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Preface

What this Book is About

The most visible use of computers and software is processing information for human
consumption. We use them to write books (like this one), search for information on
the web, communicate via email, and keep track of financial data. The vast majority of
computers in use, however, are much less visible. They run the engine, brakes, seatbelts,
airbag, and audio system in your car. They digitally encode your voice and construct a
radio signal to send it from your cell phone to a base station. They control your microwave
oven, refrigerator, and dishwasher. They run printers ranging from desktop inkjet printers
to large industrial high-volume printers. They command robots on a factory floor, power
generation in a power plant, processes in a chemical plant, and traffic lights in a city. They
search for microbes in biological samples, construct images of the inside of a human body,
and measure vital signs. They process radio signals from space looking for supernovae
and for extraterrestrial intelligence. They bring toys to life, enabling them to react to
human touch and to sounds. They control aircraft and trains. These less visible computers
are called embedded systems, and the software they run is called embedded software.

Despite this widespread prevalence of embedded systems, computer science has, through-
out its relatively short history, focused primarily on information processing. Only recently
have embedded systems received much attention from researchers. And only recently has

xi



PREFACE

the community recognized that the engineering techniques required to design and ana-
lyze these systems are distinct. Although embedded systems have been in use since the
1970s, for most of their history they were seen simply as small computers. The principal
engineering problem was understood to be one of coping with limited resources (limited
processing power, limited energy sources, small memories, etc.). As such, the engineer-
ing challenge was to optimize the designs. Since all designs benefit from optimization,
the discipline was not distinct from anything else in computer science. It just had to be
more aggressive about applying the same optimization techniques.

Recently, the community has come to understand that the principal challenges in em-
bedded systems stem from their interaction with physical processes, and not from their
limited resources. The term cyber-physical systems (CPS) was coined by Helen Gill at the
National Science Foundation in the U.S. to refer to the integration of computation with
physical processes. In CPS, embedded computers and networks monitor and control the
physical processes, usually with feedback loops where physical processes affect compu-
tations and vice versa. The design of such systems, therefore, requires understanding the
joint dynamics of computers, software, networks, and physical processes. It is this study
of joint dynamics that sets this discipline apart.

When studying CPS, certain key problems emerge that are rare in so-called general-
purpose computing. For example, in general-purpose software, the time it takes to per-
form a task is an issue of performance, not correctness. It is not incorrect to take longer
to perform a task. It is merely less convenient and therefore less valuable. In CPS, the
time it takes to perform a task may be critical to correct functioning of the system. In the
physical world, as opposed to the cyber world, the passage of time is inexorable.

In CPS, moreover, many things happen at once. Physical processes are compositions
of many things going on at once, unlike software processes, which are deeply rooted
in sequential steps. Abelson and Sussman (1996) describe computer science as “proce-
dural epistemology,” knowledge through procedure. In the physical world, by contrast,
processes are rarely procedural. Physical processes are compositions of many parallel
processes. Measuring and controlling the dynamics of these processes by orchestrating
actions that influence the processes are the main tasks of embedded systems. Conse-
quently, concurrency is intrinsic in CPS. Many of the technical challenges in designing
and analyzing embedded software stem from the need to bridge an inherently sequential
semantics with an intrinsically concurrent physical world.
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Why We Wrote this Book

Today, getting computers to work together with physical processes requires technically
intricate, low-level design. Embedded software designers are forced to struggle with inter-
rupt controllers, memory architectures, assembly-level programming (to exploit special-
ized instructions or to precisely control timing), device driver design, network interfaces,
and scheduling strategies, rather than focusing on specifying desired behavior. The sheer
mass and complexity of these technologies tempts us to focus an introductory course on
mastering them. But a better introductory course would focus on how to model and design
the joint dynamics of software, networks, and physical processes. Such a course would
present the technologies only as today’s (rather primitive) means of accomplishing those
joint dynamics. This book is our attempt at a textbook for such a course.

Most texts on embedded systems focus on the collection of technologies needed to get
computers to interact with physical systems (Barr and Massa, 2006; Berger, 2002; Burns
and Wellings, 2001; Kamal, 2008; Noergaard, 2005; Parab et al., 2007; Simon, 2006; Val-
vano, 2007; Wolf, 2000). Others focus on adaptations of computer-science techniques
(like programming languages, operating systems, networking, etc.) to deal with techni-
cal problems in embedded systems (Buttazzo, 2005a; Edwards, 2000; Pottie and Kaiser,
2005). While these implementation technologies are (today) necessary for system de-
signers to get embedded systems working, they do not form the intellectual core of the
discipline. The intellectual core is instead in models and abstractions that conjoin com-
putation and physical dynamics.

A few textbooks offer efforts in this direction. Jantsch (2003) focuses on concurrent mod-
els of computation, Marwedel (2011) focuses on models of software and hardware behav-
ior, and Sriram and Bhattacharyya (2009) focus on dataflow models of signal processing
behavior and their mapping onto programmable DSPs. These are excellent starting points.
Models of concurrency (such as dataflow) and abstract models of software (such as Stat-
echarts) provide a better starting point than imperative programming languages (like C),
interrupts and threads, and architectural annoyances that a designer must work around
(like caches). These texts, however, are not suitable for an introductory course. They are
either too specialized or too advanced or both. This book is our attempt to provide an
introductory text that follows the spirit of focusing on models and their relationship to
realizations of systems.

The major theme of this book is on models and their relationship to realizations of sys-
tems. The models we study are primarily about dynamics, the evolution of a system state
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in time. We do not address structural models, which represent static information about the
construction of a system, although these too are important to embedded system design.

Working with models has a major advantage. Models can have formal properties. We can
say definitive things about models. For example, we can assert that a model is determinate,
meaning that given the same inputs it will always produce the same outputs. No such
absolute assertion is possible with any physical realization of a system. If our model is
a good abstraction of the physical system (here, “good abstraction” means that it omits
only inessential details), then the definitive assertion about the model gives us confidence
in the physical realization of the system. Such confidence is hugely valuable, particularly
for embedded systems where malfunctions can threaten human lives. Studying models of
systems gives us insight into how those systems will behave in the physical world.

Our focus is on the interplay of software and hardware with the physical environment in
which they operate. This requires explicit modeling of the temporal dynamics of soft-
ware and networks and explicit specification of concurrency properties intrinsic to the
application. The fact that the implementation technologies have not yet caught up with
this perspective should not cause us to teach the wrong engineering approach. We should
teach design and modeling as it should be, and enrich this with a critical presentation of
how to (partially) accomplish our objectives with today’s technology. Embedded systems
technologies today, therefore, should not be presented dispassionately as a collection of
facts and tricks, as they are in many of the above cited books, but rather as stepping stones
towards a sound design practice. The focus should be on what that sound design practice
is, and on how today’s technologies both impede and achieve it.

Stankovic et al. (2005) support this view, stating that “existing technology for RTES [real-
time embedded systems] design does not effectively support the development of reliable
and robust embedded systems.” They cite a need to “raise the level of programming
abstraction.” We argue that raising the level of abstraction is insufficient. We have also
to fundamentally change the abstractions that are used. Timing properties of software,
for example, cannot be effectively introduced at higher levels of abstraction if they are
entirely absent from the lower levels of abstraction on which these are built.

We require robust and predictable designs with repeatable temporal dynamics (Lee, 2009a).
We must do this by building abstractions that appropriately reflect the realities of cyber-
physical systems. The result will be CPS designs that can be much more sophisticated,
including more adaptive control logic, evolvability over time, and improved safety and re-
liability, all without suffering from the brittleness of today’s designs, where small changes
have big consequences.
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In addition to dealing with temporal dynamics, CPS designs invariably face challenging
concurrency issues. Because software is so deeply rooted in sequential abstractions, con-
currency mechanisms such as interrupts and multitasking, using semaphores and mutual
exclusion, loom large. We therefore devote considerable effort in this book to developing
a critical understanding of threads, message passing, deadlock avoidance, race conditions,
and data determinism.

What is Missing

This version of the book is not complete. It is arguable, in fact, that complete coverage of
embedded systems in the context of CPS is impossible. Specific topics that we cover in
the undergraduate Embedded Systems course at Berkeley (see http://LeeSeshia.org) and
hope to include in future versions of this book include sensors and actuators, networking,
fault tolerance, security, simulation techniques, control systems, and hardware/software
codesign.

How to Use this Book

This book is divided into three major parts, focused on modeling, design, and analysis, as
shown in Figure 1. The three parts of the book are relatively independent of one another
and are largely meant to be read concurrently. A systematic reading of the text can be
accomplished in seven segments, shown with dashed outlines. Each segment includes two
chapters, so complete coverage of the text is possible in a 15 week semester, assuming
each of the seven modules takes two weeks, and one week is allowed for introduction and
closing.

The appendices provide background material that is well covered in other textbooks, but
which can be quite helpful in reading this text. Appendix A reviews the notation of
sets and functions. This notation enables a higher level of precision that is common
in the study of embedded systems. Appendix B reviews basic results in the theory of
computability and complexity. This facilitates a deeper understanding of the challenges
in modeling and analysis of systems. Note that Appendix B relies on the formalism of
state machines covered in Chapter 3, and hence should be read after reading Chapter 3.

In recognition of recent advances in technology that are fundamentally changing the tech-
nical publishing industry, this book is published in a non-traditional way. At least the
present version is available free in the form of PDF file designed specifically for on-line
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reading. It can be obtained from the website http://LeeSeshia.org. The layout is optimized
for medium-sized screens, particularly laptop computers and the iPad and other tablets.
Extensive use of hyperlinks and color enhance the online reading experience.

Figure 1: Map of the book with strong and weak dependencies between chapters.
Strong dependencies between chapters are shown with arrows in black. Weak
dependencies are shown in grey. When there is a weak dependency from chapter
i to chapter j, then j may mostly be read without reading i, at most requiring
skipping some examples or specialized analysis techniques.
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We attempted to adapt the book to e-book formats, which, in theory, enable reading on
various sized screens, attempting to take best advantage of the available screen. However,
like HTML documents, e-book formats use a reflow technology, where page layout is
recomputed on the fly. The results are highly dependent on the screen size and prove
ludicrous on many screens and suboptimal on all. As a consequence, we have opted
for controlling the layout, and we do not recommend attempting to read the book on an
iPhone.

Although the electronic form is convenient, we recognize that there is real value in a
tangible manifestation on paper, something you can thumb through, something that can
live on a bookshelf to remind you of its existence. Hence, the book is also available in print
form from a print-on-demand service. This has the advantages of dramatically reduced
cost to the reader (compared with traditional publishers) and the ability to quickly and
frequently update the version of the book to correct errors and discuss new technologies.
See the website http://LeeSeshia.org for instructions on obtaining the printed version.

Two disadvantages of print media compared to electronic media are the lack of hyperlinks
and the lack of text search. We have attempted to compensate for those limitations by
providing page number references in the margin of the print version whenever a term is
used that is defined elsewhere. The term that is defined elsewhere is underlined with a
discrete light gray line. In addition, we have provided an extensive index, with more than
2,000 entries.

There are typographic conventions worth noting. When a term is being defined, it will ap-
pear in bold face, and the corresponding index entry will also be in bold face. Hyperlinks
are shown in blue in the electronic version. The notation used in diagrams, such as those
for finite-state machines, is intended to be familiar, but not to conform with any particular
programming or modeling language.

Intended Audience

This book is intended for students at the advanced undergraduate level or introductory
graduate level, and for practicing engineers and computer scientists who wish to under-
stand the engineering principles of embedded systems. We assume that the reader has
some exposure to machine structures (e.g., should know what an ALU is), computer pro-
gramming (we use C throughout the text), basic discrete mathematics and algorithms, and
at least an appreciation for signals and systems (what it means to sample a continuous-
time signal, for example).
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Further Reading

Many textbooks on embedded systems have appeared in recent years. These books ap-
proach the subject in surprisingly diverse ways, often reflecting the perspective of a more
established discipline that has migrated into embedded systems, such as VLSI design,
control systems, signal processing, robotics, real-time systems, or software engineering.
Some of these books complement the present one nicely. We strongly recommend them
to the reader who wishes to broaden his or her understanding of the subject.

Specifically, Patterson and Hennessy (1996), although not focused on embedded pro-
cessors, is the canonical reference for computer architecture, and a must-read for any-
one interested embedded processor architectures. Sriram and Bhattacharyya (2009) fo-
cus on signal processing applications, such as wireless communications and digital me-
dia, and give particularly thorough coverage to dataflow programming methodologies.
Wolf (2000) gives an excellent overview of hardware design techniques and microproces-
sor architectures and their implications for embedded software design. Mishra and Dutt
(2005) give a view of embedded architectures based on architecture description languages
(ADLs). Oshana (2006) specializes in DSP processors from Texas Instruments, giving an
overview of architectural approaches and a sense of assembly-level programming.

Focused more on software, Buttazzo (2005a) is an excellent overview of scheduling
techniques for real-time software. Liu (2000) gives one of the best treatments yet of
techniques for handling sporadic real-time events in software. Edwards (2000) gives
a good overview of domain-specific higher-level programming languages used in some
embedded system designs. Pottie and Kaiser (2005) give a good overview of network-
ing technologies, particularly wireless, for embedded systems. Koopman (2010) focuses
on design process for embedded software, including requirements management, project
management, testing plans, and security plans.

No single textbook can comprehensively cover the breadth of technologies available to
the embedded systems engineer. We have found useful information in many of the books
that focus primarily on today’s design techniques (Barr and Massa, 2006; Berger, 2002;
Burns and Wellings, 2001; Gajski et al., 2009; Kamal, 2008; Noergaard, 2005; Parab et al.,
2007; Simon, 2006; Schaumont, 2010; Vahid and Givargis, 2010).
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PREFACE

Notes for Instructors

At Berkeley, we use this text for an advanced undergraduate course called Introduction
to Embedded Systems. A great deal of material for lectures and labs can be found via the
main web page for this text:

http://LeeSeshia.org

In addition, a solutions manual and other instructional material are available to qualified
instructors at bona fide teaching institutions. See

http://chess.eecs.berkeley.edu/instructors/

or contact authors@leeseshia.org.
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A cyber-physical system (CPS) is an integration of computation with physical processes.
Embedded computers and networks monitor and control the physical processes, usually
with feedback loops where physical processes affect computations and vice versa. As an
intellectual challenge, CPS is about the intersection, not the union, of the physical and
the cyber. It is not sufficient to separately understand the physical components and the
computational components. We must instead understand their interaction.

In this chapter, we use a few CPS applications to outline the engineering principles of
such systems and the processes by which they are designed.

1



1.1. APPLICATIONS

1.1 Applications

CPS applications arguably have the potential to eclipse the 20th century information tech-
nology (IT) revolution. Consider the following examples.

Example 1.1: Heart surgery often requires stopping the heart, performing the
surgery, and then restarting the heart. Such surgery is extremely risky and carries
many detrimental side effects. A number of research teams have been working on
an alternative where a surgeon can operate on a beating heart rather than stopping
the heart. There are two key ideas that make this possible. First, surgical tools can
be robotically controlled so that they move with the motion of the heart (Kremen,
2008). A surgeon can therefore use a tool to apply constant pressure to a point on
the heart while the heart continues to beat. Second, a stereoscopic video system can
present to the surgeon a video illusion of a still heart (Rice, 2008). To the surgeon,
it looks as if the heart has been stopped, while in reality, the heart continues to
beat. To realize such a surgical system requires extensive modeling of the heart,
the tools, the computational hardware, and the software. It requires careful design
of the software that ensures precise timing and safe fallback behaviors to handle
malfunctions. And it requires detailed analysis of the models and the designs to
provide high confidence.

Example 1.2: Consider a city where traffic lights and cars cooperate to ensure
efficient flow of traffic. In particular, imagine never having to stop at a red light
unless there is actual cross traffic. Such a system could be realized with expensive
infrastructure that detects cars on the road. But a better approach might be to have
the cars themselves cooperate. They track their position and communicate to coop-
eratively use shared resources such as intersections. Making such a system reliable,
of course, is essential to its viability. Failures could be disastrous.

Example 1.3: Imagine an airplane that refuses to crash. While preventing all
possible causes of a crash is not possible, a well-designed flight control system
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can prevent certain causes. The systems that do this are good examples of cyber-
physical systems.

In traditional aircraft, a pilot controls the aircraft through mechanical and hydraulic
linkages between controls in the cockpit and movable surfaces on the wings and
tail of the aircraft. In a fly-by-wire aircraft, the pilot commands are mediated by a
flight computer and sent electronically over a network to actuators in the wings and
tail. Fly-by-wire aircraft are much lighter than traditional aircraft, and therefore
more fuel efficient. They have also proven to be more reliable. Virtually all new
aircraft designs are fly-by-wire systems.

In a fly-by-wire aircraft, since a computer mediates the commands from the pilot,
the computer can modify the commands. Many modern flight control systems mod-
ify pilot commands in certain circumstances. For example, commercial airplanes
made by Airbus use a technique called flight envelope protection to prevent an
airplane from going outside its safe operating range. They can prevent a pilot from
causing a stall, for example.

The concept of flight envelope protection could be extended to help prevent cer-
tain other causes of crashes. For example, the soft walls system proposed by Lee
(2001), if implemented, would track the location of the aircraft on which it is in-
stalled and prevent it from flying into obstacles such as mountains and buildings.
In Lee’s proposal, as an aircraft approaches the boundary of an obstacle, the fly-
by-wire flight control system creates a virtual pushing force that forces the aircraft
away. The pilot feels as if the aircraft has hit a soft wall that diverts it. There
are many challenges, both technical and non-technical, to designing and deploying
such a system. See Lee (2003) for a discussion of some of these issues.

Although the soft walls system of the previous example is rather futuristic, there are mod-
est versions in automotive safety that have been deployed or are in advanced stages of
research and development. For example, many cars today detect inadvertent lane changes
and warn the driver. Consider the much more challenging problem of automatically cor-
recting the driver’s actions. This is clearly much harder than just warning the driver.
How can you ensure that the system will react and take over only when needed, and only
exactly to the extent to which intervention is needed?

It is easy to imagine many other applications, such as systems that assist the elderly;
telesurgery systems that allow a surgeon to perform an operation at a remote location;
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and home appliances that cooperate to smooth demand for electricity on the power grid.
Moreover, it is easy to envision using CPS to improve many existing systems, such as
robotic manufacturing systems; electric power generation and distribution; process con-
trol in chemical factories; distributed computer games; transportation of manufactured
goods; heating, cooling, and lighting in buildings; people movers such as elevators; and

About the Term “Cyber-Physical Systems”

The term “cyber-physical systems” emerged around 2006, when it was coined by Helen
Gill at the National Science Foundation in the United States. While we are all familiar
with the term “cyberspace,” and may be tempted to associate it with CPS, the roots of the
term CPS are older and deeper. It would be more accurate to view the terms “cyberspace”
and “cyber-physical systems” as stemming from the same root, “cybernetics,” rather than
viewing one as being derived from the other.

The term “cybernetics” was coined by Norbert Wiener (Wiener, 1948), an American
mathematician who had a huge impact on the development of control systems theory.
During World War II, Wiener pioneered technology for the automatic aiming and firing of
anti-aircraft guns. Although the mechanisms he used did not involve digital computers,
the principles involved are similar to those used today in a huge variety of computer-
based feedback control systems. Wiener derived the term from the Greek κυβερνητης
(kybernetes), meaning helmsman, governor, pilot, or rudder. The metaphor is apt for
control systems.

Wiener described his vision of cybernetics as the conjunction of control and communi-
cation. His notion of control was deeply rooted in closed-loop feedback, where the con-
trol logic is driven by measurements of physical processes, and in turn drives the physical
processes. Even though Wiener did not use digital computers, the control logic is effec-
tively a computation, and therefore cybernetics is the conjunction of physical processes,
computation, and communication.

Wiener could not have anticipated the powerful effects of digital computation and net-
works. The fact that the term “cyber-physical systems” may be ambiguously interpreted
as the conjunction of cyberspace with physical processes, therefore, helps to underscore
the enormous impact that CPS will have. CPS leverages a phenomenal information tech-
nology that far outstrips even the wildest dreams of Wiener’s era.
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Figure 1.1: Example structure of a cyber-physical system.

bridges that monitor their own state of health. The impact of such improvements on safety,
energy consumption, and the economy is potentially enormous.

Many of the above examples will be deployed using a structure like that sketched in
Figure 1.1. There are three main parts in this sketch. First, the physical plant is the
“physical” part of a cyber-physical system. It is simply that part of the system that is not
realized with computers or digital networks. It can include mechanical parts, biological
or chemical processes, or human operators. Second, there are one or more computational
platforms, which consist of sensors, actuators, one or more computers, and (possibly)
one or more operating systems. Third, there is a network fabric, which provides the
mechanisms for the computers to communicate. Together, the platforms and the network
fabric form the “cyber” part of the cyber-physical system.

Figure 1.1 shows two networked platforms each with its own sensors and/or actuators.
The action taken by the actuators affects the data provided by the sensors through the
physical plant. In the figure, Platform 2 controls the physical plant via Actuator 1. It mea-
sures the processes in the physical plant using Sensor 2. The box labeled Computation 2
implements a control law, which determines based on the sensor data what commands to
issue to the actuator. Such a loop is called a feedback control loop. Platform 1 makes
additional measurements using Sensor 1, and sends messages to Platform 2 via the net-
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work fabric. Computation 3 realizes an additional control law, which is merged with that
of Computation 2, possibly preempting it.

Example 1.4: Consider a high-speed printing press for a print-on-demand service.
This might be structured similarly to Figure 1.1, but with many more platforms,
sensors, and actuators. The actuators may control motors that drive paper through
the press and ink onto the paper. The control laws may include a strategy for com-
pensating for paper stretch, which will typically depend on the type of paper, the
temperature, and the humidity. A networked structure like that in Figure 1.1 might
be used to induce rapid shutdown to prevent damage to the equipment in case of
paper jams. Such shutdowns need to be tightly orchestrated across the entire sys-
tem to prevent disasters. Similar situations are found in high-end instrumentation
systems and in energy production and distribution (Eidson et al., 2009).

1.2 Motivating Example

In this section, we describe a motivating example of a cyber-physical system. Our goal is
to use this example to illustrate the importance of the breadth of topics covered in this text.
The specific application is the Stanford testbed of autonomous rotorcraft for multi agent
control (STARMAC), developed by Claire Tomlin and colleagues as a cooperative effort
at Stanford and Berkeley (Hoffmann et al., 2004). The STARMAC is a small quadrotor
aircraft; it is shown in flight in Figure 1.2. Its primary purpose is to serve as a testbed for
experimenting with multi-vehicle autonomous control techniques. The objective is to be
able to have multiple vehicles cooperate on a common task.

There are considerable challenges in making such a system work. First, controlling the
vehicle is not trivial. The main actuators are the four rotors, which produce a variable
amount of downward thrust. By balancing the thrust from the four rotors, the vehicle can
take off, land, turn, and even flip in the air. How do we determine what thrust to apply?
Sophisticated control algorithms are required.

Second, the weight of the vehicle is a major consideration. The heavier it is, the more
stored energy it needs to carry, which of course makes it even heavier. The heavier it
is, the more thrust it needs to fly, which implies bigger and more powerful motors and
rotors. The design crosses a major threshold when the vehicle is heavy enough that the
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Figure 1.2: The STARMAC quadrotor aircraft in flight (reproduced with permis-
sion).

rotors become dangerous to humans. Even with a relatively light vehicle, safety is a
considerable concern, and the system needs to be designed with fault handling.

Third, the vehicle needs to operate in a context, interacting with its environment. It might,
for example, be under the continuous control of a watchful human who operates it by re-
mote control. Or it might be expected to operate autonomously, to take off, perform some
mission, return, and land. Autonomous operation is enormously complex and challeng-
ing because it cannot benefit from the watchful human. Autonomous operation demands
more sophisticated sensors. The vehicle needs to keep track of where it is (it needs to
perform localization). It needs to sense obstacles, and it needs to know where the ground
is. With good design, it is even possible for such vehicles to autonomously land on the
pitching deck of a ship. The vehicle also needs to continuously monitor its own health, to
detect malfunctions and react to them so as to contain the damage.

It is not hard to imagine many other applications that share features with the quadrotor
problem. The problem of landing a quadrotor vehicle on the deck of a pitching ship is sim-
ilar to the problem of operating on a beating heart (see Example 1.1). It requires detailed
modeling of the dynamics of the environment (the ship, the heart), and a clear understand-

Lee & Seshia, Introduction to Embedded Systems 7

http://LeeSeshia.org


1.3. THE DESIGN PROCESS

ing of the interaction between the dynamics of the embedded system (the quadrotor, the
robot) and its environment.

The rest of this chapter will explain the various parts of this book, using the quadrotor
example to illustrate how the various parts contribute to the design of such a system.

1.3 The Design Process

The goal of this book is to understand how to go about designing and implementing
cyber-physical systems. Figure 1.3 shows the three major parts of the process, modeling,
design, and analysis. Modeling is the process of gaining a deeper understanding of a
system through imitation. Models imitate the system and reflect properties of the system.
Models specify what a system does. Design is the structured creation of artifacts. It
specifies how a system does what it does. Analysis is the process of gaining a deeper
understanding of a system through dissection. It specifies why a system does what it does
(or fails to do what a model says it should do).

Figure 1.3: Creating embedded systems requires an iterative process of model-
ing, design, and analysis.
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As suggested in Figure 1.3, these three parts of the process overlap, and the design process
iteratively moves among the three parts. Normally, the process will begin with modeling,
where the goal is to understand the problem and to develop solution strategies.

Example 1.5: For the quadrotor problem of Section 1.2, we might begin by con-
structing models that translate commands from a human to move vertically or lat-
erally into commands to the four motors to produce thrust. A model will reveal that
if the thrust is not the same on the four rotors, then the vehicle will tilt and move
laterally.

Such a model might use techniques like those in Chapter 2 (Continuous Dynam-
ics), constructing differential equations to describe the dynamics of the vehicle. It
would then use techniques like those in Chapter 3 (Discrete Dynamics) to build
state machines that model the modes of operation such as takeoff, landing, hov-
ering, and lateral flight. It could then use the techniques of Chapter 4 (Hybrid
Systems) to blend these two types of models, creating hybrid system models of
the system to study the transitions between modes of operation. The techniques of
Chapters 5 (Composition of State Machines) and 6 (Concurrent Models of Compu-
tation) would then provide mechanisms for composing models of multiple vehicles,
models of the interactions between a vehicle and its environment, and models of the
interactions of components within a vehicle.

The process may progress quickly to the design phase, where we begin selecting com-
ponents and putting them together (motors, batteries, sensors, microprocessors, memory
systems, operating systems, wireless networks, etc.). An initial prototype may reveal
flaws in the models, causing a return to the modeling phase and revision of the models.

Example 1.6: The hardware architecture of the first generation STARMAC
quadrotor is shown in Figure 1.4. At the left and bottom of the figure are a number
of sensors used by the vehicle to determine where it is (localization) and what is
around it. In the middle are three boxes showing three distinct microprocessors.
The Robostix is an Atmel AVR 8-bit microcontroller that runs with no operating
system and performs the low-level control algorithms to keep the craft flying. The
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Figure 1.4: The STARMAC architecture (reproduced with permission).

other two processors perform higher-level tasks with the help of an operating sys-
tem. Both processors include wireless links that can be used by cooperating vehi-
cles and ground controllers.

Chapter 7 (Embedded Processors) considers processor architectures, offering some basis
for comparing the relative advantages of one architecture or another. Chapter 8 (Mem-
ory Architectures) considers the design of memory systems, emphasizing the impact that
they can have on overall system behavior. Chapter 9 (Input and Output) considers the
interfacing of processors with sensors and actuators. Chapters 10 (Multitasking) and 11
(Scheduling) focus on software architecture, with particular emphasis on how to orches-
trate multiple real-time tasks.

In a healthy design process, analysis figures prominently early in the process. Analysis
will be applied to the models and to the designs. The models may be analyzed for safety
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conditions, for example to ensure an invariant that asserts that if the vehicle is within one
meter of the ground, then its vertical speed is no greater than 0.1 meter/sec. The designs
may be analyzed for the timing behavior of software, for example to determine how long
it takes the system to respond to an emergency shutdown command. Certain analysis
problems will involve details of both models and designs. For the quadrotor example, it
is important to understand how the system will behave if network connectivity is lost and
it becomes impossible to communicate with the vehicle. How can the vehicle detect that
communication has been lost? This will require accurate modeling of the network and the
software.

Example 1.7: For the quadrotor problem, we use the techniques of Chapter 12
(Invariants and Temporal Logic) to specify key safety requirements for operation
of the vehicles. We would then use the techniques of Chapters 13 (Equivalence
and Refinement) and 14 (Reachability Analysis and Model Checking) to verify that
these safety properties are satisfied by implementations of the software. We would
then use the techniques of Chapter 15 (Quantitative Analysis) to determine whether
real-time constraints are met by the software.

Corresponding to a design process structured as in Figure 1.3, this book is divided into
three major parts, focused on modeling, design, and analysis (see Figure 1 on page xvi).
We now describe the approach taken in the three parts.

1.3.1 Modeling

The modeling part of the book, which is the first part, focuses on models of dynamic
behavior. It begins with a light coverage of the big subject of modeling of physical dy-
namics in Chapter 2, specifically focusing on continuous dynamics in time. It then talks
about discrete dynamics in Chapter 3, using state machines as the principal formalism.
It then combines the two, continuous and discrete dynamics, with a discussion of hybrid
systems in Chapter 4. Chapter 5 (Composition of State Machines) focuses on concurrent
composition of state machines, emphasizing that the semantics of composition is a critical
issue with which designers must grapple. Chapter 6 (Concurrent Models of Computation)
gives an overview of concurrent models of computation, including many of those used in
design tools that practitioners frequently leverage, such as Simulink and LabVIEW.
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In the modeling part of the book, we define a system to be simply a combination of parts
that is considered as a whole. A physical system is one realized in matter, in contrast
to a conceptual or logical system such as software and algorithms. The dynamics of a
system is its evolution in time: how its state changes. A model of a physical system is a
description of certain aspects of the system that is intended to yield insight into properties
of the system. In this text, models have mathematical properties that enable systematic
analysis. The model imitates properties of the system, and hence yields insight into that
system.

A model is itself a system. It is important to avoid confusing a model and the system that it
models. These are two distinct artifacts. A model of a system is said to have high fidelity
if it accurately describes properties of the system. It is said to abstract the system if it
omits details. Models of physical systems inevitably do omit details, so they are always
abstractions of the system. A major goal of this text is to develop an understanding of
how to use models, of how to leverage their strengths and respect their weaknesses.

A cyber-physical system (CPS) is a system composed of physical subsystems together
with computing and networking. Models of cyber-physical systems normally include
all three parts. The models will typically need to represent both dynamics and static
properties (those that do not change during the operation of the system).

Each of the modeling techniques described in this part of the book is an enormous subject,
much bigger than one chapter, or even one book. In fact, such models are the focus of
many branches of engineering, physics, chemistry, and biology. Our approach is aimed at
engineers. We assume some background in mathematical modeling of dynamics (calculus
courses that give some examples from physics are sufficient), and then focus on how to
compose diverse models. This will form the core of the cyber-physical system problem,
since joint modeling of the cyber side, which is logical and conceptual, with the physical
side, which is embodied in matter, is the core of the problem. We therefore make no
attempt to be comprehensive, but rather pick a few modeling techniques that are widely
used by engineers and well understood, review them, and then compose them to form a
cyber-physical whole.

1.3.2 Design

The second part of the book has a very different flavor, reflecting the intrinsic heterogene-
ity of the subject. This part focuses on the design of embedded systems, with emphasis
on the role they play within a CPS. Chapter 7 (Embedded Processors) discusses pro-
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cessor architectures, with emphasis on specialized properties most suited to embedded
systems. Chapter 8 (Memory Architectures) describes memory architectures, including
abstractions such as memory models in programming languages, physical properties such
as memory technologies, and architectural properties such as memory hierarchy (caches,
scratchpads, etc.). The emphasis is on how memory architecture affects dynamics. Chap-
ter 9 (Input and Output) is about the interface between the software world and the physical
world. It discusses input/output mechanisms in software and computer architectures, and
the digital/analog interface, including sampling. Chapter 10 (Multitasking) introduces the
notions that underlie operating systems, with particular emphasis on multitasking. The
emphasis is on the pitfalls of using low-level mechanisms such as threads, with a hope of
convincing the reader that there is real value in using the modeling techniques covered in
the first part of the book. Those modeling techniques help designers build confidence in
system designs. Chapter 11 (Scheduling) introduces real-time scheduling, covering many
of the classic results in the area.

In all chapters in the design part, we particularly focus on the mechanisms that provide
concurrency and control over timing, because these issues loom large in the design of
cyber-physical systems. When deployed in a product, embedded processors typically
have a dedicated function. They control an automotive engine or measure ice thickness
in the Arctic. They are not asked to perform arbitrary functions with user-defined soft-
ware. Consequently, the processors, memory architectures, I/O mechanisms, and operat-
ing systems can be more specialized. Making them more specialized can bring enormous
benefits. For example, they may consume far less energy, and consequently be usable
with small batteries for long periods of time. Or they may include specialized hardware
to perform operations that would be costly to perform on general-purpose hardware, such
as image analysis. Our goal in this part is to enable the reader to critically evaluate the
numerous available technology offerings.

One of the goals in this part of the book is to teach students to implement systems while
thinking across traditional abstraction layers — e.g., hardware and software, computa-
tion and physical processes. While such cross-layer thinking is valuable in implementing
systems in general, it is particularly essential in embedded systems given their heteroge-
neous nature. For example, a programmer implementing a control algorithm expressed
in terms of real-valued quantities must have a solid understanding of computer arithmetic
(e.g., of fixed-point numbers) in order to create a reliable implementation. Similarly, an
implementor of automotive software that must satisfy real-time constraints must be aware
of processor features – such as pipelines and caches – that can affect the execution time
of tasks and hence the real-time behavior of the system. Likewise, an implementor of
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interrupt-driven or multi-threaded software must understand the atomic operations pro-
vided by the underlying software-hardware platform and use appropriate synchronization
constructs to ensure correctness. Rather than doing an exhaustive survey of different im-
plementation methods and platforms, this part of the book seeks to give the reader an ap-
preciation for such cross-layer topics, and uses homework exercises to facilitate a deeper
understanding of them.

1.3.3 Analysis

Every system must be designed to meet certain requirements. For embedded systems,
which are often intended for use in safety-critical, everyday applications, it is essential
to certify that the system meets its requirements. Such system requirements are also
called properties or specifications. The need for specifications is aptly captured by the
following quotation, paraphrased from Young et al. (1985):

“A design without specifications cannot be right or wrong, it can only be
surprising!”

The analysis part of the book focuses on precise specifications of properties, on tech-
niques for comparing specifications, and on techniques for analyzing specifications and
the resulting designs. Reflecting the emphasis on dynamics in the text, Chapter 12 (Invari-
ants and Temporal Logic) focuses on temporal logics, which provide precise descriptions
of dynamic properties of systems. These descriptions are treated as models. Chapter
13 (Equivalence and Refinement) focuses on the relationships between models. Is one
model an abstraction of another? Is it equivalent in some sense? Specifically, that chap-
ter introduces type systems as a way of comparing static properties of models, and lan-
guage containment and simulation relations as a way of comparing dynamic properties of
models. Chapter 14 (Reachability Analysis and Model Checking) focuses on techniques
for analyzing the large number of possible dynamic behaviors that a model may exhibit,
with particular emphasis on model checking as a technique for exploring such behaviors.
Chapter 15 (Quantitative Analysis) is about analyzing quantitative properties of embedded
software, such as finding bounds on resources consumed by programs. It focuses partic-
ularly on execution time analysis, with some introduction to other quantitative properties
such as energy and memory usage.

In present engineering practice, it is common to have system requirements stated in a
natural language such as English. It is important to precisely state requirements to avoid
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ambiguities inherent in natural languages. The goal of this part of the book is to help
replace descriptive techniques with formal ones, which we believe are less error prone.

Importantly, formal specifications also enable the use of automatic techniques for formal
verification of both models and implementations. The analysis part of the book introduces
readers to the basics of formal verification, including notions of equivalence and refine-
ment checking, as well as reachability analysis and model checking. In discussing these
verification methods, we attempt to give users of verification tools an appreciation of what
is “under the hood” so that they may derive the most benefit from them. This user’s view
is supported by examples discussing, for example, how model checking can be applied
to find subtle errors in concurrent software, or how reachability analysis can be used in
computing a control strategy for a robot to achieve a particular task.

1.4 Summary

Cyber-physical systems are heterogeneous blends by nature. They combine computation,
communication, and physical dynamics. They are harder to model, harder to design,
and harder to analyze than homogeneous systems. This chapter gives an overview of the
engineering principles addressed in this book for modeling, designing, and analyzing such
systems.
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