
Picture of the internals of an ADSL 
modem/router, a modern example of 
an embedded system. Labelled parts 
include a microprocessor (4), RAM 
(6), and flash memory (7).

Embedded system
From Wikipedia, the free encyclopedia

An embedded system is a computer system with a dedicated function within a larger 
mechanical or electrical system, often with real-time computing constraints.[1][2] It is 
embedded as part of a complete device often including hardware and mechanical parts. 
Embedded systems control many devices in common use today.[3] Ninety-eight percent of 
all microprocessors are manufactured as components of embedded systems.[4]

Examples of properties of typically embedded computers when compared with general-
purpose counterparts are low power consumption, small size, rugged operating ranges, 
and low per-unit cost. This comes at the price of limited processing resources, which 
make them significantly more difficult to program and to interact with. However, by 
building intelligence mechanisms on top of the hardware, taking advantage of possible 
existing sensors and the existence of a network of embedded units, one can both optimally 
manage available resources at the unit and network levels as well as provide augmented 
functions, well beyond those available.[5] For example, intelligent techniques can be 
designed to manage power consumption of embedded systems.[6]

Modern embedded systems are often based on microcontrollers (i.e. CPUs with integrated memory or peripheral interfaces),[7]

but ordinary microprocessors (using external chips for memory and peripheral interface circuits) are also common, especially in 
more-complex systems. In either case, the processor(s) used may be types ranging from general purpose to those specialised in 
certain class of computations, or even custom designed for the application at hand. A common standard class of dedicated 
processors is the digital signal processor (DSP).

Since the embedded system is dedicated to specific tasks, design engineers can optimize it to reduce the size and cost of the 
product and increase the reliability and performance. Some embedded systems are mass-produced, benefiting from economies of 
scale.

Embedded systems range from portable devices such as digital watches and MP3 players, to large stationary installations like 
traffic lights, factory controllers, and largely complex systems like hybrid vehicles, MRI, and avionics. Complexity varies from 
low, with a single microcontroller chip, to very high with multiple units, peripherals and networks mounted inside a large chassis 
or enclosure.

Contents

◾ 1 History
◾ 2 Varieties
◾ 3 Characteristics

◾ 3.1 User interface
◾ 3.2 Processors in embedded systems

◾ 3.2.1 Ready made computer boards
◾ 3.2.2 ASIC and FPGA solutions

◾ 3.3 Peripherals
◾ 3.4 Tools

◾ 4 Debugging
◾ 4.1 Tracing
◾ 4.2 Reliability
◾ 4.3 High vs low volume

◾ 5 Embedded software architectures
◾ 5.1 Simple control loop
◾ 5.2 Interrupt-controlled system
◾ 5.3 Cooperative multitasking
◾ 5.4 Preemptive multitasking or multi-threading
◾ 5.5 Microkernels and exokernels
◾ 5.6 Monolithic kernels
◾ 5.7 Additional software components

◾ 6 See also
◾ 7 Notes

Pagina 1 di 9Embedded system - Wikipedia, the free encyclopedia

21/09/2016mhtml:file://D:\Corsi\EmbeddedSystems1617\Lectures\00_Overview\EmbeddedSyste...



Embedded Computer Sub-Assembly 
for Accupoll Electronic Voting 

Machine[8]

◾ 8 References
◾ 9 Further reading
◾ 10 External links

History

One of the very first recognizably modern embedded systems was the Apollo Guidance Computer, developed by Charles Stark 
Draper at the MIT Instrumentation Laboratory. At the project's inception, the Apollo guidance computer was considered the 
riskiest item in the Apollo project as it employed the then newly developed monolithic integrated circuits to reduce the size and 
weight. An early mass-produced embedded system was the Autonetics D-17 guidance computer for the Minuteman missile, 
released in 1961. When the Minuteman II went into production in 1966, the D-17 was replaced with a new computer that was the 
first high-volume use of integrated circuits.

Since these early applications in the 1960s, embedded systems have come down in price and there has been a dramatic rise in 
processing power and functionality. An early microprocessor for example, the Intel 4004, was designed for calculators and other 
small systems but still required external memory and support chips. In 1978 National Engineering Manufacturers Association 
released a "standard" for programmable microcontrollers, including almost any computer-based controllers, such as single board 
computers, numerical, and event-based controllers.

As the cost of microprocessors and microcontrollers fell it became feasible to replace expensive knob-based analog components 
such as potentiometers and variable capacitors with up/down buttons or knobs read out by a microprocessor even in consumer 
products. By the early 1980s, memory, input and output system components had been integrated into the same chip as the 
processor forming a microcontroller. Microcontrollers find applications where a general-purpose computer would be too costly.

A comparatively low-cost microcontroller may be programmed to fulfill the same role as a large number of separate components. 
Although in this context an embedded system is usually more complex than a traditional solution, most of the complexity is 
contained within the microcontroller itself. Very few additional components may be needed and most of the design effort is in the 
software. Software prototype and test can be quicker compared with the design and construction of a new circuit not using an 
embedded processor.

Varieties

Embedded systems are commonly found in consumer, cooking, industrial, automotive, 
medical, commercial and military applications.

Telecommunications systems employ numerous embedded systems from telephone 
switches for the network to cell phones at the end user. Computer networking uses 
dedicated routers and network bridges to route data.

Consumer electronics include personal digital assistants (PDAs), mp3 players, mobile 
phones, videogame consoles, digital cameras, DVD players, GPS receivers, and printers. 
Household appliances, such as microwave ovens, washing machines and dishwashers, 
include embedded systems to provide flexibility, efficiency and features. Advanced 
HVAC systems use networked thermostats to more accurately and efficiently control 
temperature that can change by time of day and season. Home automation uses wired- and 
wireless-networking that can be used to control lights, climate, security, audio/visual, 
surveillance, etc., all of which use embedded devices for sensing and controlling.

Transportation systems from flight to automobiles increasingly use embedded systems. 
New airplanes contain advanced avionics such as inertial guidance systems and GPS 
receivers that also have considerable safety requirements. Various electric motors — brushless DC motors, induction motors and 
DC motors — use electric/electronic motor controllers. Automobiles, electric vehicles, and hybrid vehicles increasingly use 
embedded systems to maximize efficiency and reduce pollution. Other automotive safety systems include anti-lock braking 
system (ABS), Electronic Stability Control (ESC/ESP), traction control (TCS) and automatic four-wheel drive.

Medical equipment uses embedded systems for vital signs monitoring, electronic stethoscopes for amplifying sounds, and various 
medical imaging (PET, SPECT, CT, MRI) for non-invasive internal inspections. Embedded systems within medical equipment 
are often powered by industrial computers.[9]

Embedded systems are used in transportation, fire safety, safety and security, medical applications and life critical systems, as 
these systems can be isolated from hacking and thus, be more reliable. For fire safety, the systems can be designed to have 
greater ability to handle higher temperatures and continue to operate. In dealing with security, the embedded systems can be self-
sufficient and be able to deal with cut electrical and communication systems.

Pagina 2 di 9Embedded system - Wikipedia, the free encyclopedia

21/09/2016mhtml:file://D:\Corsi\EmbeddedSystems1617\Lectures\00_Overview\EmbeddedSyste...



e-con Systems eSOM270 & 
eSOM300 Computer on Modules

Embedded system text user interface 

using MicroVGA[nb 1]

A new class of miniature wireless devices called motes are networked wireless sensors. Wireless sensor networking, WSN, 
makes use of miniaturization made possible by advanced IC design to couple full wireless subsystems to sophisticated sensors, 
enabling people and companies to measure a myriad of things in the physical world and act on this information through IT 
monitoring and control systems. These motes are completely self-contained, and will typically run off a battery source for years 
before the batteries need to be changed or charged.

Embedded Wi-Fi modules provide a simple means of wirelessly enabling any device which communicates via a serial port.

Characteristics

Embedded systems are designed to do some specific task, rather than be a general-purpose computer for multiple tasks. Some 
also have real-time performance constraints that must be met, for reasons such as safety and usability; others may have low or no 
performance requirements, allowing the system hardware to be simplified to reduce costs.

Embedded systems are not always standalone devices. Many embedded systems consist of small parts within a larger device that 
serves a more general purpose. For example, the Gibson Robot Guitar features an embedded system for tuning the strings, but the 
overall purpose of the Robot Guitar is, of course, to play music.[10] Similarly, an embedded system in an automobile provides a 
specific function as a subsystem of the car itself.

The program instructions written for embedded systems are referred to as firmware, and 
are stored in read-only memory or Flash memory chips. They run with limited computer 
hardware resources: little memory, small or non-existent keyboard or screen.

User interface

Embedded systems range from no user interface at all, in systems dedicated only to one 
task, to complex graphical user interfaces that resemble modern computer desktop 
operating systems. Simple embedded devices use buttons, LEDs, graphic or character 
LCDs (HD44780 LCD for example) with a simple menu system.

More sophisticated devices which use a graphical screen with touch sensing or screen-
edge buttons provide flexibility while minimizing space used: the meaning of the buttons 
can change with the screen, and selection involves the natural behavior of pointing at 
what is desired. Handheld systems often have a screen with a "joystick button" for a 
pointing device.

Some systems provide user interface remotely with the help of a serial (e.g. RS-232, USB, 
I²C, etc.) or network (e.g. Ethernet) connection. This approach gives several advantages: 
extends the capabilities of embedded system, avoids the cost of a display, simplifies BSP 
and allows one to build a rich user interface on the PC. A good example of this is the 
combination of an embedded web server running on an embedded device (such as an IP 
camera) or a network router. The user interface is displayed in a web browser on a PC 
connected to the device, therefore needing no software to be installed.

Processors in embedded systems

Embedded processors can be broken into two broad categories. Ordinary microprocessors (μP) use separate integrated circuits for 
memory and peripherals. Microcontrollers (μC) have on-chip peripherals, thus reducing power consumption, size and cost. In 
contrast to the personal computer market, many different basic CPU architectures are used, since software is custom-developed 
for an application and is not a commodity product installed by the end user. Both Von Neumann as well as various degrees of 
Harvard architectures are used. RISC as well as non-RISC processors are found. Word lengths vary from 4-bit to 64-bits and 
beyond, although the most typical remain 8/16-bit. Most architectures come in a large number of different variants and shapes, 
many of which are also manufactured by several different companies.

Numerous microcontrollers have been developed for embedded systems use. General-purpose microprocessors are also used in 
embedded systems, but generally require more support circuitry than microcontrollers.

Ready made computer boards

PC/104 and PC/104+ are examples of standards for ready made computer boards intended for small, low-volume embedded and 
ruggedized systems, mostly x86-based. These are often physically small compared to a standard PC, although still quite large 
compared to most simple (8/16-bit) embedded systems. They often use DOS, Linux, NetBSD, or an embedded real-time 
operating system such as MicroC/OS-II, QNX or VxWorks. Sometimes these boards use non-x86 processors.

Pagina 3 di 9Embedded system - Wikipedia, the free encyclopedia

21/09/2016mhtml:file://D:\Corsi\EmbeddedSystems1617\Lectures\00_Overview\EmbeddedSyste...



A close-up of the SMSC 
LAN91C110 (SMSC 91x) chip, an 
embedded Ethernet chip

In certain applications, where small size or power efficiency are not primary concerns, the components used may be compatible 
with those used in general purpose x86 personal computers. Boards such as the VIA EPIA range help to bridge the gap by being 
PC-compatible but highly integrated, physically smaller or have other attributes making them attractive to embedded engineers. 
The advantage of this approach is that low-cost commodity components may be used along with the same software development 
tools used for general software development. Systems built in this way are still regarded as embedded since they are integrated 
into larger devices and fulfill a single role. Examples of devices that may adopt this approach are ATMs and arcade machines, 
which contain code specific to the application.

However, most ready-made embedded systems boards are not PC-centered and do not use the ISA or PCI buses. When a System-
on-a-chip processor is involved, there may be little benefit to having a standarized bus connecting discrete components, and the 
environment for both hardware and software tools may be very different.

One common design style uses a small system module, perhaps the size of a business card, holding high density BGA chips such 
as an ARM-based System-on-a-chip processor and peripherals, external flash memory for storage, and DRAM for runtime 
memory. The module vendor will usually provide boot software and make sure there is a selection of operating systems, usually 
including Linux and some real time choices. These modules can be manufactured in high volume, by organizations familiar with 
their specialized testing issues, and combined with much lower volume custom mainboards with application-specific external 
peripherals.

Implementation of embedded systems have advanced, embedded systems can easily be implemented with already made boards 
which are based on worldwide accepted platform. These platforms include, but are not limited to, Arduino and Raspberry Pi.

ASIC and FPGA solutions

A common array of n configuration for very-high-volume embedded systems is the system on a chip (SoC) which contains a 
complete system consisting of multiple processors, multipliers, caches and interfaces on a single chip. SoCs can be implemented 
as an application-specific integrated circuit (ASIC) or using a field-programmable gate array (FPGA).

Peripherals

Embedded Systems talk with the outside world via peripherals, such as:

◾ Serial Communication Interfaces (SCI): RS-232, RS-422, RS-485 etc.
◾ Synchronous Serial Communication Interface: I2C, SPI, SSC and ESSI (Enhanced 

Synchronous Serial Interface)
◾ Universal Serial Bus (USB)
◾ Multi Media Cards (SD Cards, Compact Flash etc.)
◾ Networks: Ethernet, LonWorks, etc.
◾ Fieldbuses: CAN-Bus, LIN-Bus, PROFIBUS, etc.
◾ Timers: PLL(s), Capture/Compare and Time Processing Units
◾ Discrete IO: aka General Purpose Input/Output (GPIO)
◾ Analog to Digital/Digital to Analog (ADC/DAC)
◾ Debugging: JTAG, ISP, ICSP, BDM Port, BITP, and DB9 ports.

Tools

As with other software, embedded system designers use compilers, assemblers, and debuggers to develop embedded system 
software. However, they may also use some more specific tools:

◾ In circuit debuggers or emulators (see next section).
◾ Utilities to add a checksum or CRC to a program, so the embedded system can check if the program is valid.
◾ For systems using digital signal processing, developers may use a math workbench such as Scilab / Scicos, MATLAB / 

Simulink, EICASLAB, MathCad, Mathematica,or FlowStone DSP to simulate the mathematics. They might also use 
libraries for both the host and target which eliminates developing DSP routines as done in DSPnano RTOS.

◾ System Level Modeling and Simulation tools such as VisualSim helps designers to construct simulation models of a 
system with Hardware Components such as Processors, Memories, DMA, Interfaces, buses and Software behavior flow as 
a State diagram or flow diagram using configurable library blocks. Simulation is conducted to select right components by 
performing power vs performance trade-off, reliability analysis and bottleneck analysis. Typical reports that helps designer 
to make architecture decisions includes application latency, Device Throughput, Device Utilization, Power Consumption of 
full System as well as device level power consumption.

◾ A model based development tool like VisSim lets you create and simulate graphical data flow and UML State chart 
diagrams of components like digital filters, motor controllers, communication protocol decoding and multi-rate tasks. 
Interrupt handlers can also be created graphically. After simulation, you can automatically generate C-code to the VisSim 
RTOS which handles the main control task and preemption of background tasks, as well as automatic setup and 
programming of on-chip peripherals.

Pagina 4 di 9Embedded system - Wikipedia, the free encyclopedia

21/09/2016mhtml:file://D:\Corsi\EmbeddedSystems1617\Lectures\00_Overview\EmbeddedSyste...



◾ Custom compilers and linkers may be used to optimize specialized hardware.
◾ An embedded system may have its own special language or design tool, or add enhancements to an existing language such 

as Forth or Basic.
◾ Another alternative is to add a real-time operating system or embedded operating system, which may have DSP capabilities 

like DSPnano RTOS.
◾ Modeling and code generating tools often based on state machines

Software tools can come from several sources:

◾ Software companies that specialize in the embedded market
◾ Ported from the GNU software development tools
◾ Sometimes, development tools for a personal computer can be used if the embedded processor is a close relative to a 

common PC processor

As the complexity of embedded systems grows, higher level tools and operating systems are migrating into machinery where it 
makes sense. For example, cellphones, personal digital assistants and other consumer computers often need significant software 
that is purchased or provided by a person other than the manufacturer of the electronics. In these systems, an open programming 
environment such as Linux, NetBSD, OSGi or Embedded Java is required so that the third-party software provider can sell to a 
large market.

Debugging

Embedded debugging may be performed at different levels, depending on the facilities available. From simplest to most 
sophisticated they can be roughly grouped into the following areas:

◾ Interactive resident debugging, using the simple shell provided by the embedded operating system (e.g. Forth and Basic)
◾ External debugging using logging or serial port output to trace operation using either a monitor in flash or using a debug 

server like the Remedy Debugger which even works for heterogeneous multicore systems.
◾ An in-circuit debugger (ICD), a hardware device that connects to the microprocessor via a JTAG or Nexus interface. This 

allows the operation of the microprocessor to be controlled externally, but is typically restricted to specific debugging 
capabilities in the processor.

◾ An in-circuit emulator (ICE) replaces the microprocessor with a simulated equivalent, providing full control over all 
aspects of the microprocessor.

◾ A complete emulator provides a simulation of all aspects of the hardware, allowing all of it to be controlled and modified, 
and allowing debugging on a normal PC. The downsides are expense and slow operation, in some cases up to 100X slower 
than the final system.

◾ For SoC designs, the typical approach is to verify and debug the design on an FPGA prototype board. Tools such as Certus
[11] are used to insert probes in the FPGA RTL that make signals available for observation. This is used to debug hardware, 
firmware and software interactions across multiple FPGA with capabilities similar to a logic analyzer.

Unless restricted to external debugging, the programmer can typically load and run software through the tools, view the code 
running in the processor, and start or stop its operation. The view of the code may be as HLL source-code, assembly code or 
mixture of both.

Because an embedded system is often composed of a wide variety of elements, the debugging strategy may vary. For instance, 
debugging a software- (and microprocessor-) centric embedded system is different from debugging an embedded system where 
most of the processing is performed by peripherals (DSP, FPGA, co-processor). An increasing number of embedded systems 
today use more than one single processor core. A common problem with multi-core development is the proper synchronization of 
software execution. In such a case, the embedded system design may wish to check the data traffic on the busses between the 
processor cores, which requires very low-level debugging, at signal/bus level, with a logic analyzer, for instance.

Tracing

Real-time operating systems (RTOS) often supports tracing of operating system events. A graphical view is presented by a host 
PC tool, based on a recording of the system behavior. The trace recording can be performed in software, by the RTOS, or by 
special tracing hardware. RTOS tracing allows developers to understand timing and performance issues of the software system 
and gives a good understanding of the high-level system behaviors. Commercial tools like RTXC Quadros or IAR Systems 
exists.

Reliability

Embedded systems often reside in machines that are expected to run continuously for years without errors, and in some cases 
recover by themselves if an error occurs. Therefore, the software is usually developed and tested more carefully than that for 
personal computers, and unreliable mechanical moving parts such as disk drives, switches or buttons are avoided.

Pagina 5 di 9Embedded system - Wikipedia, the free encyclopedia

21/09/2016mhtml:file://D:\Corsi\EmbeddedSystems1617\Lectures\00_Overview\EmbeddedSyste...



Specific reliability issues may include:

◾ The system cannot safely be shut down for repair, or it is too inaccessible to repair. Examples include space systems, 
undersea cables, navigational beacons, bore-hole systems, and automobiles.

◾ The system must be kept running for safety reasons. "Limp modes" are less tolerable. Often backups are selected by an 
operator. Examples include aircraft navigation, reactor control systems, safety-critical chemical factory controls, train 
signals.

◾ The system will lose large amounts of money when shut down: Telephone switches, factory controls, bridge and elevator 
controls, funds transfer and market making, automated sales and service.

A variety of techniques are used, sometimes in combination, to recover from errors—both software bugs such as memory leaks, 
and also soft errors in the hardware:

◾ watchdog timer that resets the computer unless the software periodically notifies the watchdog subsystems with redundant 
spares that can be switched over to software "limp modes" that provide partial function

◾ Designing with a Trusted Computing Base (TCB) architecture[12] ensures a highly secure & reliable system environment
◾ A Hypervisor designed for embedded systems, is able to provide secure encapsulation for any subsystem component, so 

that a compromised software component cannot interfere with other subsystems, or privileged-level system software. This 
encapsulation keeps faults from propagating from one subsystem to another, improving reliability. This may also allow a 
subsystem to be automatically shut down and restarted on fault detection.

◾ Immunity Aware Programming

High vs low volume

For high volume systems such as portable music players or mobile phones, minimizing cost is usually the primary design 
consideration. Engineers typically select hardware that is just “good enough” to implement the necessary functions.

For low-volume or prototype embedded systems, general purpose computers may be adapted by limiting the programs or by 
replacing the operating system with a real-time operating system.

Embedded software architectures

There are several different types of software architecture in common use.

Simple control loop

In this design, the software simply has a loop. The loop calls subroutines, each of which manages a part of the hardware or 
software.

Interrupt-controlled system

Some embedded systems are predominantly controlled by interrupts. This means that tasks performed by the system are triggered 
by different kinds of events; an interrupt could be generated, for example, by a timer in a predefined frequency, or by a serial port 
controller receiving a byte.

These kinds of systems are used if event handlers need low latency, and the event handlers are short and simple. Usually, these 
kinds of systems run a simple task in a main loop also, but this task is not very sensitive to unexpected delays.

Sometimes the interrupt handler will add longer tasks to a queue structure. Later, after the interrupt handler has finished, these 
tasks are executed by the main loop. This method brings the system close to a multitasking kernel with discrete processes.

Cooperative multitasking

A nonpreemptive multitasking system is very similar to the simple control loop scheme, except that the loop is hidden in an API. 
The programmer defines a series of tasks, and each task gets its own environment to “run” in. When a task is idle, it calls an idle 
routine, usually called “pause”, “wait”, “yield”, “nop” (stands for no operation), etc.

The advantages and disadvantages are similar to that of the control loop, except that adding new software is easier, by simply 
writing a new task, or adding to the queue.

Preemptive multitasking or multi-threading

Pagina 6 di 9Embedded system - Wikipedia, the free encyclopedia

21/09/2016mhtml:file://D:\Corsi\EmbeddedSystems1617\Lectures\00_Overview\EmbeddedSyste...



In this type of system, a low-level piece of code switches between tasks or threads based on a timer (connected to an interrupt). 
This is the level at which the system is generally considered to have an "operating system" kernel. Depending on how much 
functionality is required, it introduces more or less of the complexities of managing multiple tasks running conceptually in 
parallel.

As any code can potentially damage the data of another task (except in larger systems using an MMU) programs must be 
carefully designed and tested, and access to shared data must be controlled by some synchronization strategy, such as message 
queues, semaphores or a non-blocking synchronization scheme.

Because of these complexities, it is common for organizations to use a real-time operating system (RTOS), allowing the 
application programmers to concentrate on device functionality rather than operating system services, at least for large systems; 
smaller systems often cannot afford the overhead associated with a generic real time system, due to limitations regarding memory 
size, performance, or battery life. The choice that an RTOS is required brings in its own issues, however, as the selection must be 
done prior to starting to the application development process. This timing forces developers to choose the embedded operating 
system for their device based upon current requirements and so restricts future options to a large extent.[13] The restriction of 
future options becomes more of an issue as product life decreases. Additionally the level of complexity is continuously growing 
as devices are required to manage variables such as serial, USB, TCP/IP, Bluetooth, Wireless LAN, trunk radio, multiple 
channels, data and voice, enhanced graphics, multiple states, multiple threads, numerous wait states and so on. These trends are 
leading to the uptake of embedded middleware in addition to a real-time operating system.

Microkernels and exokernels

A microkernel is a logical step up from a real-time OS. The usual arrangement is that the operating system kernel allocates 
memory and switches the CPU to different threads of execution. User mode processes implement major functions such as file 
systems, network interfaces, etc.

In general, microkernels succeed when the task switching and intertask communication is fast and fail when they are slow.

Exokernels communicate efficiently by normal subroutine calls. The hardware and all the software in the system are available to 
and extensible by application programmers.

Monolithic kernels

In this case, a relatively large kernel with sophisticated capabilities is adapted to suit an embedded environment. This gives 
programmers an environment similar to a desktop operating system like Linux or Microsoft Windows, and is therefore very 
productive for development; on the downside, it requires considerably more hardware resources, is often more expensive, and, 
because of the complexity of these kernels, can be less predictable and reliable.

Common examples of embedded monolithic kernels are embedded Linux and Windows CE.

Despite the increased cost in hardware, this type of embedded system is increasing in popularity, especially on the more powerful 
embedded devices such as wireless routers and GPS navigation systems. Here are some of the reasons:

◾ Ports to common embedded chip sets are available.
◾ They permit re-use of publicly available code for device drivers, web servers, firewalls, and other code.
◾ Development systems can start out with broad feature-sets, and then the distribution can be configured to exclude unneeded 

functionality, and save the expense of the memory that it would consume.
◾ Many engineers believe that running application code in user mode is more reliable and easier to debug, thus making the 

development process easier and the code more portable.
◾ Features requiring faster response than can be guaranteed can often be placed in hardware.

Additional software components

In addition to the core operating system, many embedded systems have additional upper-layer software components. These 
components consist of networking protocol stacks like CAN, TCP/IP, FTP, HTTP, and HTTPS, and also included storage 
capabilities like FAT and flash memory management systems. If the embedded device has audio and video capabilities, then the 
appropriate drivers and codecs will be present in the system. In the case of the monolithic kernels, many of these software layers 
are included. In the RTOS category, the availability of the additional software components depends upon the commercial 
offering.

See also

◾ Communications server
◾ Cyber-physical system
◾ DSP

◾ Electronic Control Unit
◾ Hypervisor
◾ Embedded operating systems

Pagina 7 di 9Embedded system - Wikipedia, the free encyclopedia

21/09/2016mhtml:file://D:\Corsi\EmbeddedSystems1617\Lectures\00_Overview\EmbeddedSyste...



Wikimedia Commons has 
media related to Embedded 
systems.

Wikibooks has a book on 
the topic of: Embedded 
Systems

Wikiversity has learning 
materials about Embedded 
System Engineering

◾ Embedded software
◾ Firmware
◾ FPGA
◾ Information appliance
◾ Microprocessor
◾ Microcontroller

◾ Silicon compiler
◾ Real-time operating system
◾ Software engineering
◾ System on a chip
◾ System on module
◾ Ubiquitous computing

Notes
1. For more details of MicroVGA see this PDF (http://www.microvga.com/pdf/uvga-text-ds.pdf).

References
1. Michael Barr. "Embedded Systems Glossary". Neutrino Technical Library. Retrieved 2007-04-21.
2. Heath, Steve (2003). Embedded systems design. EDN series for design engineers (2 ed.). Newnes. p. 2. ISBN 978-0-7506-5546-0. “An 

embedded system is a microprocessor based system that is built to control a function or a range of functions.”
3. Michael Barr; Anthony J. Massa (2006). "Introduction". Programming embedded systems: with C and GNU development tools. O'Reilly. 

pp. 1–2. ISBN 978-0-596-00983-0.
4. Barr, Michael (1 August 2009). "Real men program in C". Embedded Systems Design. TechInsights (United Business Media). p. 2. 

Retrieved 2009-12-23.
5. C.Alippi: Intelligence for Embedded Systems. Springer, 2014, 283pp, ISBN 978-3-319-05278-6.
6. S. Mittal, "A survey of techniques for improving energy efficiency in embedded computing systems 

(https://www.academia.edu/4186102/A_survey_of_techniques_for_improving_energy_efficiency_in_embedded_computing_systems)", 
IJCAET, 6(4), 440–459, 2014.

7. Giovino, Bill. "Micro controller.com – Embedded Systems supersite".
8. Electronic Voting Machine Information Sheet Accupoll AVS 1000 

(http://w2.eff.org/Activism/E-voting/infosheets2006/AccuPollAVS1000.pdf)
9. Embedded Systems Dell OEM Solutions | Dell (http://content.dell.com/us/en/enterprise/oem-industry-solutions-build-your-product-with-

dell). Content.dell.com (2011-01-04). Retrieved on 2013-02-06.
10. Embedded.com – Under the Hood: Robot Guitar embeds autotuning (http://www.embedded.com/underthehood/207401418) By David 

Carey, TechOnline EE Times (04/22/08, 11:10:00 AM EDT)Embedded Systems Design – Embedded.com
11. "Tektronix Shakes Up Prototyping, Embedded Instrumentation Boosts Boards to Emulator Status". Electronic Engineering Journal. 

2012-10-30. Retrieved 2012-10-30.
12. Heiser, Gernot (December 2007). "Your System is secure? Prove it!" (PDF). ;login:. 2 (6): 35–8.
13. "Working across Multiple Embedded Platforms" (PDF). clarinox. Retrieved 2010-08-17.

Further reading

◾ John Catsoulis (May 2005). Designing Embedded Hardware, 2nd Edition. O'Reilly. ISBN 0-596-00755-8.
◾ James M. Conrad; Alexander G. Dean (September 2011). Embedded Systems, An Introduction Using the Renesas RX62N 

Microcontroller. Micrium. ISBN 978-1935-7729-96.

External links

◾ Embedded Systems course with mbed (https://www.youtube.com/watch?
v=H-OKGOMoCSI&list=PLo7bVbJhQ6qwlDa-R6pz7tA7kPzn1s5Ae) YouTube, 
ongoing from 2015

◾ Trends in Cyber Security and Embedded Systems 
(http://geer.tinho.net/geer.nro.6xi13.txt) Dan Geer, November 2013

◾ Modern Embedded Systems Programming Video Course 
(http://www.youtube.com/playlist?list=PLPW8O6W-
1chwyTzI3BHwBLbGQoPFxPAPM) YouTube, ongoing from 2013

◾ Embedded Systems Week (ESWEEK) (http://www.esweek.org/) yearly event with 
conferences, workshops and tutorials covering all aspects of embedded systems and 
software

◾ Workshop on Embedded and Cyber-Physical Systems Education 
(http://www.emsig.net/conf/2015/wese/), workshop covering educational aspects of embedded systems

Retrieved from "https://en.wikipedia.org/w/index.php?title=Embedded_system&oldid=739707979" 

Categories: Embedded systems

◾ This page was last modified on 16 September 2016, at 13:08.

Pagina 8 di 9Embedded system - Wikipedia, the free encyclopedia

21/09/2016mhtml:file://D:\Corsi\EmbeddedSystems1617\Lectures\00_Overview\EmbeddedSyste...



◾ Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this 
site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia 
Foundation, Inc., a non-profit organization.

Pagina 9 di 9Embedded system - Wikipedia, the free encyclopedia

21/09/2016mhtml:file://D:\Corsi\EmbeddedSystems1617\Lectures\00_Overview\EmbeddedSyste...


