that generate aperiodic 
interrupts or whose operation is asynchronous with respect to 
other I/O devices.  

Synchronous Active 
Device I/O Task  

Assigned to active I/O devices that generate periodic interrupts 
or whose operation is synchronous with respect to other I/O 
devices.  

Resource Control Assigned for controlling the access to a shared I/O device or a 



Table 14.1: Common tasks that interface with active I/O devices.  

Task Type  Description  
Device I/O Task  group of devices.  

Event Dispatch 
Device I/O Task  

Assigned for dispatching events to other tasks from one or 
more I/O devices.  

Recommendation 1: Assign separate tasks for separate active asynchronous I/O devices. 
Active I/O devices that interact with real-time applications do so at their own rate. Each hardware 
device that uses interrupts to communicate with an application and whose operation is 
asynchronous with respect to other I/O devices should be considered to have their own separate 
tasks.  

Recommendation 2: Combine tasks for I/O devices that generate infrequent interrupts 
having long deadlines. In the initial design, each active I/O device can have a separate task 
assigned to handle processing. Sometimes, however, combining the processing of two I/O 
devices into a single task makes sense. For example, if two I/O devices generate aperiodic or 
asynchronous interrupts infrequently and have relatively long deadlines, a single task might 
suffice.  

Recommendation 3: Assign separate tasks to devices that have different input and output 
rates. Generally speaking, a task that handles a device with a high I/O frequency should have a 
higher task priority than a task that handles a device with a lower frequency. Higher I/O frequency 
implies shorter, allowable processing time. However, the importance of the I/O operation, and the 
consequences of delayed I/O, should be taken into account when assigning task priorities with 
respect to I/O frequency.  

Recommendation 4: Assign higher priorities to tasks associated with interrupt-generating 
devices. A task that needs to interface with a particular I/O device must be set to a high-enough 
priority level so that the task can keep up with the device. This requirement exists because the 
task's execution speed is usually constrained by the speed of the interrupts that an associated I/O 
device generates and not necessarily the processor on which the application is running.  

For I/O devices that generate periodic interrupts, the interrupt period dictates how long a task 
must handle processing. If the period is very short, tasks associated with these devices need to 
be set at high priorities.  

For I/O devices that generate aperiodic interrupts, it can be difficult to predict how long an 
associated task will have to process the request before the next interrupt comes in. In some 
cases, interrupts can occur rapidly. In other cases, however, the interrupts can occur with longer 
time intervals between them. A rule of thumb is that these types of tasks need their priorities set 
high to ensure that all interrupt requests can be handled, including ones that occur within short 
time intervals. If an associated task's priority is set too low, the task might not be able to execute 
fast enough to meet the hardware device's needs.  

Recommendation 5: Assign a resource control task for controlling access to I/O devices. 
Sometimes multiple tasks need to access a single hardware I/O device. In this case, the device 
can only serve one task at a time; otherwise, data may be lost or corrupted. An efficient approach 
is to assign a resource control task to that device (also known as a resource monitor task ). This 
task can be used to receive multiple I/O requests from different tasks, so that the resource control 
task can send the I/O requests in a controlled and sequential manner to the I/O device.  

This resource control task is not limited to working with just one I/O device. In some cases, one 
resource task can handle multiple requests that might need to be dispatched to one or more I/O 
devices.  



Recommendation 6: Assign an event dispatch task for I/O device requests that need to be 
handed off to multiple tasks. Events or requests that come from an I/O device can be 
propagated across multiple tasks. A single task assigned as an event dispatch task can receive 
all requests from I/O devices and can dispatch them to the appropriate tasks accordingly.  

Guideline 1b: Identify Passive Devices  
Passive devices are different from active devices because passive devices do not generate 
interrupts. They sit passively until an application's task requests them to do something 
meaningful. Whether the request is for an input or an output, an application's task needs to 
initiate the event or data transfer sequence. The ways that tasks communicate with these devices 
is either by polling them in a periodic manner or by making a request whenever the task needs to 
perform input or output.  

The diagram either for a passive I/O device acting as an input or an output to an application or for 
communicating with the application periodically or aperiodically is similar to the one illustrated in 
Figure 14.6.  

 
Figure 14.6: General communication mechanisms for passive I/O devices.  

Some typical tasks that can result from identifying a passive I/O device in a real-time application 
are listed in Table 14.2.  
Table 14.2: Common tasks that interface with passive I/O devices.  

Task Type  Description  

Aperiodic Passive 
Device I/O Task  

Assigned to passive I/O devices and issues requests to those 
devices on an as-needed basis.  

Periodic Passive 
Device I/O Task  

Assigned to passive I/O devices and polls those devices in a 
periodic fashion.  

Resource Control 
Device I/O Task  

Assigned for controlling the access to a shared hardware I/O 
device or a group of devices.  

Event Dispatch Device 
I/O Task  

Assigned for dispatching events to other tasks from one or 
more I/O devices.  

Recommendation 1: Assign a single task to interface with passive I/O devices when 
communication with such devices is aperiodic and when deadlines are not urgent. Some 
applications need to communicate with a passive I/O device aperiodically. This device might be a 
sensor or display. If the deadlines are relatively long, these requests for one or more passive I/O 
devices can be handled with one task.  

Recommendation 2: Assign separate polling tasks to send periodic requests to passive I/O 
devices. Commonly, a real-time application might need to sample a signal or some data 
repeatedly from a passive I/O device. This process can be done effectively in a periodic polling 



loop. In order to avoid over-sampling or under-sampling the data, assign a separate task to each 
passive I/O device that needs to be polled at different rates.  

Recommendation 3: Trigger polling requests via timer events. More than one way exists to 
perform timing-based polling loops. One common mistake is using a time delay within the loop 
that is equal to the period of the sampling rate. This method can be problematic because the loop 
won't take exactly the same amount of time to execute each time through-the loop is subject to 
interrupts and preemption from higher priority tasks. A better process is to use a timer to trigger 
an event after every cycle. A more accurate periodic rate can be maintained using this approach.  

Recommendation 4: Assign a high relative priority to polling tasks with relatively short 
periods. Tasks that are set up to poll passive I/O devices for inputs may do so at different rates. 
If the period is very short, less time is available to process incoming data before the next cycle. In 
this case, these tasks with faster polling loops need to be set with higher priorities. Designers, 
however, need to remember that this process must be done carefully, as heavy polling can use 
extra CPU cycles and result in increased overhead.  

Guideline 2: Identify Event Dependencies  
Events in a real-time application can propagate across multiple tasks. Whether an event is 
generated externally from an I/O device or internally from within the application, a need exists for 
creating a task or a group of tasks that can properly handle the event as it is propagated through 
the application. Externally generated events are discussed in the pervious sections, so the focus 
here is on internally generated events. Examples of events that can be generated internally to an 
application include when error conditions arise or faults are detected. An event in this case is 
generated and propagated outward to an I/O device or an internal corrective action is taken.  

Guideline 3: Identify Time Dependencies  
Before designing a real-time application, take time to understand and itemize each of the timing 
deadlines required for the application. After the timing deadlines have been identified, separate 
tasks can be assigned to handle the separate deadlines. Task priorities can be assigned based 
on the criticality or urgency of each deadline.  

Guideline 3a: Identify Critical and Urgent Activities  
Note the difference between criticality and urgency. Critical tasks are tasks whose failure would 
be disastrous. The deadline might be long or short but must always be met, or else the system 
does not fulfill the specifications. An urgent task is a task whose timing deadline is relatively short. 
Meeting this deadline might or might not be critical. Both urgent and critical tasks are usually set 
to higher relative priorities.  

Guideline 3b: Identify Different Periodic Execution Rates  
Each rate-driven activity runs independently of any other rate. Periodic activities can be identified, 
and activities can be grouped into tasks with similar rates.  

Guideline 3c: Identify Temporal Cohesion  
Real-time systems may contain sequences of code that always execute at the same time, 
although they are functionally unrelated. Such sequences exhibit temporal cohesion. Examples 
are different activities driven by the same external stimulus (i.e., a timer). Grouping such 
sequences into one task reduces system overhead.  



Guideline 4: Identify Computationally Bound Activities  
Some activities in a real-time application require a lot of CPU time compared to the time required 
for other operations, such as performing I/O. These activities, known as computationally bound 
activities, can be number-crunching activities and typically have relatively long deadlines. These 
types of activities are usually set to lower relative priorities so that they do not monopolize the 
CPU. In some cases, these types of tasks can be time-sliced at a common priority level, where 
each gets time to execute when tasks that are more critical don't need to run.  

Guideline 5: Identify Functional Cohesion  
Functional cohesion requires collecting groups of functions or sequences of code that perform 
closely related activities into a single task. In addition, if two tasks are closely coupled (pass lots 
of data between each other), they should also be considered for combination into one task. 
Grouping these closely related or closely coupled activities into a singe task can help eliminate 
synchronization and communication overhead.  

Guideline 6: Identify Tasks that Serve Specific Purposes  
Tasks can also be grouped according to the specific purposes they serve. One example of a task 
serving a clear purpose is a safety task. Detection of possible problems, setting alarms, and 
sending notifications to the user, as well as setting up and executing corrective measures, are 
just some examples that can be coordinated in a safety task or group of tasks. Other tasks can 
also exist in a real-time system that can serve a specific purpose.  

Guideline 7: Identify Sequential Cohesion  
Sequential cohesion groups activities that must occur in a given sequence into one task to further 
emphasize the requirement for sequential operation. A typical example is a sequence of 
computations that must be carried out in a predefined order. For example, the result of the first 
computation provides input to the next computation and so on.  
 
14.4 Schedulability Analysis-Rate Monotonic Analysis  
After an embedded application has been decomposed into ISRs and tasks, the tasks must be 
scheduled to run in order to perform required system functionality. Schedulability analysis 
determines if all tasks can be scheduled to run and meet their deadlines based on the deployed 
scheduling algorithm while still achieving optimal processor utilization.  

Note that schedulability analysis looks only at how systems meet temporal requirements, not 
functional requirements.  

The commonly practiced analytical method for real-time systems is Rate Monotonic Analysis 
(RMA). Liu and Layland initially developed the mathematical model for RMA in 1973. (This book 
calls their RMA model the basic RMA because it has since been extended by later researchers.) 
The model is developed over a scheduling mechanism called Rate Monotonic Scheduling (RMS), 
which is the preemptive scheduling algorithm with rate monotonic priority assignment as the task 
priority assignment policy. Rate monotonic priority assignment is the method of assigning a task 
its priority as a monotonic function of the execution rate of that task. In other words, the shorter 
the period between each execution, the higher the priority assigned to a task.  

A set of assumptions is associated with the basic RMA. These assumptions are that:  
§ all of the tasks are periodic,  
§ the tasks are independent of each other and that no interactions occur among tasks,  



§ a task's deadline is the beginning of its next period,  
§ each task has a constant execution time that does not vary over time,  
§ all of the tasks have the same level of criticality, and  
§ aperiodic tasks are limited to initialization and failure recovery work and that these 

aperiodic tasks do not have hard deadlines.  

14.4.1 Basic RMA Schedulability Test  

Equation 14.1 is used to perform the basic RMA schedulability test on a system. 

 

Ci = worst-case execution time associated with periodic task I  

Ti = period associated with task i  

n = number of tasks  

U( n) is the utilization factor. The right side of the equation is the theoretical processor utilization 
bound. If the processor utilization for a given set of tasks is less than the theoretical utilization 
bound, this set of tasks is schedulable. The value of U decreases as n increases and eventually 
converges to 69% when n becomes infinite.  

Let's look at a sample problem and see how the formula is implemented. Table 14.3 summarizes 
the properties of three tasks that are scheduled using the RMS.  
Table 14.3: Properties of tasks.  

Periodic Task  Execution Time  Period (milliseconds)  

Task 1  20  100 

Task 2  30  150  

Task 3  50  300 

Using Equation 14.1, the processor utilization for this sample problem is calculated as follows 

 

Total utilization for the sample problem is at 57%, which is below the theoretical bound of 77%. 
This system of three tasks is schedulable, i.e., every task can meet its deadline.  

14.4.2 Extended RAM Schedulability Test  

The basic RMA is limiting. The second assumption associated with basic RMA is impractical 
because tasks in real-time systems have inter-dependencies, and task synchronization methods 
are part of many real-time designs. Task synchronization, however, lies outside the scope of 
basic RMA.  

Deploying inter-task synchronization methods implies some tasks in the system will experience 
blocking, which is the suspension of task execution because of resource contention. Therefore, 



the basic RMA is extended to account for task synchronization. Equation 14.2 provides the 
equation for the extended RMA schedulability test. 

 

where:  

Ci = worst case execution time associated with periodic task I  

Ti = period associated with task i  

Bi = the longest duration of blocking that can be experienced by I  

n = number of tasks  

This equation is best demonstrated with an example. This example uses the same three tasks 
provided in Table 14.3 and inserts two shared resources, as shown in Figure 14.7. In this case, 
the two resources represent a shared memory (resource #1) and an I/O bus (resource #2).  

 
Figure 14.7: Example setup for extended RMA.  

Task #1 makes use of resource #2 for 15ms at a rate of once every 100ms. Task #2 is a little 
more complex. It is the only task that uses both resources. Resource #1 is used for 5ms, and 
resource #2 is used for 10ms. Task #2 must run at a rate of once every 150ms.  

Task #3 has the lowest frequency of the tasks and runs once every 300ms. Task #3 also uses 
resource #2 for 18ms.  

Now looking at schedulability, Equation 14.2 yields three separate equations that must be verified 
against a utility bound. Let's take a closer look at the first equation  

 

Either task #2 or task #3 can block task #1 by using resource #2. The blocking factor B1 is the 
greater of the times task #2 or task #3 holds the resource, which is 18ms, from task #3. Applying 
the numbers to Equation 14.2, the result is below the utility bound of 100% for task #1. Hence, 
task #1 is schedulable.  

Looking at the second equation, task #2 can be blocked by task #3. The blocking factor B2 is 
18ms, which is the time task #3 has control of resource #2, as shown  



 

Task #2 is also schedulable as the result is below the utility bound for two tasks. Now looking at 
the last equation, note that Bn is always equal to 0. The blocking factor for the lowest level task is 
always 0, as no other tasks can block it (they all preempt it if they need to), as shown  

 

Again, the result is below the utility bound for the three tasks, and, therefore, all tasks are 
schedulable.  

Other extensions are made to basic RMA for dealing with the rest of the assumptions associated 
with basic RMA, such as accounting for aperiodic tasks in real-time systems. Consult the listed 
references for additional readings on RMA and related materials.  
 
14.5 Points to Remember  
Some points to remember include the following:  
§ An outside-in approach can be used to decompose applications at the top level.  
§ Device dependencies can be used to decompose applications.  
§ Event dependencies can be used to decompose applications.  
§ Timing dependencies can be used to decompose applications.  
§ Levels of criticality of workload involved can be used to decompose applications.  
§ Functional cohesion, temporal cohesion, or sequential cohesion can be used either to 

form a task or to combine tasks.  
§ Rate Monotonic Scheduling can be summarized by stating that a task's priority depends 

on its period-the shorter the period, the higher the priority. RMS, when implemented 
appropriately, produces stable and predictable performance.  

§ Schedulability analysis only looks at how systems meet temporal requirements, not 
functional requirements.  

§ Six assumptions are associated with the basic RMA:  
o all of the tasks are periodic,  
o the tasks are independent of each other and that no interactions occur among 

tasks,  
o a task's deadline is the beginning of its next period,  
o each task has a constant execution time that does not vary over time,  
o all of the tasks have the same level of criticality, and  
o aperiodic tasks are limited to initialization and failure recovery work and that 

these aperiodic tasks do not have hard deadlines.  
§ Basic RMA does not account for task synchronization and aperiodic tasks.  
 



Chapter 15: Synchronization And Communication 
15.1 Introduction  
Software applications for real-time embedded systems use concurrency to maximize efficiency. 
As a result, an application's design typically involves multiple concurrent threads, tasks, or 
processes. Coordinating these activities requires inter-task synchronization and communication.  

This chapter focuses on:  
§ resource synchronization,  
§ activity synchronization,  
§ inter-task communication, and  
§ ready-to-use embedded design patterns.  
 
15.2 Synchronization  
Synchronization is classified into two categories: resource synchronization and activity 
synchronization . Resource synchronization determines whether access to a shared resource is 
safe, and, if not, when it will be safe. Activity synchronization determines whether the execution of 
a multithreaded program has reached a certain state and, if it hasn't, how to wait for and be 
notified when this state is reached.  

15.2.1 Resource Synchronization  

Access by multiple tasks must be synchronized to maintain the integrity of a shared resource. 
This process is called resource synchronization , a term closely associated with critical sections 
and mutual exclusions.  

Mutual exclusion is a provision by which only one task at a time can access a shared resource. A 
critical section is the section of code from which the shared resource is accessed.  

As an example, consider two tasks trying to access shared memory. One task (the sensor task) 
periodically receives data from a sensor and writes the data to shared memory. Meanwhile, a 
second task (the display task) periodically reads from shared memory and sends the data to a 
display. The common design pattern of using shared memory is illustrated in Figure 15.1. 

 
Figure 15.1: Multiple tasks accessing shared memory.  

Problems arise if access to the shared memory is not exclusive, and multiple tasks can 
simultaneously access it. For example, if the sensor task has not completed writing data to the 
shared memory area before the display task tries to display the data, the display would contain a 
mixture of data extracted at different times, leading to erroneous data interpretation.  

The section of code in the sensor task that writes input data to the shared memory is a critical 
section of the sensor task. The section of code in the display task that reads data from the shared 
memory is a critical section of the display task. These two critical sections are called competing 
critical sections because they access the same shared resource.  



A mutual exclusion algorithm ensures that one task's execution of a critical section is not 
interrupted by the competing critical sections of other concurrently executing tasks.  

One way to synchronize access to shared resources is to use a client-server model, in which a 
central entity called a resource server is responsible for synchronization. Access requests are 
made to the resource server, which must grant permission to the requestor before the requestor 
can access the shared resource. The resource server determines the eligibility of the requestor 
based on pre-assigned rules or run-time heuristics.  

While this model simplifies resource synchronization, the resource server is a bottleneck. 
Synchronization primitives, such as semaphores and mutexes, and other methods introduced in a 
later section of this chapter, allow developers to implement complex mutual exclusion algorithms. 
These algorithms in turn allow dynamic coordination among competing tasks without intervention 
from a third party.  

15.2.2 Activity Synchronization  

In general, a task must synchronize its activity with other tasks to execute a multithreaded 
program properly. Activity synchronization is also called condition synchronization or sequence 
control . Activity synchronization ensures that the correct execution order among cooperating 
tasks is used. Activity synchronization can be either synchronous or asynchronous.  

One representative of activity synchronization methods is barrier synchronization . For example, 
in embedded control systems, a complex computation can be divided and distributed among 
multiple tasks. Some parts of this complex computation are I/O bound, other parts are CPU 
intensive, and still others are mainly floating-point operations that rely heavily on specialized 
floating-point coprocessor hardware. These partial results must be collected from the various 
tasks for the final calculation. The result determines what other partial computations each task is 
to perform next.  

The point at which the partial results are collected and the duration of the final computation is a 
barrier . One task can finish its partial computation before other tasks complete theirs, but this 
task must wait for all other tasks to complete their computations before the task can continue.  

Barrier synchronization comprises three actions:  
§ a task posts its arrival at the barrier,  
§ the task waits for other participating tasks to reach the barrier, and  
§ the task receives notification to proceed beyond the barrier. 

A later section of this chapter shows how to implement barrier synchronization using mutex locks 
and condition variables.  

As shown in Figure 15.2, a group of five tasks participates in barrier synchronization. Tasks in the 
group complete their partial execution and reach the barrier at various times; however, each task 
in the group must wait at the barrier until all other tasks have reached the barrier. The last task to 
reach the barrier (in this example, task T5) broadcasts a notification to the other tasks. All tasks 
cross the barrier at the same time ( conceptually in a uniprocessor environment due to task 
scheduling. We say 'conceptually' because in a uniprocessor environment, only one task can 
execute at any given time. Even though all five tasks have crossed the barrier and may continue 
execution, the task with the highest priority will execute next.  



 
Figure 15.2: Visualization of barrier synchronization.  

Another representative of activity synchronization mechanisms is rendezvous synchronization , 
which, as its name implies, is an execution point where two tasks meet. The main difference 
between the barrier and the rendezvous is that the barrier allows activity synchronization among 
two or more tasks, while rendezvous synchronization is between two tasks.  

In rendezvous synchronization, a synchronization and communication point called an entry is 
constructed as a function call. One task defines its entry and makes it public. Any task with 
knowledge of this entry can call it as an ordinary function call. The task that defines the entry 
accepts the call, executes it, and returns the results to the caller. The issuer of the entry call 
establishes a rendezvous with the task that defined the entry.  

Rendezvous synchronization is similar to synchronization using event-registers, which Chapter 8 
introduces, in that both are synchronous. The issuer of the entry call is blocked if that call is not 
yet accepted; similarly, the task that accepts an entry call is blocked when no other task has 
issued the entry call. Rendezvous differs from event-register in that bidirectional data movement 
(input parameters and output results) is possible.  

A derivative form of rendezvous synchronization, called simple rendezvous in this book, uses 
kernel primitives, such as semaphores or message queues, instead of the entry call to achieve 
synchronization. Two tasks can implement a simple rendezvous without data passing by using 
two binary semaphores, as shown in Figure 15.3.  

 
Figure 15.3: Simple rendezvous without data passing.  

Both binary semaphores are initialized to 0 . When task #1 reaches the rendezvous, it gives 
semaphore #2, and then it gets on semaphore #1. When task #2 reaches the rendezvous, it gives 
semaphore #1, and then it gets on semaphore #2. Task #1 has to wait on semaphore #1 before 
task #2 arrives, and vice versa, thus achieving rendezvous synchronization.  

15.2.3 Implementing Barriers  

Barrier synchronization is used for activity synchronization. Listing 15.1 shows how to implement 
a barrier-synchronization mechanism using a mutex and a condition variable.  



Listing 15.1: Pseudo code for barrier synchronization.  
 

typedef struct { 
     mutex_t    br_lock;        /* guarding mutex */ 
     cond_t     br_cond;        /* condition variable */ 
     int        br_count;       /* num of tasks at the barrier */ 
     int        br_n_threads;   /* num of tasks participating in the 
barrier synchronization */ 
} barrier_t; 
 
 
barrier(barrier_t *br) 
{ 
     mutex_lock(&br->br_lock); 
     br->br_count++; 
     if (br->br_count < br->br_n_threads) 
         cond_wait(&br->br_cond, &br->br_lock); 
     else 
     { 
         br->br_count = 0; 
         cond_broadcast(&br->br_cond); 
     } 
     mutex_unlock(&br->br_lock); 
} 
 
 

Each participating task invokes the function barrier for barrier synchronization. The guarding 
mutex for br_count and br_n_threads is acquired on line #2. The number of waiting tasks 
at the barrier is updated on line #3. Line #4 checks to see if all of the participating tasks have 
reached the barrier.  

If more tasks are to arrive, the caller waits at the barrier (the blocking wait on the condition 
variable at line #5). If the caller is the last task of the group to enter the barrier, this task resets 
the barrier on line #6 and notifies all other tasks that the barrier synchronization is complete. 
Broadcasting on the condition variable on line #7 completes the barrier synchronization.  
 
15.3 Communication  
Tasks communicate with one another so that they can pass information to each other and 
coordinate their activities in a multithreaded embedded application. Communication can be 
signal-centric, data-centric, or both. In signal-centric communication , all necessary information is 
conveyed within the event signal itself. In data-centric communication , information is carried 
within the transferred data. When the two are combined, data transfer accompanies event 
notification.  



When communication involves data flow and is unidirectional, this communication model is called 
loosely coupled communication. In this model, the data producer does not require a response 
from the consumer. Figure 15.4 illustrates an example of loosely coupled communication.  

 
Figure 15.4: Loosely coupled ISR-to-task communication using message queues.  

For example, an ISR for an I/O device retrieves data from a device and routes the data to a 
dedicated processing task. The ISR neither solicits nor requires feedback from the processing 
task. By contrast, in tightly coupled communication , the data movement is bidirectional. The data 
producer synchronously waits for a response to its data transfer before resuming execution, or 
the response is returned asynchronously while the data producer continues its function.  

 
Figure 15.5: Tightly coupled task-to-task communication using message queues.  

In tightly coupled communication, as shown in Figure 15.5, task #1 sends data to task #2 using 
message queue #2 and waits for confirmation to arrive at message queue #1. The data 
communication is bidirectional. It is necessary to use a message queue for confirmations 
because the confirmation should contain enough information in case task #1 needs to re-send the 
data. Task #1 can send multiple messages to task #2, i.e., task #1 can continue sending 
messages while waiting for confirmation to arrive on message queue #2. 

Communication has several purposes, including the following: 
§ transferring data from one task to another, 
§ signaling the occurrences of events between tasks, 
§ allowing one task to control the execution of other tasks, 
§ synchronizing activities, and 
§ implementing custom synchronization protocols for resource sharing.  

The first purpose of communication is for one task to transfer data to another task. Between the 
tasks, there can exist data dependency, in which one task is the data producer and another task 
is the data consumer. For example, consider a specialized processing task that is waiting for data 
to arrive from message queues or pipes or from shared memory. In this case, the data producer 
can be either an ISR or another task. The consumer is the processing task. The data source can 
be an I/O device or another task.  

The second purpose of communication is for one task to signal the occurrences of events to 
another task. Either physical devices or other tasks can generate events. A task or an ISR that is 
responsible for an event, such as an I/O event, or a set of events can signal the occurrences of 
these events to other tasks. Data might or might not accompany event signals. Consider, for 
example, a timer chip ISR that notifies another task of the passing of a time tick.  



The third purpose of communication is for one task to control the execution of other tasks. Tasks 
can have a master/slave relationship, known as process control . For example, in a control 
system, a master task that has the full knowledge of the entire running system controls individual 
subordinate tasks. Each subtask is responsible for a component, such as various sensors of the 
control system. The master task sends commands to the subordinate tasks to enable or disable 
sensors. In this scenario, data flow can be either unidirectional or bidirectional if feedback is 
returned from the subordinate tasks.  

The fourth purpose of communication is to synchronize activities. The computation example given 
in 'Activity Synchronization' on page 233, section 15.2.2, shows that when multiple tasks are 
waiting at the execution barrier, each task waits for a signal from the last task that enters the 
barrier, so that each task can continue its own execution. In this example, it is insufficient to notify 
the tasks that the final computation has completed; additional information, such as the actual 
computation results, must also be conveyed.  

The fifth purpose of communication is to implement additional synchronization protocols for 
resource sharing. The tasks of a multithreaded program can implement custom, more-complex 
resource synchronization protocols on top of the system-supplied synchronization primitives.  
 
15.4 Resource Synchronization Methods  
Chapter 6 discusses semaphores and mutexes that can be used as resource synchronization 
primitives. Two other methods, interrupt locking and preemption locking, can also be deployed in 
accomplishing resource synchronization.  

15.4.1 Interrupt Locks  

Interrupt locking (disabling system interrupts) is the method used to synchronize exclusive access 
to shared resources between tasks and ISRs. Some processor architecture designs allow for a 
fine-grained, interrupt-level lock, i.e., an interrupt lock level is specified so that asynchronous 
events at or below the level of the disabled interrupt are blocked for the duration of the lock. Other 
processor architecture designs allow only coarse-grained locking, i.e., all system interrupts are 
disabled.  

When interrupts are disabled at certain levels, even the kernel scheduler cannot run because the 
system becomes non-responsive to those external events that can trigger task re-scheduling. 
This process guarantees that the current task continues to execute until it voluntarily relinquishes 
control. As such, interrupt locking can also be used to synchronize access to shared resources 
between tasks.  

Interrupt locking is simple to implement and involves only a few instructions. However, frequent 
use of interrupt locks can alter overall system timing, with side effects including missed external 
events (resulting in data overflow) and clock drift (resulting in missed deadlines). Interrupt locks, 
although the most powerful and the most effective synchronization method, can introduce 
indeterminism into the system when used indiscriminately. Therefore, the duration of interrupt 
locks should be short, and interrupt locks should be used only when necessary to guard a task-
level critical region from interrupt activities.  

A task that enabled interrupt locking must avoid blocking. The behavior of a task making a 
blocking call (such as acquiring a semaphore in blocking mode) while interrupts are disabled is 
dependent on the RTOS implementation. Some RTOSes block the calling task and then re-
enable the system interrupts. The kernel disables interrupts again on behalf of the task after the 
task is ready to be unblocked. The system can hang forever in RTOSes that do not support this 
feature.  



15.4.2 Preemption Locks  

Preemption locking (disabling the kernel scheduler) is another method used in resource 
synchronization. Many RTOS kernels support priority-based, preemptive task scheduling. A task 
disables the kernel preemption when it enters its critical section and re-enables the preemption 
when finished. The executing task cannot be preempted while the preemption lock is in effect.  

On the surface, preemption locking appears to be more acceptable than interrupt locking. Closer 
examination reveals that preemption locking introduces the possibility for priority inversion. Even 
though interrupts are enabled while preemption locking is in effect, actual servicing of the event is 
usually delayed to a dedicated task outside the context of the ISR. The ISR must notify that task 
that such an event has occurred.  

This dedicated task usually executes at a high priority. This higher priority task, however, cannot 
run while another task is inside a critical region that a preemption lock is guarding. In this case, 
the result is not much different from using an interrupt lock. The priority inversion, however, is 
bounded. Chapter 16 discusses priority inversion in detail.  

The problem with preemption locking is that higher priority tasks cannot execute, even when they 
are totally unrelated to the critical section that the preemption lock is guarding. This process can 
introduce indeterminism in a similar manner to that caused by the interrupt lock. This 
indeterminism is unacceptable to many systems requiring consistent real-time response.  

For example, consider two medium-priority tasks that share a critical section and that use 
preemption locking as the synchronization primitive. An unrelated print server daemon task runs 
at a much higher priority; however, the printer daemon cannot send a command to the printer to 
eject one page and feed the next while either of the medium tasks is inside the critical section. 
This issue results in garbled output or output mixed from multiple print jobs.  

The benefit of preemption locking is that it allows the accumulation of asynchronous events 
instead of deleting them. The I/O device is maintained in a consistent state because its ISR can 
execute. Unlike interrupt locking, preemption locking can be expensive, depending on its 
implementation.  

In the majority of RTOSes when a task makes a blocking call while preemption is disabled, 
another task is scheduled to run, and the scheduler disables preemption after the original task is 
ready to resume execution.  
 
15.5 Critical Section Revisited  
Many sources give the impression that a mutual exclusion algorithm similar to either the interrupt 
lock or the preemption lock should be used to guard a critical section. One implication is that the 
critical section should be kept short. This idea bears further examination.  

The critical section of a task is a section of code that accesses a shared resource. A competing 
critical section is a section of code in another task that accesses the same resource. If these 
tasks do not have real-time deadlines and guarding the critical section is used only to ensure 
exclusive access to the shared resource without side effects, then the duration of the critical 
section is not important.  

Imagine that a system has two tasks: one that performs some calculations and stores the results 
in a shared variable and another that reads that shared variable and displays its value. Using a 
chosen mutual exclusion algorithm to guard the critical section ensures that each task has 
exclusive access to the shared variable. These tasks do not have real-time requirements, and the 
only constraint placed on these two tasks is that the write operation precedes the read operation 
on the shared variable.  



If another task without a competing critical section exists in the system but does have real-time 
deadlines to meet, the task must be allowed to interrupt either of the other two tasks, regardless 
of whether the task to be interrupted is in its critical section, in order to guarantee overall system 
correctness. Therefore, in this particular example, the duration of the critical sections of the first 
two tasks can be long, and higher priority task should be allowed to interrupt.  

If the first two tasks have real-time deadlines and the time needed to complete their associated 
critical sections impacts whether the tasks meet their deadlines, this critical section should run to 
completion without interruption. The preemption lock becomes useful in this situation.  

Therefore, it is important to evaluate the criticality of the critical section and the overall system 
impact before deciding on which mutual exclusion algorithm to use for guarding a critical section. 
The solution to the mutual exclusion problem should satisfy the following conditions:  
§ only one task can enter its critical section at any given time,  
§ fair access to the shared resource by multiple competing tasks is provided, and  
§ one task executing its critical section must not prevent another task executing a non-

competing critical section.  
 
15.6 Common Practical Design Patterns  
This section presents a set of common inter-tasks synchronization and communication patterns 
designed from real-life scenarios. These design patterns are ready to be used in real-world 
embedded designs.  

In these design patterns, the operation of event register manipulation is considered an atomic 
operation. The numberings shown in these design patterns indicate the execution orders.  

15.6.1 Synchronous Activity Synchronization  

Multiple ways of implementing synchronous activity synchronization are available, including:  
§ task-to-task synchronization using binary semaphores,  
§ ISR-to-task synchronization using binary semaphores,  
§ task-to-task synchronization using event registers,  
§ ISR-to-task synchronization using event registers,  
§ ISR-to-task synchronization using counting semaphores, and  
§ simple rendezvous with data passing.  

Task-to-Task Synchronization Using Binary Semaphores  
In this design pattern, two tasks synchronize their activities using a binary semaphore, as shown 
in Figure 15.6. The initial value of the binary semaphore is 0. Task #2 has to wait for task #1 to 
reach an execution point, at which time, task #1 signals to task #2 its arrival at the execution point 
by giving the semaphore and changing the value of the binary semaphore to 1. At this point, 
depending on their execution priorities, task #2 can run if it has higher priority. The value of the 
binary semaphore is reset to 0 after the synchronization. In this design pattern, task #2 has 
execution dependency on task #1.  



 
Figure 15.6: Task-to-task synchronization using binary semaphores.  

ISR-to-Task Synchronization Using Binary Semaphores  
In this design pattern, a task and an ISR synchronize their activities using a binary semaphore, as 
shown in Figure 15.7. The initial value of the binary semaphore is 0. The task has to wait for the 
ISR to signal the occurrence of an asynchronous event. When the event occurs and the 
associated ISR runs, it signals to the task by giving the semaphore and changing the value of the 
binary semaphore to 1. The ISR runs to completion before the task gets the chance to resume 
execution. The value of the binary semaphore is reset to 0 after the task resumes execution.  

 
Figure 15.7: ISR-to-task synchronization using binary semaphores.  

Task-to-Task Synchronization Using Event Registers  
In this design pattern, two tasks synchronize their activities using an event register, as shown in 
Figure 15.8. The tasks agree on a bit location in the event register for signaling. In this example, 
the bit location is the first bit. The initial value of the event bit is 0. Task #2 has to wait for task #1 
to reach an execution point. Task #1 signals to task #2 its arrival at that point by setting the event 
bit to 1. At this point, depending on execution priority, task #2 can run if it has higher priority. The 
value of the event bit is reset to 0 after synchronization.  

 
Figure 15.8: Task-to-task synchronization using event registers.  

ISR-to-Task Synchronization Using Event Registers  
In this design pattern, a task and an ISR synchronize their activities using an event register, as 
shown in Figure 15.9. The task and the ISR agree on an event bit location for signaling. In this 



example, the bit location is the first bit. The initial value of the event bit is 0. The task has to wait 
for the ISR to signal the occurrence of an asynchronous event. When the event occurs and the 
associated ISR runs, it signals to the task by changing the event bit to 1. The ISR runs to 
completion before the task gets the chance to resume execution. The value of the event bit is 
reset to 0 after the task resume execution.  

 
Figure 15.9: ISR-to-task synchronization using event registers.  

ISR-to-Task Synchronization Using Counting Semaphores  
In Figures 15.6, 15.7, 15.8, and 15.9, multiple occurrences of the same event cannot accumulate. 
A counting semaphore, however, is used in Figure 15.10 to accumulate event occurrences and 
for task signaling. The value of the counting semaphore increments by one each time the ISR 
gives the semaphore. Similarly, its value is decremented by one each time the task gets the 
semaphore. The task runs as long as the counting semaphore is non-zero.  

 
Figure 15.10: ISR-to-task synchronization using counting semaphores.  

Simple Rendezvous with Data Passing  
Two tasks can implement a simple rendezvous and can exchange data at the rendezvous point 
using two message queues, as shown in Figure 15.11. Each message queue can hold a 
maximum of one message. Both message queues are initially empty. When task #1 reaches the 
rendezvous, it puts data into message queue #2 and waits for a message to arrive on message 
queue #1. When task #2 reaches the rendezvous, it puts data into message queue #1 and waits 
for data to arrive on message queue #2. Task #1 has to wait on message queue #1 before task 
#2 arrives, and vice versa, thus achieving rendezvous synchronization with data passing.  



 
Figure 15.11: Task-to-task rendezvous using two message queues.  

15.6.2 Asynchronous Event Notification Using Signals  
One task can synchronize with another task in urgent mode using the signal facility. The signaled 
task processes the event notification asynchronously. In Figure 15.12, a task generates a signal 
to another task. The receiving task diverts from its normal execution path and executes its 
asynchronous signal routine.  

 
Figure 15.12: Using signals for urgent data communication.  

15.6.3 Resource Synchronization  
Multiple ways of accomplishing resource synchronization are available. These methods include 
accessing shared memory with mutexes, interrupt locks, or preemption locks and sharing multiple 
instances of resources using counting semaphores and mutexes.  

Shared Memory with Mutexes  
In this design pattern, task #1 and task #2 access shared memory using a mutex for 
synchronization. Each task must first acquire the mutex before accessing the shared memory. 
The task blocks if the mutex is already locked, indicating that another task is accessing the 
shared memory. The task releases the mutex after it completes its operation on the shared 
memory. Figure 15.13 shows the order of execution with respect to each task.  

 
Figure 15.13: Task-to-task resource synchronization-shared memory guarded by mutex.  



Shared Memory with Interrupt Locks  
In this design pattern, the ISR transfers data to the task using shared memory, as shown in 
Figure 15.14. The ISR puts data into the shared memory, and the task removes data from the 
shared memory and subsequently processes it. The interrupt lock is used for synchronizing 
access to the shared memory. The task must acquire and release the interrupt lock to avoid the 
interrupt disrupting its execution. The ISR does not need to be aware of the existence of the 
interrupt lock unless nested interrupts are supported (i.e., interrupts are enabled while an ISR 
executes) and multiple ISRs can access the data.  

 
Figure 15.14: ISR-to-task resource synchronization- shared memory guarded by interrupt lock.  

Shared Memory with Preemption Locks  
In this design pattern, two tasks transfer data to each other using shared memory, as shown in 
Figure 15.15. Each task is responsible for disabling preemption before accessing the shared 
memory. Unlike using a binary semaphore or a mutex lock, no waiting is invovled when using a 
preemption lock for synchronization.  

 
Figure 15.15: Task-to-task resource synchronization-shared memory guarded by preemption 
lock.  

Sharing Multiple Instances of Resources Using Counting 
Semaphores and Mutexes  
Figure 15.16 depicts a typical scenario where N tasks share M instances of a single resource 
type, for example, M printers. The counting semaphore tracks the number of available resource 
instances at any given time. The counting semaphore is initialized with the value M. Each task 
must acquire the counting semaphore before accessing the shared resource. By acquiring the 
counting semaphore, the task effectively reserves an instance of the resource. Having the 
counting semaphore alone is insufficient. Typically, a control structure associated with the 
resource instances is used. The control structure maintains information such as which resource 
instances are in use and which are available for allocation. The control information is updated 
each time a resource instance is either allocated to or released by a task. A mutex is deployed to 
guarantee that each task has exclusive access to the control structure. Therefore, after a task 
successfully acquires the counting semaphore, the task must acquire the mutex before the task 
can either allocate or free an instance.  



 
Figure 15.16: Sharing multiple instances of resources using counting semaphores and mutexes.  
 
15.7 Specific Solution Design Patterns  
This section presents more complex design patterns for synchronization and communication. 
Multiple synchronization primitives can be found in a single design pattern.  

15.7.1 Data Transfer with Flow Control  

Task-to-task communication commonly involves data transfer. One task is a producer, and the 
other is a data consumer. Data processing takes time, and the consumer task might not be able 
to consume the data as fast as the producer can produce it. The producer can potentially 
overflow the communication channel if a higher priority task preempts the consumer task. 
Therefore, the consumer task might need to control the rate at which the producer task generates 
the data. This process is accomplished through a counting semaphore, as shown in Figure 15.17. 
In this case, the counting semaphore is a permission to produce data.  

 
Figure 15.17: Using counting semaphores for flow control.  

The data buffer in this design pattern is different from an RTOS-supplied message queue. 
Typically, a message queue has a built-in flow control mechanism. Assume that this message 
buffer is a custom data transfer mechanism that is not supplied by the RTOS.  

As shown in Figure 15.17, task #1 is the data producer, while task #2 is the consumer. Task #1 
can introduce data into the buffer as long as the task can successfully acquire the counting 
semaphore. The counting semaphore may be initialized to a value less than the maximum 
allowable token value. Task #2 can increase the token value with the give operation and may 
decrease the token value by the take operation depending on how fast the task can consume 
data. Listing 15.2 shows the pseudo code for this design pattern.  
Listing 15.2: Pseudo code for data transfer with flow control.  
 

Acquire(Counting_Semaphore)  Consume data from MsgQueue  

Produce data into msgQueue  Give(Counting_Semaphore)  

data producing task  data consuming task  
 



 

15.7.2 Asynchronous Data Reception from Multiple Data 
Communication Channels  

Commonly, a daemon task receives data from multiple input sources, which implies that data 
arrives on multiple message queues. A task cannot block and wait for data on multiple message 
queues. Therefore, in such cases, multiple sources may use a single semaphore to signal the 
arrival of data. A task cannot block and wait on multiple semaphores either.  

The task blocks and waits on the semaphore. Each ISR inserts data in the corresponding 
message queue followed by a give operation on the semaphore.  

As shown in Figure 15.18, a single interrupt lock is sufficient to protect against multiple interrupt 
sources, as long as the masked interrupt level covers these sources. Both the interrupt service 
routines use a single semaphore as the signal channel.  

 
Figure 15.18: Task waiting on multiple input sources.  

Listing 15.3 shows the code that the task runs when multiple input message queues are present. 
Note that the semaphore used in this case is a binary semaphore.  
Listing 15.3: Pseudo code for task waiting on multiple input sources.  
 

while (Get(Binary_Semaphore)) 
        disable(interrupts) 
        for (each msgQueue) 
               get msgQueueLength 
               for (msgQueueLength) 
                      remove a message 
                      enable(interrupts) 
                      process the message 
                      disable(interrupts) 
               endfor 
        endfor 
        enable(interrupts) 
end while 
 



 

Some RTOS kernels do not have the event-register object. Implementing the event register using 
the common basic primitives found in the majority of the RTOS kernels can be quite useful when 
porting applications from one RTOS to another.  

The event-register object can be implemented using a shared variable, an interrupt lock, and a 
semaphore. The shared variable stores and retrieves the events. The interrupt lock guards the 
shared variable because ISRs can generate events through the event register. The semaphore 
blocks the task wanting to receive desired events.  

Event_Receive(wanted_events) 
{ 
       task_cb.wanted_events = wanted_events 
       While (TRUE) 
               Get(task_cb.event_semaphore) 
               disable(interrupts)  
               events = wanted_events XOR task_cb.recvd_events 
               task_cb.wanted_events = task_cb.wanted_event AND (NOT 
events) 
               enable(interrupts)  
               If (events is not empty) 
                     return (events) 
               endIf  
       EndWhile 
} 

The variable task_cb refers to the task control block, in which the kernel keeps its private, task-
specific information. Note that the unwanted events are not cleared because the task can call 
event_receive some time later.  

Event_Send(events) 
{ 
       disable(interrupts) 
       task_cb.recvd_events = task_cb.recvd_events OR events 
       enable(interrupts)  
       Give(task_cb.event_semaphore) 
} 

15.7.3 Multiple Input Communication Channels  

A daemon task usually has multiple data input sources and multiple event input sources, as 
shown in Figure 15.19. Consider a daemon task that processes data from an I/O device and has 
a periodic timer, which is used for recovery if the device is stuck in an inconsistent state. The 
system timer ISR signals the periodic timer event; this event does not carry data. In such 
situations, an event register combined with a counting semaphore is a much better alternative 
than using counting semaphores alone for signaling (see Figure 15.10).  



 
Figure 15.19: Task with multiple input communication channels.  

With an event register, each event bit is pre-allocated to a source. In this design pattern, one 
event bit is assigned to the I/O task #1 and another bit is assigned to the timer ISR. The task 
blocks on an event register, and an event from either source activates the task. The I/O task first 
inserts the data associated with an I/O device into the message queue. Then the I/O task signals 
this event to the task by setting the event's assigned bit in the event register. The timer ISR sets 
the event bit; this event is no more than a tick announcement to the task. After the task resumes 
execution, it performs the appropriate action according to the event-register state.  

Because the event register is only used as a signaling mechanism, a counting semaphore is used 
to keep track of the total number of tick occurrences. Listing 15.4 puts this discussion into 
perspective. The addition of the counting semaphore does not increase the code complexity.  
Listing 15.4: Pseudo code for using a counting semaphore for event accumulation 
combined with an event-register used for event notification.  
 

while (the_events = wait for events from Event-Register) 
        if (the_events & EVENT_TYPE_DEVICE) 
                while (Get message from msgQueue) 
                        process the message 
                endwhile 
        endif 
 
        if (the_events & EVENT_TYPE_TIMER) 
                counter = 0 
                disable(interrupts) 
                while (Get(Counting_Semaphore)) 
                        counter = counter + 1 
                endwhile 
                enable(interrupts) 
                if (counter > 1) 
                        recovery time  
                else 
                        process the timer tick 
                endif 



        endif 
endwhile 
 
 

15.7.4 Using Condition Variables to Synchronize between Readers 
and Writers  

The design pattern shown in Figure 15.20 demonstrates the use of condition variables. A 
condition variable can be associated with the state of a shared resource. In this example, multiple 
tasks are trying to insert messages into a shared message queue. The predicate of the condition 
variable is 'the message queue is full.' Each writer task tries first to insert the message into the 
message queue. The task waits (and is blocked) if the message queue is currently full. 
Otherwise, the message is inserted, and the task continues its execution path.  

 
Figure 15.20: Using condition variables for task synchronization.  

Note the message queue shown in Figure 15.20 is called a 'simple message queue.' For the sake 
of this example, the reader should assume this message queue is a simple buffer with structured 
content. This simple message queue is not the same type of message queue that is provided by 
the RTOS.  

Dedicated reader (or consumer) tasks periodically remove messages from the message queue. 
The reader task signals on the condition variable if the message queue is full, in effect waking up 
the writer tasks that are blocked waiting on the condition variable. Listing 15.5 shows the pseudo 
code for reader tasks and Listing 15.6 shows the pseudo code for writer tasks.  
Listing 15.5: Pseudo code for reader tasks.  
 

Lock(guarding_mutex) 
Remove message from message queue 
If (msgQueue Was Full)  
      Signal(Condition_variable) 
Unlock(guarding_mutex) 
 
 



Listing 15.6: Pseudo code for writer tasks.  
 

Lock(guarding_mutex) 
While (msgQueue is Full) 
    Wait(Condition_variable) 
Produce message into message queue 
Unlock(guarding_mutex) 
 
 

As Chapter 8 discusses, the call to event_receive is a blocking call. The calling task is 
blocked if the event register is empty when the call is made. Remember that the event register is 
a synchronous signal mechanism. The task might not run immediately when events are signaled 
to it, if a higher priority task is currently executing. Events from different sources are accumulated 
until the associated task resumes execution. At that point, the call returns with a snapshot of the 
state of the event register. The task operates on this returned value to determine which events 
have occurred.  

Problematically, however, the event register cannot accumulate event occurrences of the same 
type before processing begins. The task would have missed all but one timer tick event if multiple 
timer ticks had occurred before the task resumed execution. Introducing a counting semaphore 
into the circuit can solve this problem. Soft timers, as Chapter 11 discusses, do not have stringent 
deadlines. It is important to track how many ticks have occurred. This way, the task can perform 
recovery actions, such as fast-forwarding time to reduce the drift.  

The data buffer in this design pattern is different from an RTOS-supplied message queue. 
Typically, a message queue has a built-in flow control mechanism. Assume that this message 
buffer is a custom data transfer mechanism that is not supplied by the RTOS.  

Note that the lock call on the guarding mutex is a blocking call. Either a writer task or a reader 
task is blocked if it tries to lock the mutex while in the locked state. This feature guarantees 
serialized access to the shared message queue. The wait operation and the signal operation are 
both atomic operations with respect to the predicate and the guarding mutex, as Chapter 8 
discusses.  

In this example, the reader tasks create the condition for the writer tasks to proceed producing 
messages. The one-way condition creation of this design implies that either there are more writer 
tasks than there are reader tasks, or that the production of messages is faster than the 
consumption of these messages.  

15.7.5 Sending High Priority Data between Tasks  

In many situations, the communication between tasks can carry urgent data. Urgent data must be 
processed in a timely fashion and must be distinguished from normal data. This process is 
accomplished by using signals and an urgent data message queue, as shown in Figure 15.21. 
For the sake of this example, the reader should assume the message queues shown in Figure 
15.21 do not support a priority message delivery mechanism.  



 
Figure 15.21: Using signals for urgent data communication.  

As Chapter 8 describes, one task uses a signal to notify another of the arrival of urgent data. 
When the signal arrives, the receiving task diverts from its normal execution and goes directly to 
the urgent data message queue. The task processes messages from this queue ahead of 
messages from other queues because the urgent data queue has the highest priority. This task 
must install an asynchronous signal handler for the urgent data signal in order to receive it. The 
reason the signal for urgent data notification is deploying is because the task does not know of 
the arrival of urgent data unless the task is already waiting on the message queue.  

The producer of the urgent data, which can be either a task or an ISR, inserts the urgent 
messages into the predefined urgent data message queue. The source signals the recipient of 
the urgent data. The signal interrupts the normal execution path of the recipient task, and the 
installed signal handler is invoked. Inside this signal handler, urgent messages are read and 
processed.  

In this design pattern, urgent data is maintained in a separate message queue although most 
RTOS-supplied message queues support priority messages. With a separate message queue for 
urgent data, the receiver can control how much urgent data it is willing to accept and process, i.e., 
a flow control mechanism.  

15.7.6 Implementing Reader-Writer Locks Using Condition Variables  

This section presents another example of the usage of condition variables. The code shown in 
Listings 15.7, 15.8, and 15.9 are written in C programming language.  

Consider a shared memory region that both readers and writers can access. The example 
reader-writer lock design has the following properties: multiple readers can simultaneously read 
the memory content, but only one writer is allowed to write data into the shared memory at any 
one time. The writer can begin writing to the shared memory when that memory region is not 
accessed by a task (readers or writers). Readers precede writers because readers have priority 
over writers in term of accessing the shared memory region.  

The implementation that follows can be adapted to other types of synchronization scenarios when 
prioritized access to shared resources is desired, as shown in Listings 15.7, 15.8, and 15.9.  

The following assumptions are made in the program listings:  
1. The mutex_t data type represents a mutex object and condvar_t represents a 

condition variable object; both are provided by the RTOS.  
2. lock_mutex, unlock_mutex, wait_cond, signal_cond, and 

broadcast_cond are functions provided by the RTOS. lock_mutex and 
unlock_mutex operate on the mutex object. wait_cond, signal_cond, and 
broadcast_cond operate on the condition variable object.  

Listing 15.7 shows the data structure needed to implement the reader-writer lock.  
Listing 15.7: Data structure for implementing reader-writer locks.  



 

typedef struct { 
       mutex_t      guard_mutex; 
       condvar_t    read_condvar; 
       condvar_t    write_condvar; 
       int          rw_count;  
       int          read_waiting; 
} rwlock_t; 
 
rw_count == -1 indicates a writer is active 
 
 

Listing 15.8 shows the code that the writer task invokes to acquire and to release the lock.  
Listing 15.8: Code called by the writer task to acquire and release locks.  
 

acquire_write(rwlock_t *rwlock) 
{ 
        lock_mutex(&rwlock->guard_mutex); 
        while (rwlock->rw_count != 0) 
               wait_cond(&rwlock->write_condvar, &rwlock->guard_mutex); 
        rwlock->rw_count = -1; 
        unlock_mutex(&rwlock->guard_mutex); 
} 
 
release_write(rwlock_t *rwlock) 
{ 
        lock_mutex(&rwlock->guard_mutex); 
        rwlock->rw_count = 0;  
        if (rwlock->r_waiting) 
                broadcast_cond(&rwlock->read_condvar, &rwlock-
>guard_mutex); 
        else 
                signal_cond(&rwlock->write_condvar, &rwlock-
>guard_mutex); 
        unlock_mutex(&rwlock->guard_mutex); 
} 
 
 

Listing 15.9 shows the code that the reader task invokes to acquire and release the lock.  
Listing 15.9: Code called by the reader task to acquire and release locks.  
 

acquire_read(rwlock_t *rwlock) 



{ 
       lock_mutex(&rwlock->guard_mutex); 
       rwlock->r_waiting++;  
       while (rwlock->rw_count < 0) 
              wait_cond(&rwlock->read_condvar, &rwlock->guard_mutex); 
       rwlock->r_waiting = 0; 
       rwlock->rw_count++; 
       unlock_mutex(&rwlock->guard_mutex); 
} 
 
release_read(rwlock_t *rwlock) 
{ 
       lock_mutex(&rwlock->guard_mutex); 
       rwlock->rw_count --; 
       if (rwlock->rw_count == 0) 
              signal_cond(&rwlock->write_condvar, &rwlock-
>guard_mutex); 
       unlock_mutex(&rwlock->guard_mutex); 
} 
 
 

In case broadcast_cond does not exist, use a for loop as follows  
for (i = rwlock->read_waiting; i > 0; i--)  
   signal_cond(&rwlock->read_condvar, &rwlock->guard_mutex); 

 
15.8 Points to Remember  
Some points to remember include the following:  
§ Synchronization is classified into resource and activity synchronization.  
§ Resource synchronization is closely related to critical sections and mutual exclusion.  
§ Activity synchronization is also called condition synchronization or sequence control.  
§ Barrier synchronization can be used to perform activity synchronization for a group of 

tasks.  
§ Rendezvous synchronization is used to perform activity synchronization between two 

tasks.  
§ Tasks communicate with each other to transfer data, to signal event occurrences, to 

allow one task to control other tasks, to synchronize activities, and to implement custom 
resource synchronization protocols.  

§ Interrupt locks should be used only when necessary to synchronize access to shared 
resources between a task and an ISR.  

§ Preemption locks can cause priority inversion.  
 



Chapter 16: Common Design Problems 
16.1 Introduction  
Most embedded RTOSes facilitate a multitasking- or multithreading-capable environment. Many 
challenging design problems arise when developing embedded applications in multitasking 
systems.  

The nature of this environment is that multiple threads of execution share and contend for the 
same set of resources. As such, resource sharing requires careful coordination to ensure that 
each task can eventually acquire the needed resource or resources to continue execution.  

In a preemptive multitasking environment, resource sharing is a function of task priority. The 
higher the priority of a task, the more important the task is. Higher priority tasks have precedence 
over lower priority tasks when accessing shared resources. Therefore, resource sharing cannot 
violate this rule. On the other hand, if higher priority tasks always take resources from lower 
priority tasks, this sharing scheme is not fair and can prevent lower priority tasks from ever 
completing. This condition is called starvation. Maximization of resource utilization is yet another 
conflicting requirement.  

Two of the most common design problems facing embedded developers are the deadlock and 
the priority inversion problem.  

Specifically, this chapter focuses on:  
§ resource classification,  
§ resource request models,  
§ definition of deadlocks,  
§ deadlock detection, recovery, avoidance and prevention,  
§ definition of priority inversion, and  
§ solutions to priority inversion.  
 
16.2 Resource Classification  
In embedded systems, resources are shared among various concurrently executing tasks. 
Examples of these shared resources include I/O devices, machine registers, and memory 
regions. These shared resources are categorized as either preemptible or nonpreemptible .  

A preemptible resource can be involuntarily and temporarily removed from a task without 
affecting the task's execution state or result. The machine registers set that is shared among 
multiple tasks is an example. When kernel scheduling preempts a current task, the content of the 
machine registers, including the execution state of the current task, is saved into main memory. 
The registers are reinitialized to execute another task. When that other task completes, the 
execution state is restored to the register set, and the preempted task is resumed. The scheduler 
guarantees that the register set contains the execution state from a single task even though the 
registers are shared among multiple tasks throughout the system's lifetime.  

A non-preemptible shared resource must be voluntarily relinquished by the owning task, or 
unpredictable results can occur. A shared memory region belongs to this category. For example, 
one task should not be allowed to write to a shared memory region before another task completes 
its read or write operation.  

The types of resources a task holds are important when deciding on what solutions to take when 
the task is involved in deadlock situations. Section 16.3.3 discusses the relationship between the 
resource types and deadlock recovery mechanisms in detail.  



 
16.3 Deadlocks  
Deadlock is the situation in which multiple concurrent threads of execution in a system are 
blocked permanently because of resource requirements that can never be satisfied.  

A typical real-time system has multiple types of resources and multiple concurrent threads of 
execution contending for these resources. Each thread of execution can acquire multiple 
resources of various types throughout its lifetime. Potential for deadlocks exist in a system in 
which the underlying RTOS permits resource sharing among multiple threads of execution. 
Deadlock occurs when the following four conditions are present:  

Mutual exclusion-A resource can be accessed by only one task at a time, i.e., exclusive access 
mode.  

No preemption-A non-preemptible resource cannot be forcibly removed from its holding task. A 
resource becomes available only when its holder voluntarily relinquishes claim to the resource.  

Hold and wait-A task holds already-acquired resources, while waiting for additional resources to 
become available.  

Circular wait-A circular chain of two or more tasks exists, in which each task holds one or more 
resources being requested by a task next in the chain.  

Given that each resource is nonpreemptible and supports only exclusive access mode, Figure 
16.1 depicts a deadlock situation between two tasks.  

 
Figure 16.1: Deadlock situation between two tasks.  

Figure 16.1 is a resource graph . An arrow labeled holds going from a resource to a task indicates 
that the task currently holds (or owns) the resource. An arrow labeled wants going from a task to 
a resource indicates that the task currently needs this resource to resume execution.  

In this example, task #1 wants the scanner while holding the printer. Task #1 cannot proceed until 
both the printer and the scanner are in its possession. Task #2 wants the printer while holding the 
scanner. Task #2 cannot continue until it has the printer and the scanner. Because neither task 
#1 nor task #2 is willing to give up what it already has, the two tasks are now deadlocked 
because neither can continue execution.  

Deadlocks can involve more than two tasks.  

As shown in Figure 16.2, task T1 currently holds resource R1 (a printer), and T1 wants resource 
R2 (a scanner). Task T2 holds resource R2 and wants resource R3 (a memory buffer). Similarly, 
task T3 holds resource R3 and wants resource R1. It is easy to see the cycle, i.e., the circular-
wait condition in this system. Tasks T1, T2, and T3, and resources R1, R2, and R3 comprise the 



deadlocked set . Note that in the system in Figure 16.2, one instance per resource type exists, 
i.e., there is one instance of R1, one instance of R2, and one instance of R3. A later section, 
'Multi-Instance Resource Deadlock Detection' on page 266, discusses deadlock situations that 
involve multiple instances of a resource type.  

 
Figure 16.2: Deadlock situation among three tasks.  

In this example, each task requires a single instance of a single resource type at any given time. 
Many situations exist in which a task might require multiple instances of multiple types of 
resources. The formation of deadlocks depends on how a task requests resources (formally 
known as a resource request model ). The deadlock detection algorithms are constructed 
according to the resource request models.  

16.3.1 Resource Request Models  

When tasks ask for resources, the way the task makes the requests can be classified into these 
request models:  
§ the Single resource request model,  
§ the AND resource request model,  
§ the OR resource request model, and  
§ the AND-OR resource request model. 

In the Single resource request model, exemplified in both Figure 16.1 and Figure 16.2, a task can 
have at most one outstanding resource request at any given time. In the request model, a task 
asks for resources as in 'wants a printer.'  

In the AND resource request model, a task can have multiple simultaneous requests outstanding 
at any given time. For example, a task can request resources as (R1 and R2) or (R1 and R2 and 
R3). A task is blocked until all of the requested resources are granted. In this request model, a 
task asks for resources as in "wants both a printer and a scanner." The task resumes execution 
only when it successfully acquires both the printer and the scanner.  

In the OR resource request model, a task can request a set of resources, but the task can 
resume execution as soon as any one of the resources from the request set becomes available. 
For example, a task can request resources as (R1 or R2) or (R1 or R2 or R3). In this request 
model, a task asks for resources as in "wants either a printer or a scanner." The task resumes 
execution when it acquires either the printer or the scanner.  

In the AND-OR resource request model, a task can make resource requests in any combination of 
the AND and OR models. For example, a task can request a set of resources as (R1 or R2 and 
(R3 or R4)). In this request model, the task asks for resources as in "wants either a printer or a 
scanner, and wants either a memory buffer or a message queue." The task can resume 
execution when it acquires both the printer and the memory buffer, when it acquires both the 
printer and the message queue, when it acquires the scanner and the memory buffer, or when it 



acquires the scanner and the message queue. A generalization of the AND-OR model is the 
C(n,k) model. In this model, a task can make n resource requests and can resume execution as 
soon as k resources are granted, where k ≤ n.  

16.3.2 Deadlock Detection  

A deadlock condition is called a stable deadlock when no task in the deadlocked set expects a 
timeout or an abort that can eliminate the deadlock. A stable deadlock is permanent and requires 
external influence to eliminate. The external influence is the deadlock detection and recovery by 
the underlying RTOS.  

Deadlock detection is the periodic deployment of an algorithm by the RTOS. The algorithm 
examines the current resource allocation state and pending resource requests to determine 
whether deadlock exists in the system, and if so, which tasks and resources are involved.  

The deadlock detection algorithm that the RTOS deploys is a global algorithm because it is used 
to detect deadlocks in the entire system. In general, each task of the deadlocked set is not aware 
of the deadlock condition. As a result, the recovery algorithm is more intrusive on the normal 
execution of the tasks belonging to the deadlocked set. The recovery algorithms and reasons why 
these algorithms are intrusive on the execution of the tasks involved in the deadlock are 
discussed shortly.  

A temporal deadlock is a temporary deadlock situation in which one or more tasks of the 
deadlocked set either times out or aborts abnormally due to timing constraints. When the task 
times out or aborts, it frees the resources that might have caused the deadlock in the first place, 
thus eliminating the deadlock. This form of detection and recovery is localized to an individual 
task, and the task has deadlock awareness.  

A system that is capable of deadlock detection is more efficient in terms of resource utilization 
when compared to a system without deadlock detection. A system capable of deadlock detection 
is not conservative when granting resource allocation requests if deadlock is allowed to occur. 
Therefore, resources are highly utilized. A system without deadlock detection is conservative 
when granting resource allocation requests. A resource request is denied if the system believes 
there is a potential for deadlock, which may never occur. The conservatism of the system results 
in idle resources even when these resources could be used.  

Deadlock detection does not solve the problem; instead, the detection algorithm informs the 
recovery algorithm when the existence of deadlock is discovered.  

For deadlock in the Single resource request model, a cycle in the resource graph is a necessary 
and sufficient condition.  

For deadlock in the AND resource request model, a cycle in the resource graph is a necessary 
and sufficient condition. It is possible for a task to be involved in multiple deadlocked sets.  

For deadlock in the OR request model, a knot is a necessary and sufficient condition.  

Therefore, deadlock detection involves finding the presence of a cycle in the resource graph for 
both the Single and the AND resource request models. Deadlock detection involves finding the 
presence of a knot in the resource graph for the OR resource request model.  

For deadlock in the AND-OR model, no simple way exists of describing it. Generally, the presence 
of a knot after applying the algorithm to the OR model first and then subsequently applying the 
algorithm to the AND model and finding a cycle is an indication that deadlock is present.  



The following sections present two deadlock detection algorithms-one for the single resource 
request model and one for the AND resource request model-to illustrate deadlock detection in 
practice. 

For node A in the resource graph, the reachable set of A is the set of all nodes B, such that a 
directed path exists from A to B. A knot is the request set K, such that the reachable set of each 
node of K is exactly K.  

Single-Instance Resource Deadlock Detection  
The deadlock detection algorithm for systems with a single instance of each resource type, and 
tasks making resource requests following the single resource request model, is based on the 
graph theory. The idea is to find cycles in the resource allocation graph, which represents the 
circular-wait condition, indicating the existence of deadlocks.  

Figure 16.3 shows the resource allocation graph. The graph represents the following:  
§ a circle represents a resource,  
§ a square represents a task or thread of execution,  
§ an arrow going from a task to a resource indicates that the task wants the resource, and  
§ an arrow going from a resource to a task indicates that the task currently holds the 

resource.  

 
Figure 16.3: Current state of resource allocations and requests.  

In the following discussions, node refers either to the circle (resource) or the square (task) in 
Figure 16.3. Arc refers to the arrow. The deadlock detection algorithm can be stated in these 
seven steps:  

1. Make a list of all the nodes, N, from the graph.  
2. Pick a node from N. Create another list, L, initially empty, which is used for the graph 

traversal.  
3. Insert the node into L and check if this node already exists in L. If so, a cycle exists; 

therefore, a deadlock is detected, and the algorithm terminates. Otherwise, remove the 
node from N.  

4. Check whether any un-traversed outgoing arcs from this node exist. If all of the arcs are 
traversed, go to step 6.  

5. Choose an un-traversed outgoing arc originating from the node and mark the arc as 
traversed. Follow the chosen arc to the new node and return to step 3.  

6. At this stage, a path in the graph terminates, and no deadlocks exist. If more than one 
entry is in L, remove the last entry from L. If more than one entry remains in L, make the 
last entry of L the current node and go to step 4.  

7. If the list N is not empty, go to step 2. Otherwise, the algorithm terminates, and no 
deadlocks exist in the system.  

The actual implementation from step 3 to step 6 translates into a depth first search of the directed 
graph.  



Applying this algorithm to the system depicted in Figure 16.3 provides the following:  

Step 1: N = { R1, T1, R2, T2, R3, T3, R4, T4, T5, R5, T6 }  

Step 2: L = { <empty> }; pick node R1  

Step 3: L = { R1 }; no cycles are in L; N = { T1, R2, T2, R3, T3, R4, T4, T5, R5, T6 }  

Step 4: R1 has one outgoing arc  

Step 5: Mark the arc; reaches node T1; go back to step 3  

Step 3: L = { R1, T1 }; N = { R2, T2, R3, T3, R4, T4, T5, R5, T6 }; no cycles are in L  

The algorithm continues from step 3 to step 5 and reiterates until it reaches node T3, in which the 
list L = { R1, T1, R2, T2, R4, T3 } and the list N = { R3, T4, T5, R5, T6 }. Two outgoing arcs are at 
node T3. When the downward arc is picked, L = { R1, T1, R2, T2, R4, T3, R5 }. Two outgoing 
arcs are at node R5. When the rightward arc is picked, L = { R1, T1, R2, T2, R4, T3, R5, T6 }.  

Step 4: T6 does not have any outgoing arcs; continue to step 6  

Step 6: Remove T6 from the list L; L = { R1, T1, R2, T2, R4, T3, R5 }; return to step 4  

Step 4: Pick the unmarked leftward arc at R5  

Step 5: Mark the arc; reaches node T5; return to step 3  

Step 3: L = { R1, T1, R2, T2, R4, T3, R5, T5 }; N = { R3, T4 }; no cycles are in L  

Step 4: Pick the only outgoing arc at T5  

Step 5: Mark the arc; reaches node R3; go back to step 3  

Step 3: L = { R1, T1, R2, T2, R4, T3, R5, T5, R3 }; N = { T4 }; still no cycles are in L  

Step 4: Pick the only outgoing arc at R3  

Step 5: Mark the arc; reaches node T1; go back to step 3  

Step 3: L = { R1, T1, R2, T2, R4, T3, R5, T5, R3, T1 }; Node T1 already exists in L. A cycle is 
found in the graph, and a deadlock exists. The algorithm terminates.  

The deadlock set is comprised of the entire nodes enclosed by the two occurrences of node T1 
inclusively. Therefore, the discovered deadlock set is {T1, R2, T2, R4, T3, R5, T5, R3}. One thing 
worth noting is that the algorithm detects deadlocks if any exist. Which deadlock is detected first 
depends on the structure of the graph. Closer examination of the resource graph reveals that 
another deadlock exists. That deadlock set is {R2, T2, R4, T3}. At node T3 if the upward arc is 
chosen first instead of the downward arc, this later deadlock occurrence would be discovered, 
and the algorithm would terminate much sooner.  

Multi-Instance Resource Deadlock Detection  
The deadlock detection algorithm takes a different approach for systems with multiple instances 
of each resource type, and tasks make resource requests following the AND model. An underlying 
assumption is that a resource allocation system is present. The resource allocation system is 
comprised of a set of different types of resources, R1, R2, R3, …, Rn. Each type of resource has 



a fixed number of units. The resource allocation system maintains a resource allocation table and 
a resource demand table.  

Each row of tables C and D represents a task T. Each column of tables C and D is associated 
with a resource type. C is the resource allocation table representing resources already allocated. 
D is the resource demand table representing additional resources required by the tasks.  

N = Total 
System 
Resource
s Table  

N1  N2  N3  …  Nk  

where Ni is the number of units of resource type Ri for all i where { 1 ≤ i ≤ k }.  

A = 
Available 
System 
Resource
s Table  

A1  A2  A3  …  Ak  

where Ai the number of units remaining for resource type Ri available for allocation.  

C = 
Tasks 
Resource
s 
Assigned 
Table  

C11  C12  C13  …  C1k  

  C21  C22    …  C2k  
  …      …    

  Cm1      …  Cmk  

D = 
Tasks 
Resource
s 
Demand 
Table  

D11  D12  D13  …  D1k  

  D21  D22    …  D2k  
  …      …   

  Dm1      …  Dmk  

For example in table C, there are C11 units of resource R1, C12 units of resource R2, and so on, 
which are allocated to task T1. Similarly, there are C21 units of resource R1, C22 units of resource 
R2, and so on, which are allocated to task T2. For example in table D, task T1 demands 
additional D11 units of resource R1, additional D12 units of resource R2, and so on, in order to 
complete execution.  

The deadlock detection algorithm is as follows:  
1. Find a row i in table D, where Dij < Aj for all 1 ≤ j ≤ k. If no such row exists, the system is 

deadlocked, and the algorithm terminates.  
2. Mark the row i as complete and assign Aj = Aj + Dij for all 1 ≤ j ≤ k.  



3. If an incomplete row is present, return to step 1. Otherwise, no deadlock is in the system, 
and the algorithm terminates.  

Step 1 of the algorithm looks for a task whose resource requirements can be satisfied. If such a 
task exists, the task can run to completion. Resources from the completed task are freed back 
into the resource pool, which step 2 does. The newly available resources can be used to meet the 
requirements of other tasks, which allow them to resume execution and run to completion.  

When the algorithm terminates, the system is deadlocked if table T has incomplete rows. The 
incomplete rows represent the tasks belonging to the deadlocked set. The algorithm is illustrated 
in the following example.  

N = 4  6  2    

A =  1  2  0    

C =  0  2  0  Task 1  
  1  1  0  Task 2  
  1  1  1  Task 3  
  1  0  1  Task 4  

D =  2  2  2  Task 1  
  1  1  0  Task 2  
  0  1  0  Task 3  
  1  1  1  Task 4  

Step 1: Task 1 cannot continue because the available resources do not satisfy its requirements.  

Task 2 can continue because what it needs can be met.  

Step 2:  A = 2  3  0 

Step 3: Task 1, task 3, and task 4 remain. Return to step 1.  

Step 1: Task 1 still cannot continue. The requirement from task 3 can be met.  

Step 2:  A = 3  4  1 

Step 3: Task 1 and task 4 remain. Return to step 1.  

Step 1: Task 1 still cannot continue, but task 4 can.  

Step 2:  A = 4  4  2 

Step 3: Task 1 remains. Return to step 1.  

Step 1: Task 1 can continue.  

Step 2:  A = 4  6  2 

Step 3: No more tasks remain, and the algorithm terminates. No deadlock is in the system.  



Now if the resource requirement for task 3 were [ 0 1 1 ] instead of [ 0 1 0 ], task 1, task 
3, and task 4 cannot resume execution due to lack of resources. In this case, these three tasks 
are deadlocked.  

It is worth noting that executing a deadlock detection algorithm takes time and can be non-
deterministic.  

16.3.3 Deadlock Recovery  

After deadlock is detected, the next step is to recover from it and find ways to break the deadlock. 
No one magic solution exists to recover from deadlocks. Sometimes it is necessary to execute 
multiple recovery methods before resolving a deadlock, as illustrated later.  

For preemptible resources, resource preemption is one way to recover from a deadlock. The 
deadlocked set is transferred to the recovery algorithm after the detection algorithm has 
constructed the set. The recovery algorithm can then exercise preemption by taking resources 
away from a task and giving these resources to another task. This process temporarily breaks the 
deadlock. The latter task can complete execution and free its resources. These resources are 
used in turn to satisfy the first task for its completion. Resource preemption on preemptible 
resources does not directly affect the task's execution state or result, but resource preemption 
can affect a task's timing constraints. The duration of resource preemption can cause the 
preempted task to abort, which results in an incomplete execution and indirectly affects the result 
of a task.  

For non-preemptible resources, resource preemption can be detrimental to the preempted task 
and can possibly affect the results of other tasks as well. For example, consider the situation in 
which one task is in the midst of writing data into a shared memory region, while at the same time 
a second task requests read access from the same memory region. The write operation is 
invalidated, when another task causes a deadlock, and the system recovers from the deadlock by 
preempting the resource from the writing task. When the second task gets the resource and 
begins accessing the shared memory, the data read is incoherent and inconsistent. For this 
reason, a shared memory region is classified as a non-preemptible resource. The preempted task 
writes the remaining data when the access to the shared memory is returned. The data is no 
longer useful, and the write operation is wasted effort. Sometimes this type of resource 
preemption is as good as eliminating the preempted task from the system altogether.  

On the other hand, the effects of non-preemptible resource preemption can be minimized if a task 
has a built-in, self-recovery mechanism. A task can achieve self-recovery by defining checkpoints 
along its execution path. As soon as the task reaches a checkpoint, the task changes a global 
state to reflect this transition. In addition, the task must define a specific entry point to be invoked 
by the deadlock recovery algorithm after the task is allowed to resume execution. The entry point 
is nothing more than the beginning of the task's built-in, self-recovery routine. In general, the 
recovery involves rolling back and restarting execution from the beginning of the previous 
checkpoint. The concept is illustrated in Listing 16.1.  
Listing 16.1: Checkpoints and recovery routine.  
 

<code>                                 recovery_entry() 
...                                    { 
<code>                                      switch (state) 
...                                         { 
/* reached checkpoint #1 */                    case CHECKPOINT_1: 
state = CHECKPOINT_1;                               
recovery_method_1(); 



...                                                 break; 
<code>                                         case CHECKPOINT_2: 
...                                                 
recovery_method_2(); 
/* reached checkpoint #2 */                         break; 
state = CHECKPOINT_2;                          ...  
                                            } 
...                                    } 
 
 

In Listing 16.1, a resource preemption is performed on a writer task and the preempted resource 
is given to the reader task. The writer task's self-recovery involves returning to the previous 
checkpoint and perhaps repeating the write operation, followed by a broadcast notification to all 
other tasks that the shared memory region has just been updated. This process can reduce the 
impact on other tasks.  

The reassignment target of the preempted resource plays an important role in breaking the 
deadlock. For example, assume the deadlocked set {T1, R2, T2, R4, T3, R5, T5, R3} has been 
discovered, as shown in Figure 16.3. In addition, suppose resource R2 is preempted from T2 as 
the first recovery step. Figure 16.4 shows the resource graph if R2 were reassigned to T3.  

 
Figure 16.4: Resource preemption with a new deadlock.  

The problem is not solved because a new deadlock is formed by this resource assignment. 
Instead, if R2 were given to T1 first, the deadlock is broken as shown in Figure 16.5.  

 
Figure 16.5: Deadlock eliminated by proper resource reassignment.  

Consequently, T1 can complete and then frees R1, R2, and R3. This process in term enables T5 
to complete and releases R5. Now, both R2 and R5 are available to T2, which allows it to run to 



completion. Finally, T2 is given a second chance to execute, and the deadlock is eliminated by 
proper resource reassignment.  

16.3.4 Deadlock Avoidance  

Deadlock avoidance is an algorithm that the resource allocation system deploys. The algorithm 
predicts whether the current allocation request, if granted, can eventually lead to deadlock in the 
future.  

Deadlock avoidance is similar to the deadlock detection algorithm outlined in the 'Multi-Instance 
Resource Deadlock Detection' on page 266. Each time a resource request is made, the system 
tests whether granting such a request might allow the remaining resources to be given to different 
tasks in subsequent allocations so that all tasks can run to completion. Revisiting the example 
given in 'Multi-Instance Resource Deadlock Detection' provides the following:  

N =  4  6  2   

A =  1  2  0   

C =  0  2  0  Task 1  
  1  1  0  Task 2  
  1  1  1  Task 3  
  1  0  1  Task 4  

D =  2  2  2  Task 1  
  1  1  0  Task 2  
  0  1  0  Task 3  
  1  1  1  Task 4  

If task 2 requests one unit of resource R1, granting such a request does not lead to deadlock 
because a sequence of resource allocations exists, i.e., giving the remaining resources to task 2, 
to task 3, followed by allocation to task 4, and finally to task 1, which allows all tasks to complete. 
This request from task 2 is safe and is allowed. If task 4 were to make the same request for R1 
and if such a request were granted, this process would prevent task 2 from completing, which 
would result in a deadlock such that no task could resume execution. The request from task 4 is 
an unsafe request, and the deadlock avoidance algorithm would reject the request and put task 4 
on hold while allowing other tasks to continue.  

In order for deadlock avoidance to work, each task must estimate in advance its maximum 
resource requirement per resource type. This estimation is often difficult to predict in a dynamic 
system. For more static embedded systems or for systems with predictable operating 
environments, however, deadlock avoidance can be achieved. The estimations from all tasks are 
used to construct the demand table, D. This resource estimation only identifies the potential 
maximum resource requirement through certain execution paths. In the majority of cases, there 
would be overestimation. Overestimation by each task can lead to inefficient resource utilization 
in a heavily loaded system. This problem is caused because the system might be running with 
most of the resources in use, and the algorithm might predict more requests as being unsafe. 
This issue could result in many tasks being blocked, while holding resources that were already 
allocated to them.  



16.3.5 Deadlock Prevention  

Deadlock prevention is a set of constraints and requirements constructed into a system so that 
resource requests that might lead to deadlocks are not made. Deadlock prevention differs from 
deadlock avoidance in that no run-time validation of resource allocation requests occurs. 
Deadlock prevention focuses on structuring a system to ensure that one or more of the four 
conditions for deadlock i.e., mutual exclusion, no preemption, hold-and-wait, and circular wait is 
not satisfied.  

This set of constraints and requirements placed on resource allocation requests is as follows:  
§ Eliminating the hold-and-wait deadlock condition. A task requests at one time all 

resources that it will need. The task can begin execution only when every resource from the 
request set is granted.  

This requirement addresses the hold-and-wait condition for deadlock. A task that obtains all 
required resources before execution avoids the need to wait for anything during execution. 
This approach, however, has limited practicality and several drawbacks. In a dynamic 
system, tasks have difficulty predicting in advance what resources will be required. Even if all 
possible resource requirements could be accurately predicted, this prediction does not 
guarantee that every resource in this predicted set would be used. Execution paths, which 
external factors affect, determine which resources are used.  

One major drawbacks to this approach is the implicit requirement that all resources must be 
freed at the same time. This requirement is important because a resource can be needed in 
multiple code paths; it can be used and later be reused. So, the resource must be kept until 
the end of task execution. Some of the resources, however, might be used once or used only 
briefly. It is inefficient for these resources to be kept for a long time because they cannot be 
reassigned to other tasks.  

§ Eliminating the no-preemption deadlock condition. A task must release already 
acquired resources if a new request is denied. The task must then initiate a new request 
including both the new resource and all previously held resources.  

This requirement addresses the no-preemption condition for deadlock. This approach is 
slightly more dynamic than the previous method in that resources are acquired on an as-
needed basis and only those resources needed for a particular execution path, instead of all 
possible resources, are acquired.  

This approach, however, is not much better than the previous one. For tasks holding non-
preemptible resources, this requirement means that each task must restart execution either 
from the beginning or from well-defined checkpoints. This process nullifies partially complete 
work. Potentially, a task might never complete, depending on the average number of tasks 
existing in the system at a given time and depending on the overall system scheduling 
behavior.  

§ Eliminating the circular-wait deadlock condition. An ordering on the resources must 
be imposed so that if a task currently holds resource Ri, a subsequent request must be for 
resource Rj where j > i. The next request must be for resource Rk where k > j, and so on.  

This imposition addresses the circular-wait condition for deadlock. Resources are organized 
into a hierarchical structure. A task is allowed to acquire additional resources while holding 
other resources, but these new resources must be higher in the hierarchy than any currently 
held resources.  

 



16.4 Priority Inversion  
Priority inversion is a situation in which a low-priority task executes while a higher priority task 
waits on it due to resource contentions.  

A high task priority implies a more stringent deadline. In a priority-based, preemptive scheduling 
system, the kernel schedules higher priority tasks first and postpones lower priority tasks until 
either all of the higher priority tasks are completed or the higher priority tasks voluntarily 
relinquish the CPU. In real-time embedded systems, the kernel strives to make the schedulability 
of the highest priority task deterministic. To do this, the kernel must preempt the currently running 
task and switch the context to run the higher priority task that has just become eligible, all within a 
known time interval. This system scheduling behavior is the norm when these tasks are 
independent of each other. Task interdependency is inevitable when tasks share resources and 
synchronizing activities. Priority inversion occurs when task interdependency exists among tasks 
with different priorities.  

Consider the situation shown in Figure 16.6, in which a higher priority task shares a resource with 
a lower priority task. The higher priority task must wait when the lower priority task has locked the 
resource, even though the higher priority task is eligible to run.  

 
Figure 16.6: Priority inversion example.  

As shown in Figure 16.6, at time t1 the low-priority task (LP-task) locks the shared resource. The 
LP-task continues until time t2 when the high-priority task (HP-task) becomes eligible to run. The 
scheduler immediately preempts the LP-task and context-switches to the HP-task. The HP-task 
runs until time t3 when it requires the shared resource. Because the resource is in the locked 
state, the HP-task must block and wait for its release. At this point, the scheduler context-
switches back to the LP-task. Priority inversion begins at time t3. At time t4, the LP-task releases 
the shared resource, which triggers preemption and allows the HP-task to resume execution. 
Priority inversion ends at time t4. The HP-task completes at time t5, which allows the LP-task to 
resume execution and finally complete at time t6.  

The priority inversion shown in Figure 16.6 is a bounded priority inversion. The duration of the 
low-priority task's holding time on the shared resource is known. It is possible for a medium-
priority task to preempt the low-priority task for an undetermined amount of time, which would 
cause the high-priority task to wait indefinitely. This priority inversion scenario is called 
unbounded priority inversion and is shown in Figure 16.7.  



 
Figure 16.7: Unbounded priority inversion example.  

As in the previous example, priority inversion takes place at time t3. The low-priority task (LP-
task) executes until time t4 when an unrelated medium-priority task (MP-task) preempts it. 
Because the MP-task does not share resources with either the HP-task or the LP-task, the MP-
task continues execution until it completes at time t5. The duration between t4 and t5 is unknown 
because the duration depends on the nature of the MP-task. In addition, any number of unrelated 
medium-priority tasks can execute during this period. These unknown factors affect the interval 
and translate into unbounded priority inversion.  

When priority inversion occurs, the execution times for some tasks are reduced, while others are 
elongated. In Figure 16.7, consider the case in which the high-priority task (HP-task) takes the 
guarding semaphore before the low-priority task (LP-task). The medium-priority task (MP-task) 
must wait until the HP-task completes. However, when the MP-task executes first, it is preempted 
by the HP-task. Again, the MP-task resumes execution after the HP-task completes. In both 
cases, the overall execution times for the MP-task are longer than the execution time to complete 
the MP-task during the priority inversion. Although some tasks are completed early, other tasks, 
such as the HP-task, might miss their deadlines. This issue is called timing anomaly introduced 
by priority inversion.  

Priority inversion results from resource synchronization among tasks of differing priorities. Priority 
inversion cannot be avoided, but it can be minimized using resource access control protocols.  

A resource access control protocol is a set of rules that defines the conditions under which a 
resource can be granted to a requesting task and governs the execution scheduling property of 
the task holding the resource.  

Access control protocols are discussed in the following sections. These access control protocols 
eliminate the unbound priority inversion, and two of these protocols reduce the inversion time.  

16.4.1 Priority Inheritance Protocol  

The Priority Inheritance Protocol is a resource access control protocol that raises the priority of a 
task, if that task holds a resource being requested by a higher priority task, to the same priority 
level as the higher priority task. This access control protocol follows the rules in Table 16.1 when 
a task T requests a resource R.  
Table 16.1: Priority Inheritance Protocol rules.  

Rule 
#  

Description  

1  If R is in use, T is blocked.  

2  If R is free, R is allocated to T.  

3  When a task of a higher priority requests the same resource, T's execution 
priority is raised to the requesting task's priority level.  



Table 16.1: Priority Inheritance Protocol rules.  

Rule 
#  

Description  

4  The task returns to its previous priority when it releases R.  

This access control protocol is shown in Figure 16.8.  

 
Figure 16.8: Priority inheritance protocol example.  

With the priority inheritance protocol, when the LP-task blocks the HP-task at time t3, the 
execution priority is raised to that of the HP-task. This process ensures that unrelated medium-
priority tasks cannot interfere while the LP-task executes, which results in the elimination of the 
unbounded priority inversion. When the LP-task releases control of the shared resource, the 
priority is immediately lowered to its previous level, which allows the HP-task to preempt its 
execution. This action ends the priority inversion at time t4. The HP-task continues its execution, 
however, even when it releases the resource at t5. This is the nature of the priority-based, 
preemptive scheduling scheme. The HP-task runs because it has the highest priority in the 
system.  

The priority inheritance protocol is dynamic because a task does not have its priority raised until a 
higher-priority task makes a request on the shared resource. An unrelated higher-priority task can 
still preempt the task, which is the nature of the priority-based, preemptive scheduling scheme. 
The priority promotion for a task during priority inversion is transitive, which means the priority of 
a promoted task continues to rise even if higher-priority tasks make requests on the same shared 
resource while priority inversion is taking place, as shown in Figure 16.9.  

 
Figure 16.9: Transitive priority promotion example.  

In this example, three tasks with differing priorities share a resource. The LP-task acquires the 
resource first at time t1. At time t2, the MP-task preempts the LP-task and executes until t3 when 
it needs the resource. The MP-task is blocked. At that point, the LP-task inherits the priority from 
the MP-task and resumes execution at that level. The HP-task preempts the LP-task when it 
readies at t4. The HP-task is blocked at t5 when it also needs access to the shared resource. 
Once more, the LP-task inherits its priority from HP-task and resumes execution at the highest 



level. As soon as the LP-task completes at time t6, its priority is immediately lowered to the level 
originally assigned.  

In this example, the MP-task can hold some additional resource required by the HP-task. The HP-
task can also acquire some other resources needed by the MP-task before the HP-task blocks. 
When the LP-task releases the resource and the HP-task immediately gets to run, it is 
deadlocked with the MP-task. Therefore, priority inheritance protocol does not eliminate deadlock.  

16.4.2 Ceiling Priority Protocol  

In the ceiling priority protocol, the priority of every task is known, as are the resources required by 
every task. For a given resource, the priority ceiling is the highest priority of all possible tasks that 
might require the resource.  

For example, if a resource R is required by four tasks (T1 of priority 4, T2 of priority 9, T3 of 
priority 10, and T4 of priority 8), the priority ceiling of R is 10, which is the highest priority of the 
four tasks.  

This access control protocol follows the rules in Table 16.2 when a task T requests a resource R.  
Table 16.2: Ceiling priority protocol rules.  

Rule 
#  

Description  

1  If R is in use, T is blocked.  

2  If R is free, R is allocated to T. T's execution priority is raised to the priority 
ceiling of R if that is higher. At any given time, T's execution priority equals the 
highest priority ceiling of all its held resources.  

3  T's priority is assigned the next-highest priority ceiling of another resource when 
the resource with the highest priority ceiling is released.  

4  The task returns to its assigned priority after it has released all resources.  

This access control protocol is shown in Figure 16.10.  

 
Figure 16.10: Ceiling priority protocol example.  

With the ceiling priority protocol, the task inherits the priority ceiling of the resource as soon as 
the task acquires the resource even when no other higher priority tasks contend for the same 
resource. This rule implies that all critical sections from every sharing task have the same 
criticality level. The idea is to finish the critical section as soon as possible to avoid possible 
conflicts.  



16.4.3 Priority Ceiling Protocol  

Similarly to the ceiling priority protocol, the priority of every task is known in the priority ceiling 
protocol. The resources that every task requires are also known before execution. The current 
priority ceiling for a running system at any time is the highest priority ceiling of all resources in use 
at that time.  

For example, if four resources are in use and if R1 has a priority ceiling of 4, R2 has a priority 
ceiling of 9, R3 of a priority ceiling 10, and R4 of a priority ceiling 8, the current priority ceiling of 
the system is 10. Note that different tasks can hold these resources.  

This access control protocol follows the rules in Table 16.3 when a task T requests a resource R.  
Table 16.3: Priority ceiling protocol rules.  

Rule 
#  

Description  

1  If R is in use, T is blocked.  

2  If R is free and if the priority of T is higher than the current priority ceiling, R is 
allocated to T.  

3  If the current priority ceiling belongs to one of the resources that T currently 
holds, R is allocated to T, and otherwise T is blocked  

4  The task that blocks T inherits T's priority if it is higher and executes at this 
priority until it releases every resource whose priority ceiling is higher than or 
equal to T's priority. The task then returns to its previous priority.  

In the priority ceiling protocol, a requesting task can be blocked for one of three causes. The first 
cause is when the resource is current in use, which is direct resource contention blocking, and is 
the result of rule #1. The second cause is when the blocking task has inherited a higher priority 
and its current execution priority is higher than that of the requesting task. This cause is priority 
inheritance blocking and is the result of rule #4. A task can be blocked when its priority is lower 
than the current priority ceiling even when the requested resource is free. This cause is priority 
ceiling blocking and is a direct consequence of the 'otherwise' clause of rule #3. Rule #3 prevents 
a task from blocking itself if it holds a resource that has defined the current priority ceiling.  

One of the deadlock prevention strategies in the 'Deadlock Prevention' on page 272, section 
16.3.5, is to impose ordering on the resources. The resource ordering can be realized by using 
the priority ceilings of the resources. Rule #2 says if the priority of T is higher than the current 
priority ceiling, T does not require any resources that are in use. This issue occurs because 
otherwise the current priority ceiling would be either equal to or higher than the priority of T, which 
implies that tasks with a priority higher than T's do not require the resources currently in use. 
Consequently, none of the tasks that are holding resources in use can inherit a higher priority, 
preempt task T, and then request a resource that T holds. This feature prevents the circular-wait 
condition. This feature is also why deadlock cannot occur when using the priority ceiling protocol 
as an access control protocol. The same induction process shows that the condition in which a 
task blocks another task but is in turn blocked by a third task, transitive blocking, does not occur 
under the priority ceiling protocol.  

The priority ceiling protocol has these characteristics:  
§ A requesting task can be blocked by only one task; therefore, the blocking interval is at 

most the duration of one critical section.  
§ Transitive blocking never occurs under the priority ceiling protocol.  
§ Deadlock never occurs under the priority ceiling protocol.  
 



16.5 Points to Remember  
Some points to remember include the following:  
§ Resources can be classified as either preemptible or non-preemptible resources.  
§ Deadlock occurs when all four of these conditions are true: mutual exclusion, no 

preemption, hold-and-wait, and circular wait.  
§ Resource requests can be classified into Single, AND, OR, and AND-OR request models.  
§ Strategies exist for dealing with deadlocks: deadlock detection and recovery, deadlock 

avoidance, and deadlock prevention.  
§ Access control protocols exist for dealing with priority inversion: priority inheritance 

protocol, ceiling priority protocol, and priority ceiling protocol.  
§ Deadlock never occurs under the priority ceiling protocol.  
 


