SPACE SW ENGINEERING

Parallel computing on many core
architectures

lleana Cerasani
Centro di Eccellenza DEWS
Universita degli Studi dell’Aquila

26/02/2016

OUTLINE

MacSpace RC64

Ramon Chips Many Task Emulator
ntroduction to SAR

UJse case BAQ

e Parallelization

 Single core execution VS parallel execution
Examples
New project in MTE

MacSpace
RC64

High Speed Multi-Link Channels

Shared Memory

P P P P P P P P P P P P P P P P
P

Scheduler
P

P

Shared Memory

Space Wire DDR3 Memory Controller FLASH Controller

e 64 processors (DSP, IS, DS, LM)
e Scheduler

e Shared memory

e |/O

e Accelerators

e Host control & monitor

RC-MTE
Ramon Chips Many-Task Emulator

MacSpace / RC64 RC-MTE

Scheduler Scheduler

1/0(1/O WV[sW A | A P P P P P P P P
P P P P P P P P

Network to Shared Memory

Shared Memory Shared Memory

Transfers by SW

Memory emulating I/O

RC-MTE

Ramon Chips Many-Task Emulator

MacSpace / RC64

64 processors
Parallel

DSP

Instruction cache (IS)
Data cache (DS)
Local Memory (LM)

Hardware Scheduler
Shared memory (4MB)
/O

Accelerators

Host control & monitor

MTE

1-64 (programmable)
Emulated — serial execution
X86

None

Emulated — managed by MTE
Unlimited

Emulated by application software
(transfers in memory or files)

None

None

Tasks

The MacSpace software architecture implements parallel
computing. In the development environment the
parallelization is realized by using a programming paradigm
based on the concept of “tasks”(TOP Task oriented
programming). The tasks can be of three types:

 Regular: runs on single core;
 Duplicable: runs on many core;
e Dummy: used for flow control.

To communicate each other, the tasks use a shared memory and
implement a system of synchronization with each other.

task.map graphics

YN N sr e

regular dumm
regular dUpI'Cable dummy 8 TASKNAME y
TASKNAME TASKNAME TASKNAME
TASKNAME TASKNAME [QUOTA]
[QUOTA] :
—]
m v \ m i \4
True False True False

OR AND

dummy dummy
TASKN AME-1 TASKN AME-2

OR-AND OR-AND

regular regular
TASKNAME TASKNAME
True False True False

Introduction to SAR

How are images acquired?

SAR (Synthetic Aperture Radar)

This is a remote sensing system, which is used
for earth observation and allows to obtain
high-resolution images from space.

Introduction to SAR

SAR system sends radar pulses laterally. So the radar returns to the
sensor signals that affect the different objects on the ground at
different times. This allows to distinguish objects. The lateral pulses
form the image lines (that is, the size in range). The other image size
(size in azimuth) is formed by the movement and direction of the
sensor, which sends and receives continually the radar pulses.

Use case BAQ

limited storage

4

reduction of the huge amount of acquired data to be stored and
trasmitted

4

it is necessary the data compression

g

Block Adaptive Quantization (BAQ)

Use case BAQ

It was parallelized BAQ algorithm used in a reference project.

The code of the reference project was written specifically for a PowerPC, which
uses the AltiVec library, then it was created a dummy altivec library for the
execution on RC-MTE (Ramon chips Many-Task Emulator).

INPUT: matrix (16x10240) generated by Matlab script
e 10240 bytes 1/Q,
e 5120 I(8 bits) + 5120 Q(8 bits)

BAQ algorithm has been executed with four different compression rate: 8:1, 8:2,
8:3, 8:4.

The BAQ operation will be performed in a block of samples called BAQ block of
256 bytes.

Use case BAQ

There are defined:
e "Quantizer Selection Threshold" (QST) matrix(4x16)

unszigned short Q5T=s[HNumCompressionBatio] [BAOHum(S] ALIGHEDlE =
{

e "Quantizer Threshold" (QT) matrix for each
compression ratio

8:2

unsigned char QT=s 82 [BAQNumQS] ALIGNEDle = {0, C°, 1, 1, 2, 2, 5, 2, . . . ' ' ' ' ¥

12

8:3

Use case BAQ

unsigned char QTs 83 [BAQNumQS] [Coll2] ALIGNEDle =

{

¥’

¥’

¥’

r

r

r

¥’

¥’

¥’

’

r

r

13

Use case BAQ

8:4

un=igned ch
har QTs 84[BAQNum(QS] [Coll] ALIGHE
Dle =

=y — r — ¥ 2] =
- <y =y =]
- - o, &, 127
r —~ r | : :] 127,
- ’ EN) O]
g i 27
L : _f _-.
’ — r = 9 = ! 27,
| ¥’ : .
- ' ' 127
) £y 3 G 7 . .
=y =y :
’ = 2
] -f _-. -
1, 2 z 2] - .
r = o : |
.- 3 _
- r ~Lr - 7
—r . : : i f _;
r =N - : |
—f — | :
-. - r =2y — 2y 27
:) - a! L2
r = ’ =] 7 |
- F —=r = 22
-. i - ' a2 27
<y = - 2 | .
d, 12 2] 20 r
- y LB0, £ 7
] = i o))
3, &] f -
po =y 47 2 25 |
- f - - -
- - y 25, 32 27
.8, 12, 18, 23 I
——f — " &1l
32 - -
. f] -
— i] G f : -
S) i - ' —= 'y
1o, £1 A 37
— f - - 5
)) ’ ’ 20y 27
oy L& =] 26 3 : .
- s 19, 26, 34, 44 =Ta "
i r =3 =g 27
, 15, 23, 32 B
. 23, 32, 42, 54, 7 ,
: - “r 20 7
O op | N 2 35 C - .
p =2y S3p 2 65 : |
- -y o ! - -
o . . o — oy Lap s
r =32y 4 02 T |
- Il D& = ik
- - ’ “F === 27
13, £ Z 57 T S .
= = 26 |
’ <y S0 26
296, 126 27
' I,

Use case BAQ

* Foreach i-th BAQ block it has been calculated the power as follows:
128

POW, = ZEII“I + 10,1

n=1

* It has been found the value of QS (Quantizer Selection) to be used, with a dichotomous search
looking for QSTs values that satisfies the following relation:

for k=0,...,15. POW,; = Q8T,

* It has been found the value of QT to be used. It has been calculated the absolute values of | and Q
samples components and then we made a dichotomous search looking for QTs values that satisfies
the following relations:

|1]<=QTs and |Q|<=QTs

For the Compression Ratio 8:1, the BAQ algorithm extracts as a 1 bit complex output only the sign of
the I and Q samples.

Output [i] = ((masksign & InputSIGN]Ji]) | QT):

Output[i] = (InputSIGN[i] & masksign81):

Parallelization

BAQ-Block 256 bytes = 128 samples 1/Q(8 bits)

It has been parallelized the execution of each 256-bytes BAQ block.

For each “for loop” with k = 16 (Number of transmit satellite positions within the
Synthetic Aperture Time), we have parallelized the computation of 40 BAQ-
Blocks.

(10240 bytes) / (256 bytes) = 40 BAQ-Blocks

e 16 * 40 BAQ-Blocks = 640 total number of BAQ-Blocks

OUTPUT: matrix (16x10240) generated by Matlab script for each compression
ratio.

The implementation of the BAQ algorithm, on both RC-MTE and Matlab, has
provided the same results.

1.2

0.8

0.6

0.4

0.2

Single core execution

Compression Ratio 8:4

0 100000000

200000000 300000000

task.map

regular Input_handler()

regular start._ BAQ(Input_handler)

regular finalizeBAQ(start_ BAQ == 0)

=— RC SCHEDULER_CONFIG_TASK
== |nput_handler

start BAQ
= finalizeBAQ

400000000

BAQ compression happens during the ‘start_BAQ’ task, for about 16M

cycles

17

Parallel execution

Compression Ratio 8:4

45
40
35

30
— RC_SCHEDULER_CONFIG_TASK

25 === |nput_handler
Exec DBF BAQ start
20 = Exec_DBF_BAQ repeat
= finalizeBAG

1a BAQ Elab Block

10
5

—r— 1 1 1 1 11 | piise s 8 i e
0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000 5000000

BAQ compression happens during the ‘BAQ_Elab_Block’ task, for about 3,6M cycles

Chart shows that the BAQ parallel execution has been performed with 12M cycles
less than the BAQ single core execution.

Parallel execution

task.map

#define NumBlockintPI1 41
regular Input_handler()
regular Exec_DBF_BAQ_ start(Input_handler)

duplicable BAQ_Elab Block(Exec_ DBF BAQ_start
| |Exec_DBF BAQ_ repeat==1) NumBlockIntPI1

regular Exec_DBF_BAQ_repeat(BAQ_Elab Block)
regular finalizeBAQ(Exec_DBF_BAQ_repeat==0)

19

 Convolution
M: input matrix(5x5)
Kernel: matrix(3x3)

M

35 |40 |41 45|£
40 |40 |42 (46 |52
42 |46 |50 (55 |55
48 |52 |56 |58 |60
LE |60 |65 ?UE

X

Examples

CIATDI=HMI1-ZT[3-Z1*E[C][C°]+
MI1-I1[31*E[C][1]+
M{I-1][3+1]*E[C][<£]1+
MI1] [3-11*E[1][C]+
MIL][J1*E[I][1]+

I*E[Z][21+

MIi+1][3-11*E[Z] [C]+

M{I+I][D1*E[Z][1]+

MIi+1][J+1]*E[Z][£] ¢

M[1][3+

| ||
0|0 42
] |]
Kernel Output

20

New project in MTE

e Eclipse Project Explorer (EPE)

— Right click>new—2>project, select wizard C/C++—>C/C++
project, NEXT

— Enter project name, select Project type: Makefile:Empty
project, select Toolchains: Linux GCC, Finish

* EPE

— Select the new project, right click=>Import—>General:File
System, NEXT

— Browse /usr/local/ramon-
chips/examples/template_emulator_project (or
pulldown), select Makef1 le, Finish

— May also select task.map, source/source.c

— May also select task.map, source/*.c, *.h from HFS
archive

