
Multiple Multiple ProcessorProcessor SystemsSystems

MainlyMainly fromfrom::
ModernModern OperatingOperating SystemsSystems (3th (3th editionedition, 2007), 2007),, A. A. TanenbaumTanenbaum

ChapterChapter 8, 8, Multiple Multiple ProcessorProcessor SystemsSystems
((AvailableAvailable the 4th the 4th editionedition, 2014), 2014)

Luigi PomanteLuigi Pomante
UniversitUniversitàà degli Studi delldegli Studi dell’’AquilaAquila

Center Center ofof ExcellenceExcellence DEWSDEWS

luigi.pomante@univaq.itluigi.pomante@univaq.it



-- 22 --

OverviewOverview

Introduction
Multi-Processor Systems

Main Issues
HW Design Issues

UMA Architectures
NUMA Architectures

SW (SO) Design Issues
OSs Structure
Synchronization
Scheduling



Multiple Processor SystemsMultiple Processor Systems

IntroductionIntroduction



-- 44 --

IntroductionIntroduction

Constant request for more and more processing power…

Processors with higher clock frequency
Physical limitations: size & heat

Multi-Processor Systems
A single computer with n processors

– Past: Number Crunching Machines
– Today: Multi-Core “PCs” (Chip-Level Multiprocessor Systems)

» Processors can be homo/heterogeneous

Multi-Computer Systems
Several cooperating computers

– Main issue: communication
» Sinlge computers can be homo/heterogeneous multiprocessors

Network-on-Chip (Chip-Level Multicomputer Systems)



-- 55 --

IntroductionIntroduction

Different interconnection technologies give rise to different
system architectures

Reference ones
Multi-Processor systems with shared memory
Multi-Computer systems with message passing
Distributed Systems

– Multi-Computer systems connected by a WAN (Wide Area Network)
» Communication times completely change the picture



Multiple Processor SystemsMultiple Processor Systems

MultiMulti--ProcessorProcessor systemssystems withwith sharedshared memorymemory



-- 77 --

MP systems with shared memoryMP systems with shared memory

Main Issues

HW Design Issues

SW (SO) Design Issues



-- 88 --

MP systems with shared memoryMP systems with shared memory

Main Issues
Systems where [2..~1000] CPUs have access to a shared memory

All the processes see the same (physical) address space
They write and read the same memory locations (2..10 ns)

– A processor that perform a STORE and then a LOAD from the same
memory location could find a different value!

» If proper managed, this is the basic mechanism for IPC

Quite complex implementation
Heterogeneous ones could be very difficult to program

– Ad-hoc libraries: MPI/OpenMPI, OpenCL, OpenMP, MCAPI

The main difference in OSs for such systems are related to
Synchronization
Scheduling



-- 99 --

MP systems with shared memoryMP systems with shared memory

HW Design Issues
A relevant difference in the HW architecture is the capability to
access all the memory locations in a uniform way

i.e. Same memory access times

UMA (Uniform Memory Acces) Architectures
– Bus based UMA Architectures
– “Crossbar switch” based UMA Architectures
– “Multi-stage switch networks” based UMA Architectures

NUMA (Not Uniform Memory Access) Architectures



-- 1010 --

MP systems with shared memoryMP systems with shared memory
HW Design HW Design IssuesIssues

Bus based UMA (<~64 CPU)
Single bus without cache (a)

Contest for bus access

Single bus with cache (L1-L2) (b)
Cache coherency issue

– Snooping and Cache Coherency Protocols

Single bus with cache and local memory (c)
Need for specific compilers

– Still UMA for the shared part



-- 1111 --

MP systems with shared memoryMP systems with shared memory
HW Design HW Design IssuesIssues

“Crossbar switch” based UMA (<~k*64 CPU)
Allow to overcome bus limitations

Connections among n CPU and k memories (crosspoint)
– Pro: Non-Blocking Network

» If the required memory module is available

– Cons: crosspoints number grows as n*k



-- 1212 --

MP systems with shared memoryMP systems with shared memory
HW Design HW Design IssuesIssues

“Multi-stage switch networks” based UMA (<~path*64 CPU)
Built by 2x2 switch

Pro: reduced number of switches (Omega Switching Network)
– The number of switches grows as (n/2)log2n

Cons: Blocking Network
– More switches e/o interleaving techniques



-- 1313 --

MP systems with shared memoryMP systems with shared memory
HW Design HW Design IssuesIssues

NUMA Architecture
Needed to have >>100 CPUs

Remote memory accesses are slower than the local ones
– Always based on shared memory with a common (physical) address space

» LOAD/STORE is still the basic communication mechanism

– SW UMA == SW NUMA but with poor performances

Caches could be exploited to improve performance: coeherency!
– NC (Not-Cached) vs CC (Cache-Coherent)

» CC directory-based: implicit message passing transparent to SW



-- 1414 --

MP systems with shared memoryMP systems with shared memory

SW (OS) Design Issues

OSs Structure

Synchronization

Scheduling



-- 1515 --

MP systems with shared memoryMP systems with shared memory
SW (SO) Design SW (SO) Design IssuesIssues

OSs Structure

Each CPU with its own OS (AMP)

Master-Slave OSs

Simmetric Multi-Processing Systems (SMP)

SMP/AMP Hybrid Approaches



-- 1616 --

MP systems with shared memoryMP systems with shared memory
SW (SO) Design SW (SO) Design IssuesIssues

OSs Structure
Each CPU with its own OS (data structures and code, if needed)

Also called Asymmetric Multi-Processing

– Pro
» Simple: private and extensible (physical) address memory space
» Shared I/O resources
» Efficient IPC based on shared memory

– Cons
» No processes sharing: load balancing issue
» No pages sharing: wasteful!
» Coherence issue for I/O device buffers

Initially used for fast porting activities
– Today mainly used for heterogeneous systems



-- 1717 --

MP systems with shared memoryMP systems with shared memory
SW (SO) Design SW (SO) Design IssuesIssues

OSs Structure
Master-Slave OSs

Pro
– Only Master CPU has the OS

» Collects and executes all the system calls
» Schedules and dispacthes all the processes: load balancing
» Pages sharing
» One-only copy of OS data structures and I/O device buffers: coherency

Cons
– The Master CPU becomes a bottleneck with >~5 CPUs



-- 1818 --

MP systems with shared memoryMP systems with shared memory
SW (SO) Design SW (SO) Design IssuesIssues

OSs Structure
Simmetric Multi-Processing Systems (SMP)

Pro
– One-only OS copy executable by all the CPUs

» Each CPU executes its own system calls

– Processes and memory usage is automatically balanced

Cons
– There is the need to access OS (i.e. data structures) in mutual exclusion!

» OS access: bottleneck!

– It is needed to decompose OS in different parts (possible re-entrant) that
can be concurrently accessed

» Very complex!

LOCK



-- 1919 --

MP systems with shared memoryMP systems with shared memory
SW (SO) Design SW (SO) Design IssuesIssues

OSs Structure
SMP/AMP Hybrid Approaches

Take advantage of multicore with a multi-OS software architecture
Stephen Olsen, Wind River Systems - October 6, 2013
http://www.embedded.com/print/4422211



-- 2020 --

MP systems with shared memoryMP systems with shared memory
SW (SO) Design SW (SO) Design IssuesIssues

Synchronization
It is a crucial services to guarantee mutual exclusion

No more sufficient to disable interrupts
No more sufficient to exploit classical instructions like TSL/RMW

– TSL should be able to lock the bus
» Wasteful (spin lock)!

There are several algorithms that try to solve the problem



-- 2121 --

MP systems with shared memoryMP systems with shared memory
SW (SO) Design SW (SO) Design IssuesIssues

Scheduling
It is a bidimensional problem

OS (Master-Slave or SMP) have to decide which task to execute and on 
which CPU to execute it

– Timesharing
– Space Sharing
– Gang Scheduling



-- 2222 --

MP systems with shared memoryMP systems with shared memory
SW (SO) Design SW (SO) Design IssuesIssues

Scheduling
Timesharing

If we not consider task dependencies it is possible to use a single Task 
Table for the whole system

– Each processor, when it becomes free, executes the next ready task



-- 2323 --

MP systems with shared memoryMP systems with shared memory
SW (SO) Design SW (SO) Design IssuesIssues

Scheduling
Timesharing

Pro: simple and load balancing
Cons

– Contention to access Task Table
» Spin lock

– Waste of cache and TLB

Improvements
Smart Scheduling: a task that has locked the bus gets more time
Affinity Scheduling: try to execute a task on the last processor
Two-level Algorithm: a group of task is periodically assigned to a 
processor that manage it with a dedicated structure

– When a CPU is idle takes tasks from others
» Load balancing
» Affinity
» Reduced contention for Task Table



-- 2424 --

MP systems with shared memoryMP systems with shared memory
SW (SO) Design SW (SO) Design IssuesIssues

Scheduling
Space Sharing

k correlated (e.g. that communicate a lot) tasks are assigned to k
available CPUs

– CPU Table concept

At a given point, the CPU set is statically partitioned in groups
– A CPU is assigned to only one task

» No multitasking overhead but possible CPU idling

– Good for batch works where tasks relationships are well known



-- 2525 --

MP systems with shared memoryMP systems with shared memory
SW (SO) Design SW (SO) Design IssuesIssues

Scheduling
Don’t take into account tasks relationships can affect efficiency

Some approaches try to join time/space scheduling in order to
satisfy to teh best tasks relationships



-- 2626 --

MP systems with shared memoryMP systems with shared memory
SW (SO) Design SW (SO) Design IssuesIssues

Scheduling
Gang Scheduling

The goal is to execute at the same time and in an indivisible manner
groups of correlated tasks (called Gang)

– Members of the same Gang are executed by different processors
– Members of the same Gang have the same time slices

» When a quantum expires all the CPU are re-scheduled
» If a task is blocked the related CPU remains idle waiting for the new allocation


