
1

Embedded Systems

Introduction to
Embedded and Real-Time

Operating Systems
From:

“Sistemi Embedded: Sviluppo HW e SW per sistemi dedicati (Cap. 8)”

W. Fornaciari, C. Brandolese - Edizioni Pearson – Prentice Hall 2007

and other different sources (some in the Extra folder).



2

Overview

• Operating Systems
– Main Features
– Processors Management

• Embedded Operating Systems
– Relevant features

• Real-time Systems Needs
• Real-Time Scheduling

– Response Times
– RT Scheduling Policies
– RMS and EDF

• RTOS: Examples



3

Operating Systems

Main Features



4

Operating Systems

• Main Features
– Processes
– Memory Management
– Protection
– OS Architecture
– Synchronization and Communication



5

Operating Systems

• Main Features: Processes
– A process is the abstraction of a running program

• It represents the evolution of a program and its data
– It has a status that can be stored and restored when needed

• Three main components
– Executable code
– Program data

» Variables, constants, dynamic memory, etc.
– Execution contest

» PC, SP, registers, files, other resources, etc.

– The OS component that manages processes is the scheduler, 
belonging to the so called Kernel

• It mainly manages the allocation of CPUs to processes



6

Operating Systems

• Main Features: Memory Management
– Two main goals

• To assure processes isolation avoiding that one can corrupt 
memory regions assigned to others

• To optimize memory usage by providing to the processes the 
illusion of a dedicated (virtual) main memory bigger than the 
physical available one

– This feature is not always provided by EOS/RTOS
» Sometimes is simply not needed
» Possible problems for determinism



7

Operating Systems

• Main Features: Protection
– There is the need for a mechanism for controlled access to

different parts of the system
• Different privileges to user/application processes and processes

that compose the OS itself

• Two execution modes for processes
– Kernel mode

» Reserved to processes that compose the OS itself
» No access limitations to system resources

» OS data structures and HW resources

– User mode
» Use to system resources is allowed only by means of proper system 

calls that assure a controlled access



8

Operating Systems

• Main Features: OS Architecture
– Hystorical evolution

• Monolithical
– Structural programming approach
– A big Kernel with all the main functionalities

» Scheduler, file system, networking, device drivers, etc.

• Layered
– Modular programming approach but still a big Kernel

» Maybe configurable

• Microkernel
– Very limited functionalities in Kernel mode

» Scheduling, basic memory management, IPC
– Other services are provided by processes in User mode that act as 

servers



9

Operating Systems

• Main Features: OS Architecture
– Another important architectural evolution is related to the 

“concurrency granularity”
• Multi-processing vs Multi-threading

– Thread == Light Process
– Process == Threads Container

• A process and its threads natively share some resources without 
the need of system calls (i.e. overhead) to manage such a sharing

– Mainly memory sharing
• The critical point is to understand if an OS is really able to directly 

manage threads
– User threads vs Kernel threads

• Sometimes the terms are used only to refer to the concept of 
“execution unit”

– (Process, Thread) >>Task



10

Operating Systems

• Main Features: Synchronization and Communication
– The set of tasks running in a system can compete for resources 

and/or cooperate to solve a common problem
• Normally threads of a process are built for cooperation

– This is possible thanks to some mechanisms that allow 
synchronization and communication among tasks

• IPC (Inter-process Communication) mechanisms
– Shared memory, Message passing
– Semaphores, Conditional variables, Monitors

– Also if pure SW approaches are possible, IPC are practically 
based on some support for the HW

• Atomic assembly instructions
– TSL, RMW, etc.



11

Operating Systems

Processors Management



12

Operating Systems

• Processors Management
• OS main goal is to provide an efficient and controlled use of the 

resources by the tasks
– CPUs/Taks Scheduling is one of the most critical issue

– Several approaches
– Event-Driven (o Interrupt-Driven), Time-Driven, Execution-Driven

– Several optimizatons
– Perception/feeling, exploitation, predictability

– Several policies
• FCFS (FIFO), Round-robin, Shortest Job First, Priority-based, etc.

– Several techniques
– Preemptive, Non-preemptive



13

Operating Systems

• Processors Management
• Task states and transitions

Interrupted

Running

Ready

Blocked

Blocked
out of memory

Terminated

NewReady
out of memory

Short-term Scheduler
Medium-term Scheduler

Long-term Scheduler



14

Operating Systems

• Processors Management
– Preemption-based techniques are more complex to be 

implemented and provide greater CPU overhead
• For each context switch it is executed some OS code

– However, preemption is needed for interactive/reactive systems 
to avoid that a task will keep the CPU too long affecting 
response times

• Normally interactive systems are based on time sharing
– Periodical (e.g. 100 ms) interrupts are generated to execute the

scheduler



15

Embedded Operating 
Systems



16

Embedded Operating 
Systems

• The concepts previously introduced apply of course also 
to embedded operating systems (EOS)
– EOS, however, have some features that distinguish them from 

general purpose operating systems

• But the definition of an EOS is quite ambiguous and they 
come in a zillion of different forms
– However you’ll recognize one when you see one although the 

boundary between OS/EOS is not sharp and is even becoming 
more blurred all the time



17

Embedded Operating 
Systems

• The simplest classification between different kinds of 
embedded operating systems is as follows

– High-end EOS
• These EOS are often down-sized derivatives of existing general 

purpose OS, but with much of the “ballast” removed
– Linux has given rise to a large set of such derivatives, because of its 

highly modular structure and the availability of source code
» e.g. Routers, switches, PDA, set top boxes,

– Deeply embedded OS
• These EOS must be really very small, and need only a handful of 

basic functions, therefore, they are mostly designed from the ground 
up for a particular application domain

– e.g. WSN 



18

Embedded Operating 
Systems

• Relevant features that make an OS into an EOS
– Small footprint

• Designers are continuously trying to put more computing power in
smaller housings, using cheaper SoC and they want to integrate 
these SoC in all kinds of small objects

• Taking out more and more features of a general purpose operating
system makes its footprint smaller and its predictability higher

– Hence, EOS often come without memory management (sometimes 
embedded CPU don’t have a MMU!), multi-tasking, a networking stack, 
or file systems

» A small EOS often uses only a couple of KB of RAM and ROM memory



19

Embedded Operating 
Systems

• Relevant features that make an OS into an EOS
– EOS should run for years without manual intervention

• This means that the hardware and the software should never fail
– Hence, the system should preferably have no mechanical parts, such 

as floppy drives or hard disks
» Mechanical parts are more sensitive to failures, take up more space, need 

more energy, take longer to communicate with, and have more complex 
drivers (e.g., due to motion control of the mechanical parts)

– A long autonomy also implies using as little power as possible
» EOS often have to live on batteries (e.g., mobile phones, WSN), or are part 

of a larger system with very limited power resources (e.g., satellites).



20

Embedded Operating 
Systems

• Relevant features that make an OS into an EOS
– ES often have to control safety-critical devices

• Therefore, the status of these devices has to be checked regularly
– The ES itself has to be checked too!

» Hence, watchdogs are often exploited

• EOS periodically checks if everything is working as desired and 
resets a watchdog timer

– If the OS doesn’t reset the timer, the system is not functioning properly, 
the timer forces the processor to reset

» The system should reboot autonomously, maybe in a “safe” state, and 
“instantly” if it controls other critical devices (and maybe to signal an alarm)

– If something went wrong but the OS is still working the OS can activate 
a software watchdog

» An interrupt that schedules a service routine to handle the error (e.g. to 
generate a core dump, to be used for later analysis)



21

Embedded Operating 
Systems

• Relevant features that make an OS into an EOS
– EOS should be as cheap as possible

• ES are often produced in quantities of thousands or even millions
– Decreasing the unit price allows enormous savings

– Some embedded systems are not physically reachable anymore 
after they have been started (e.g., launched satellites) in order to 
add software updates

• However, more and more of them can still be accessed remotely, 
therefore, they should support dynamic linking

– Object code that did not exist at the time of start is uploaded to the 
system, and linked in the running OS

» Sometimes it is needed also to perform updates avoiding to stop it



22

Real-time Systems Needs



23

Real-time Systems Needs

• In several embedded systems, response time is a critical 
issues for the computation correctness
– Reactive systems

• The goal is often “simply” to minimize response times
– This should be done by avoiding to penalize less critical tasks

» Embedded Operating Systems (EOS)

– Real-Time Systems
• Correcteness = Functional Correctness + Timing Correctness

– Output values should be provided within specific timing constraints
» Response time wrt Deadlines and/or Precision

• Real-Time Operating Systems (RTOS)
– Hard vs Soft Real-Time Tasks

» SOFT: RTOS/EOS
» HARD: RTOS



24

Real-time Systems Needs

• Typical RT task processing

ISRInterrupt

time

Ready Running Terminated DEADLINE

Possible start-running deadlinePeriodic, aperiodic or sporadic



25

Real-time Systems Needs

• Main issues
– Predictability and determinism

• External events can be periodical, aperiodical, or impredictable
• Execution time can be fixed, variable, or impredictable

– Preemptability
• Critical regions, priorities

– Resources availability
• Other than CPU

• The most critical RTOS component is the scheduler
– Short-term one is the most important for real-time services

• Time requirements can be down to microseconds granularity
– Hard real-time systems can need dedicated HW/SW platforms

» Advanced interrupt and time management



26

Real-Time Scheduling

Response Times



27

Real-Time Scheduling

• Response Times
– Normally, RTOS schedulers don’t explicitly manage deadlines

• The common approach is to provide a “fast way-to-running” for
tasks that are critical and near to their deadlines

– Scheduling policies
– Round-robin (preemptive): KO
– Priority (not preemptive): KO
– Priority (with preemption points): OK (soft RT)

– Periodical preemption (if needed)
– Priority (with immediate preemption): OK (also for some hard RT)

• Delays often limited up to 100 microseconds
– What about possible running Kernel processes?



28

Real-Time Scheduling

• Response Times
– Preemption is crucial for low response times…

– Also the Kernel should be in some way preemptable!
• It should allow preemption of processes executed in Kernel mode wrt to

user processes with higher priorities
• Complex to manage but sometimes needed
• Normally not-RT OS don’t provide such a feature

– Kernel preemption is crucial for hard RT
• Normally implemented by means of preemption points in safe code 

sections of time consuming system calls
– Kernel data structure have to be not in use

– Another approach is to exploit IPC to protect Kernel data structures
– Anytime Kernel preemption but more complex Kernel code!

– Trick: reentrant Kernel



29

Real-Time Scheduling

• Response Times
– A code is reentrant if it could be executed concurrently by more 

tasks without the need of IPC mechanisms for mutual exclusion

• Necessary conditions
– No auto-modifying code
– No calls to non-reentrant code
– Exclusive use of temp variables allocated on the stack

– No global variables, no shared memory, non local static variables



30

Real-Time Scheduling

• Response Times
– Other than scheduling policies and kernel issues there is the 

need to consider possible ways to react to events
– It should be considered the time that elapses from an event and the 

execution of the code that manages it
• Starting form an external event, normally managed by means of an

interrupt, several delays could happen prior to execute the RT task

ISRInterrupt

time

Ready Running Terminated DEADLINE

Scheduling Policy -> Conflicts Resolution -> Dispacth

tINT

tISR (min-max)

tDISPATCH

tEXE (min-max)

Basic mechanism +

Possible latency due to 
interrupt disabling



31

Real-Time Scheduling

• Response Times
• Conflicts resolution can be very critical when a RT task requires

a set of resources already acquired by other tasks
• Common problem: Deadlock

• Tasks are no more able to be executed
• Avoidable at design time

• RT specific problem: Priority Inversion
• HP task that wait undefinitively for a resource acquired by a LP task 

that cannot be executed since MP tasks always get the CPU resource



32

Real-Time Scheduling

• Response Times
– Techniques to avoid the priority inversion problem

– Design Time: careful assignment of priorities
– Critical verification activity

– Run Time: Priority Inheritance
• Tasks that have resources requested by a HP task temporarily inherit 

the same HP
– This approach generates run-time overhead since the scheduler has to 

check the priority of all the tasks that have the resources needed by the HP 
task

– Compile time: Priority Ceiling
• Priorities are assigned also to resources

• Resource priority is equal to the max priority of the tasks that need them
• When a task get a resource, it temporarily gets the priority of the 

resource (also called Immediate Priority)
• Compile-time overhead



33

Real-Time Scheduling

RT Scheduling Policies



34

Real-Time Scheduling

• RT Scheduling Policies
– Static and table-based

• Static analysis of deadlines that provides a static fixed scheduling
– Static and priority-based (with preemption)

• Static analysis of deadlines to evaluate priorities to be assigned to
processes for priority-based (with preemption) scheduling

– Dynamic planning
• The feasibility of a scheduling is determined at run-time

– A new process is accepted only if it is possible to satisfy its deadline
and the ones of already existing processes

» The analysis provides also a new scheduling plan

– Dynamic best-effort
• The system tries to satisfy all the processes deadlines and remove

the processes that miss their one



35

Real-Time Scheduling

• RT Scheduling Policies
• Also if it is the less promising one, dynamic best-effort is the 

most used approach in commercial systems
– When a new process arrives the system assigns a priority based on 

its features and uses a priority-based (with preemption) scheduler
• Priority is typically related to task period (RMS) or deadline (EDF)

– This mainly due to the fact that, since tasks are often aperiodic, it is
very difficult to perform a static analysis

• No assurance to respect all the deadlines
– This lead to an over-dimensioning of the system resources

– Anyway, this approach is very simple from an implementative point of
view and this a relevant commercial feature



36

Real-Time Scheduling

RMS e EDF



37

Real-Time Scheduling

• Rate Monotonic Scheduling
– Form a theoretical point of view, RMS assigns a priority to 

periodic tasks depending on their period and analyzing their 
execution time for feasibility

• C: execution time
• T: period and deadline
• Load: C/T

– Each task requires L % of CPU

• Given n task, the needed (but not sufficient) condition to satisfy 
all the deadlines is



38

Real-Time Scheduling

• Rate Monotonic Scheduling
– So, RMS assigns to each task a static priority that is the inverse 

of its period
– Shorter the period higher the priority

• Then, it is used a priority-based (with preemption) scheduler
– The graphic of priority vs frequency is a growing monotonic function

– From a theoretical point of view (but with several simplifying
assumptions) a needed and sufficient condition to satisfy all the 
deadlines is



39

Real-Time Scheduling

• Earliest Deadline First
– EDF scheduling, has a lot of variants but, basically, it 

dynamically assigns priorities depending on the deadlines
• Higher priority to the task with the earlier deadline

• The scheduler needs to know only deadlines
– EDF is able to find schedules that are not feasible with RMS

– The main problem is related to the overhead
– RMS-based systems are more stable but require preliminary info and 

some hypotheses satisfaction to be effective
– Variants

– Least Slack/Laxity Time
– They assign dynamical priority values based on the difference between 

the amount of execution time left for a process and its deadline
– More info needed to the scheduler (deadlines and execution time 

estimation) and greater overhead



40

RTOS: Examples



41

RTOS: Examples

• Soft RT
– UNIX/Linux

– POSIX.1b standard
– SCHED_FIFO, SCHED_RR, SCHED_OTHER

– Microsoft Windows
– Mixed static and dynamic priority threads

• Hard RT
• Main standards

• POSIX API
– 1003.1b (real-time), 1003.1d (real-time extension)
– 1003.1j (advanced real-time extension)

– Automotive API
– OSEK/VDK (AUTOSAR)



42

RTOS: Examples

– Hard RT

– WindRiver VxWorks (NASA RTOS)
– Microkernel

– 256 priority-levels, efficient ISR execution, priority inheritance

– Linux Kernel Patches
• Preemption points in Kernel processes

– Later introduced also in standard distributions

– Real-Time Patches that manage Linux Kernel
• Linux is a low-priority process managed by a RT microkernel

» RTAI, RTLinux, Xenomai



43

RTOS: Examples

– Hard RT

– Linux independent OSs
• Mainly Derived from TRON project

“The Real-Time Operating System Nucleus”
• ITRON/microITRON (Industrial TRON)
• RT-EMS

– RT-EMS (Real-Time Executive Multiprocessor Systems) - POSIX 1003.1b
• eCos

• Embedded Configurable OS

• Others
– FreeRTOS
– uCOS2, MQX, QNX Neutrino
– Erika (OSEK/VDK-AUTOSAR)


