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Ada in Real Time Systems

• Ada was developed at the end of 70’s, form Defense 

Department of United States.

• Ada features:

– Subset of deterministic constructs

– Ensure full code analysability

• Ada standards:

– Ada 83

– Ada 95

– Ada 05



Ada RunTime Support

• The language and the run-time support are required to enable 

the programmer to:

– specify times at which actions are to be performed,

– specify times at which actions are to be completed,

– respond to situations where surrounding environment is changing 

dynamically.

• Ada provides three different run-time support profiles:

– Zero Footprint

– Ravenscar

– Ravenscar Extended
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Ravenscar Profile

• Ravenscar profile provide support

– For schedulability analysis

– For other static program verification techniques

• The Ravenscar profile is based on a computation model with 

the following features:

– A single processor.

– A fixed number of tasks.

– A single invocation event per task (either time-triggered or event-

triggered tasks).

– Task interaction only by means of shared data (protected objects) with 

mutually exclusive access.
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Ravenscar Profile

• Ravenscar Timing Facilities

– Delay Until statement and absolute timing convention

• Ravenscar Policies:

– Task Dispatching Policy: 

FIFO_Within_Priorities

– Protected Object Locking Policy:

Ceiling_Locking
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Ravenscar: 
Timing Facilities

• Time management in Ravenscar profile:

– Always relative to an Epoch

• delay statement not allowed

• delay until statement allowed

– Epoch will usually be the time at which the system is switched on.

• Ada Time Libraries

– Package Ada.Calendar not allowed

– Package Ada.Real_Time allowed
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Ravenscar Policies: 
FIFO_within_priorities

• FIFO_within_priorities policy schedules tasks taking into 

account:

– Tasks Priority

– First In First Out 

• Each task has a priority and there is a queue of tasks for each 

priority
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Ravenscar Policies: 
FIFO_within_priorities

• FIFO_within_priorities policy schedules tasks taking into 

account:

– Tasks Priority

– First In First Out 
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Ravenscar Policies: 
Priority Inversion Problem

• Priority inversion

– T1, T2, T3 are tasks with p1 > p2 > p3 priorities respectively.

– T1 uses R1 and waits T3 to complete its operation on R1.

– T2 who don’t need R1 preempt T3

– T1 will wait for T2, but T2 has a lower priority.
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Ravenscar Policies: 
Priority Ceiling Locking

• Priority ceiling

– T1, T2, T3 are tasks with p1 > p2 > p3 priorities respectively.

R1 protected object has pc ceiling priority with pc > p1

– T1 blocks and T3 starts, p3 is raised to pc priority 

– T2 cannot preempt T3, indeed p2 < pc
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Ravenscar for Multiprocessor

• Multiprocessor system designing main aspects:

– Task scheduling and Priority handling

• Assignment of task to processor

– Communication and synchronization mechanism

– Time keeping

– External Events
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Ravenscar for Multiprocessor:
Task scheduling and Priority handling

• Each processor implements a preemptive fixed-priority 

scheduling policy with separate and disjoint ready queues

• Each processor executes a statically defined set of tasks

– Static CPU-Task mapping

– Tasks are statically allocated to processors using a new pragma 

(pragma CPU).

• Addition of inter-processor locking mechanisms to allow data 

to be modified from different processor. 

– Internal data in the run-time system

– Other processor’s ready queue
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Ravenscar for Multiprocessor:
Task synchronization

• As for single processor:

– a maximum of one protected entry per protected object with a simple 

boolean barrier using ceiling locking access.

• When a task waiting on an entry queue is awaken by another 

tasks executing on a different processor than the waiting task, 

we need to use the inter-processor interrupt facility to modify 

the ready queues
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Ravenscar for Multiprocessor:
Timing Service

• In multiprocessor architectures, hardware support for timing 

services ranges from just a few shared hardware timers for all 

processors to several timers per processor.

– Shared timers provide a common reference for all the tasks in the 

system

• Each processor implements a separate and disjoint delay 

queue

• When a timer expires, it has an effect on the ready and delay 

queues of potentially any processor
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Ravenscar for Multiprocessor:
Interrupt Handling

• The differences in a multiprocessor system are related to 

mutual exclusion and assignment of interrupts to CPUs

• Assignment of an interrupt to many CPUs

– Runs interruption handling to all assigned CPU.

• Decrease interrupt response time

• Increase timing analysis complexity

• Setting the affinity masks of interrupts to a single processor, 

that may be different for each interrupt, would be the 

recommended approach
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Ravenscar and PikeOs

• Three scheduler among to chose

– PikeOs Task

– PikeOs Partition

– Ada RTS

• Environment architecture

– One shared RTS

– One RTS for each partition 

Hardware

PikeOs

P1

ADA RTS

P2

ADA RTS

P3

ADA RTS

Hardware

PikeOs

P1 P2 P3

ADA RTS
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Thank you for your attention!
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