
Layered organization of On Board
Software

Dott. Ing. Giovanni Lisio - Thales Alenia Space Italy

Center of Excellence DEWS
Università degli Studi dell’Aquila

1

Outline

Layered organization of On Board Software:

– On Board Computer and standard HW architecture
– Space Bus : 1553, CAN, SPW
– Boot SW for OBSW (Avionic SW and payload SW)
– Device Drivers for OBSW
– Real-time operating Systems and Run Time Supports
– PUS Services :standard and mission-specific
– On Board managers for Units and Equipments
– OBSW Fault Detection Isolation and Recovery

2

Mean of LAYERED architecture

On Board Computer and standard HW
architecture

On Board Computer and standard HW
architecture

• The present On Board Computer (OBC) which is intended as reference for
different Space Domains.

• Considered mission domains will be
– Science and Earth Observation missions with up to 12 years duration to:

• LEO
• GEO
• Lagrange points
• Interplanetary space

– Telecom missions with up to 15 years lifetime
– Commercial earth observation missions

• Excluded missions are:
– Manned missions
– Launchers
– Military missions

5

• The architecture (ESA SAVOIR reference) :

6

Telecommand

Platform
Telemetry

Time
reference

Security

Reconfiguration

Processing

On-Board
Time

Platform
Data Storage

Safe-Guard
Memory

Essential
TC

Cmd & Ctrl
 Links

Mission
Data Links

TC
CLTUs

Authentication/
Decryption

Encryption

TM
CADUs

Context data,
Boot report

CLCW

TC Segments

TC
Segments

Essential
TM

TM
packets

X

Enable/
Disable

Alarms

Discrete
signals

System
alarms

Time
and
time
tick

Trig

Time tick

TM
packets

TM packets

TC
Segments

Platform
sensors and

actuators

Platform
commanding

Payload
commanding

Data
Concentrator

Sensor and
actuator I/F

Sensor and
actuator I/F

Synchronisation

Payload
Data

 Storage

Instruments incl.
ICUs,

Payload I/F Unit

Payload
Data Routing

X

Platform Payload

TC Segments

TM packets,
files

Time tick

Time

TM
frame
sync

Payload
synchronisation

Payload control

Inter
-PM

Platform
synchronisation

Hot redundant operation

Cold redundant operation

Hot or cold redundant operation

Payload
Telemetry TM

CADUs

Security

Encryption

Payload direct monitoring

PIO

PIO

Time & Tick

Context
Data

On Board Computer and standard HW
architecture

• The reference architecture processor integrates :
– A SPARC V8 processor including a debug module (DSU), a high-performance

FPU (GRFPU), large caches (2 * 64kB) and a MMU
– A CCSDS TC decoder
– A CCSDS TM encoder
– A CCSDS Time Management controller
– A number of * SpaceWire controllers, 2 of them being multiplexed and 7 of

them supporting the RMAP protocol in HW
– 2 * 1553 BC/BM/RT controllers (each exclusive with the CAN controller that

shares pins)
– 2 * CAN controllers (each exclusive with the 1553 controller that shares pins)
– 4 * UART controllers (3 * APB UART and 1 * AHB UART)
– 2 * memory controllers (One dedicated to CPU and one dedicated to the IO

and TMTC modules)
– A Housekeeping module
– An AHB bus monitoring module
– MAP interfaces to cross-strap

7

On Board Computer and standard HW
architecture

• The OBC provide two TC decoders operating in hot redundancy.
• Initiation of TC segments reception

The OBC allow the ASW to receive TC Packets distributed to the PM from
both TC Decoders.

• Handling of received TC segments
The OBC allow the ASW to be notified at the reception of a TC packet
distributed to the PM.

• The OBC allow the ASW to read the following telemetry data from each TC
decoder: FRAME ANALYSIS REPORT

• Value of TC configuration parameters :
The TC parameters shall be:
- Spacecraft ID: <SCID>
- Virtual channel ID, Decoder A <VCIDA>
- Virtual channel ID, Decoder B <VCIDB>

• PM CPDU packets
The OBC allow the ASW to issue CPDU Pulse Commands from the
specified Essential TC Function. 8

On Board Computer and standard HW
architecture

• The OBC provide two Platform TM Encoders operating in cold or warm
redundancy

• The OBC allow ASW to send Real-time TM to the PM Virtual Channel(s) of
the Active Platform TM Encoder, also concurrently to several VCs.

• The OBC allow the ASW to select the Active Platform TM Encoder.
• The OBC provide two PM functions operating in warm or cold

redundancy:It is be possible to select which PM to be Active, and the other
PM Inactive as a consequence, via CPDU Pulse Command accessible
from ground or from the Reconfiguration Unit.

• The PM is able to read and write data to SGM
• The PM receive the time tick used for the software cycle from the OBT

• The PM is able to read and write data and packets to both Platform Data
Storage functions

• Each PM function has a non-volatile memory used for storage of the Boot
Software

9

On Board Computer and standard HW
architecture

• Software Memory and OBT
Each PM has the capability to store two independent software images in re-
writable NVM used for storage of the on-board software.

• The PM function manage a volatile memory for data and software
execution SDRAM.

• All PM memories are protected by suitable ECC depending on the memory
technology.

• OBT : The OBC provides two OBT modules operating in warm redundancy,
so that the absolute time usually not be lost during OBC reconfiguration
based on TIME CODE FORMATS -CCSDS 301.0-B-3

10

On Board Computer and standard HW
architecture

• The Cmd & Ctrl link has one external redundant data link used for
transmitting and receiving messages on the Cmd & Ctrl link platform bus.

• MIL-STD-1553 bus or CAN BUS or SPW
• The OBC provides two hot operating Reconfiguration Unit functions:

The RM handle failuresL3/4 by monitoring alarms from the processing unit
as well as a number of system alarms.
Level 3 is defined as software independent monitoring of the software and
processor (OBC internal) .
Level 4 is defined as software independent monitoring of critical/vital
system functions (external to the OBC)

• OBC is supported externally by the GNSS function, i.e :
– track the L1 frequency of GPS and GALILEO (1575.42 MHz).
– operate with the GPS and GALILEO open service signals.
– operate with the GPS L1 C/A and L1 C signals.
– operate with the GALILEO E1 B+C signals.

11

On Board Computer and standard HW
architecture

Space Bus : 1553, SPW, CAN

Space Bus : 1553

• What a data bus?
A "data bus" is the means of communication that connects two or more users. A
given physical bus - usually electrical conductors - is the means of transmission.
A user (or terminal) may be the one who sends or the one who receives the data,
or both.

• The "data buses" parallel using a physical connection for each binary bit so that
all the bits in a "word" are transmitted simultaneously. For example: the VME
bus, the PCI bus.

• Unlike the parallel buses, the "data buses" serial use a physical connection to
transmit the bits sequentially, opportunely synchronizing transmitter and receiver.

Space Bus : 1553

• A synchronous bus implies a "clock" common that controls transmission and
reception. This clock can be an additional control line, or the data itself can
contain the synchronization information. A "master reference clock" available
to all users of a data bus is an example of synchronous data bus. The
receivers use the master clock to know when each bit starts, while the
transmitters use it to time the transmission.

• A "serial bus" instead operates asynchronously when the transmitter and
receiver use their own oscillator (the same frequency!) And information of
start and stop are contained in each word of the message so that the receiver
knows where each word begins (typical example: UART) .
This is also the case of 1553 bus.

Space Bus : 1553

• Bus multiplexed

It is said that the messages are multiplexed on the data bus when the bus is
used to transmit messages addressed to multiple users. The control of a
multiplexed bus is more complex because it must exist of priority for access
to the bus, the "receiver" address should be added to the message, and the
"receiver" must be able to decode and use only the messages addressed to
him

Space Bus : 1553

• Length of message and acknowledging

The "data buses" can be designed so that each word or composing a
message only or the entire message is "acknowledged". "To recognize" each
word has the advantage that the receiver does not need to know how many
"words" must be received, and the disadvantage that the receiver cannot
detect errors in the "message".

Two methods can be used to determine the length of the message: in the first
transmission of a special sequence of zeros and ones different from any
other data indicating the start and the end of each message. In the second,
which is what is used for the bus 1553 , the sender includes "word count" in
the message and the receiver "acknowledges" the correct reception of the
overall message

Space Bus : 1553

• Word parity

A key feature of the "data buses" is the ability to detect transmission errors so
that the sender can retransmit the message and the receiver may discard
messages that contain errors. The most obvious way to detect errors in each
word of the message is to add a parity bit.
Since in the case 1553 data bus transmits words of the same length, the
addition of a "word parity" bit enables the receiver to check the integrity of
data received independently by recalculating parity, and comparing the result
with that received. In the case in 1553 a "word" is composed of 20 bits (three
of synchronism, sixteen data on which the parity and one parity) is
calculated.

Space Bus : 1553

• In summary:

The "data bus protocol" defines all the actions of both the receiver and
transmitter of messages, including actions to be taken when errors are
detected. The protocol also includes:

– the message formats and words
– the method for the "message acknowledgment"
– special messages that are relevant only to the management of the

data bus

Space Bus : 1553

• In summary:

The Standard MIL - STD -1553 defines a data bus SERIAL
ASYNCHRONOUS on which the messages are multiplexed between users.
The transmission medium is a TWISTED CABLE (twisted wire cable).

The Bus is HALF DUPLEX (i.e. there are not a "interrogation bus" and a
"response bus" as in the case on which they travel separately i.e. OBDH),
and is used by those who have to be transmitted according to the timing
foreseen by the Protocol.

Normally the configuration used is the dual - redundant , two buses 1553
(nominal and redundant , also called bus A and B) connected to the same
terminal.

Space Bus : 1553

• Actors:

There are three types of "communication terminals" that can be attached to a
1553 bus, called by the Standard Bus Controller (BC) , Remote Terminal (RT)
and Monitor (M). The Standard does not define the way in which Bus
Controllers, Remote Terminals and monitors can be interconnected, except:

– the number of Remote Terminals on a single data bus can not
exceed the maximum number of addresses

– the Bus Controller is the single controller of all messages on the
bus .

Space Bus : 1553

• Actors:

All messages and their "transmission rate" are fixed during the system
design. Since the Bus Controller is the only controller, there is no need for
arbitration on the bus and the Bus Controller can "dictate the time"
broadcasting as instructions stored in its memory for controlling
communication and monitor service requests . The bus usually also has
charge controller error analysis and their "management".

In summary , the main function of the Bus Controller is to ensure the flow
control for all transmissions on the bus of which is the only master and must
therefore have sufficient flexibility to be used in many applications . Not for
nothing usually the hardware of the Bus Controller interfaces to a
microprocessor

Space Bus : 1553

• Actors:

Unlike the Bus Controller , the "Remote Terminal" usually in charge of
specific functions and will use the data bus (below the Bus Controller)
control to communicate with other Remote Terminals or with the Bus
Controller itself.

For example , an inertial navigation system can be realized with a remote
terminal that provides position and acceleration data to the "flight control
computer" and to the other tools that need to process them .

The primary role of a remote terminal is therefore to "represent" an interface
to the functions of "equipment" in which it is allowing him to communicate
with others "equipment" connected to the same data bus .

Space Bus : 1553

• Message Formats:

The Standard defines two types of formats : Non-broadcast , or "information
transfer formats" and broadcast or "broadcast information transfer formats".
Both "information transfer formats" are divided into "data communication
messages" and "communication management messages". Each message
uses only "word types" standardized (Command , Status and Data Words).

All formats begin with one or two "command word" transmitted by the Bus
Controller containing the following fields:

– the address of the remote terminal, a number to be used as an
identifier of the message ("subaddress") ,

– the "word count",
– and a field for a bit that is used to indicate whether the data words

to be transmitted or received.

Space Bus : 1553

• Message formats:

The Remote Terminals "gives the OK"
(acknowledge) the message is received by
transmitting a "status word" (only if they
have received an "error-free message
broadcasted") and thus establishing a
"closed loop" with the Bus Controller that
thus, upon receipt of the status Word, "it has
confirmed that the message was
successfully received from the remote
terminal addressed.

Since the Remote Terminals must respond
within a "response time" predetermined by
the Standard , the "response time" is part of
the message format .

Space Bus : 1553

• Message formats:

Figured in the first three (BC-RT, RT-BC and
RT-RT) of the six types of message "non-
broadcast" allowed by the standard are
"information transfer formats", that is used
for a "data communication" "normal".

For the management of a non-normal
broadcast communication, the bus controller
issues commands for:

– request to a remote terminal to
transmit a message (RT-to-BC)

– to originate a message for a remote
terminal (BC-to-RT)

– requiring a remote terminal to
transmit a message, and another to
receive Remote Terminal (RT-to -RT)

Space Bus : 1553

• Error management:

If the hardware of the terminal detects a word or invalid ("invalid word") or a
discontinuity in the transmission, consider the word and the message invalid
("invalid").

The Standard requires that the Remote Terminal suppress the status word if
the message did not pass the "validation" or if the number of words received
does not coincide with the "word count" of "command word".

In both cases, the Remote Terminal sect but does not broadcast "Message
Error bit" in the status word. In this manner the Bus Controller is able to easily
detect the "failure message" if, after waiting the maximum "RT response time",
does not receive the status word.

Space Bus : 1553

• BC-to-RT Receive Message:

In "BC-to-RT receive message" format the Bus Controller transmits a "command
word" with a unique address of Remote Terminal followed by 1 to 32 "date word"
contiguous as specified by the "command word". The remote terminal recognizes
the "command word", its address, and the "word count", to begin to receive the "data
words" to validate them and use them.

After the remote terminal has received completely the message and the "response
time" has elapsed, the remote terminal transmits its "status word" used to indicate
that a valid message has been received. The Bus Controller examines the "status
word" that has been returned and bases its action on the bits received.

Since the Protocol provides that the Remote Terminal suppress the transmission of
the status word if he has not received a valid message, the bus controller will only
have to wait the specified "response time" before originate another message, which
can be a retransmission of the original message or an "error handling message" to
solve the problem.

Space Bus : 1553

• BC-to-RT Transmit Message:

The Bus Controller runs the "BC-to-RT transmit message" when he has to
acquire data from a single remote terminal. After the "response time", the
Remote Terminal addressed selects the required data (based on the
"subaddress" of the command word received) and transmits its status word
followed by the number of data words that the Bus Controller specified in the
command word.

The bus controller receives the status word of the remote terminal and stores
the received data words . The validation of the message from the Bus
Controller is obtained by examining the status words of the remote terminal,
and verifying that the number of data words received coincides with the
"word count" of the command word which transmitted.

Space Bus : 1553

• RT-to-RT Message:

And the most exotic!
The Bus Controller can control at a remote terminal to transmit data and to
another to receive them. The first command word is a "receive command"
("receive" for the Remote Terminal) and serves to prepare the Remote Terminal
addressed to receive the data words.

The next command word, a "transmit command", causes the remote terminal
transmits addressed. As in "BC-to-RT transmit command", the remote terminal
that transmits send its status word followed by the number of contiguous data
words that have been commanded. The Remote Terminal receiving valid
correctness of the message before transmitting its status word. The BC auditor
ago by examining both status words .

Space Bus : 1553

• Non-Broadcast Mode Command Messages:

The Standard also defines the "communication management messages" (called " mode
codes") which are identified by a particular number in the "message identification field"
(subaddress) of the command word. The three types of planned "mode commands" are
to be used to manage the "problems" of a Remote Terminal. In particular, in the non-
broadcast management of "communication" messages, the Bus Controller generates
"mode commands" for:

– control a remote terminal to perform the task that the "mode code" indicates and
transmit its status word and a single word database (RT-to-date with word BC)

– control a Remote Terminal only transmit its status word (RT-to-date word without
BC) and perform the requested operation in "command mode"

– controlling a remote terminal to receive a data word, to convey his status word,
and perform the related operation.

Space Bus : 1553

• Broadcast Messages:

Broadcast messages allow a single terminal to transmit a message to all
terminals.

The Standard defines four broadcast messages: Bus Controller to all Remote
Terminals, single remote terminal to all Remote Terminals, Bus Controller "mode
command" to all Remote Terminals and Bus Controller "mode command" with
data word to all Remote Terminals.

To this end one of the terminal addresses (31 = 11111, the highest) has been
reserved as a "broadcast" address for all terminals.

Space Bus : 1553

• BC Broadcast to RTs

The "BC-to-RTs" message provides for the transmission from the Bus Controller to all
Remote Terminals that have the ability to receive a "broadcast" message (the Standard
does not necessarily require that a remote terminal has the capacity to handle broadcast
messages).
In the case BC-to-RTs, as a result of the command word, which contains the broadcast
address, there are from 1 to 32 words date as specified in the "word count" of the
command word.
If the message is valid, the Remote Terminals will use data broadcast. With broadcast
messages the transmission of status word to the Bus Controller is not (of course)
allowed.
If therefore the Bus Controller must verify that a remote terminal (or all) has successfully
received the message, it must transmit a "non-broadcast mode command" to that
particular remote terminal (or all) to determine the "state" on the reception of previous
message.

Space Bus : 1553

• Broadcast Mode Command Messages:

The Bus Controller, in order to manage the Remote terminal problems, uses two formats
for messages like "broadcast mode code command".

The Bus Controller can transmit the seven "broadcast mode commands" at all Remote
Terminals without data word associated with "Synchronize", "Initiate Self-Test",
"Transmitter Shutdown", "Override Transmitter Shutdown", "Inhibit Terminal Flag", and
"Override Terminal Inhibit Flag" (see below) and three "broadcast mode command" with
data word: "Synchronize with date Word", "Selected Transmitter Shutdown" and
"Override Selected Transmitter Shutdown". The data word contains the information that
the Remote Terminals need in order to execute commands.

The Remote Terminals, on the other hand, receive the "mode command" and perform the
requested function if they are designed to support broadcast messages and have
implemented the decoding of that particular "mode command".

Space Bus : 1553

• Response TIME

Intermessage gap (minimum gap time): 4 µs

Response time TR: 4 µs < TR < 12 µs

Minimum no-response time-out: 14 µs

Space Bus : 1553

• Command, Status, and Data Words

Space Bus : 1553

The "mode codes" (sub addresses 0 to 31) are encode d with 5 bits ("Word Count / Mode Code" field of th e
command word): therefore they are all over 32; Some , however, they are not used (reserved).

36

T/R Bit MODE
CODE

FUNCTION DATA
WORD

BROADCAS
T

1 0 Dynamic Bus Control No No
1 1 Synchronize No No
1 2 Transmit Status Word No No
1 3 Initiate self-test No Yes
1 4 Transmitter Shutdown No Yes
1 5 Override Transmitter Shutdown No Yes
1 6 Inhibit Terminal Flag Bit No Yes
1 7 Override Inhibit Terminal Flag Bit No Yes
1 8 Reset Remote Terminal No Yes
1 9-15 Reserved No TBD
1 16 Transmit Vector Word Yes No
1 17 Synchronize Yes Yes
0 18 Transmit Last Command Yes No
1 19 Transmit BIT Word Yes No
1 20 Selected Transmitter Shutdown Yes Yes
0 21 Override selected Transmitter Shutdown Yes Yes
1 o 0 22-31 Reserved Yes TBD

Space Bus : 1553

Space Bus : 1553, SPW, CAN

Space Bus : CAN

• CANBUS or CAN bus – Controller Area Network bus

• A serial bus system developed to satisfy the following requirements:

– Network multiple microcontrollers with 1 pair of wires.

– Allow microcontrollers communicate with each other.

– High speed, real-time communication.

– Provide noise immunity in an electrically noisy environment.

– Low cost

– Multi-Master Protocol

– Compact

– Twisted Pair Bus line

– 1 Megabit per second

– OSI - Physical and Data link layers

– 1Mbit/s

– Messages contain up to 8 bytes of data

38

Space Bus : CAN

• Advantages of CAN

– Low cost network infrastructure which is often built into microcontrollers.
– Large market segment with broad availability of hardware, software and systems

engineering tools.
– Light weight, low latency, highly deterministic design specifically for real-time

embedded applications.
– Reliable with strong error detection, fault tolerant versions available.
– Flexible and highly configurable with various higher level application protocols.
– Foundation for next generation technology controller area networks.

39

Space Bus : CAN

CAN & International Standards Organization (ISO) Open
Systems Interconnect (OSI) Reference Model

High level CAN Protocols implement Application layer and skip the four intervening layers

Space Bus : CAN

High level CAN Protocols implement Application layers and skip the four intervening layers

ISO 11898 CAN Data Link Layer

ISO 11898 CAN Physical Layer

Application CiA 301 CANopen Application Layer &
Communication Profile

CiA 302 CANopen Framework for CANopen
Managers & Programmable Devices

CiA 4xx Device Profiles

CiA 401
Generic I/O

Profile

CiA 402
Motion Control

Profile

IEC 61131-3
Programmable
Devices Profile

Not Implemented by CAN or CANopen

Space Bus : CAN

42

Space Bus : CAN

• Message Oriented Transmission Protocol:

– Each node – receiver & transmitter
– A sender of information transmits to all devices on the bus
– All nodes read message, then decide if it is relevant to them
– All nodes verify reception was error-free
– All nodes acknowledge reception

One node transmits, all nodes listen and processor data frames selectively.
Message filtering is typically performed in transceiver hardware. This data flow supports a broad range
of network communication models:

1. Master / Slave : All communications initialed by master node
2. Peer-to-Peer : Nodes interact with autonomously with equal authority
3. Producer / Consumer : Producer nodes broadcast (push) messages to Consumer nodes
4. Client / Server : Client nodes request (pull) data from Server nodes

CAN
NODE 1
Receives
Message

CAN
NODE 2
Transmits
Message

CAN
NODE 3
Ignores
Message

CAN
NODE 4
Receives
Message

43

Space Bus : CAN

44

• Up to 1 Mbit/sec.

• Common baud rates: 1 MHz, 500 KHz and 125 KHz
• All nodes – same baud rate

• Max length:120’ to 15000’ (rate dependent)

© esd electronics, Inc. • 525 Bernardston Road • Greenfield, MA 01301

Space Bus : CAN

45

Space Bus : CAN

• Message Format:
– Each message has an ID, Data and overhead
– Data –8 bytes max
– Overhead – start, end, CRC, ACK

46

• Bus Arbitration:

– Arbitration – needed when multiple nodes try to transmit at the same time
– Only one transmitter is allowed to transmit at a time.
– A node waits for bus to become idle
– Nodes with more important messages continue transmitting
– Message importance is encoded in message ID.

Lower value = More important
– As a node transmits each bit, it verifies that it sees the same bit value on the bus that it

transmitted.
– A “0” on the bus wins over a “1” on the bus.
– Losing node stops transmitting, winner continues.

Space Bus : CAN

Space Bus : 1553, SPW, CAN

Space Bus : SPW

48

• SpaceWire is defined in the European Cooperation for Space Standardization
standard ECSS-E-ST-50-12C (replaces ECSS-E50-12A). The SpaceWire standard was
authored by Steve Parkes, University of Dundee with contributions from many individuals
within the SpaceWire Working Group from European Space Agency (ESA), European Space
Industry, Academia and NASA. The standard may be downloaded by following the link below:

• ECSS-E-ST-50-12C (replaces ECSS-E50-12A)
• The SpaceWire Working Group is currently working on additional protocols to operate with

the SpaceWire standard. See the following page for details:
• ECSS-E-ST-50-5x series
• high-speed (2 Mbits/sec to 200 Mbits/sec),
• bi-directional,
• full-duplex.
• Application information is sent along a SpaceWire link in discrete packets. Control and time

information can also be sent along SpaceWire links.
• SpaceWire is defined in the European Cooperation for Space Standardization ECSS-E50-

12A standard.

.

Space Bus : SPW

49

• SpaceWire is a standard for high-speed links and networks for use onboard spacecraft,
easing the interconnection of:

• sensors
• mass-memories
• processing units, and
• downlink telemetry sub-systems.
• SpaceWire is being widely used on many space missions by:
• ESA
• NASA
• JAXA
• CNSA
• SpaceWire equipment is connected together using SpaceWire links which are:
• serial, Information is transferred across a SpaceWire network in distinct packets.

Space Bus : SPW

50

• The format of a packet is:
<Destination Address><Cargo><End_of_Packet>

– Destination Address:
The "Destination Address" is the first part of the packet to be sent and is a list of zero
or more data characters that defines the node on the network for which the packet is
intended. This list of data characters represents either the identity code of the
destination node or the path that the packet will take to get to the destination node.

– Cargo:
The "Cargo" is the data to be transferred from source to destination.

– End of Packet Marker:
The "End_of_Packet" is used to indicate the end of a packet. The data character
following an End_of_Packet is the start of the next packet. There is no limit on the
size of a SpaceWire packet.

Space Bus : SPW

Boot SW for OBSW, an ESA study
example:

Boot SW for OBSW

• The boot SW is required to perform only the minimum configuration actions
regarding the initialization of all HW registers and registration of the
appropriate trap handlers.

• A set of auto-tests has to be implemented as well porting on mandatory
minimal HW resources (CPU through its registers, its IU and FPU units,
CACHE, EDAC and RAM units) and supporting self-testing capabilities.
Other modules like IP cores should be tested if there is no data transfer on
the CPU AHB bus or IO AHB bus. For them, it has to be configured before
the AHBR and APBR bridges in order to address these IP (for accessing
their registers) not connected directly on the CPU AHB bus.

52

• SAVOIR Flight Computer Initialisation Sequence Generic Specification

53

Boot SW for OBSW

• A generic boot software has to be developed which shall be executable
without RTOS support while remaining compatible with ROS needs.

• The Figure presents a global view of interfaces between the Boot SW and
the ASW which contains RTOS kernel + Application user SW.

54

Boot SW for OBSW

• The Boot report containing the health status of the processor module, is
stored in a non-volatile memory (if any, otherwise in RAM) fixed at
compilation time.

If the boot is blocked in a procedure or crashes during the boot phase, the
WDOG initially enabled at compilation time, will reboot the board but no
cross-trapping for this boot software is foreseen.

Moreover, no cold redundancy is foreseen for activating reconfiguration on
a new cold processor module but it should be present in the boot SW
skeleton.

55

Boot SW for OBSW

• The IP cores tested with boot software, i.e could be:
– LEON3FT with its registers and IU, EDAC, CACHE, trap handlers and HW

interrupts.
– GRFPU-FT.

– DSU3 if available with an internal loopback
– RAM through CPU MCTL (Memory controller) & IO MCTL (IO controller).
– MISC – Miscellaneous module with several registers setting HW configuration

at boot time

• The Boot SW is independent from any RTOS and should be adaptable to
the number of CPUs (warm or cold) and configurable for execution directly
on the hardware or within a partition executed over a Virtual Machine
Manager (hypervisor).

56

Boot SW for OBSW

• The Boot SW shall respect a boot software nominal sequence like:
• Perform all processor module initialization (CPU registers, Integer Unit and

FPU units, trap handlers) with refreshing watchdog timer (WDOG) if
enabled

• Disable EDAC Memory and Interrupts
• Perform all processor module self-tests on EDAC, interrupts and caches (if

supporting capabilities and without external data transfer) even if one test
fails o Enable EDAC Memory during memory and data/code/SW image
integrity tests

• Update Boot report at each test result with reporting its progress and
computing a Checksum/CRC for integrity reason

57

Boot SW for OBSW

• Check for an ASW image selection:
– if yes :

• Test ASW image presence in EEPROM

– if no EEPROM,
• RAM area as is

• Copy ASW image from EEPROM to processor RAM
• Test ASW image integrity (with Checksum/CRC)
• Update Boot report
• Execute ASW in processor RAM (RTEMS is now running a user application

and knows the result of the boot report)
– if no or integrity failed:

• Update Boot

58

Boot SW for OBSW

• The Boot SW usually execute steps of the boot software nominal sequence
even in case of failure in self-tests.

• The boot report contains all auto-test results stored in RAM.
• The Boot SW usually generate a boot report.
• The Boot SW usually initialize

– integer unit (IU) processor registers.
– floating point unit (FPU) processor registers.
– on chip other IP registers.

• The Boot SW usually register default trap handler for every trap source.
• The Boot SW usually disable memory EDAC at start-up.

59

Boot SW for OBSW

• The Boot SW usually disable interrupts at start-up and usually clean any
pending interrupts.

• The Boot SW usually set the processor module in a known and stable
configuration before executing the ASW.

• The Boot SW usually test
– the processor functions supporting self-test capabilities such as EDAC,

interrupts and caches
– at least the processor module devices supporting self-test capabilities without

data transfer and used during the execution of Boot SW or ASW such as:
• UART with internal loopback

• The Boot SW usually perform an integrity test (checksum/crc) on the data
and code stored in processor module read-only memories

60

Boot SW for OBSW

• The Boot SW usually perform an integrity test (checksum/crc)
– on the ASW image to be copied from EEPROM to processor RAM.
– on the ASW image in processor RAM after the copy.

• The Boot SW usually enable
– memory EDAC during memory and data/code/SW image integrity tests.
– processor module functions necessary to execute the Nominal Sequence

independently from the result of the related self-tests

• The Boot SW usually reset to 0 the processor module volatile read/write
memories after tests

• The Boot SW usually provide the result of each test in the Boot Report.

61

Boot SW for OBSW

• The Boot SW usually report its progress in the Boot Report right after each
test.

• The Boot SW usually allow to check the integrity of the Boot Report.
• The Boot SW usually register specific trap specific handler for each of the

following trap source:

62

Boot SW for OBSW

− reset
− Write error
− instruction_access_error
− illegal instruction
− privileged_instruction
− fp_disabled
− cp_disabled
− watchpoint_detected
− window_overflow

− window_underflow
− register_hadrware_error
− mem_address_not_aligned
− fp_exception
− cp_exception
− data_access_exception
− tag_overflow
− divide_exception

DEVICE DRIVERS for OBSW, an ESA
study example:

• Driver software or Board Support Package is a set of utilities, which
interface with RTOS system, dedicated to a specific hardware platform, the
OBC processor in this case.

• These software parts are responsible in hardware management and thus,
are dependent to hardware possibilities.

• They are compiled and executed in the system kernel space, so they
interface with RTOS which classified target dependent code into the
following categories:

− CPU dependent
− Board dependent
− Peripheral dependent

DEVICE DRIVERS for OBSW

• According to the OBC processor architecture all driver software
components should manage HW units located inside the OBC processor
such as:

− Fault tolerant CPU based on PM core
− CPU and IO memories through their separated bus
− SpaceWire channels dedicated through different functions
− CAN or 1553 lanes sharing the same physical signals
− CCSDS TM encoder
− CCSDS TC decoder
− CCSDS Time management
− Discrete IO
− Miscellaneous
− UART
− DSU debugging interface
− Timers
− Watchdog
− Interruptions
− Switch Matrix
− JTAG & SCAN

DEVICE DRIVERS for OBSW

• Design Pattern HDSW – Re-entrance:
Each Hardware Handler function shall be reentrant for different channels of
same HW device (e.g. the Hardware Handler shall assure the re-entrance of a
function that manage the channel-1 of SpaceWire controller and another
concurrent function that manage the channel-2 of the same SpaceWire
controller).

• HDSW – Performance when NOT using serial links:
Each Function not exploiting a Serial Link transaction (SPACEWIRE, UART)
should execute within order of microsec, except when not allowed by hw
delays, with the following exceptions:

− when not allowed by hw constraints (e.g. EEPROM writing timing)
− for the driver Initialisation services
− for the hw test services
− for the hw Initialisation services

DEVICE DRIVERS for OBSW

BOARD The BOARD driver is in charge to handle the generic board initialization and the Built-in tests of the
PM Board. The driver includes also the Interrupt retrieve service and the service to reset the
WatchDog signal.

API to implement:
boardGetInterruptOrigin
Trigger Pm Alive Signal
boardSET/GetReg

MEMORY The Memory Interface driver (MEM) shall provide for access to PM BOOT EEPROM TMR, PM EDAC
EEPROM, and PM RAM. The driver also includes the services to perform memory tests.

API to implement:
memBootCheckSumTest / memPmRamTest
memCheckSum
memSgmEepromWrEnable/ Disable
memSgmEePromIsWriteable
memEePROM Write/ Read
memPmRamGetEventsReports (Get the current value of the SEU counter for Single Errors and the last failing address
of SEU and uncorrectable errors)
memPmRamScrub

DEVICE DRIVERS for OBSW

UART The driver provides the interface to handle the to tree full duplex asynchronous receiver transmitters
(UARTs) included in the EN Board (one link supplied by the UT699 LEON3 FT and two links supplied
by the OBC-).
The data format of the UARTs is eight bits. It is possible to choose between even or odd parity, or no
parity, and between one and two stop bits by programming the related registers.

1553 The driver will be used to handle the BC mode the of the 1553 Controller and provides the following
main function:
− Management of single messages;
− Management of sequence of messages;
− Interleaving in a multi-message sequence of a single message;
− Suspension of a multi-message transmission;
− Retry function;
− Interrupt a multi-message transmission if a retry error or a generic error happens.

DEVICE DRIVERS for OBSW

TCM TCM I/F Driver shall provide the functions to manage the incoming TC segments (MAP1 I/F and MAP2
I/F) respectively from the LOCAL Telecommand decoder and from the PARTNER Telecommand Decoder.
The TCM driver exploits the OBC MAP interface.

API to implement:
• tcmGetSegment

TME The driver handles the access to OBC- TME section. Each board provides a TME.
Local and Partner TME will be referenced respectivelly as TME-LOCAL and TME-PARTNER.
The TME driver uses the services provided by the SPACEWIRE TRANSFER MANAGER driver.

API to implement:
• tmeGetBitrate
• tmeSetBitrate
• tmeSendTmBuffer

DEVICE DRIVERS for OBSW

DBM The driver handles the interface towards the DBM housed in the EEPROM SGM.
Local and Partner DBM will be referenced respectively as DBM-LOCAL and DBM-PARTNER.
The DBM is constituted of:
• Static DBM: SGM EEPROM with write protection and inherently protected power transient and system

power fail.
• Dynamic DBM: SRAM with EDAC protection, write protected and power transient protected.

Dynamic DBM and Static DBM each are independently writes protected under Avionic SW control.
Static DBM have an additional write protection which is only enabled through ground command using
HPC1
The DBM driver uses the services provided by the SPACEWIRE TRANSFER MANAGER driver.

OBRT The driver handles the access to the OnBoard Reference Time (OBRT).
Each board provides an OBRT. Local and Partner OBRT will be referenced respectivelly as OBRT-LOCAL
and OBRT-PARTNER.
The OBRT driver uses the services provided by the SPACEWIRE TRANSFER MANAGER driver.

DEVICE DRIVERS for OBSW

RM The driver handles the access to Reconfiguration Module Registers (RM). The driver
shall provide for access to RM EEPROM TMR. Local and Partner RM will be referenced
respectivelly as RM-LOCAL and RM-PARTNER.
The RM driver uses the services provided by the SPACEWIRE TRANSFER MANAGER
driver.

API to implement:
• Configuration of Alarms
• Status Reading

HPC The driver handles the access to CPDU section. Each board provides a CPDU;
Local and Partner HPC2 will be referenced respectivelly as HPC2-LOCAL and HPC2-
PARTNER .
The HPC2 driver uses the services provided by the SPACEWIRE TRANSFER
MANAGER driver.

API to implement:
• ARM / Verify/ FIRE

DEVICE DRIVERS for OBSW

CAN The driver handles CAN Rx/Tx buffers

MUX The driver handles the TC and TM multiplexers in order to manage switching of band.

MM The driver handles the access to Flash Telemetry storing (TMS section). Each board
provides a TMS.
The TMS driver uses the services provided by the SPACEWIRE TRANSFER
MANAGER driver.

API to implement:
• Configuration
• Write / read
• Searches (Specific)
• Download (Specific)

DEVICE DRIVERS for OBSW

• Interrupts:
The processor implements 3 hardware units for interrupt processing.

− LEON3-FT processor.
− ICTL1 primary interrupt controller
− ICTL2 secondary interrupt controller

DEVICE DRIVERS for OBSW

• BCRT53:

The 1553 controller works with a memory area of NKbytes in IO memory.
The address in IO memory depends on the memarea field. The starting address
of the 1553 module memory area is defined by a bit mask .

Each operating mode, BC, RT or BM, implements its proper memory mapping
in its NKbytes areas, dedicated chapters described mapping choices.

The memarea field is set when opening the device. The user must provide the
base address of the module in IO memory (address viewed from the AHB bus).

All addresses presented in this chapter are viewed from the BCRT53 device,
i.e. they are 32b aligned and based on the memarea field of the C53CFReg.

DEVICE DRIVERS for OBSW

• Bus controller operations:

− A cyclical frame is composed of a fixed number of minor frames (N minor
frames).

− Each minor frame is composed of fixed number of message (X messages).
− Each major frame is synchronised on the CYCLE input signal.
− Each minor frame is synchronised on the SLOT input signal.

DEVICE DRIVERS for OBSW

• BCRT53

DEVICE DRIVERS for OBSW

• Implements two CAN instances: CAN 1 and CAN 2, the BSW manages the two
devices. The driver functions receive an enumerated type defining the
requested CAN port.

• The CAN library implements “standard” routines to drive a CAN unit, such as:
− can_init() to initialize all internal data and HW, once initialized the CAN

ports are not accessible, they have to be opened first
− can_open(), this operation allows to acces CAN port in a specified

configuration given by the caller.
− can_close() to close access to a device
− can_read() to read a CAN message.
− can_write() to send a CAN message.

DEVICE DRIVERS for OBSW

Real-time operating Systems and Run
Time Supports

• The primary role of an operating system (OS) is to manage resources so as to
meet the demands of target applications.

• Traditional timesharing operating systems target application environments, that
demand fairness and high resource utilization. Real-time applications on the
other hand demand timeliness and predictability, and the operating systems
targeting these applications meet these demands by paying special attention to
a host of OS features like:

− Multitasking
− Synchronization
− Interrupt and Event Handling
− Input/Output
− Inter-task Communication
− Timers and Clocks
− Memory Management.

Real-time operating Systems and Run
Time Supports

Multitasking:

•It is essential for an RTOS to clearly distinguish between schedulable and non-
schedulable entities. Schedulable entities are typically characterized by a context
(a control block) and can make explicit requests for resources (CPU, memory, I/O),
further they are scheduled by a scheduler.

•The scheduler itself and such entities like interrupt handlers, and most system
calls are non-schedulable by nature.
Often they are characterized by the fact that they can execute continuously,
periodically or in response to events. Further, their use of the CPU is implicit.

Real-time operating Systems and Run
Time Supports

Syncronization:

•It is essential for real time tasks to share mutually exclusive resources (devices,
memory areas, buffers etc), which is also needed for implementing task
dependence (execute statement x in task B after task statement y in task A).

•Traditional solutions using semaphores (and related constructs like monitors,
critical regions) can result in unbounded priority inversion. Priority inversion is said
to occur when a higher priority task is temporarily forced to wait for a lower priority
task. Such inversion of priority can go unbounded when medium priority tasks
preempt the lower priority task (due to lack of resource conflicts).

•Classical solutions to the problem is the simple priority ceiling protocol(PCP)

Real-time operating Systems and Run
Time Supports

• Classical solutions to the problem is the simple priority ceiling protocol (PCP):

Define for each mutex resource "Sk" a ceiling "c(Sk)" asthe maximum between
"p(τi)" priorities of tasks "τi" which may use the mutex

"Sk": c(Sk) = max {p(τi) : τi usa Sk}

Define the maximum ceiling "c(S*)" between resources actually occupied.
c(S*) = max {c(Sk) : Sk occupied}

The τj task entering condition in Sk serction is:
p(τj) > c(S*)

Real-time operating Systems and Run
Time Supports

Interrupt and Event Handling:

•For maximum productivity (and performance) it is important to allow application
developers to, specify and write interrupt handlers (Interrupt Service Routines -
ISRs) for Hardware Interrupts. A significant part of a embedded realtime system
development is writing device drivers, therefore the RTOS should provide low
level control of interrupts through interrupt handlers.

Timers and Clocks:
•All the RTOSs provides good support for timers, time-triggered tasks and clocks.
ROS allow access of clocks at nanosecond resolutions when supported by the
hardware.

Real-time operating Systems and Run
Time Supports

Communication:

•Inter process communication (IPC) in RTOSs is primarily to exchange data on the
same processor, however with an increasing number of real-time systems taking a
more distributed (networked) form of operation some RTOSs allow process
communication between processes resident on different processors.

•Popular forms of IPC include, shared memory, message queues, pipes, FIFOs
(file in file out) and sockets. Desirable properties of IPC mechanisms in the context
of an RTOS include, provision for non-blocking communication, bounded operation
(r/w) latency and asynchronous communication.

Real-time operating Systems and Run
Time Supports

Memory Management:

•Most older RTOSs did not see the need for supporting virtual memory, due to the
lack of an MMU (memory management unit) on the processor and, due to the
nondeterminism introduced by it. However, most modern processors (with the
exception of small embedded processors) come with a programmable MMU.

•Dynamic memory allocation allows programming flexibility but introduces the
overhead of garbage collection. Therefore, calls to malloc can block due to
unavailability of memory. Several of the RTOSs allow restricted use of dynamic
memory allocation, forbidden in space application!

Real-time operating Systems and Run
Time Supports

RTEMS is composed by
three main components, as
depicted in Figure:

•RTEMS API
•RTEMS Core
•RTEMS BSP

Real-time operating Systems and Run
Time Supports

The RTEMS Classic APIs considered in the RTEMS Tailored version are:

•Clock Manager : Provides support for time of day and other time related capabilities.
•Timer Manager : Provides support for timer facilities.
•Event Manager : Presents a high performance method of inter-task communication and
synchronization.
•Message Queue Manager : Makes available communication and synchronization
capabilities using RTEMS message queues.
•Semaphore Manager : This manager uses the standard counting semaphores to provide
synchronization and mutual exclusion capabilities.
•Rate Monotonic Manager: Provides facilities to implement tasks which execute in a
periodic fashion.
•I/O Manager: The Input/Output interface manager provides a well defined mechanism for
accessing device drivers and a structured methodology for organizing device drivers.
•Fatal Error Manager: Processes all fatal or irrecoverable errors.

Real-time operating Systems and Run
Time Supports

Real-time operating Systems and Run
Time Supports

The RTEMS
scheduling flow:

The RTEMS Classic APIs considered in the RTEMS Tailored version are:

•Initialization Manager : Responsible for initiating and shutting down RTEMS. Initiating
RTEMS involves creating and starting all configured initialization tasks and invoking the
initialization routine for each user-supplied device driver. In a multiprocessor configuration, this
manager also initializes the inter-processor communications layer.

•Task Manager : Provides a comprehensive set of directives to create, delete, and administer
tasks.

•Interrupt Manger : Any real time executive must provide a mechanism for quick response to
externally generated interrupts to satisfy the critical time constraints of the application. The
interrupt manager provides this mechanism for RTEMS. This manager permits quick interrupt
response times by providing the critical ability to alter task execution which allows a task to be
preempted upon exit from an ISR.

Real-time operating Systems and Run
Time Supports

Safety-Critical for high-reliability / safety-critical embedded application.

•Using run-time capability, you can specify any level of support for Ada's
dynamic features, from none at all to the full Ada 95, Ada 2005, Ada 2012
language versions.

•The units included in the library may be either a subset of the standard units
provided with GNAT, or they may be specially tailored to the application. This
capability is useful, for example, if one of the predefined profiles provides
almost all the features needed to adapt an existing system to new safety-
critical requirements, and where the costs of adaptation without the additional
features are considered prohibitive.

Real-time operating Systems and Run
Time Supports

Safety-Critical for high-reliability / safety-critical embedded application.

•GNAT Pro Safety-Critical is an enhanced version of GNAT, designed for
building high-reliability software. It has many features that help to reduce the
cost of developing systems that have to conform to Space standards such as
ECSS-E-ST-40C (Space Engineering, Software) and ECSS-Q-ST-80C (Space
Product Assurance, Software) and other Mission critical standards. Key to
achieving this goal is the product’s fully configurable and customizable run-
time library.

•Ada Development Environment for the ERC32 / LEON Platforms GNAT Pro is
Ada/C solution for the ERC32 / LEON processors. It provides a complete Ada
development environment, oriented towards the needs of space systems with
stringent memory constraints and is particularly suited for the development of
safety-critical applications.

Real-time operating Systems and Run
Time Supports

Safety-Critical for high-reliability / safety-critical embedded application.

•GNAT Pro for ERC32 / LEON supplies a fully configurable and customizable
run-time library and implements several predefined run-time profiles:

• The Zero Footprint (ZFP) profile defines an Ada language subset that does
not require any Ada run-time routine thus reducing the memory footprint to
user code only.

• The Ravenscar Small Footprint profile fully implements the Ada 2005
Ravenscar tasking profile on top of ZFP. The restriction of tasking facilities
allows the program to be predictable and makes it possible to meet stringent
requirements for the purposes of certification.

• The Ravenscar Extended profile adds features such as exception handling,
stack overflow checking, dynamic memory management, and stack
tracebacks for lower levels of criticality.

Real-time operating Systems and Run
Time Supports

RAVENSCAR:

•The tasking restrictions introduced by Ravenscar keep the run-time
implementation to the minimum and thus meet the requirements of certification
to the highest level. These profiles answer the need for concurrency in safety-
critical projects and let them benefit from static schedulability analysis that can
be performed when Ravenscar restrictions are in place.

•The HIE product allows the user to tailor the run-time library so that it reflects
exactly the support needed for the features that are used. This results in
executables that are smaller and that are easier to certify (e.g., no “dead” code
in the run-time library).

Real-time operating Systems and Run
Time Supports

RAVENSCAR:

•The general idea is that a profile is equivalent to a set of configuration
pragmas. In the case of Ravenscar the pragma is equivalent to the joint effect
of the following pragmas:

pragma Task_Dispatching_Policy(FIFO_Within_Priorities);
pragma Locking_Policy(Ceiling_Locking);
pragma Detect_Blocking;

•The pragma Detect_Blocking, as its name implies, ensures that the
implementation will detect a potentially blocking operation in a protected
operation and raise Program_Error. Without this pragma the implementation is
not required to detect blocking and so tasks might be locked out for an
unbounded time and the program might even deadlock.

Real-time operating Systems and Run
Time Supports

pragma Restrictions(
No_Abort_Statements,
No_Dynamic_Attachment, --means that there are no calls of the operations in the package Ada.Interrupts
No_Dynamic_Priorities, --there is no dependence on the package Ada.Priorities, you cannot read as well as not write the priorities
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects, --protected objects can only be declared at library level and the identifier
No_Local_Timing_Events,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Specific_Termination_Handlers,
No_Task_Allocators,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers,
Max_Entry_Queue_Length => 1, only one call is permitted at a time on an entry queue of a protected object
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Dependence => Ada.Asynchronous_Task_Control,
No_Dependence => Ada.Calendar,
No_Dependence => Ada.Execution_Time.Group_Budget,
No_Dependence => Ada.Execution_Time.Timers,
No_Dependence => Ada.Task_Attributes

);

Real-time operating Systems and Run
Time Supports

Data Pools concept

The Common Data Pool has been defined in the Application Services layer as unified
mechanism for logical
access to memory locations. This mechanism, referred to as the “Data Pool”, exploits a
strong synergy with the TM/TC interface but is also used for intertask communication.

A “Data Pool” shall be composed of:
A memory area containing the data, logically organised in parameters. These are
associated with “Tags”, also used when the parameter is referred in the TM/TC
interface with Ground.
An auxiliary data structure containing the mapping between the logical parameter
name (the Tag) and the physical address and size of the parameter.

Real-time operating Systems and Run
Time Supports

Data Pools concept

The applicative SW functions and the Pus Services use the Data Pools mechanism:
• In the housekeeping and diagnostic function, the content of the packets is defined

as a list of parameter Tags;
• Monitoring of parameters is specified in terms of parameter Tags;
• Logical PM memory Load, Dump on MMS Service operations are specified using

parameter Tags;
• Intertask communication may be performed via functions:

readTag
writeTag
readTagLen
setDataPoolValidity

Real-time operating Systems and Run
Time Supports

Data Pools concept

Real-time operating Systems and Run
Time Supports

Token concept
The TC dispatching function shall provide a mechanism for exchanging telecommand

packets between SW functions.
This will be based on a network of queues, where lightweight data structures (referred
to as "tokens") are moved. The token contains a reference to a "TC buffer" which
contains the actual telecommand packet. The token may also contain other ancillary
information:

Pointer to the next/prev token of the Queue
Pointer to the next/prev token in a sequence belonging to the same list father

(this pointer allows to rebuild the whole sequence of TCs belonging to the
same list)

Pointer to the next /prev token in a sequence belonging to the same PID
Pointer to the next/prev token in a sequence belonging to the same Sub-

Schedule
Pointer to the TC Buffer
TC Buffer displacement (meaningful if there are more than one token with the

same tc_buffer_ptr)

Real-time operating Systems and Run
Time Supports

The basic TC token operations are reported
below:

getNumFreeToken - to get the number of available
free tokens.

getTokenOnFreePoll - to get a token from the free
token pool.

releaseTokenOnFreePool - to release a token and
the associated TC Packet. The token is inserted
in a pool of free token.

getPtrTc - to get the pointer to the TC packet
carried by the token.

getPtrToken - to get the address of the first token in
a token queue.

moveToken - to move the token from a queue to
another one.

tcTokenDispatch - to insert the token in a specific
queue.

Real-time operating Systems and Run
Time Supports

PUS Services: standard and mission-specific

ASW Layers – Application Services

• PUS Services
– Designed according to

ECSS-E-70-41A, with
tailoring and extensions
based on S1-RS-ESA-
SY-0006.

• Mission Services
– Mission-dependent

Services which are not
explicitly defined in
ECSS-E-70-41A and
S1-RS-ESA-SY-0006
and that provide a set
of application support
functions also used by
the PUS Services.

Applications

S/C OBSW::ASW::Application Services::PUS Services

S/C OBSW::ASW::Application Services::Mission Servic es

S/C OBSW::ASW::Basic
Services::Basic Utilities &

Services::BUSV

Application Services Layer

ASW Layers – Application Services

PUS #1 Telecommand Verification Service TVS

PUS #2 Device Command Distribution Service DCDS

PUS #3 Housekeeping & Diagnostic Data Reporting
Service

HDDR

PUS #4 Parameter Statistics Reporting Service PSRS

PUS #5 Event Reporting Service ERS

PUS #6 Memory Management Service MMS

PUS #8 Function Management Service FMS

PUS #9 Time Management Service TMS

PUS #11 On-board Operations Scheduling Service OOSS

PUS #12 On-board Monitoring Service OMS

ASW Layers – Application Services

PUS & Mission Services (1 of 2)

PUS #13 Large Data Transfer Service

PUS #14 Packet Forwarding Control Service PFCS

PUS #15 On-board Storage and Retrieval Service OSRS

PUS #17 Test Service TS

PUS #18 On-board Operations Procedure Service OPS

PUS #19 Event-Action Service EAS

MIS #128 System Log management Service SLMS

MIS #129 Data Pool Management Service DPMS

MIS #130 On-board Command Database Management
Service

CDMS

…

ASW Layers – Application Services

PUS & Mission Services (2 of 2)

PUS_TVS

S/C OBSW::ASW::Basic Services::Basic Utilities
& Services::BUSV

S/C OBSW::ASW::Machine Services::Operating
System & Ada Run-time::Scheduler

S/C OBSW::Software Architectural Entity
Template::SWAE

S/C OBSW::ASW::Application Services::PUS
#14 Packet Forwarding Control

Service::PUS_PFCS

S/C OBSW::ASW::Application Services::PUS
#19 Event-action Service::PUS_EAS

S/C OBSW::ASW::Application Services::PUS
#11 On-board Operations Scheduling

Service::PUS_OOSS

Ground TC packets

1

1

Ground TC packets

trigger

1 1

trigger

dispatched TC packets

1..*

1

dispatched TC packets

PUS_TVS TM packets
1

1

PUS_TVS TM packets

event-related TC packets

1

1

event-related TC packets

expired TC packets
1 1

expired TC packets

The PUS_TVS class is in charge of
dispatching the TC packets to the
SWAEs representing the applications,
and the others PUS services and
mission services.

ASW Layers – Application Services

PUS Service #1: TC Verification Service (TVS) [Context]

Service Request, Report, or Capability Subtype

Telecommand Acceptance Report – Success TM (1, 1)

Telecommand Acceptance Report – Failure TM (1, 2)

Telecommand Execution Started Report – Success TM (1, 3)

Telecommand Execution Started Report – Failure TM (1, 4)

Telecommand Execution Progress Report – Success TM (1, 5)

Telecommand Execution Progress Report – Failure TM (1, 6)

Telecommand Execution Completed Report – Success TM (1, 7)

Telecommand Execution Completed Report – Failure TM (1, 8)

ASW Layers – Application Services

PUS Service #1: TC Verification Service (TVS) [Functions]

PUS_DCDS

S/C OBSW::ASW::Machine
Services::Operating System & Ada

Run-time::Scheduler

S/C OBSW::ASW::Basic Services::Basic Utilities
& Services::BUSV

S/C OBSW::ASW::Application Services::PUS
#14 Packet Forwarding Control

Service::PUS_PFCS

S/C OBSW::ASW::Application Services::PUS #01
Telecommand Verification Service::PUS_TVS

trigger

1

1

trigger

register data, commands

1

1

register data, commands

PUS_DCDS TM packets

1

1PUS_DCDS TM packets

PUS_DCDS TC packets

1

1
PUS_DCDS TC packets

ASW Layers – Application Services

PUS Service #2: Device Command Distribution Service (DCDS) [Context]

Service Request, Report, or Capability Subtype

Distribute On/Off Commands TC (2, 1)

Distribute Register Load Commands TC (2, 2)

Distribute CPDU Commands TC (2, 3)

ASW Layers – Application Services

PUS Service #2: Device Command Distribution Service (DCDS) [Functions]

PUS_HDRS

S/C OBSW::ASW::Application Services::PUS
#01 Telecommand Verification

Service::PUS_TVS

S/C OBSW::ASW::Application Services::PUS
#14 Packet Forwarding Control

Service::PUS_PFCS
S/C OBSW::ASW::Machine

Services::Operating System & Ada
Run-time::Scheduler

S/C OBSW::ASW::Application Services::MIS
#129 Data Pool Management

Service::MIS_DPMS

S/C OBSW::ASW::Application Services::PUS
#09 Time Management Service::PUS_TMS

PUS_HDRS TC packets

1

1 PUS_HDRS TC packets

PUS_HDRS TM packets
1

1

PUS_HDRS TM packets

trigger
1

1

trigger

on-board data

1

1

on-board data

on-board time

1

1

on-board time

ASW Layers – Application Services

PUS Service #3: Housekeeping and Diagnostic Data Reporting Service (HDRS)
[Context]

Service Request, Report, or Capability Subtype

Define New Housekeeping Parameter Report TC (3, 1)

Define New Diagnostic Parameter Report TC (3, 2)

Clear Housekeeping Parameter Report Definitions TC (3, 3)

Clear Diagnostic Parameter Report Definitions TC (3, 4)

Enable Housekeeping Parameter Report Generation TC (3, 5)

Disable Housekeeping Parameter Report Generation TC (3, 6)

Enable Diagnostic Parameter Report Generation TC (3, 7)

ASW Layers – Application Services

PUS Service #3: Housekeeping and Diagnostic Data Reporting Service (HDRS)
[Functions (1 of 3)]

Service Request, Report, or Capability Subtype

Disable Diagnostic Parameter Report Generation TC (3, 8)

Report Housekeeping Parameter Report Definitions,
Housekeeping Parameter Report Definitions Report

TC (3, 9)
TM (3, 10)

Report Diagnostic Parameter Report Definitions, Diagnostic
Parameter Report Definitions Report

TC (3, 11)
TM (3, 12)

Report Housekeeping Parameter Sampling-Time Offsets,
Housekeeping Parameter Sampling-Time Offset Report

TC (3, 13)
TM (3, 15)

Report Diagnostic Parameter Sampling-Time Offsets,
Diagnostic Parameter Sampling-Time Offset Report

TC (3, 14)
TM (3, 16)

Select Periodic Housekeeping Parameter Report Generation
Mode

TC (3, 17)

ASW Layers – Application Services

PUS Service #3: Housekeeping and Diagnostic Data Reporting Service (HDRS)
[Functions (2 of 3)]

Service Request, Report, or Capability Subtype

Select Periodic Diagnostic Parameter Report Generation
Mode

TC (3, 18)

Select Filtered Housekeeping Parameter Report Generation
Mode

TC (3, 19)

Select Filtered Diagnostic Parameter Report Generation Mode TC (3, 20)

Report Unfiltered Housekeeping Parameters, Unfiltered
Housekeeping Parameters Report

TC (3, 21)
TM (3, 23)

Report Unfiltered Diagnostic Parameters, Unfiltered
Diagnostic Parameters Report

TC (3, 22)
TM (3, 24)

Housekeeping Parameter Report TM (3, 25)

Diagnostic Parameter Report TM (3, 26)

ASW Layers – Application Services

PUS Service #3: Housekeeping and Diagnostic Data Reporting Service (HDRS)
[Functions (3 of 3)]

PUS_PSRS

S/C OBSW::ASW::Application Services::PUS #01
Telecommand Verification Service::PUS_TVS

S/C OBSW::ASW::Application Services::PUS
#14 Packet Forwarding Control

Service::PUS_PFCS

S/C OBSW::ASW::Machine Services::Operating
System & Ada Run-time::Scheduler

S/C OBSW::ASW::Application Services::MIS
#129 Data Pool Management Service::MIS_DPMS

PUS_PSRS TC packets

1

1 PUS_PSRS TC packets

PUS_PSRS TM packets

1

1
PUS_PSRS TM packets

trigger

1

1
trigger

on-board data

1

1

on-board data

ASW Layers – Application Services

PUS Service #4: Parameter statistics reporting Services (PSRS) [Context]

Service Request, Report, or Capability Subtype

Report Parameter Statistics, Parameter Statistics Report TC (4, 1)
TM (4, 2)

Reset Parameter Statistics Reporting TC (4, 3)

Enable Periodic Parameter Statistics Reporting TC (4, 4)

Disable Periodic Parameter Statistics Reporting TC (4, 5)

Add Parameters to Parameter Statistics List TC (4, 6)

Delete Parameters from Parameter Statistics List TC (4, 7)

Report Parameter Statistics List, Parameter Statistics List
Report

TC (4, 8)
TM (4, 9)

Clear Parameter Statistics List TC (4, 10)

ASW Layers – Application Services

PUS Service #4: Parameter statistics reporting Services (PSRS) [Functions]

PUS_ERS

S/C OBSW::ASW::Application Services::PUS
#01 Telecommand Verification

Service::PUS_TVS

S/C OBSW::ASW::Application Services::PUS #14
Packet Forwarding Control Service::PUS_PFCS

S/C OBSW::Software Architectural Entity
Template::SWAE

PUS_ERS TC packets

1

1 PUS_ERS TC packets

PUS_ERS TM packets

1

1

PUS_ERS TM packets

reports

1

1..*

reports

No trigger by the scheduler.

ASW Layers – Application Services

PUS Service #5: Event Reporting Services (ERS) [Context]

Service Request, Report, or Capability Subtype

Normal/Progress Report TM (5, 1)

Error/Anomaly Report - Low Severity TM (5, 2)

Error/Anomaly Report - Medium Severity TM (5, 3)

Error/Anomaly Report - High Severity TM (5, 4)

Enable Event Report Generation TC (5, 5)

Disable Event Report Generation TC (5, 6)

ASW Layers – Application Services

PUS Service #5: Event Reporting Services (ERS) [Functions]

PUS_MMS

S/C OBSW::ASW::Application Services::PUS #01
Telecommand Verification Service::PUS_TVS

S/C OBSW::ASW::Application Services::PUS #14
Packet Forwarding Control Service::PUS_PFCS

S/C OBSW::ASW::Machine
Services::Operating System & Ada

Run-time::Scheduler

S/C OBSW::ASW::Basic Services::Basic Utilities
& Services::BUSV

PUS_MMS TC packets

1

1
PUS_MMS TC packets

PUS_MMS TM packets

1

1PUS_MMS TM packets

patch data
dump data

1

1

patch data
dump data

trigger
1

1

trigger

This service needs a periodic trigger to be able to manage long patch/dump operations.

ASW Layers – Application Services

PUS Service #6: Memory Management Service (MMS) [Context]

Service Request, Report, or Capability Subtype

Load Memory using Base plus Offsets TC (6, 1)

Load Memory using Absolute Addresses TC (6, 2)

Dump Memory using Base plus Offsets, Memory Dump
using Base plus Offsets Report

TC (6, 3)
TM (6, 4)

Dump Memory using Absolute Addresses, Memory Dump
using Absolute Addresses Report

TC (6, 5)
TM (6, 6)

Check Memory using Base plus Offsets, Memory Check
using Base plus Offsets Report

TC (6, 7)
TM (6, 8)

Check Memory using Absolute Addresses, Memory
Check using Absolute Addresses Report

TC (6, 9)
TM (6, 10)

Dump Mass Memory using Base plus Offset. TC (6, 128)
TM (6, 129)

Dump Mass Memory using Absolute Addresses. TC (6, 130)
TM (6, 131)

ASW Layers – Application Services

PUS Service #6: Memory Management Service (MMS) [Functions]

• PUS Service #8 is distributed among applications.
• The service will be tailored to the specific application functions

ASW Layers – Application Services

PUS Service #8: Function Management Service (FMS)

PUS_TMS

S/C OBSW::ASW::Application Services::PUS #01
Telecommand Verification Service::PUS_TVS

S/C OBSW::ASW::Application Services::PUS
#14 Packet Forwarding Control

Service::PUS_PFCS S/C OBSW::ASW::Machine
Services::Operating System & Ada

Run-time::Scheduler

S/C OBSW::ASW::Basic Services::Basic Utilities
& Services::BUSV

S/C OBSW::Software Architectural Entity
Template::SWAE

PUS_TMS TC packets

1

1 PUS_TMS TC packets

PUS_TMS TM packets

1

1

PUS_TMS TM packets

trigger
1

1

trigger

time

1

1

time

on-board time

1

1..*

on-board time

ASW Layers – Application Services

PUS Service #9: Time Management Service (TMS) [Context]

Service Request, Report, or Capability Subtype

Change Time Report Generation Rate TC (9, 1)

Time Report TM (9, 2)

Add Delta Time to On-board Time. TC (9, 128)

ASW Layers – Application Services

PUS Service #9: Time Management Service (TMS) [Functions]

S/C OBSW::ASW::Application Services::PUS
#01 Telecommand Verification

Service::PUS_TVS

S/C OBSW::ASW::Application Services::PUS #14
Packet Forwarding Control Service::PUS_PFCS

S/C OBSW::ASW::Application Services::PUS #09
Time Management Service::PUS_TMS

S/C OBSW::ASW::Machine
Services::Operating System & Ada

Run-time::Scheduler

PUS_OOSS

S/C OBSW::ASW::Application Services::MIS #130
On-board Command Database Management

Service::MIS_CDMS

S/C OBSW::ASW::NM Applications::NM Attitude &
Orbit Control::NM_AOCN

trigger1

1

trigger

PUS_OOSS TC packets

expired TC packets

1

1 PUS_OOSS TC packets

expired TC packets

PUS_OOSS TM packets

1

1PUS_OOSS TM packets

on-board time

1

1
on-board time

1

1

spacecraft position

1

1

spacecraft position

ASW Layers – Application Services

PUS Service #11: On-board Operations Scheduling Service (OOSS) [Context]

Service Request, Report, or Capability Subtype

Enable Release of Time-Tagged Telecommands TC (11, 1)

Enable Release of Position-Tagged Telecommands TC (11, 128)

Disable Release of Time-Tagged Telecommands TC (11, 2)

Disable Release of Position-Tagged Telecommands TC (11, 129)

Reset Time-Tagged Schedule TC (11, 3)

Reset Position-Tagged Schedule TC (11, 130)

Insert Telecommands in Time-Tagged Schedule TC (11, 4)

Insert Telecommands in Position-Tagged Schedule TC (11, 131)

ASW Layers – Application Services

PUS Service #11: On-board Operations Scheduling Service (OOSS)
[Functions 1 of 5]

Service Request, Report, or Capability Subtype

Delete Telecommands from Time-Tagged Schedule TC (11, 5)

Delete Telecommands from Position-Tagged Schedule TC (11, 132)

Delete Telecommands over Time Period TC (11, 6)

Delete Telecommands over Position Interval TC (11, 133)

Time-Shift All Telecommands TC (11, 15)

Position-Shift All Telecommands

Time-Shift Selected Telecommands TC (11, 7)

Position-Shift Selected Telecommands

ASW Layers – Application Services

PUS Service #11: On-board Operations Scheduling Service (OOSS)
[Functions 2 of 5]

Service Request, Report, or Capability Subtype

Time-Shift Selected Telecommands over Time Period TC (11, 8)

Position-Shift Selected Telecommands over Position
Interval

Report Time-Tagged Command Schedule in Detailed
Form, Detailed Time-Tagged Schedule Report

TC (11, 16)
TM (11, 10)

Report Position-Tagged Command Schedule in
Detailed Form, Detailed Position-Tagged Schedule
Report

TC (11, 143)
TM (11, 137)

Report Subset of Time-Tagged Command Schedule in
Detailed Form, Detailed Time-Tagged Schedule Report

TC (11, 9)
TM (11, 10)

Report Subset of Position-Tagged Command Schedule
in Detailed Form, Detailed Position-Tagged Schedule
Report

TC (11, 136)
TM (11, 137)

ASW Layers – Application Services

PUS Service #11: On-board Operations Scheduling Service (OOSS)
[Functions 3 of 5]

Service Request, Report, or Capability Subtype

Report Time-Tagged Command Schedule in Summary Form,
Summary Time-Tagged Schedule Report

TC (11, 17)
TM (11, 13)

Report Position-Tagged Command Schedule in Summary Form,
Summary Position-Tagged Schedule Report

TC (11, 144)
TM (11, 140)

Report Subset of Time-Tagged Command Schedule in
Summary Form, Summary Time-Tagged Schedule Report

TC (11, 12)
TM (11, 13)

Report Subset of Position-Tagged Command Schedule in
Summary Form, Summary Position-Tagged Schedule Report

TC (11, 139)
TM (11, 140)

Report Subset of Time-Tagged Command Schedule in Detailed
Form over Time Period, Detailed Time-Tagged Schedule Report

TC (11, 11)
TM (11, 10)

Report Subset of Position-Tagged Command Schedule in
Detailed Form over Time Period, Detailed Position-Tagged
Schedule Report

TC (11, 138)
TM (11, 137)

ASW Layers – Application Services

PUS Service #11: On-board Operations Scheduling Service (OOSS)
[Functions 4 of 5]

Service Request, Report, or Capability Subtype

Report Subset of Time-Tagged Command Schedule in
Summary Form over Time Period, Summary Time-
Tagged Schedule Report

TC (11, 14)
TM (11, 13)

Report Subset of Position-Tagged Command Schedule
in Summary Form over Time Period, Summary Postion-
Tagged Schedule Report

TC (11, 141)
TM (11, 140)

Report Status of Time-Tagged Command Schedule,
Time-Tagged Command Schedule Status Report

TC (11, 18)
TM (11, 19)

Report Status of Position-Tagged Command Schedule,
Position-Tagged Command Schedule Status Report

TC (11, 145)
TM (11, 146)

ASW Layers – Application Services

PUS Service #11: On-board Operations Scheduling Service (OOSS)
[Functions 5 of 5]

PUS_OMS

S/C OBSW::ASW::Application Services::PUS
#01 Telecommand Verification

Service::PUS_TVS
S/C OBSW::ASW::Application

Services::PUS #14 Packet Forwarding
Control Service::PUS_PFCS

S/C OBSW::ASW::Machine
Services::Operating System & Ada

Run-time::Scheduler
S/C OBSW::ASW::Application Services::MIS #129

Data Pool Management Service::MIS_DPMS

S/C OBSW::ASW::Application Services::PUS #19
Event-action Service::PUS_EAS

PUS_OMS TC packets

1

1
PUS_OMS TC packets

PUS_OMS TM packets

1

1 PUS_OMS TM packets

trigger

1

1

trigger

on-board data

1

1

on-board data

monitoring events

1

1

monitoring events

ASW Layers – Application Services

PUS Service #12: On-board Monitoring Service (OMS) [Context]

Service Request, Report, or Capability Subtype

Enable Monitoring of Parameters TC (12, 1)

Disable Monitoring of Parameters TC (12, 2)

Change Maximum Reporting Delay TC (12, 3)

Clear Monitoring List TC (12, 4)

Add Parameters to Monitoring List TC (12, 5)

Delete Parameters from Monitoring List TC (12, 6)

Modify Parameter Checking Information TC (12, 7)

Report Current Monitoring List, Current Monitoring List
Report

TC (12, 8)
TM (12, 9)

Report Current Parameters Out-of-limit List, Current
Parameters Out-of-limit List Report

TC (12, 10)
TM (12, 11)

Check Transition Report TC (12, 12)

ASW Layers – Application Services

PUS Service #12: On-board Monitoring Service (OMS) [Functions]

PUS_PFCS

S/C OBSW::ASW::Application Services::PUS #01
Telecommand Verification Service::PUS_TVS

S/C OBSW::ASW::Machine
Services::Operating System & Ada

Run-time::Scheduler

S/C OBSW::Software Architectural Entity
Template::SWAE

S/C OBSW::ASW::Application Services::PUS #15
On-board Storage & Retrieval Service::PUS_OSRS

S/C OBSW::ASW::Basic Services::Basic
Utilities & Services::BUSV

S/C OBSW::ASW::NM Applications::NM
Applications Context::NM_ACTXT

PUS_PFCS TC packets

1

1

PUS_PFCS TC packets

trigger1

1

trigger

non-cyclic TM packets

1

1

non-cyclic TM packets

TM packets for storage

1

1

TM packets for storage

real-time TM packets
1

1

real-time TM packets

ground station visibility1

1

ground station visibility

ASW Layers – Application Services

PUS Service #14: Packing forwarding Control Service (PFCS) [Context]

Service Request, Report, or Capability Subtype

Enable Forwarding of Telemetry Source Packets TC (14, 1)

Disable Forwarding of Telemetry Source Packets TC (14, 2)

Report Enabled Telemetry Source Packets, Enabled
Telemetry Source Packets Report

TC (14, 3)
TM (14, 4)

Enable Forwarding of Housekeeping Packets TC (14, 5)

Disable Forwarding of Housekeeping Packets TC (14, 6)

Report Enabled Housekeeping Packets, Enabled
Housekeeping Packets Report

TC (14, 7)
TM (14, 8)

ASW Layers – Application Services

PUS Service #14: Packing forwarding Control Service (PFCS) [Functions 1 of 2]

Service Request, Report, or Capability Subtype

Enable Forwarding of Diagnostic Packets TC (14, 9)

Disable Forwarding of Diagnostic Packets TC (14, 10)

Report Enabled Diagnostic Packets, Enabled
Diagnostic Packets Report

TC (14, 11)
TM (14, 12)

Enable Forwarding of Event Report Packets TC (14, 13)

Disable Forwarding of Event Report Packets TC (14, 14)

Report Enabled Event Report Packets, Enabled Event
Report Packets Report

TC (14, 15)
TM (14, 16)

ASW Layers – Application Services

PUS Service #14: Packing forwarding Control Service (PFCS) [Functions 2 of 2]

PUS_OSRS

S/C OBSW::ASW::Application Services::PUS #01
Telecommand Verification Service::PUS_TVS

S/C OBSW::ASW::Machine
Services::Operating System & Ada

Run-time::Scheduler

S/C OBSW::ASW::Basic Services::Basic Utilities
& Services::BUSV

S/C OBSW::ASW::Application Services::PUS
#14 Packet Forwarding Control

Service::PUS_PFCS

PUS_OSRS TC packets

1

1
PUS_OSRS TC packets

trigger

1

1

trigger

playback TM packets

1

1

playback TM packets

PUS_OSRS TM packets

TM packets for storage 1

1

PUS_OSRS TM packets

TM packets for storage

ASW Layers – Application Services

PUS Service #15: On-board Storage and Retrieval Service (OSRS) [Context]

Service Request, Report, or Capability Subtype

Enable Storage in Packet Stores TC (15, 1)

Disable Storage in Packet Stores TC (15, 2)

Add Packets to Storage Selection Definition TC (15, 3)

Remove Packets from Storage Selection Definition TC (15, 4)

Report Storage Selection Definition, Storage Selection Definition Report TC (15, 5)
TM (15, 6)

Downlink Packet Store Contents for Packet Range, Packet Store Contents
Report

TC (15, 7)
TM (15, 8)

Downlink Packet Store Contents for Time Period, Packet Store Contents
Report

TC (15, 9)
TM (15, 8)

Delete Packet Stores Contents up to Specified Packets TC (15, 10)

Delete Packet Stores Contents up to Specified Storage Time TC (15, 11)

Report Catalogues for Selected Packet Stores, Packet Store Catalogue
Report

TC (15, 12)
TM (15, 13)

Set the nominal read pointer in a packet store. TC (15, 128)

ASW Layers – Application Services

PUS Service #15: On-board Storage and Retrieval Service (OSRS) [Functions]

Service Request, Report, or
Capability

Subtype Applicability

Perform Connection Test,
Link Connection Report

TC (17, 1)
TM (17, 2)

NM, SM

PUS_TS

S/C OBSW::ASW::Application Services::PUS
#14 Packet Forwarding Control

Service::PUS_PFCS

S/C OBSW::ASW::Application Services::PUS
#01 Telecommand Verification

Service::PUS_TVS

S/C OBSW::ASW::Basic Services::Basic Utilities
& Services::BUSV

S/C OBSW::ASW::Machine
Services::Operating System & Ada

Run-time::Scheduler

PUS_TS TC packets

1

1
PUS_TS TC packets

PUS_TS TM packets

1

1
PUS_TS TM packets

1

1
trigger

1

1

trigger

ASW Layers – Application Services

PUS Service #17: Test Service (OSRS) [Context & Funcitons]

PUS_OPS

S/C OBSW::ASW::Application Services::PUS
#01 Telecommand Verification

Service::PUS_TVS
S/C OBSW::ASW::Application Services::PUS #14
Packet Forwarding Control Service::PUS_PFCS

S/C OBSW::ASW::Application
Services::PUS #09 Time Management

Service::PUS_TMS

S/C OBSW::ASW::Application Services::MIS
#129 Data Pool Management

Service::MIS_DPMS

S/C OBSW::ASW::Machine
Services::Operating System & Ada

Run-time::Scheduler

PUS_OPS TC packets

1

1 PUS_OPS TC packets

PUS_OPS TM packets

1

1 PUS_OPS TM packets

on-board data

1

1

on-board data

on-board time
1

1

on-board time

trigger

1

1
trigger

ASW Layers – Application Services

PUS Service #18: On-board Operations Procedures Service (OPS) [Context]

Service Request, Report, or Capability Subtype

Load Procedure TC (18, 1)

Delete Procedure TC (18, 2)

Start Procedure TC (18, 3)

Stop Procedure TC (18, 4)

Suspend Procedure TC (18, 5)

Resume Procedure TC (18, 6)

Abort Procedure TC (18, 12)

Communicate Parameters to a Procedure TC (18, 7)

Report List of on-board Operations Procedures, On-
board Operations Procedures List Report

TC (18, 8)
TM (18, 9)

Report List of Active on-board Operations Procedures,
On-board Active Operations Procedures List Report

TC (18, 10)
TM (18, 11)

Download Procedure Definition and/or its Parameters
Values

TC (18, 128)
TM (18, 129)

ASW Layers – Application Services

PUS Service #18: On-board Operations Procedures Service (OPS) [Functions]

PUS_EAS

S/C OBSW::ASW::Application Services::PUS
#01 Telecommand Verification

Service::PUS_TVS

S/C OBSW::ASW::Application Services::PUS
#14 Packet Forwarding Control

Service::PUS_PFCS

S/C OBSW::ASW::Application Services::MIS #130
On-board Command Database Management

Service::MIS_CDMS

S/C OBSW::ASW::Application Services::PUS
#12 On-board Monitoring Service::PUS_OMS

S/C OBSW::Software Architectural Entity
Template::SWAE

S/C OBSW::ASW::Machine
Services::Operating System & Ada

Run-time::Scheduler

PUS_EAS TC packets

event-related TC packets

1

1

PUS_EAS TC packets

event-related TC packets

PUS_EAS TM packets

11

PUS_EAS TM packets

1

1

monitoring events

1

1

monitoring events

SWAE event

1

1
SWAE event

trigger
1

1

trigger

ASW Layers – Application Services

PUS Service #19: Event-Action Service (EAS) [Context]

Service Request, Report, or Capability Subtype

Add Events to the Detection List TC (19, 1)

Delete Events from the Detection List TC (19, 2)

Clear the Event Detection List TC (19, 3)

Enable Actions TC (19, 4)

Disable Actions TC (19, 5)

Report the Event Detection List, Event Detection List
Report

TC (19, 6)
TM (19, 7)

Enable the PUS-EAS. TC (19, 128)

Disable the PUS-EAS. TC (19, 129)

ASW Layers – Application Services

PUS Service #19: Event-Action Service (EAS) [Functions]

Service Request, Report, or Capability Subtype

Download System Log Contents, System Log Contents Report TC (128, 2)
TM (128, 3)

Clear System Log Contents TC (128, 4)

MIS_SLMS

S/C OBSW::ASW::Application
Services::PUS #01 Telecommand

Verification Service::PUS_TVS

S/C OBSW::ASW::Application
Services::PUS #14 Packet Forwarding

Control Service::PUS_PFCS

S/C OBSW::Software Architectural Entity
Template::SWAE

MIS_SLMS TC packets

1

1 MIS_SLMS TC packets

MIS_SLMS TM packets
1

1

MIS_SLMS TM packets

SWAE log data

1

1

SWAE log data

PUS Service #128: System Log Management Service (SLMS) [Context & Functions]

ASW Layers – Application Services

Service Request, Report,
or Capability

Subtype

Set Data Value TC (129, 1)

Get Data Value, Data
Value Report

TC (129, 2)
TM (129, 3)

MIS_DPMS

S/C OBSW::Software Architectural
Entity Template::SWAE

on-board data

on-board data

1

*

on-board data

on-board data

ASW Layers – Application Services

PUS Service #129: Data Pool Management Service (DPMS) [Context & Functions]

MIS_CDMS

S/C OBSW::ASW::Application Services::PUS
#01 Telecommand Verification

Service::PUS_TVS

S/C OBSW::ASW::Application Services::PUS
#14 Packet Forwarding Control

Service::PUS_PFCS

S/C OBSW::Software Architectural Entity
Template::SWAE

S/C OBSW::ASW::Application
Services::PUS #19 Event-action

Service::PUS_EAS

S/C OBSW::ASW::Application
Services::PUS #11 On-board Operations

Scheduling Service::PUS_OOSS

MIS_CDMS TC packets

on-board TC packets 1

1 MIS_CDMS TC packets

on-board TC packets

MIS_CDMS TM packets
1

1

MIS_CDMS TM packets

1

1

1
1

1

1

ASW Layers – Application Services

PUS Service #130: On-board Command Database Management Service (CDMS)
[Context]

Service Request, Report, or Capability Subtype

Insert TC Packet TC (130, 1)

Delete TC Packet TC (130, 2)

Download List of TC Headers, List of TC Headers
Report

TC (130, 3)
TM (130, 4)

Download List of TC Packets, List of TC Packets Report TC (130, 5)
TM (130, 6)

Execute TC TC (130, 7)

ASW Layers – Application Services

PUS Service #130: On-board Command Database Management Service (CDMS)
[Functions]

On Board managers for Units and
Equipments

The ASW is designed using the concept of Mode Manager:

• Is part of the OBSW and will interface the Application Services Layer
components in order to implement all the functionalities relevant to the
Mode Management.

• The Mode Manager is in charge of managing the SCC Start-up and
Operational Mode Transitions by coordinating the corresponding
subsystems start-up and operational mode transitions.

It is also in charge of implementing logics to prioritize and to filter
dedicated S/C and subsystems operational mode transitions.

On Board managers for Units and
Equipments

The ASW is designed using the concept of Mode Manager:

• The MMMngr component is in charge of implementing the following
functionalities:

− System Mode management and Transitions
− Subsystem Mode Management and Transitions
− HW Configuration Management
− Telemetry Mode
− Start-up management
− FDIR.

• Subsystems architecture foresees several operational scenario
corresponding on different equipment configuration.

• The Mode Manager through event action process command and control
the operational scenario transition and trigger the TC sequence devote to
control the Subsystem required configuration.

On Board managers for Units and
Equipments

The ASW is designed using the concept of Assembly Managers :

• An Assembly Manager (AM) deals with a subsystem or units which
need to be managed in a coordinated way in order to deliver the
associated mission service.

• The Assembly Manager is characterized by a set of specific
operational modes and offers telecommand packets and telemetry
packets (PUS specific service for the assembly), error codes, events,
on-board procedures, and on-board telecommands and a set of
recurrent functions which allow to build an abstraction layer around
the assembly and allow the coherent management of an assembly
and relative units.

On Board managers for Units and
Equipments

The ASW is designed using the concept of Assembly Managers :

• The Assembly Manager is in charge of mapping the possible
configurations into the following set of internal status:

− "Idle". The assembly is switched off.
− "Nominal". The assembly is switched on and properly configured.
− "Transition/Recovery". The assembly is not available because is

busy.
− "Dead". The assembly is no more able to deliver its mission

service.

• The Assembly Manager is in charge of management of the assembly
operative modes.

On Board managers for Units and
Equipments

The ASW is designed using the concept of Assembly Managers :

• A Subsystem Manager is an assembly manager used to manage a
subsystem and is characterized by a set of specific operational
modes and can be configured using a set of specific telecommands

• A Unit Manager is an assembly manager used to manage a set of
external (redundant) units which need to be managed in a
coordinated way in order to deliver the associated mission service.

• The management of an assembly is achieved by using its own set of
TC packets, hence the application only needs to provide a set of
additional PUS specific service subtypes mainly related to the
execution of on-board operations involving the assembly and
requiring the updating of the related software internal status.

On Board managers for Units and
Equipments

• The subsystem and units are intend to be implemented extending the
instance of the Assembly Manager Component

• Each Assembly Manager is described with the following :
− Component Overview
− Functional Requirement
− Interface Requirements
− Sw interface Requirements (provided/Required)
− TC/TM Interface Requirements
− Data Pool
− SGM Data

On Board managers for Units and
Equipments

• The AM will be in charge to perform the control algorithm as long as the
OBC1 is powered on. The AM Component will be active and its activation
will be cyclical with a period specified by a mnemonic constant.

• The AM will use the interface provided by the TM/TC services for the
reception of telecommand, for generating command execution report, and
to provide data relevant to the equipment to be included into the telemetry.

• The AM will use the interface provided by the Application Services Layer in
order to get the data acquired from the equipments including status and
operative mode, and to manage switch on /off and configuration commands.

On Board managers for Units and
Equipments

The AM will be divided into different functional modules:

• AM Manager (AMMngr) that will be in charge of:
Coordinate the execution of all the AM management functions by interacting
with the other software components.

• AM Mode Manager (AMMM) that will be in charge of:
Maintain correct configuration wrt System mode Maintain the AM Mode
information.

• AM TMTC Packet (AMTMTC) that will be in charge of:
Receive and execute the Ground TCs prepare and send the TM Packets.

On Board managers for Units and
Equipments

• The “Off-line Init” state is entered at task creation
(at power-on or ASW reset). When in this state
the MMMngr component will do the off-line
initialization.

• At first task activation the AMMngr component
will enter the "On-line Init" state (T1) in order to
perform the on-line initialization activities and will
get information about which on-line start-up to
execute.

• At the end of this phase, the AMMngr
component will communicate the result of on-line
initialization phase and will enter the “Not Synch”
state (T2) waiting for the synchronization signal
denoting that all modules are ready to become
operative.

On Board managers for Units and
Equipments

• At reception of synchronization signal the
AMMngr component will enter the “On-Line
Cyclic” state (T3).

• The "On-Line Cyclic" state has four internal
substates: Start-up, Nominal, Transition and
Recovery. The On-Line Cyclic entry substate is
"Start-up" where the AMMngr component will
start execution of the initial S/C operational
mode configuration, commanding each
subsystem to perform the corresponding start-
up activities.

• When the first S/C operational mode
configuration has been successfully completed
(all S/S operational mode configurations have
been completed), the AMMngr component will
enter the “Nominal” substate (T4).

On Board managers for Units and
Equipments

The AM shall provide at least the following interface:

•AM provided interface
− Init(Task_id): where the Task_id is an Application Services Layer internal

parameter defined by the scheduler.
− Activate(System Cycle): where there is the nominal component operation.
− Dead(). that manage the restart procedure scheduling.

•AM internal Variable
− AMStatus:

• "Idle“: The assembly is switched off.
• "Nominal“: The assembly is switched on and properly configured.
• "Transition/Recovery“: The assembly is not available cause is busy.
• "Dead“: The assembly is no more able to deliver its mission service.

− AMmode

On Board managers for Units and
Equipments

The AM shall interface the Application Service Layer as:

•The Basic Utilities & SerVices (BUSV) introduces on top of the HW Handlers a
level of deterministic HW resources management policies. It also provides general
purpose libraries (maths, checksum, memory etc.) . It provides:

• BusvAMTaskId that defines the Task ID processed by AM.init(TaskID)
• the definition of data type at system level
• tasking and OBRT (for the major and minor cycle)

•The PUSL provides basic mechanism to implement a Data Exchange Framework
based on Data Pool and Token features.

•The PUSL Services library, which implements the set of services defined by
“Packet Utilization Standard”. The PUS services data exchange, both internally and
with the higher level application layer, is based on the general Data Exchange
Framework.

On Board managers for Units and
Equipments

The AM shall be able to use at least the following Application Service Layer
required interface:

•AMCommonServices where services commonly used are recorded:
− for TC/TM Acknowledge/Definition/Execution/Acceptance implementing the Packet

utilization Standard services.
− PUS Service (1, 1): Successful TC acceptance report
− PUS Service (1, 2): Unsuccessful TC acceptance report
− PUS Service (1, 7): Successful TC execution completed report
− PUS Service (1, 8): Unsuccessful TC execution completed report

− TM(1,2) and TM(1,7) telemetry shall be issued with Rejection Code (RC) and
Additional Info Parameter (AIP) related to the failed verification criterion

On Board managers for Units and
Equipments

The AM shall be able to use at least the following Application Service Layer
required interface:

•AMEvent: Service to generate a AM event.
The AMEvent shall be used to trigger the TM generation
•AMTCTM (interface with Application Services Layer TCTM Tokens)
•AMDataPool interface provided by the PUSL where the data type are registered in
order to

− share with other AM, component interfacing the data pool
− download by TM (HK included)
− be controlled by Ground TC. Adjustable parameter
− be monitored on board FDIR

•AMSocSection of the SGM interface where the data and data structure shall have
a default value and can be modified

On Board managers for Units and
Equipments

OBSW Fault Detection Isolation and
Recovery

Terminology:

•Failure :
Is understood as the termination of the ability of an item
(system/subsystem/equipment/etc.) to perform a required function in terms of
functions and performances.

•Anomaly :
Any deviation from the expected situation, e.g. behavior of unit or function outside
its expected (nominal) behavior range. The anomaly may be due to a failure or to a
not adequate adaptation to the varying environmental conditions
•Fault Or Error :
It is considered as the event or the faulty state of the system which, when
activated, leads to a failure.

OBSW Fault Detection Isolation and
Recovery

Terminology :

•Failure Propagation:
Failure Propagation means that after a failure in a function/item has occurred, the
failure leads to a failure of another function/item (e.g. at the next level).
It includes electrical (e.g. short circuit), thermal (e.g. dissipation) or functional (e.g.
erroneous input, access control/deadlock) propagation.

•Anomaly or Failure Detection:
Is the ability to discover anomalies and failures; the process of determining that a
failure or an anomaly has occurred.

OBSW Fault Detection Isolation and
Recovery

Terminology :

•Failure Isolation:
Deals with the process of identifying where the failure is coming from. It consists in
the localization of the fault within the system which caused the failure by providing
information pinpointing it.

•Fault Containment:
Is the process of ensuring that a failure is not propagated to other components of
the system, i.e. to contain the failure and its damage (e.g. current limitation, LCL
auto switch off, ignoring invalid data, masking by majority voting, inhibit bus
terminal, switch off unhealthy equipment).

OBSW Fault Detection Isolation and
Recovery

Terminology :

•Failure Recovery:
Failure Recovery is the process, controlled by ground, needed to restore the
original functionality. It consists in repair (e.g. reset) or reconfiguration functions to
recover from the failure either by full functional recovery (e.g. using a redundant
component or an alternative solution) or degraded functional recovery (e.g.
degraded mode, reduced performances).

OBSW Fault Detection Isolation and
Recovery

• Objective of FDIR design can be summarized as follows:
− Monitor on board status to detect failures
− Monitor system status to detect conditions which are or may become

mission-threatening
− Perform the needed actions to isolate failure cause and stop potential failure

propagation
− Recovery lost functionalities to restore as much as possible nominal

performances

• The FDIR architecture implemented in mission ensures the spacecraft survival
and the mission accomplishment in case of any single failure.

• This is achieved with proper recovery actions in response to failure levels from 0
to 4.

OBSW Fault Detection Isolation and
Recovery

Failure levels:

•The level 0 (Redundancy Management):
Considers failures whose effects and associated recovery is contained within a unit,
communication link, and data or SW driver.

•The level 1 failure (Redundancy Management):
Refers to failures that can be localized without ambiguity at unit or function level but cannot
be automatically recovered by the unit or function itself and need the help of an external
FDIR manager.
Level 1 failure may eventually make the equipment unusable.

•The level 2 failures (System Safety):
Performance anomaly affecting a vital functional chain (e.g. GNC, EPS, TCS) that the on
board control logic cannot locate within a specific unit or subsystem.
A level 1 alarm still present despite a previous reconfiguration

OBSW Fault Detection Isolation and
Recovery

Failure levels:

•The level 3 failure (System Safety):
Is related to failures of the on-board Processor Module that are considered critical for
spacecraft safety or which could not be solved on lower level.

Failure is detected by on-board computer Reconfiguration Module watchdogs and internal
alarms:

− Double bit error detection in Processor Module system RAM.
− OBC power under voltage
− Write operations in protected area
− Memory access to not existing area
− 1553 BC failure after line reconfiguration
− Active PM temperature out of range

OBSW Fault Detection Isolation and
Recovery

Failure levels:

•The level 4 failure (System Safety):
Considers alarms linked to critical conditions representing a risk of losing the spacecraft, as
for example:

− Drop of main bus voltage, critically low battery charge levels (Power supply)
− Sun outside safe domain: solar arrays not illuminated (Attitude control)
− Temperature out of limit in critical areas (Thermal control)

Considering the time critical aspects of a level 4 alarm, detection of these alarms is
implemented hardwired.

OBSW Fault Detection Isolation and
Recovery

• The ASW exploits a strong
synergy between nominal
and FDIR configuration
mechanisms which will
therefore be covered in the
scope of the same
description. The following
allocation of functions has
been defined:

OBSW Fault Detection Isolation and
Recovery

The following monitoring configuration parameters are present in the ASW
monitoring item definition:

• ENABLE_DISABLE: status for the single Monitoring Item
• REPEAT OPTION FLAG (ROF): this flag defines the Monitoring Item behaviour in

case of maintained “in/out of range” condition.
• MONITORED PARAMETER;
• VALIDITY_PARAMETER_1, VALIDITY_PARAMETER_2: accordingly to PUS, a

VALIDITY_PARAMETER is a Boolean parameter signalling the
MONITORED_PARAMETER validity.

• SIZEM: determines the type for HK_DATA (i.e. 16 bit unsigned integer or 32 bit
floating point format)

• HK_FILTER: number of consecutive samples for monitoring state transition and
event signalling;

• EVENT_1: event triggered in case of confirmed out-of-range low;
• EVENT_2: event triggered in case of confirmed out-of-range high;
• EVENT_3: event triggered in case of confirmed in-range;
• LOW_THRESHOLD: lower limit for “in-range” condition;
• HIGH_THRESHOLD: higher limit for “in-range” condition;

OBSW Fault Detection Isolation and
Recovery

The following event handling configuration parameters will be present:
RECO_1_FILTER: confirmation threshold for 1st level of recovery;
RECO_2_FILTER: confirmation threshold for 2nd level of recovery;
RECO_3_FILTER: confirmation threshold for 3rd level of recovery;
RECO_1_TYPE: specify if 1st level of recovery is OBCD telecommand, OBCP or Ada

coded procedure;
RECO_2_TYPE: specify if 2nd level of recovery is OBCD telecommand, OBCP or Ada

coded procedure;
RECO_3_TYPE: specify if 3rd level of recovery is OBCD telecommand, OBCP or Ada

coded procedure;
RECO_1_ID: identifier for 1st level of recovery;
RECO_2_ID: identifier for 2nd level of recovery;
RECO_3_ID: identifier for 3rd level of recovery;
EVENT_STATUS: Enable/Disable status for the entire Event Handler. If this status is

disabled the internal event counter is not incremented in case of event occurrence,
so neither Event/Exception telemetry nor recovery action is performed.

ACTION_STATUS: Enable/Disable for the Recovery action execution. If this status is
disabled no recovery is performed but the internal event counter is incremented and
the Event/Exeption telemetry is issued..

OBSW Fault Detection Isolation and
Recovery

• PUS performs the monitoring and the event handling.
It also implements the recoveries which either perform PM alarm or issue
reconfiguration commands to Mode Manager/ Subsytems

• For FDIR purposes, application SW has in charge the definition and computation
of the parameters to be monitored by the standard PUS monitoring service
(implemented by PUS).

OBSW Fault Detection Isolation and
Recovery

• The Mode_Mngr:
• coordinates the different sub-system managers in order to guarantee the

configuration of a coherent S/C mode.
• implements a S/C level configuration by issuing proper on-board stored

telecommands to the different sub-system managers;
• performs a filtering and prioritization function on all the configuration

telecommands directed to the different sub-system managers, in order to avoid
conflicting configuration actions and to guarantee a coherent S/C mode.

• Mode_Mngr and the different sub-system managers implement nominal and
FDIR configuration routines, e.g. unit reset/swap or sub-system mode change.
These are triggered by configuration commands either issued by Ground or
autonomously by the ASW.

OBSW Fault Detection Isolation and
Recovery

Recovery Actions Levels:

•Level 0 recovery actions:
This type of failure is locally autonomously corrected without any impact on the system
performances in a transparent way, as done for example by EDAC correction within
intelligent units.
The results of a level 0 action are visible in the equipment health and status and the current
spacecraft mode is maintained.

•Level 1 recovery actions:
The recovery of level 1 failure is mainly based on the reconfiguration from failed unit to the
redundant one and it is performed only when the failure cause is uniquely identified in a
specific unit.

OBSW Fault Detection Isolation and
Recovery

Recovery Actions Levels:

•Level 2 recovery actions:
The recovering of a first occurrence of level 2 alarm is based on stopping the
current operations and performing a system power cycle. OBSW will reboot from
redundant OBSW image and enter the safe mode. In particular:

− Disable FDIR application
− Disable OBSW context saving in SGM
− Stop to record TM packets in packet store
− Dead report issuing, typically by Service 5
− Perform a system power cycling on redundant OBSW

OBSW Fault Detection Isolation and
Recovery

Recovery Actions Levels:

•Level 3 recovery actions:
The first occurrence of a level 3 alarm is recovered with a PM reconfiguration to
redundant unit and transition to safe mode. Alarm 3 persistence will force a
transition to the SURVIVAL mode

•Level 4 recovery actions:
The criticality of the level 4 alarm related to battery charge may require, in addition
to a system power cycling, also a load shed reconfiguration to guarantee the
minimum functionality within the low power availability scenario to increase
spacecraft survivability time. Level 4 recovery terminates with transition to survival
mode.

OBSW Fault Detection Isolation and
Recovery

