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Real-Time Computing Systems

• Real-time systems are Computing Systems that must 

react within precise time constraints to events in the 

environment 

– The correct behavior of these systems depends not only on the 

value of the computation but also on the time at which the results 

are produced

• Examples of applications that require real-time computing systems:

– Chemical and nuclear plant control, control of complex production 

processes, railway switching systems, automotive applications, flight 

control systems, environmental acquisition and monitoring, 

telecommunication systems, medical systems, industrial automation, 

robotics, military systems, space missions, consumer electronic 

devices, multimedia systems, smart toys, and virtual reality.
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Misconceptions About Real-Time 

Computing

• Many researchers and developers have serious 

misconceptions* about real-time computing:

– Today’s real-time control systems are still designed using ad hoc 

techniques and heuristic approaches

• Control applications with real-time constraints are implemented by: 

– Writing large portions of code in assembly language 

– Programming timers

– Writing low-level drivers for device handling

– Manipulating task and interrupt priorities

• Problems:

– Tedious programming

– Difficult code understanding

– Difficult software maintainability

– Difficult verification of time constraints

*J. A. Stankovic. Misconceptions about real-time computing. IEEE Computer, 21(10), October 1988.
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Unpredictable Real-Time Systems

• The control software produced by empirical techniques 

can be highly unpredictable. 

– If all critical time constraints cannot be verified a priori and the 

operating system does not correct handling real-time tasks, the 

system could collapse in certain rare, but possible, situations.

• The consequences of a failure can sometimes be:

– catastrophic 

– may injure people

– cause serious damages to the environment. 

– A high percentage of accidents that occur in nuclear power 

plants, space missions, or defense systems are often caused by 

software bugs in the control system
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Real-Time Systems Failure (1)

– The first flight of the space shuttle was delayed because of a 

timing bug that arose from a transient overload during system 

initialization on one of the redundant processors dedicated to the 

control of the aircraft. 

• The shuttle control system was intensively tested, the timing error 

was not discovered. 

• Later, by analyzing the code of the processes, it was found that 

there was only a 1 in 67 probability (about 1.5 percent) that a 

transient overload during initialization could push the redundant 

processor out of synchronization.

The launch of STS-1
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Real-Time Systems Failure (2)

– A software bug on the real-time control system of the Patriot 

missiles, used to protect Saudi Arabia during the Gulf War: 

• On February 25, 1991, the radar sighted a Scud missile directed at 

Saudi Arabia, the onboard computer predicted its trajectory but 

classified the event as a false alarm. A few minutes later, the Scud 

fell on the city of Dhahran, causing injuries and economic damage

– Because of a long interrupt handling routine running with disable 

interrupts, the real-time clock of the onboard computer was missing 

some clock interrupts, thus accumulating a delay of about 57 

microseconds per minute. 

» The day of the accident, the computer had been working for about 100 

hours (an exceptional situation never experienced before), thus 

accumulating a total delay of 343 milliseconds. Such a delay caused a 

prediction error in the verification phase of 687 meters

» http://www5.in.tum.de/~huckle/space_shuttle.pdf

Patriot Missile 
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Real-Time Systems Failure (3)

• Ariane 5 accident occurred because the characteristics 

of the launcher were not taken into account in the 

implementation of the control software
• On June 4, 1996, the Ariane 5 launcher ended in a failure 37 

seconds after initiation of the flight sequence. At an altitude of about 

3,700 meters, the launcher started deflecting from its correct path, 

and it was destroyed by its automated self-destruct system 

– The failure was caused by an operand error originated in a routine 

called by the Inertial Reference System for converting accelerometric 

data from 64-bit floating point to 16-bit signed integer.

» The conversion error occurred because the control software was reused 

from the Ariane 4 vehicle, whose dynamics was different from that of the 

Ariane 5. In particular, the variable containing the horizontal velocity of the 

rocket went out of range (since larger than the maximum value planned for 

the Ariane 4), thus generating the error that caused the loss of guidance.

Explosion of Ariane 5 
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Murphy Law on Real-Time Systems

• In 1949, an aeronautical engineer in the U.S. Air Force, 

Captain Ed Murphy, said: 

– “If something can go wrong, it will go wrong”

• Other laws on existential pessimism that a software engineer should 

always keep in mind:

– Murphy Constant: “Damage to an object is proportional to its value”

– Troutman Postulates: “Any software bug will tend to maximize the 

damage. The worst software bug will be discovered six months after 

the field test”

– Green’s Law: “If a system is designed to be tolerant to a set of faults, 

there will always exist an idiot so skilled to cause a non-tolerated fault”

– Johnson’s First Law: “If a system stops working, it will do it at the 

worst possible time”

– Sodd’s Second Law: “Sooner or later, the worst possible combination 

of circumstances will happen”
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What Does Real-Time Mean?

• Time means that the correctness of the system depends 

not only on the logical result of the computation but also 

on the time at which the results are produced

• Real indicates that the reaction of the systems to 

external events must occur during their evolution. As a 

consequence, the system time (internal time) must be 

measured using the same time scale used for measuring 

the time in the controlled environment (external time).
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Control Systems

• The environment is always an essential component of 

any real-time system

Block diagram of a generic real-time control system.
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Real-Time Application Examples

• A Real-time application is usually composed by a set of cooperating 

tasks that are often invoked/activated at regular intervals and have 

deadlines by which they must complete their execution. In each 

invocation, a task senses the state of the system, performs 

computation (e.g., for a control law), and sends commands to 

change and/or display the state of the system. 

– In an automotive-control application, an anti-lock braking system (ABS) is an 

automobile safety system that allows the wheels on a motor vehicle to maintain 

tractive contact with the road surface according to driver inputs

– In an aircraft-control application, a task may monitor the current position of the 

throttle, perform computation based on the sensed position, and then change the 

thrust of an engine by altering the fuel injected to it

“Hard Real-Time Computing Systems - Predictable Scheduling Algorithms and 

Applications” – Chapter 11 “Application Design Issues”
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Limits of Current Real-Time 

Systems

• Most of the real-time computing systems used to support 

control applications are based on kernels, which are 

modified versions of timesharing operating systems:

– Multitasking

– Priority-based scheduling

– Ability to quickly respond to external interrupts

– Basic mechanisms for process communication and 

synchronization

– Small kernel and fast context switch

– Support of a real-time clock as an internal time reference
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Desirable Features of Real-Time 

Systems

• There are some very important basic properties that real-

time systems must have to support critical applications:

– Timeliness

– Predictability

– Efficiency

– Robustness

– Fault tolerance

– Maintainability
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Predictability

• Processor

– Instruction prefetch

– Pipelining

– Cache memory

– Direct Memory Access (DMA)

• Internal characteristics of the RT kernel:

– Scheduling algorithm

– Synchronization mechanism

– Types of semaphores 

– Memory management policy

– Communication semantics 

– Interrupt handling mechanism
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DMA

• Direct memory access (DMA) is a technique used by 

many peripheral devices to transfer data between the 

device and the main memory. 

– Relieve the central processing unit (CPU) of the task of 

controlling the input/output (I/O) transfer. Since both the CPU 

and the I/O device share the same bus, the CPU has to be 

blocked when the DMA device is performing a data transfer. 

• Several different transfer methods exist

– Cycle stealing :DMA device steals a CPU memory cycle in 

order to execute a data transfer. Lower Predicted Accuracy 

– Time-slice method: each memory cycle is split into two adjacent 

time slots: one reserved for the CPU and the other for the DMA 

device. Higher Predicted Accuracy 
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Cache

• Fast memory that is inserted as a buffer between the 

CPU and the RAM to speed up processes execution

– Physically located after the MMU and is not visible at the 

software programming level

– This buffering technique is motivated by the fact that statistically 

the most frequent accesses to the main memory are limited to a 

small address space (Program locality )

– In real-time systems, the cache introduces some degree of non-

determinism

• when data is not found in the cache (cache fault or miss)

• when performing write operations in memory, the use of the cache 

is even more expensive in terms of access time

– Cache behavior is also affected by the number of preemptions 

• Preemption destroys program locality and heavily increases the 

number of cache misses respect to the preempting task
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Interrupt

• Interrupts generated by I/O peripheral devices represent 

a big problem for the predictability of a real-time system

– if not properly handled, they can introduce unbounded delays 

during process execution

• the arrival of an interrupt signal causes the execution of a service 

routine (driver), dedicated to the management of specific device

– encapsulate

» all hardware details of the device inside the driver, which acts as a server for 

the application tasks

– In many operating systems, interrupts are served using a fixed 

priority scheme, according to which each driver is scheduled 

based on a static priority, higher than process priorities

– To reduce the interference of the drivers on the application tasks 

and perform I/O operations with the external world, the 

peripheral devices must be handled in a different mode
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Interrupt

• Approach A

– disable all external interrupts, except the one from the timer 

(necessary for basic system operations)

• all peripheral devices must be handled by the application tasks, 

which have direct access to the registers of the interfacing boards.

• data transfer takes place through polling

• ADVANTAGE:

– the time needed for transferring data can be precisely evaluated and 

charged to the task that performs the operation.

– kernel does not modified as the I/O devices are replaced or added

• DISADVANTAGE

– low processor efficiency on I/O operations, due to the busy wait of the 

tasks while accessing the device registers

– application tasks must have the knowledge of all low-level details of the 

devices that they want to handle

» encapsulating all device-dependent routines in a set of library functions that 

can be called by the application tasks
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Interrupt

• Approach B

– all interrupts from external devices are disabled, except the one 

from the timer. 

• the devices are not directly handled by the application tasks but are 

managed in turn by dedicated kernel routines, periodically activated 

by the timer

– eliminates unbounded delays due to the execution of interrupt drivers 

and confines I/O operations to one or more periodic kernel tasks

– Two classes of I/O devices:

» slow devices multiplexed and served by a single cyclical I/O process 

running at a low rate, 

» fast devices served by dedicated periodic system tasks, running at higher 

frequencies.

• ADVANTAGE:

– hardware details of devices encapsulated into kernel procedures

• DISADVANTAGE

– busy wait of the kernel I/O handling routines (higher system overhead)
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Interrupt

• Approach C

– leave all external interrupts enabled, while reducing the drivers 

to the least possible size

• purpose of each driver is to activate a proper task that will take care 

of the device management

– the device manager task executes under the operating system, and it is 

guaranteed and scheduled like any other application task

» a control task can have a higher priority than a device handling task

• ADVANTAGE

– Eliminate the busy wait during I/O operations

– Unbounded delays also drastically reduced (although not completely 

removed), so task execution times become more predictable

• DISADVANTAGE

– little unbounded overhead due to the execution of the small drivers 

should be taken into account in the guarantee mechanism



24

Interrupt

• Approach C

– The occurrence of event E generates an interrupt, which causes 

the execution of a driver associated with that interrupt. This 

driver does not handle the device directly but only activates a 

dedicated task, JE, which will be the actual device manager
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System Calls and Semaphores

• System Calls 

– All kernel calls should be characterized by a bounded execution 

time, used by the guarantee schedulability analysis 

– Each kernel primitive be pre-emptable

• Semaphores

– semaphore mechanism is not suited for real-time applications 

because it is subject to the priority inversion phenomenon

• For the mutual exclusion problem, priority inversion can be avoided 

by adopting particular protocols:

– Basic Priority Inheritance

– Priority Ceiling

– Stack Resource Policy

• Modify priority of the tasks based on the resource usage and control 

the resource assignment through a test executed in critical section

– bound the maximum blocking time of the tasks
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Memory Management

• Memory management techniques must not introduce 

non-deterministic delays during real-time activities

– memory segmentation rule with a fixed memory management 

scheme

• predictability VS flexibility
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Programming Language

• High demand will be placed on the programming 

abstractions provided by languages

– Current programming languages are not expressive for timing 

behavior and are not suited for predictable real-time applications

• Ada language does not allow the definition of explicit time 

constraints on tasks execution

– Delay statement puts only a lower bound on task suspending 

time, and no language support that a task cannot be delayed 

longer than a desired upper bound

– Nondeterministic constructs (select statement) don’t guarantee a 

reliable worst-case analysis of the concurrent activities

• Recently, new high-level languages have been proposed 

to support the development of hard real-time applications 

(Real-Time Euclid, Real-Time Concurrent C)
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Basic Concept
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Real-Time Tasks

• Real-time task is characterized by a deadline, which is 

the maximum time to complete its execution

– In critical applications, a result produced after the deadline is not 

only late but wrong. 

• Depending on the consequences for a missed deadline, 

a real-time task can be distinguished in:
• Hard: A real-time task is said to be hard if producing the results after 

its deadline may cause catastrophic consequences on the system 

under control.

• Firm: A real-time task is said to be firm if producing the results after 

its deadline is useless for the system, but does not cause any 

damage.

• Soft: A real-time task is said to be soft if producing the results after 

its deadline has still some utility for the system, although causing a 

performance degradation.
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Real-Time Operating Systems

• A real-time operating system that is able to handle hard 

real-time tasks is called a hard real-time operating 

system

• Real-world applications include hard, firm, and soft 

activities; therefore a hard real-time system should be 

designed to handle all such task categories using 

different strategies. 

– when an application consists of a hybrid task set, then:

• hard tasks should be guaranteed off line 

• firm tasks should be guaranteed on line, aborting them if their 

deadline cannot be met

• soft tasks should be handled to minimize their average response 

time
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Process, Tasks and Scheduling 

Policy

• A Process is a computation that is executed by the CPU 

in a sequential mode. 

• Process can be composed by many concurrent Tasks

(or threads) sharing a common memory space

• When a single processor has to execute a set of 

concurrent tasks (tasks that can overlap in time) the 

CPU has to be assigned to the various tasks according 

to a Scheduling Policy. 

• The set of rules that determines the tasks order is called 

a Scheduling Algorithm. 

• The specific operation of allocating the CPU to a task 

selected by the scheduling algorithm is referred as 

Dispatching.
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Tasks States

• A task that could be execute on the CPU can be in 

execution (if it has been selected by the scheduling 

algorithm) or waiting for the CPU (if another task is 

executing). 

– A task that can potentially execute on the processor, 

independently on its actual availability, is called an active task. 

– A task waiting for the processor is called a ready task

– the task in execution is called a running task. 

• All ready tasks waiting for the processor are kept in a 

queue, called ready queue. 

• Operating systems that handle different types of tasks 

may have more than one ready queue.



33

Ready Queue

• The operation of suspending the running task and 

inserting it into the ready queue is called preemption
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Preemption

• Preemption is important for three reasons

– Tasks performing exception handling need to preempt existing 

tasks so responses to exceptions will be timeliness.

– tasks with different criticality levels (task importance) preemption 

permits executing the most critical tasks, as soon as they arrive.

– Preemptive scheduling allows higher efficiency, allows executing 

a real-time task sets with higher processor utilization.

• Preemption destroys program locality and introduces a 

runtime overhead that inflates the execution time of 

tasks. 

– limiting preemptions in real-time schedules
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Schedule

• Given a set of n tasks Γ = {τ1, τ2, . . . , τn }, a schedule is 

an assignment of tasks to the processor, so that each 

task is executed until completion. 

• “A schedule can be defined as a function 

• σ : R+ → N such that ∀t ∈ R+, ∃t1, t2 such that t ∈ [t1, t2) 

and ∀t’ ∈ [t1, t2) σ(t) = σ(t’)”

• In other words, σ(t) is an integer step function and      

σ(t) = k, with k > 0, means that task τk is executing at 

time t, while σ(t) = 0 means that the CPU is idle. 
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Schedule

• At times t1, t2, t3, and t4, the processor performs a context switch. 

• Each interval [ti, ti+1) in which σ(t) is constant is called time slice. Interval [x, y) 

identifies all values of t such that x ≤ t < y.

• A preemptive schedule is a schedule in which the running task can be arbitrarily 

suspended at any time, to assign the CPU to another task according to a scheduling 

policy. In preemptive schedules, tasks may be executed in disjointed interval of times.

• A schedule is said to be feasible if all tasks can be completed according to a set of 

specified constraints.

• A set of tasks is said to be schedulable if there exists at least one algorithm that can 

produce a feasible schedule.
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Types of Task Constraints

• Typical constraints that can be specified on real-time 

tasks are of three classes: 

– Timing constraints: computational activities with stringent 

timing constraints that must be met in order to achieve the 

desired behavior

– Precedence relations: a task may require results from one or 

more other tasks before it can start its execution

– Mutual exclusion constraints on shared resources: a task 

may require access to certain resources other than the 

processor, such as I/O devices, communication networks, data 

structures, files, and databases;

– Dependability/Performance constraints: a task may have to 

meet certain reliability, availability, and/or performance 

requirements
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Timing Constraints

• Timing constraint on a task is the deadline 

– Time before which a process should complete its execution 

without causing any damage to the system

• If respect to the task arrival time, it is called a relative deadline

• if respect to time zero, it is called an absolute deadline

• Tasks are usually distinguished in three categories:

– Hard: if missing its deadline may cause catastrophic 

consequences on the system under control.

– Firm: if missing its deadline does not cause any damage to the 

system, but the output has no value.

– Soft: if missing its deadline has still some utility for the system, 

although causing a performance degradation.
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Real-Time Task Model 
A real-time task τi can be characterized by the following parameters:

Arrival time ai: time when task becomes ready for execution; request time or release time and

indicated by ri;

Computation time Ci: time necessary for processor to executing the task without interruption;

Absolute Deadline di: time before which task should be completed to avoid damage

Relative Deadline Di: difference between absolute deadline and the request time: Di = di − ai;

Start time si: the time at which a task starts its execution;

Finishing time fi: the time at which a task finishes its execution;

Response time Ri: the difference between the finishing time and the request time: Ri = fi − ri;

Criticality: parameter related to consequences of missing deadline (hard, firm, or soft);

Value vi : relative importance of the task with respect to the other tasks in the system;

Lateness Li: Li = fi − di: represents the delay of a task completion with respect to its deadline;

note that if a task completes before the deadline, its lateness is negative;

Tardiness or Exceeding time Ei : Ei = max(0, Li): the time a task stays active after its deadline;

Laxity or Slack time Xi : Xi = di − ai − Ci: the maximum time a task can be delayed on its

activation to complete within its deadline.
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Aperiodic and Periodic Tasks
Tasks can be defined as periodic, denoted by τi, or aperiodic, aperiodic job denoted by Ji:

Periodic tasks consist of infinite sequence of identical activities, called instances or jobs, that

are regularly activated at a constant rate. The generic kth job of periodic task τi will be denoted by

τi,k. The activation time of the first periodic instance (τi,1) is called phase. If φi is the phase of task

τi, the activation time of the kth instance is given by φi + (k − 1)Ti , where Ti is the activation period

of task. In many practical cases, a periodic process can be completely characterized by its phase

φi , computation time Ci , period Ti, and relative deadline Di.

τi = { φi; Ci; Ti; Di }

Aperiodic tasks also consist of an infinite sequence of identical jobs (or instances); however,

their activations are not regularly interleaved. An aperiodic task where consecutive jobs are

separated by a minimum inter arrival time is called a Sporadic task.
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Precedence Constraints

• Directed Acyclic Graph (DAG) G: tasks are represented 

by nodes and precedence relations by arrows. 

– A precedence graph G induces a partial order on the task set

• The notation Ja ≺ Jb specifies that task Ja is a predecessor of task 

Jb, meaning that G contains a directed path from node Ja to node Jb

• The notation Ja → Jb specifies that task Ja is an immediate 

predecessor of Jb, meaning that G contains an arc directed from 

node Ja to node Jb
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Shared Resource Constraints
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Shared Resource Constraints



44

Shared Resource Constraints
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Real-Time Scheduling Problems

• A scheduling problem consider three sets: 

– n tasks Γ = {τ1, τ2, . . . , τn } 

– m processors P = {P1, P2, . . . , Pm }

– s types of resources R = {R1, R2, . . . , Rs}

• Precedence relations among tasks can be specified through a 

directed acyclic graph (DAG), and timing constraints can be 

associated with each task. 

• Scheduling means assigning processors from P and resources from 

R to tasks from Γ in order to complete all tasks under the specified 

constraints. This problem has been shown to be NP-complete*:

– To reduce the complexity of constructing a feasible schedule, one may 

simplify the computer architecture (by restricting to the case of 

uniprocessor systems), adopt a preemptive model, use fixed priorities, 

remove precedence and/or resource constraints, assume simultaneous 

task activation, homogeneous task sets (solely periodic or solely 

aperiodic activities), and so on. 

*M. R. Garey, D. S. Johnson: “Computers and Intractability: A Guide to the Theory of NP-Completeness”,1979
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Real-Time Scheduling

• Real-time tasks scheduling algorithms can be:

– Preemptive vs. Non-preemptive.

– Static vs. Dynamic.

• Static algorithms are those in which scheduling decisions are based 

on fixed parameters, assigned to tasks before their activation.

• Dynamic algorithms are those in which scheduling decisions are 

based on dynamic parameters that may change during system 

evolution. 

– Off-line vs. Online.

• A scheduling algorithm is used off line if it is executed on the entire 

task set before tasks activation.

• A scheduling algorithm is used online if scheduling decisions are 

taken at runtime every time a new task enters the system or when a 

running task terminates.
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Real-Time Scheduling

– Optimal vs. Heuristic.

• An algorithm is said to be optimal if it minimizes some given cost 

function defined over the task set. When no cost function is defined 

and the only concern is to achieve a feasible schedule, then an 

algorithm is said to be optimal if it is able to find a feasible schedule, 

if one exists.

• An algorithm is said to be heuristic if it is guided by heuristic function 

in taking its scheduling decisions. A heuristic algorithm tends toward 

the optimal schedule, but does not guarantee finding it.

• An algorithm is said to be clairvoyant if it knows in 

advance the arrival times of all the tasks. Although such 

an algorithm does not exist in reality, it can be used for 

comparing the performance of real algorithms against 

the best possible one.
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Guarantee-Based and Best-Effort 

Algorithms
• Feasibility of the schedule should be guaranteed in 

advance

– before task execution.

• In static real-time systems (task set is fixed and known a priori) all 

task activations can be pre-calculated off line, and schedule can be 

stored in a table that contains all guaranteed tasks in proper order

• In dynamic real-time systems (typically firm tasks), tasks are 

created at runtime and  the guarantee done online every time

• For soft real-time tasks a best-effort approach may be 

adopted for scheduling
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Metrics for Performance Evaluation

• The performance of scheduling algorithms is typically 

evaluated through cost function defined over the task set

– Whit Tasks soft deadlines and hard real-time application, 

scheduling algorithm use cost function that minimizes the 

number of late tasks

– In a hard real-time environment, a system is overloaded when, based 

on worst-case assumptions, there is no feasible schedule for the 

current task set, so one or more tasks will miss their deadline.
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Metrics for Performance Evaluation
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Real-Time Scheduling

• Benefit of executing a task may depend not only on the 

task importance but also on the time at which it is 

completed. This can be described by means of specific 

Utility Functions

– describe the value associated with the task as a function of its 

completion time.
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Scheduling Anomalies

– Theorem (Graham, 1976) If a task set is optimally scheduled on 

a multiprocessor with some priority assignment, a fixed number 

of processors, fixed execution times, and precedence 

constraints, then increasing the number of processors, reducing 

execution times, or weakening the precedence constraints can 

increase the schedule length

• If tasks have deadlines, then adding resources (for 

example, an extra processor) or relaxing constraints 

(less precedence among tasks or fewer execution times 

requirements) can make things worse
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Scheduling Anomalies - Example
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Scheduling Anomalies - Example

Add One Processor

Reducing tasks computation times of each task
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Scheduling Anomalies - Example

Removing the constraints on tasks J7 and J8
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Anomalies Under Resource 

Constraints

• Example of anomaly under resource constraints

J2 and J4 share the same resource in 

exclusive mode

The computation time of job J1 is 

reduced (schedule length increases)
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Anomalies Under Resource 

Constraints

• Example of anomaly under resource constraints

– A real-time application that is feasible on a given processor can 

become infeasible when running on a faster processor

J2 and J4 share the same resource in 

exclusive mode

The computation time of job J1 is 

reduced (schedule length increases)
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Anomalies Under Resource 

Constraints

• Example of anomaly under resource constraints

– A real-time application that is feasible on a given processor can 

become infeasible when running on a faster processor

J2 and J4 share the same resource in 

exclusive mode

The computation time of job J1 is 

reduced (schedule length increases)

Doubled 

Processor

Speed
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Anomalies Under Non-Preemptive 

Scheduling
– A real-time application that is feasible on a given processor can 

become infeasible when running on a faster processor

• Example of anomaly in the presence of non-preemptive 

tasks

Task τ1 meets its deadline when the 

processor is executing at speed S1

Task τ1 misses its deadline when

the processor speed is doubled
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Anomalies Using a Delay Primitive

• Anomalies occur when tasks using shared resources 

explicitly suspend themselves through delay(T) system 

call, which suspends execution of task for T time units 

• Example of anomaly in the presence of non-preemptive 

tasks

Task τ1 has a slack time of 6 units of time 

when running at the highest priority

Task τ1 cannot tolerate a self 

suspension of 2 units of time
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Aperiodic and Periodic 

Task Scheduling
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Scheduling Algorithms for Aperiodic 

Tasks

• Algorithms for scheduling real-time aperiodic tasks on a 

single machine environment 

– represents a solution for a particular scheduling problem, which 

is expressed through a set of assumptions on the task set and by 

an optimality criterion to be used on the schedule:

• machine environment on which the task set has to be scheduled:

– uniprocessor, multiprocessor, distributed architecture

• task and resource characteristics:

– preemptive, independent versus precedence constrained, synchronous 

activations

• optimality criterion:

– performance measure

– Scheduling Algorithms: Jackson’s algorithm, Horn’s algoritm, 

Bratley’s algorithm, Spring Algorithm, Latest Dealline First
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Jackson’s algorithm

• Problem: That is, a set J of n aperiodic independent 

tasks has to be scheduled on a single processor, 

minimizing the maximum lateness

– All tasks consist of single job, have synchronous arrival times, 

but can have different computation times and deadlines

– No precedence relations and no share resources

– preemption is not an issue: only when tasks may arrive 

dynamically and newly arriving tasks have higher priority than 

currently executing tasks

• Earliest Due Date (EDD) with O(n logn):

– Theorem (Jackson’s rule): Given a set of n independent tasks, 

any algorithm that executes the tasks in order of nondecreasing 

deadlines is optimal with respect to minimizing the maximum 

lateness
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Jackson’s algorithm
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Horn’s algoritm

• Problem: scheduling a set of n independent tasks on a 

uniprocessor system, when tasks may have dynamic 

arrivals and preemption is allowed

• Earliest Deadline First (EDF) with O(n2):

– Theorem (Horn) Given a set of n independent tasks with arbitrary 

arrival times, any algorithm that at any instant executes the task 

with the earliest absolute deadline among all the ready tasks is 

optimal with respect to minimizing the maximum lateness
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Non-preemptive scheduling

• Problem: When preemption is not allowed and tasks can 

have arbitrary arrivals, the problem of minimizing the 

maximum lateness and the problem of finding a feasible 

schedule become NP-hard

• Solution: Schedule Search tree

– n Tasks

– n! Leaves 

– O(n*n!)
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Bratley’s algorithm

• Problem: finding a feasible schedule of a set of non-

preemptive tasks with arbitrary arrival times

• Three Search with O(n*n!)
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Spring Algorithm

• Problem: find a feasible schedule with different types of 

constraints (precedence relations, resource constraints, 

arbitrary arrivals and non-preemptive properties)

– Used in distributed computer architecture and can be extended 

to include fault-tolerance requirements

– NP-hard problem

• Spring Algorithm with O(n logn):

– Search on the Schedule Search tree is driven by a heuristic 

function H, which actively directs the scheduling to plausible path

• Example:

– H = a  First Come First Served (FCFS)

– H = C  Shortest Job First (SJF)

– H = d  Earliest Deadline First (EDF)
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Latest Deadline First

• Problem: minimizes the maximum lateness of tasks with 

precedence relations and simultaneous arrival times

• Latest Deadline First (LDF) with O(n2):

– Given a set J of n tasks and a directed acyclic graph (DAG) 

describing their precedence relations, LDF builds the scheduling 

queue from tail to head: among the tasks without successors or 

whose successors have been all selected, LDF selects the task 

with the latest deadline to be scheduled last. This procedure is 

repeated until all tasks in the set are selected. 

– At run time, tasks are extracted from the head of the queue, so 

that the first task inserted in the queue will be executed last, 

whereas the last task inserted in the queue will be executed first.
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Latest Deadline First
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Scheduling Algorithms for Aperiodic 

Tasks

Sync. Activation

Preemptive

Async.

Activation

Non-preemptive

Async. 

Activation

Independent

Tasks

EDF 

(Jackson ‘55)

O(n logn)

Optimal

EDF

(Horn ‘74)

O(n2)

Optimal

Three Search

(Bratley ‘71)

O(n n!)

Optimal

Tasks with

Precedence

Constraints

LDF 

(Lowler ‘73)

O(n2)

Optimal

EDF with 

precedence constraints

(Chetto et al. ‘90)

O(n2)

Optimal

Spring 

(Stankovic

& Ramamritham ‘87)

O(n logn)

Heuristic
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Scheduling Algorithms for Periodic 

Tasks

• In many real-time control applications, periodic activities 

represent the major computational demand in the 

system. 

– Periodic tasks typically arise from: 

• sensory data acquisition, control loops, action planning, system 

monitoring and so on

• Scheduling Algorithms:

– Timeline Scheduling

– Rate Monotonic

– Earliest Deadline First 

– Deadline Monotonic

• Schedulability analysis is performed for each algorithm in 

order to derive a guarantee test for generic task sets
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Scheduling Algorithms for Periodic 

Tasks

• In order to simplify the schedulability analysis, the 

following hypotheses are assumed on the tasks:

– A1. The instances of a periodic task τi are regularly activated at a 

constant rate. The interval Ti between two consecutive 

activations is the period of the task

– A2. All instances of a periodic task τi have the same worst-case 

execution time Ci

– A3. All instances of a periodic task τi have the same relative 

deadline Di, which is equal to the period Ti

– A4. All tasks are independent; that is, there are no precedence 

relations and no resource constraints

– A5. No task can suspend itself, for example on I/O operations

– A6. All tasks are released as soon as they arrive

– A7. All overheads in the kernel are assumed to be zero
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Processor Utilization Factor

• Given a set Γ of n periodic tasks, the processor 

utilization factor U is the fraction of processor time spent 

in the execution of the task set

– measure of the computational load on the CPU due to the 

periodic task set. 

– Can be improved by increasing tasks computation times or by 

decreasing their periods, 

– Exists a maximum value of U below which tasks are schedulable 

and above which tasks are not schedulable.

• depends on task set and on algorithm used to schedule the tasks

• If the utilization factor is greater than 1.0, the task set cannot be 

scheduled



75

Timeline Scheduling

• Dividing the temporal axis into slots of equal length, in 

which one or more tasks can be allocated for execution, 

to respect the frequencies derived from the application 

requirements
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Rate Monotonic

• assigns priorities to tasks according to their request rates

– tasks with higher request rates (with shorter periods) will have 

higher priorities. 

– If periods are constant, RM is a fixed-priority assignment: a 

priority Pi is assigned to the task before execution and does not 

change over time. 

– RM is intrinsically preemptive: the currently executing task is 

preempted by a newly arrived task with shorter period

• RM is optimal among all fixed-priority assignments

• Processor utilization factor under the Rate Monotonic 

scheduling algorithm is:

• For high values of n:
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Earliest Deadline First 

• Dynamic scheduling rule that selects tasks according to 

their absolute deadlines

– dynamic priority assignment

• typically executed in preemptive mode, thus the currently executing 

task is preempted whenever another periodic instance with earlier 

deadline becomes active

• EDF does not make any specific assumption on the 

periodicity of the tasks

– it can be used for scheduling Periodic as well as Aperiodic tasks

• Processor utilization factor under the EDF scheduling 

algorithm is: 
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RM Vs EDF
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Task Worst Case Response Time 
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Rate Monotonic Example
• Rate Monotonic priority assignment, the highest priority 

tasks have the smallest periods, priorities are assigned 

off-line

– TASK τ1 : C1 = 6 ms, T1 = 10 ms, P1 = 0

– TASK τ2 : C2 = 9 ms, T2 = 30 ms, P2 = 1

– Feasibility/Schedulability tests:

• Processor Utilization: 

– U ≤ n(21/n - 1) ∀ n, 1 ≤ n ≤ # tasks

– U = 6/10 + 9/30 = (18 + 9)/30 = 27/30 = 0,9 > 0,8284

» task set fails the utilization test, we have no a-priori answer

• Task worst case response time:

– ω1
0= C1 = 6  -> r1 = 6 ms

– ω2
0= C2 = 9

– ω2
1= C2 +  (ω2

0 /T1)*C1 = 9 + (9/10)*6 = 15

– ω2
2 = C2 + (ω2

1 /T1)*C1 = 21 

– ω2
3 = 27

– ω2
4 = 27 -> r2 = 27 ms
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Rate Monotonic Example
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Resource Access Protocols
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Resource

• Any SW structure that can be used by a process to 

advance its execution:

– Data structure

– Set of variables 

– Main memory area

– File

– Set of registers of a peripheral device

• Priority inversion solution:

– Non-Preemptive Protocol (NPP)

– Highest Locker Priority (HLP), or Immediate Priority Ceiling (IPC)

– Priority Inheritance Protocol (PIP)

– Priority Ceiling Protocol (PCP)

– Stack Resource Policy (SRP)
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Priority Inversion Phenomenon
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NPP and HLP

• Non-preemptive protocol:

– Disallow preemption during the execution of any critical section

• raising the priority of a task to the highest priority level whenever it 

enters a shared resource

• Highest Locker Priority Protocol

– improves NPP 

• raising the priority of a task that enters a resource Rk to the highest 

priority among the tasks sharing that resource
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Priority Inheritance Protocol

• Modifying the priority of those tasks that cause blocking

– When task τi blocks one or more higher-priority tasks, it temporarily 

assumes (inherits) the highest priority of the blocked tasks
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Priority Inheritance Protocol 

Problem

• Blocking duration for a task can still be substantial 

because a chain of blocking can be formed

• Protocol does not prevent deadlocks

Example of chained blocking Example of deadlock
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Priority Ceiling Protocol

• The Priority Ceiling Protocol (PCP) was introduced to 

bound the priority inversion phenomenon and prevent the 

formation of deadlocks and chained blocking

– extend the PIP with a rule for granting a lock request on a free 

semaphore

– To avoid multiple blocking, this rule does not allow a task to enter a 

critical section if there are locked semaphores that could block it. 

This means that once a task enters its first critical section, it can 

never be blocked by lower-priority tasks until its completion

• each semaphore is assigned a priority ceiling equal to the highest 

priority of the tasks that can lock it. 

• Task τi is allowed to enter a critical section only if its priority is higher 

than all priority ceilings of the semaphores currently locked by tasks 

other than τi
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Priority Ceiling Protocol
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Schedulability Analysis

• Verify feasibility of periodic task set with shared resources
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Kernel Design Issues
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Real-Time Kernel

• A kernel represents the innermost part of any operating 

system that is in direct connection with the hardware of 

the physical machine. A kernel usually provides the 

following basic activities:

– Process management

• process creation and termination

• job scheduling

• Dispatching

• context switching

– Interrupt handling

• provide service to the interrupt requests generated by device

– Process synchronization

• process synchronization and communication (types of semaphores 

that support a resource access protocol (PIP, PCP and so on) 
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Real-Time Kernel

• Small real-time kernel, called DICK (DIdactic C Kernel)

“Hard Real-Time Computing Systems - Predictable Scheduling Algorithms and 

Applications”, Chapter 10 “Kernel Design Issues”
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Real-time Operating Systems 

and Standards



95

Standards for Real-Time Operating 

Systems

• POSIX, the main general-purpose operating system 

standard, with real-time extensions:

– (RT-POSIX)

• OSEK/VDX for the automotive industry

– AUTOSAR OS

• ARINC - APEX for avionics systems:

– ARINC 653 (Avionics Application Standard Software Interface)

– APEX (APplication/EXecutive) API

• μITRON (Industrial TRON - The Real-time Operating 

system Nucleus), for small embedded systems
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Real-Time Operating Systems

• Real-Time operating Systems:

– VxWorks (Wind River)

– OSE (OSE Systems)

– QNX Neutrino

– Linux Related Real-Time Kernels

• RTLinux, RTAI, and Xenomai

• PREEMPT RT, SCHED EDF, and Linux/RK projects

– FreeRTOS

– RTEMS

– Open-source real-time research kernels

• Erika Enterprise, an OSEK kernel for small embedded platform;

• Shark, a POSIX-like kernel for PC platforms

• Marte OS, a POSIX-like kernel for PC platforms supporting C++ and 

Ada 2005



97

RTEMS

LIVE DEMO
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Development Tools

• The implementation of complex real-time applications 

requires the use of specific tools for analyzing and 

verifying the behavior of a system. In addition to the 

general programming tools, such as editors, compilers, 

source code browsers, debuggers, and version 

control systems, there are a number of tools 

specifically aimed at cross development and run-time 

analysis:

– Timing Analysis Tools

– Schedulability Analysis Tools

– Scheduling Simulations Tools
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Timing Analysis Tools

• Perform static analysis of the task code (some at the 

source level, some at the executable level) to determine 

a set of data that verify the timing behavior of a real-time 

application. Examples of such data include: 

– task worst-case execution times (WCETs)

– cache-related preemption delays (CRPDs)

– stack usage profiles

– Example of Timing Analysis Tools:

• RapiTime (https://www.rapitasystems.com/products/rapitime): 

timing analysis tool, developed by Rapita Systems Ltd, targeted at 

real-time embedded applications. RapiTime collects execution 

traces and derives execution time measurement statistics to help 

the programmer in estimating tasks’ worst-case execution times

• aiT (http://www.absint.com/ait/): WCET analyzer that statically 

computes tight bounds for the task WCETs in real-time systems
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RapiTime

LIVE DEMO
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Schedulability Analysis Tools

• Allows designers to test software models against various 

design scenarios and evaluate how different 

implementations might optimize the performance of the 

system, isolating and identifying potential scheduling 

bottlenecks

– RTDruid

– TimeWiz

– symTA/S

– chronVAL

– MAST

– Art2kitekt
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Art2kitekt

LIVE DEMO
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Scheduling Simulations Tools

• These tools are useful for generating the schedule 

produced by given scheduling algorithm on synthetic 

task sets. Some of the existing tools are:

– RTSim

– TrueTime

– chronSIM
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chronSIM

LIVE VIDEO

https://www.inchron.com/embedded-systems/videos/chronsim-video.html

Englisch_2.mov
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THANKS!

Any questions?

Contact: vittoriano.muttillo@graduate.univaq.it


