
Introduction to

XtratuM and PikeOS

Danilo Andreetti

Thales Alenia Space Italy

Index

First Part

 Introduction

 XtratuM

 Overview

 Architecture

 PikeOS

 Overview

 Architecture

Second Part

 Developing Process Overview

 Integrator activities

 Application developer

activities

 XtratuM Evironment Setup

 XAL application developer

 Exercise proposed

Introduction

 The concept of partitioned software architectures was developed to

address security and safety issues

 Applications with different safety and security levels can run on the same

hardware, protected from each other by means of software partitioning

 The central design criteria involves isolating modules of the system into

partitions

 Temporal and spatial isolation are the key aspects in a partitioned system

XtratuM is a bare-metal hypervisor that has been designed to achieve

temporal and spatial partitioning for safety critical applications

XtratuM

Overview
Hypervisor

API

Partitions

Scheduling

Health Monitor http://www.xtratum.org/

XtratuM - Fentiss

 HARD REAL TIME

 XtratuM is a hypervisor specially designed for real-time embedded systems

 SAFE AND SECURE VIRTUALIZATION

 XtratuM is a virtualization platform for safety and security critical systems

 MULTIPLE GUEST OPERATING SYSTEMS

 Provides a framework to run several operating systems in a robust partitioned

environment

 HIGHLY PORTABLE

 Supports all important CPU Architectures like x86, PowerPC, ARM, and SparcV8

 CERTIFIABLE

 Designed to be minimal: easy to certify

The XtratuM architecture: Hypervisor

 XtratuM provides virtualisation services to partitions. It is executed in supervisor
processor mode and virtualises the CPU, memory, interrupts, and some specific
peripherals.

 Memory management: XtratuM provides a memory model for the partitions enforcing
the spatial isolation. It uses the hardware mechanisms to guarantee the isolation.

 Scheduling: Partitions are scheduled using a cyclic scheduling policy

 Interrupt management: Interrupts are handled by XtratuM and, depending on the
interrupt nature, propagated to the partitions.

 Clock and timer management

 IP communication: Inter-partition communication is related with the communications
between two partitions or between a partition and the hypervisor.

 Two basic transfer modes are provided: sampling and queuing.

 The hypervisor is responsible for encapsulating and transporting messages

 Health monitor: The health monitor is the part of XtratuM that detects and reacts to
anomalous events or states

 to discover the errors at an early stage

 try to solve or confine the faulting subsystem

The XtratuM architecture: API and Partitions

 API: Defines the para-virtualised services provided by XtratuM. The access
to these services is provided through hypercalls.

 Partitions: A partition is an execution environment managed by the
hypervisor which uses the virtualised services. Each partition consists of:

 one or more concurrent processes that share access to processor resources
based upon the requirements of the application.

 The partition code can be:

 an application compiled to be executed on a bare-machine

 a real-time operating system and its applications

 a general purpose operating system and its applications

 Partitions need to be virtualised to be executed on top of a hypervisor

 Bare applications

 Operating system application

 XtratuM defines two types of partitions: normal and system

The XtratuM Architecture

Scheduling

 XtratuM provides two-levels scheduling scheme, know as hierarchical scheduling

 First Level Scheduling

 XtratuM schedules partitions in a fixed, cyclic basis.

 This policy ensures that one partition cannot utilise the processor for longer than intended to the
detriment of the other partitions.

 The set of time slots allocated to each partition are defined in the XM CF configuration
during the design phase.

 Each partition is scheduled for a time slot defined as a starting time and a duration.

 Within a time slot, XtratuM allocates the processor to the partition

 A cyclic plan consists in a major time frame (MAF) which is periodically repeated.

 The MAF is typically defined as the least common multiple of the periods of the partitions

 Second Level Scheduling

 The partition implements its own scheduling algorithm whenever there are several
concurrent activities whitin the partition it self

 XtratuM is not aware of the scheduling policy used internally on each partition

Example of scheduling plan

 One of the possible cyclic scheduling plan

 The related execution chronogram

Health Monitor

 The health monitor is the part of XtratuM that detects and reacts to anomalous
events or states.

 The purpose of the HM is to discover the errors at an early stage and try to solve or
confine the faulting subsystem in order to avoid a failure or reduce the possible
consequences

 The XtratuM health monitoring system will manage those faults that cannot, or
should not, be managed at the scope where the fault occurs

 The XtratuM HM system is composed of four logical blocks:

 HM event detection:
to detect abnormal states, using logical probes in the XtratuM code

 HM actions:
a set of predefined actions to recover the fault or confine the error

 HM configuration:
to bind the occurence of each HM event with the appropriate HM action

 HM notification:
to report the occurrence of the HM events

Health Monitor

 XtratuM provides a set of actions that can be employed at the first stage,

right when the fault is detected.

 XtratuM implements a default action for each HM event

 The integrator can map an HM action to each HM event using the XML

configuration file

 Once the defined HM action is carried out by XtratuM, a HM notification

message is stored in the HM log. A system partition can then read those log

messages and perform a more advanced error handling

 An example of what can be implemented:

 Configure the hm action to stop the faulting partition, and log the event

 The system partition can resume an alternate one, a redundant dormant

partition

Health Monitor

Health Monitoring Subsystem

 The XtratuM health monitoring subsystem defines four different execution

scopes, depending on which part of the system has been initially affected:

 Process scope: Partition process or thread

 Partition scope: Partition operating system or run-time support

 Hypervisor scope: XtratuM code

 Board scope: Resident software (BIOS, BOOT ROM or firmware)

 There is not a clear and unique scope for each HM event therefore the

same HM event may be handled at different scopes

 fetching an illegal instruction is considered hypervisor scope if it happens when

while XtratuM is executing and partition level if the event is raised while a

partition is running

 XtratuM tries to determine the most likely scope target, and the delivers the

HM to the corresponding upper scope

Traps, Interrupts and Exceptions

 A trap is the mechanism provided by the INTEL x86 processor to implement
the asynchronous transfer of control

 When a trap occurs, the processor switches to supervisor mode and
unconditionally jumps into a predefined handler

 INTEL x86 defines 256 different trap handlers which are contained in a trap
table

 Partitions are not allowed to use (read/write) the trap table  Virtual Trap Table

 The contents of the trap table are exclusively managed by XtratuM

 All native traps jump into XtratuM routines

 The trap mechanism is used for several purposes:

 Hardware interrupts Used by peripherals to request the attention of the processor

 Software traps Raised by a processor instruction; commonly used to implement
the system call mechanism in the operating systems

 Processor exceptions Raised by the processor to inform about a condition that
prevents the execution of an instruction

Traps, Interrupts and Exceptions

Interrupt

 XtratuM only virtualises those hardware peripherals that may endanger the

isolation and leaves to the partitions to directly manage non-critical

devices

 In order to properly manage peripherals, a partition needs to:

 have access to the peripheral control and data registers

 be informed about triggered interrupts

 be able to block (mask and unmask) the associated interrupt line

 A hardware interrupt can only be allocated to one partition

 The partition can then mask and unmask the hardware line

 XtratuM extends the concept of processor traps by adding a 32 additional

interrupt numbers

 used to inform the partition about events detected or generated by XtratuM

PikeOS

Overview

Architecture https://www.sysgo.com/

PikeOS - SYSGO

 HARD REAL TIME

 PikeOS is a hard real time operating system

 SAFE AND SECURE VIRTUALIZATION

 PikeOS is a virtualization platform for safety and security critical systems

 MULTIPLE GUEST OPERATING SYSTEMS

 Virtualization enables multiple Personalities (OS environments, APIs, run-time

environments)

 HIGHLY PORTABLE

 Supports all important CPU Architectures like x86, PowerPC, ARM, MIPS and Sparc

 CERTIFIABLE

 Certifiable according to Highest Safety and Security Standards

PikeOS - SYSGO

 Partitioning allows a software architect to
build multiple partitions on top of the PikeOS
micro-kernel that can host

 real-time operating systems

 run-time environments

 APIs

 Each partition receives its own set of system
resources

 Applications operate completely isolated
and are controlled only by the PikeOS micro-
kernel

 Multiple guest operating systems are able to
safely coexist on a single machine

 Partitioning helps to reduce the amount of
hardware in complex systems

PikeOS Architecture

PikeOS Architecture

 Microkernel contains Architecture Support Package and Platform Support

Package

 Driver Concepts on 3 Levels:

 Application Level

 Loadable System Extensions (PSSW Level)

 Kernel Level implemented in the PSP

 Resource partitions are containers for user applications

 Resources and privileges are statically defined at system integration

 Each partition contains a set of application processes

 Applications are statically linked to personality API libraries

Developing Process Overview
Integrator Activities

Partition Developers Activities

Build Full Application

Integrator activities

 Configure the XtratuM source code

 Customise it for the target board (processor model, etc.) and a miscellaneous set of code
options and limits

 Build XtratuM: hypervisor binary, user libraries and tools

 Distribute the resulting binaries to the partition developers

 Allocate the available system resources to the partitions creating the XML CF file:

 memory areas where each partition will be executed or can use

 design the scheduling plan

 communication ports between partitions

 the virtual devices and physical peripherals allocated to each partition

 configure the health monitoring

 Gather the partition images and customisation files from partition developers

 Pack all the files into the final system image

 resident software, XtratuM binary, partitions, and configuration files

Partition Developer Activities

 Define the resources required by its
application, and send it to the integrator

 Prepare the development environment.
Install the binary distribution created by the
integrator

 Develop the partition application, according
to the system resources agreed by the
integrator

 Deliver to the integrator the resulting partition
image and the required customisation files

Note. All partition developers shall use exactly
the same XtratuM binaries and configuration
files during the development

Development at a glance 1/5

 The first step is to buid the hypervisor binaries. The
integrator shall configure and compile the XtratuM
sources to produce:

 xm core.xef: The hypervisor image which implements the
support for partition execution

 libxm.a: A helper library which provides a “C” interface to
the para-virtualised services via the hypercall mechanism

 xmc.xsd: The XML schema specification to be used in the
XM CF configuration file

 tools: A set of tools to manage the partition images
and the XM CF file

 The result of the build process can be prepared to be
delivered to the partition developers as a binary
distribution

Development at a glance 2/5

 The next step is to define the hypervisor system and resources allocated to

each partition

 This is done by creating the configuration file XM CF file

Development at a glance 3/5

 Using the binaries resulted from the compilation of XtratuM and the system

configuration file, partition developers can implement and test its own

partition code by their own.

Development at a glance 4/5

 The tool xmpack is used to build the complete system (hypervisor plus partitions code)

 The result is a single file called container

Development at a glance 5/5

 The container shall be loaded in the target system using the corresponding
resident software (boot loader)

28 Marzo 2014

Development at a glance 5/5

Building XtratuM

 XtratuM shall be tailored to the hardware available
on the board

 Parameters like the processor model or the memory
layout of the board are configured here

 This configuration parameters will be used to produce
a XtratuM executable image

 The selected choices are stored in two files:

 core/include/autoconf.h

 core/.config

Both files contain the same information but with different
syntax

 Once configured, the next step is to build XtratuM
binaries

XtratuM

Environment Setup
Configures the XtratuM toolchain

Configures the XtratuM core

Configure the Resident Software

Configure the XtratuM Abstract Layer basic partition execution environment

XtratuM Envirnment Setup

 The XtratuM configuration is performed in four steps:

 Configures the XtratuM tool chain

 Configures the XtratuM core

 Configures the Resident Software

 Configures the XAL basic partition execution environment

Configure XtratuM Toolchain

 The xmconfig file defines the target and host compilers for the target

hardware architecture

 A xmconfig.x86 file is provided for the Intel x86 architecture (ARCH=x86)

 $ cp xmconfig.x86 xmconfig

 Running the make menuconfig command in order to configure the utility

 $ make menuconfig

Configure XtratuM Core

 This is the configuration of the XtratuM hypervisor core

Configure the Resident Software and XAL

 The Resident Software is a small boot loader in charge of loading the

XtratuM hypervisor and the partitions

 The XAL layer is a bare runtime targeted to the development of basic C

programming language partitions

XtratuM compilation

 XtratuM is built using the make utility

XtratuM Software Development Kit

 The XtratuM Software Development Kit is a self-contained distribution

containing the components required for XtratuM based development

XtratuM SDK tools

XAL Partition

Development
An overview of the XAL runtime
The “Hello World” distributed in the XM-SDK
The programming of the “Hello World” XAL partition example
Summarises the XAL Partition development process

XAL runtime overview

 The XtratuM Abstract Layer is a minimal C runtime environment

 It provides the following services

 Partition initialisation: Virtual Trap Table, Stack, PartitionMain entry point

 Minimal C library: stdio, stdlib, string

 Additional libraries for trap/IRQ management:

 Individually set traphandlers (InstallTrapHandler)

 IRQ masking

 Internally uses the some hypercall API

XAL Hello World example

/opt/xm −sdk−x86/xal −examples/hello_world

| −− Makefile # A Makefile that automates the build process of the example

| −− partition.c # One or more source code files for the partitions code

| −− xm_cf.x86.xml # The XM_CF XML configuration defining the partitioned system

| −− ...

| −− container.bin # The container with XtratuM, the XM_CF and the partitions

 (created during build)

\−− resident_sw # The Resident SW boot loader together with the container

 (created during build)

XtratuM configuration file

 The configuration file defines the system resources, and how they are

allocated to each partition

The source code

XAL partition programming

 The make utility automates the building of the final system image

 Building of each elements separately in order to explain the build process

step by step:

 Compilation of the partition code

 Compilation of the configuration file

 Build of the Final System image

Compilation of the partition code

 The partition source code hello.c is compiled using the gcc compiler, the

result is the compiled partition in XEF

 Step 1: Compile the sources hello.c as follows

 $ make hello.o

 Step 2: Link the object hello.o to the fixed partition address

 $ make partition1

 Step 3: Build the partition XEF:

 $ make partition1.xef

Compilation of the configuration file

 The XM_CF XML configuration file is compiled using xmcparser

 It creates a compiled version in XEF format of the configuration file after the

XML validation process

 Step 4: Parse and compile the xm_cf XML

 $ make xm_cf.xef.xmc

Build of the Final System Image

 The Resident SW image is a Multi-boot standard compliant bootable kernel

image, that contains a small boot loader plus the self-contained file

container.bin that packs together the following components:

 (1) The XtratuM core, (2) The Partition files, (3) The XM_CF configuration

 Step 5: Pack all the XEF files of the system into a single container

 $ make container.bin

 Step 6: Build the final bootable file with the resident sw and the container

 $ make resident_sw

XAL Development Process Summary

 Compile the C language sources

with the gcc compiler

 Link the compiled object code at

the partition address with the ld

linker

 Build the partition XEF using the

xmeformat tool

 Parse and Compile the XM_CF

XML with the xmcparser tool

 Pack all the system components

using the xmpack tool

 Create the Resident SW image

XtratuM System Execution

 To run the resident SW on the emulator, perform the following steps:

 Create a resident_sw.iso ISO file containing the GRUB boot loader and the

resident SW image:

 $ /opt/xm −sdk−x86/xal/bin/grub_iso resident_sw.iso resident_sw

 Run the resident_sw.iso file on the QEMU emulator sending the UART serial to

stdio:

 $ qemu −cdrom residen_sw.iso −serial stdio

Exercises proposed

 Install of XtratuM SDK

 Integration Project

 Build XtratuM Distribution

 Application Developer Project

 Hello World

 Dual Partition

 Health Monitor

 Change Plan Scheduling

 Intra Partition Communication

Any questions?

Thanks for your attention!
danilo.andreetti@gmail.com

