
Ada RTS for Avionic 

Multiprocessor Systems and 

Hypervisors

Thales Alenia Space Italy

Center of Excellence DEWS

Università degli Studi dell’Aquila

Dott. Ing. Fausto D’Antonio



2

Outline

• Introduction 

• Ada and Real Time Systems

• Ravenscar Profile

• Ravenscar for Multiprocessor

• Ada RTS and PikeOs 



3

Ada in Real Time Systems

• Ada was developed at the end of 70’s, form Defense 

Department of United States.

• Ada features:

– Subset of deterministic constructs

– Ensure full code analysability

• Ada standards:

– Ada 83

– Ada 95

– Ada 05



Ada RunTime Support

• The language and the run-time support are required to enable 

the programmer to:

– specify times at which actions are to be performed,

– specify times at which actions are to be completed,

– respond to situations where surrounding environment is changing 

dynamically.

• Ada provides three different run-time support profiles:

– Zero Footprint

– Ravenscar

– Ravenscar Extended

4



5

Ravenscar Profile

• Ravenscar profile provide support

– For schedulability analysis

– For other static program verification techniques

• The Ravenscar profile is based on a computation model with 

the following features:

– A single processor.

– A fixed number of tasks.

– A single invocation event per task (either time-triggered or event-

triggered tasks).

– Task interaction only by means of shared data (protected objects) with 

mutually exclusive access.



6

Ravenscar Profile

• Ravenscar Timing Facilities

– Delay Until statement and absolute timing convention

• Ravenscar Policies:

– Task Dispatching Policy: 

FIFO_Within_Priorities

– Protected Object Locking Policy:

Ceiling_Locking



7

Ravenscar: 
Timing Facilities

• Time management in Ravenscar profile:

– Always relative to an Epoch

• delay statement not allowed

• delay until statement allowed

– Epoch will usually be the time at which the system is switched on.

• Ada Time Libraries

– Package Ada.Calendar not allowed

– Package Ada.Real_Time allowed



8

Ravenscar Policies: 
FIFO_within_priorities

• FIFO_within_priorities policy schedules tasks taking into 

account:

– Tasks Priority

– First In First Out 

• Each task has a priority and there is a queue of tasks for each 

priority



9

Ravenscar Policies: 
FIFO_within_priorities

• FIFO_within_priorities policy schedules tasks taking into 

account:

– Tasks Priority

– First In First Out 



10

Ravenscar Policies: 
Priority Inversion Problem

• Priority inversion

– T1, T2, T3 are tasks with p1 > p2 > p3 priorities respectively.

– T1 uses R1 and waits T3 to complete its operation on R1.

– T2 who don’t need R1 preempt T3

– T1 will wait for T2, but T2 has a lower priority.



11

Ravenscar Policies: 
Priority Ceiling Locking

• Priority ceiling

– T1, T2, T3 are tasks with p1 > p2 > p3 priorities respectively.

R1 protected object has pc ceiling priority with pc > p1

– T1 blocks and T3 starts, p3 is raised to pc priority 

– T2 cannot preempt T3, indeed p2 < pc



12

Ravenscar for Multiprocessor

• Multiprocessor system designing main aspects:

– Task scheduling and Priority handling

• Assignment of task to processor

– Communication and synchronization mechanism

– Time keeping

– External Events



13

Ravenscar for Multiprocessor:
Task scheduling and Priority handling

• Each processor implements a preemptive fixed-priority 

scheduling policy with separate and disjoint ready queues

• Each processor executes a statically defined set of tasks

– Static CPU-Task mapping

– Tasks are statically allocated to processors using a new pragma 

(pragma CPU).

• Addition of inter-processor locking mechanisms to allow data 

to be modified from different processor. 

– Internal data in the run-time system

– Other processor’s ready queue



14

Ravenscar for Multiprocessor:
Task synchronization

• As for single processor:

– a maximum of one protected entry per protected object with a simple 

boolean barrier using ceiling locking access.

• When a task waiting on an entry queue is awaken by another 

tasks executing on a different processor than the waiting task, 

we need to use the inter-processor interrupt facility to modify 

the ready queues



15

Ravenscar for Multiprocessor:
Timing Service

• In multiprocessor architectures, hardware support for timing 

services ranges from just a few shared hardware timers for all 

processors to several timers per processor.

– Shared timers provide a common reference for all the tasks in the 

system

• Each processor implements a separate and disjoint delay 

queue

• When a timer expires, it has an effect on the ready and delay 

queues of potentially any processor



16

Ravenscar for Multiprocessor:
Interrupt Handling

• The differences in a multiprocessor system are related to 

mutual exclusion and assignment of interrupts to CPUs

• Assignment of an interrupt to many CPUs

– Runs interruption handling to all assigned CPU.

• Decrease interrupt response time

• Increase timing analysis complexity

• Setting the affinity masks of interrupts to a single processor, 

that may be different for each interrupt, would be the 

recommended approach



17

Ravenscar and PikeOs

• Three scheduler among to chose

– PikeOs Task

– PikeOs Partition

– Ada RTS

• Environment architecture

– One shared RTS

– One RTS for each partition 

Hardware

PikeOs

P1

ADA RTS

P2

ADA RTS

P3

ADA RTS

Hardware

PikeOs

P1 P2 P3

ADA RTS



18

Thank you for your attention!



19

References

• [1] F.Chouteau, J.F. Ruiz – Design And Implementation Of A 

Ravenscar Extension For Multiprocessor – 2011 

• [2] M. Ben-Ari – Ada for Software Engineers – 2005 


