
Introduction to AUTOSAR

“AUTomotive Open System Architecture”

Tarek Kabbani

Contents

2

• What is AUTOSAR

• Project Objectives & Benefits

• Use case “ Front-Light Management”

• AUTOSAR Main Concepts

• Architecture

• Methodology

• Application Interfaces

• Example of AUTOSAR System

• Conclusion

Contents

3

• What is AUTOSAR

• Project Objectives & Benefits

• Use case “ Front-Light Management”

• AUTOSAR Main Concepts

• Architecture

• Methodology

• Application Interfaces

• Example of AUTOSAR System

• Conclusion

AUTOSAR (AUTomotive Open System ARchitecture)

 Middle-ware and system-level standard,

 Jointly-developed by automobile manufacturers, electronics and
software suppliers and tool vendors and developers.

 More than 100 member companies

 Homepage : www.autosar.org

 Motto: “Cooperate on standards – compete on implementation”

4

What is AUTOSAR

http://www.autosar.org/

What is AUTOSAR - History
Automotive domain

5

Leave room for innovation: NEW functions
are first implemented as new ECUs

And Prepare the Future:
Toward partially open Auto
-motive EE Architecture

OEM request the reduce of ECU Number
for standard Functions

OEM: Original Equipment Manufacturers

ECUs: Electronic Control Units

EE : Electronic and Embedded

What is AUTOSAR - History

6

200X…

2000 – Model-based design

1995 : Defining Network and Messaging

Systems of Today 1990 - Designing ECU’s

History of ECU in Vehicles

What is AUTOSAR - History

• Model-based Development/General Task/Evolution of Models

7

What is AUTOSAR - History
• AUTOSAR integrates existing and emerging industry electronics standards.

8

• The AutoSar OS is a derivative of OSEK “Offene Systeme und deren Schnittstellen für die

Elektronik in Kraftfahrzeugen“ (Open Systems and their Interfaces for the Electronics in Motor Vehicles)

Responsible for real time functions, priority based scheduling and different
protective functions.

• Some systems will continue to use their own OS but these must have AutoSar
interface (follows AutoSar specifications).

What is AUTOSAR - Story

• AutoSar partnership
9 Core Partners

112 Associate
Members

43 Premium Members

OEM

Tier 1

Standard

Software

Tools

Semi-

conductors

Source:

9

28 Development Members
18 Attendees

P:/
http://www.vector-informatik.de/index.html
http://www.delphi.com/
http://www.dspace.de/ww/en/pub/home.htm
http://www.renault.com/gb/home/accueil.htm
http://www.volvo.com/
http://www.st.com/stonline/index.htm
http://www.hitachi.com/index.html
http://www.johnsoncontrols.com/
http://www.mando.com/
http://worldwide.hyundai-motor.com/
http://www.tnisoftware.com/
http://www.fev.com/index3.htm
http://www.alpine.de/alpine/cms/index.php?sid=d324dcfe02ed2a5df5f82f2986b8777e&language=english

What is AUTOSAR - Story

10

• AutoSar Timeline

Main Concepts: Architecture

Application scope of AUTOSAR

AUTOSAR is dedicated for Automotive ECUs. Such ECUs have the

following properties:

• Strong interaction with hardware (sensors and actuators),

• Connection to vehicle networks like CAN, LIN, FlexRay or Ethernet,

• Microcontrollers (typically 16 or 32 bit) with limited resources of

computing power and memory (compared with enterprise solutions),

• Real Time System and

• Program execution from internal or external flash memory.

NOTE: In the AUTOSAR sense an ECU means one microcontroller plus

peripherals and the according software/configuration. The mechanical design is

not in the scope of AUTOSAR. This means that if more than one

microcontroller in arranged in a housing, then each microcontroller requires its

own description of an AUTOSAR-ECU instance.
11

What is AUTOSAR - Story

12

• Technical scope of AUTOSAR

Contents

13

• What is AUTOSAR

• Project Objectives & Benefits

• Use case “ Front-Light Management”

• AUTOSAR Main Concepts

• Architecture

• Methodology

• Application Interfaces

• Example of AUTOSAR System

• Conclusion

Project Objectives & Benefits

• AUTOSAR objective is to establish an open reference industry

standard for the automotive ECU software architecture.

• The standard comprises a set of specifications describing a

software layered architecture (implemented in every ECU and frees

the applications software from the hardware components) and

defining their interfaces.

14

• The principal aim of
AUTOSAR is to master the
growing complexity and
improve its management of
highly integrated automotive
E/E architectures between
suppliers and manufacturers.

Project Objectives & Benefits

How were vehicle functions

implemented usually?

 Each function had it´s own system

and microcontroller although they

may communicate through a bus.

 The number of ECU´s (Electronic

Control Unit) were growing fast.

 Hardware and software were tightly

connected.

 The same vendor supplies both

hardware and software.

 There are no alternative software

suppliers.

What will AutoSar give?

 A standard platform for vehicle software.

 An OS with basic functions and interface to

software.

 The same Standardized uniquely-specified

interface for all basic software.

 Functionality is supplied as software components.

 These components are hardware

independent.

 The software modules are exchangeable and

reusable between OEM and suppliers.

 More than one supplier can compete with

their software.

15

Hardware and software will be widely independent of each other

• Development processes will be simplified, as designer just picks

software components without knowing in what ECU they will be

implemented (not think in terms of ECUs when designing the system).

• Allow software Reuse of software increases at OEM and at suppliers

and smooth evolutions (limiting re-development and validation), this

reduces development time and costs.

• This enhances also software quality and efficiency and easily

handling of electronic in the automobile.

• Facilitate portability, composability, integration of SW components

over the life time of the vehicle.

16

Project Objectives & Benefits

Project Objectives & Benefits

17

The specification of
functional interfaces is
divided into 6 domains:

The project goals will be met by standardizing the central architectural elements

across functional domains, allowing industry competition to focus on implementation

Project Objectives & Benefits
• The ongoing development of AUTOSAR products by the member

companies provides a unique feedback loop into the development of the

standard itself. This allows fast and pragmatic improvements.

• The previous benefits are for all type of stockholders.

18

Project Objectives & Benefits

19

Contents

20

• What is AUTOSAR

• Project Objectives & Benefits

• Use case “ Front-Light Management”

• AUTOSAR Main Concepts

• Architecture

• Methodology

• Application Interfaces

• Example of AUTOSAR System

• Conclusion

Use case “ Front-Light Management”

• Exchange of type of front-light

21

Use case “ Front-Light Management”

• Distribution

on ECUs

22

Use case “ Front-Light Management”

23

• Multiple ECUs

Contents

24

• What is AUTOSAR

• Project Objectives & Benefits

• Use case “ Front-Light Management”

• AUTOSAR Main Concepts

• Architecture

• Methodology

• Application Interfaces

• Example of AUTOSAR System

• Conclusion

AUTOSAR Main Working Topics

Architecture:

Software architecture including a complete basic or environmental

software stack for ECUs – the so called AUTOSAR Basic Software – as

an integration platform for hardware independent software applications.

Methodology:

Exchange formats or description templates to enable a seamless

configuration process of the basic software stack and integration of

application software in ECUs and it includes even the methodology how

to use this framework.

Application Interfaces:

Specification of interfaces of typical automotive applications from all

domains in terms of syntax and semantics, which should serve as a

standard for application software modules.
25

 AUTOSAR Main Concepts

26

Main Concepts: Architecture

Main Concepts: Architecture
• The AUTOSAR Layered Architecture distinguishes on the highest abstraction

level between three software layers:

Application, Runtime Environment and Basic Software which run on a Microcontroller.

27

28

Main Concepts: Architecture
• The AUTOSAR Basic Software is divided in the layers: Services,

ECU Abstraction, Microcontroller Abstraction and Complex Drivers.

Main Concepts: Architecture

• The applications functionality reside in the application layer.

• The only part of an AutoSar system that doesn’t consist of standardized

software.

• Consists of SWCs (Software Components), the smallest part of a software

application that has a specific functionality.

• Within AutoSar there are standard interfaces so that the components can be used

to build out a software applications. 29

Main Concepts: Architecture

• It is a standardized software without any own functionality that offers both hardware dependent and

independent services to higher layers. This is through API (Application Programming Interfaces).

• It makes the higher layers hardware independent.

• It has, for e.g., memory interfaces and interfaces to communication busses (LIN, CAN and FlexRay)

• Can be subdivided into the following types of services:

• Input/Output (I/O) Standardized access to sensors, actuators and ECU onboard peripherals

• Memory Standardized access to internal/external memory (non volatile memory)

• Communication Standardized access to: vehicle network systems, ECU onboard communication

systems and ECU internal SW

• System Provision of standardizeable (operating system, timers, error memory) and ECU specific (ECU

state management, watchdog manager) services and library functions
30

• MCAL is the lowest software layer of the Basic Software

• It contains internal drivers, which are software modules with direct access to

the μC internal peripherals and memory mapped μC external devices.

• Consists of standardized functions that frees the hardware from the software

and gives a standardized interface to Basic Software, making higher software

layers processor independent of abstracted μC and prevented from directly

accessing the registers in the μC.

• MCAL handles the μC peripheral units and supplies processor-independent

values to the Basic Software.
31

Main Concepts: Architecture

MCAL
(Microcontroller
Abstraction
Layer)

• The EAL interfaces the drivers of the MACL and also contains drivers for

external devices.

• It offers an API for access to peripherals and devices regardless of their

location and their connection to the microcontroller (port pins, type of

interface)

• Make higher layers independent of ECU hardware layout

• Its implementation properties, is μC independent and ECU hardware

dependent. For Upper Interface, it’s μC and ECU hardware independent 32

Main Concepts: Architecture

EAL
(ECU
Abstraction
Layer)

Main Concepts: Architecture

• The Complex Drivers Layer spans from the hardware to the RTE.

• Provide the possibility to integrate special purpose functionality, e.g.

drivers for devices:

• which are not specified within AUTOSAR,

• with very high timing constrains or

• for migration purposes etc.

• Its implementation and Upper Interface properties are: it might be an

application, it’s μC and ECU hardware dependent. 33

• Services Layer is the highest layer of the Basic software which also applies for its

relevance for the application software. While access to I/O signals is covered by the

ECU Abstraction Layer, it offers basic services for application and Basic Software

modules as:

• Operating system functionality

• Vehicle network communication and management services

• Memory services (NVRAM management), ECU state management

• Diagnostic services (including UDS communication, error memory and fault treatment)

• Logical and temporal program flow monitoring (Wdg manager)

• Implementation Properties: mostly μC and ECU hardware independent. Upper

Interface: μC and ECU hardware independent

34

Main Concepts: Architecture

35

Main Concepts: Architecture
• The Basic Software Layers are further divided into functional groups (11 main blocks plus

Complex Drivers). Examples of Services are System, Memory and Communication Services.

Example of Flow through layers: “NVRAM Manager” ensures the storage and maintenance of
non-volatile data and is independent of the design of the ECU.

36

Main Concepts: Architecture
• The layered architecture has been further refined in the area of Basic Software and

around 80 modules have been defined.

AUTOSAR extensibility

The AUTOSAR Software

Architecture is a generic approach:

• Standard modules can be extended

in functionality.

• Non-standard modules can be

integrated into AUTOSAR-based

systems as Complex Drivers

• Further layers cannot be added.

Main Concepts: Architecture
AUTOSAR SW-Cs (Software Components)

They encapsulate an application which runs on the AUTOSAR infrastructure. And they

have well-defined interfaces, which are described and standardized by SW-C Description
(Provides a standard description format needed for the integration of the SW-C)

• Consist of

• Runnable Entities (or Runnables) procedures which contain the actual

implementation triggered cyclically or on event (e.g. data reception)

• Composite components for hierarchical design

• Ports Interface to other SW-Cs

• Other software components

• Application is divided into SW-Cs.

There are three types of SW-C

• Atomic SW-C

• Composite SW-C

• Sensor/Actuator SW-C

37

Intra‐ and Inter‐ECU Communication

• Ports are the interaction points of a

component and they implement the interface

according to the communication paradigm

(client-server based).

• The communication layer in the basic

software is encapsulated and not visible at

the application layer.

Communication is channeled via the

AutoSar RTE (RunTime Environment)

• Implementation of Virtual Functional Bus

• Interface between SW-Cs and Basic Software, therefore it frees SW-Cs from the hardware,

BSW and from each other components.

• Every ECU in a AutoSar system must implement a RTE

• All calls to basic software pass through the RTE, so all software components can communicate

without being mapped to specific hardware or ECU.

• RTE uses the hardware MCAL (MicroController Abstraction Layer)

• Communication method : Send/Receive signals, Client/Server functionality

• Triggering of runnables : Cyclically or On event

38

Main Concepts: Architecture

Main Concepts: Architecture
The Virtual Functional Bus (VFB)

• The VFB is the sum of all communication mechanisms (and interfaces to

the basic software) provided by AUTOSAR on an abstract (technology

independent) level. When the connections for a concrete system are defined,

the VFB allows a virtual integration in an early development phase.

• The application components are linked and

communicate through VFB.

• VFB is a visualization of all hardware and

system services that the vehicle system supplies.

• Through VFB a software component doesn´t

need to know which components it is

communicating with and on which ECU these

components are implemented.

• The VFB is implemented by

the AUTOSAR Runtime-Environment (RTE) and underlying Basic-SW layer.
39

Main Concepts: Architecture

• Communication between software components

A SWC can communicate in two different ways:

40

Client/server:

 The client initiates the

communication and requests a

service from the server

 The client could be locked while

it is waiting for an answer from

the server.

 The Client/server roles are

defined by who is initiating the

communication and could be

switched. →

 A SWC can at the same time act

as both client and server in

different communications

Sender/receiver:

 The sender expects no answer from

the receiver as there will no be any.

 The sender is not blocked.

 The receiver decides on it´s own

how and when to act on the

information.

 The interface structure is

responsible for the communication.

 The sender doesn´t know

 Who the receiver is,

 if there are More than one receiver,

 or in What ECU the receiver is situated

• AUTOSAR Layered Architecture & ECU Software Architecture

ECU-Hardware

AUTOSAR Runtime Environment (RTE)

Actuator
Software

Component

AUTOSAR
Interface

Application
Software

Component

Sensor
Software

Component

Application
Software

Component

..............

AUTOSAR
Software

Basic Software

Standardized
Interface

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

Microcontroller
Abstraction

AUTOSAR
Software

Component

Interface

ECU
Firmware

Standard
Software

Standardized
AUTOSAR
Interface

Services

Standardized
Interface

ECU
Abstraction

AUTOSAR
Interface

Standardized
Interface

Complex
Device
Drivers

AUTOSAR
Interface

API 2
VFB & RTE
relevant

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Operating
System

API 1
RTE relevant

API 0

S
ta

n
d

a
rd

iz
e
d

In

te
fa

c
e

API 3 Private
Interfaces inside
Basic Software

possible

Main Concepts: Architecture

41

Conclusion

• AUTOSAR harmonizes already existing basic software

solutions and closes gaps for a seamless basic software

architecture.

• The decomposition of the AUTOSAR layered

architecture into some 80 modules has proven to be

functional and complete.

• AUTOSAR aims at finding the best solution for each

requirement and not finding the highest common

multiple.
42

Main Concepts: Architecture

43

Main Concepts: Methodology

Derive E/E architecture from formal

descriptions of soft- and hard ware components

• Functional software is described formally in

terms of “software Components” (SW-C).

• Using “Software Component Descriptions”

as input, the “Virtual Functional Bus” validates

the interaction of all components and interfaces

before software implementation.

• Mapping of “SW-C” to ECUs and

configuration of basic software.

• The AUTOSAR Methodology supports the

generation of an E/E architecture.
44

Main Concepts: Methodology

Main Concepts: Methodology

45

Virtual Integration Independent of hardware

Introduction of HW Attributes Holistic view
of the entire system, both tangible and intangible

ECU Configuration Run Time Environment Separation
of system into its ECU (plus common infrastructure)

Main Concepts: Methodology

• AUTOSAR System - Design Process - Implementation Process

46

Main Concepts: Methodology
• Step 1a): Input Description (1 of 3) of SW-Components

independently of hardware

47

Main Concepts: Methodology
• Step 1b): Input Description (2 of 3) of hardware (ECU-Resource-

Descriptions) independently of application software

48

Main Concepts: Methodology
• Step 1c): Input Description (3 of 3) of system (System-Constraint-

Description)

49

Main Concepts: Methodology

50

• Step 2: Distribution of SW-Component-Descriptions to all ECU with

• System Configuration on the basis of descriptions (not of implementations!)
of SW Components, ECU-Resources and System-Description.

• Consideration of ECU-Resources available and constraints given in the Syste
m-Description.

Main Concepts: Methodology

51

• Step 3: ECU-Configuration by Generation of required configuration for
AUTOSAR-Infrastructure per ECU

• Step 4: Generation of Software Executables Based on the configuration

information for each ECU (example ECU1)

52

1) If need be, extract for ECU1 only

2) SPAL: Standardized Peripheral Abstraction Layer

Main Concepts: Methodology

Main Concepts: Methodology

53

Main Concepts: Methodology

AutoSar Development process

• AutoSar has given a method for creating the system

architecture that starts in the design model.

• The model descriptions within AutoSar are

standardized to become tool independent.

• The descriptions have UML syntax (Unified

Modeling Language).

• The basic system descriptions are independent of

how they are to be implemented.

• Necessary data are among others interface and

hardware demands Standard interfaces are

described in XML (eXtendable Mark-up Language). 54

Main Concepts: Methodology
AutoSar MetaModel

• is modeled in UML

• is the backbone of the AutoSar

architecture definition.

• contains complete specification,

how to model AUTOSAR systems

• Integrates methodology which

defines activities and work-products

55

• Defines content of work-products, Formal description
of all the information that is produced or consumed in
the AUTOSAR methodology

• Has benefits as:

• The structure of the information can be clearly visualize
d and easily maintained.

• The consistency of the information and terminology is
guaranteed

• Using XML, a data exchange format can be generated auto
matically out of the MetaModel

Main Concepts: Methodology

Example 1: The Virtual Functional Bus (VFB)

• Input to the System Design on an abstract level

• SW-Component-Description “get_v()“ describes a function to acquire the

current vehicle speed and defines the necessary resources (such as memory,

run-time and computing power requirements, etc.)

• Function “v_warn()“ makes use of “get_v()“

• “ Virtual Integration“ by checking of

• Completeness of SW-Component-Descriptions (entirety of interconnections)

• Integrity/correctness of interfaces 56

Main Concepts: Methodology
Example 2: AutoSar Descriptions:

To configure the system, input descriptions of all software

components, ECU resources and system constraints are necessary.

57

Description
of Topology

Example 2: System Configuration

Maps SW-C to ECUs and links interface connections to bus signals.

58

Main Concepts: Methodology

Description
of Mapping

SW-C to ECUs
Interface Connections
to Bus Signals

Conclusion

• The E/E system architecture can be described by means

of AUTOSAR.

• A methodology to integrate AUTOSAR software

modules has been designed.

• The meta model approach and the tool support for

specifying the AUTOSAR information model allow

working at the right level of abstraction.

59

Main Concepts: Methodology

60

Main Concepts: Application Interfaces

Main Concepts: Application Interfaces
• Standardized AUTOSAR interfaces approach will

• support HW independence,

• enable the standardization of SW components and

• ensure the interoperability of functional SW-C (applications) from different sources.

61

Main Concepts: Application Interfaces

• AUTOSAR Application Interfaces Compositions under Consideration

62

Main Concepts: Application Interfaces

• To ease the re-use of SW-C across several OEMs.

63

Main Concepts: Application Interfaces

CmdWashing is the interface defined by following information:

• It is provided by the WiperWasherManager component through the

[Washer]Activation port

• CmdWashing contains one data element command

• Command is of type t_onoff which is a RecordType, which

describes a generic on/off information.
64

• Glance on Application Interfaces – Body Domain

Main Concepts: Application Interfaces

• Major task: Conflict Resolution – Example Vehicle Speed

65

Main Concepts: Application Interfaces

Conclusion

• For several domains a subset of application

interfaces has been standardized to agreed

levels.

• It is a challenge to align standardization with the

pace of application development.

66

Contents

67

• What is AUTOSAR

• Project Objectives & Benefits

• Use case “ Front-Light Management”

• AUTOSAR Main Concepts

• Architecture

• Methodology

• Application Interfaces

• Example of AUTOSAR System

• Conclusion

Use case “ Front-Light Management”

68

Use case “ Front-Light Management”

69

Use case “ Front-Light Management”

70

• Multiple ECUs

Use case “ Front-Light Management”
• Applying AUTOSAR

71

Example AUTOSAR System :

Lighting System
• Software Component View

72

73

Example AUTOSAR System :

Lighting System
• Virtual Functional Bus View

Example AUTOSAR System :

Lighting System

74

• Mapped System

75

Example AUTOSAR System :

Lighting System
• Basic Software Architecture

Contents

76

• What is AUTOSAR

• Project Objectives & Benefits

• Use case “ Front-Light Management”

• AUTOSAR Main Concepts

• Architecture

• Methodology

• Application Interfaces

• Example of AUTOSAR System

• Conclusion

Conclusion
AUTOSAR

• Leverages model-based engineering of automotive

embedded software to whole systems.

• Enables management of the growing E/E complexity with

respect to technology and economics.

• Standardization itself is highly formalized and so supports

formal system development.

• Shifts implementation efforts to configuration.

• Pushes the paradigm shift from an ECU to a function

based approach in automotive software development.

• Through interconnection of subsystems, new system

properties emerge which have to be understood and

controlled. 77

Further Information

• You can visit AutoSar website

78

Thank you >>>

Any questions ...

79

Backup Slides

80

AUTOSAR –Implementation

81

AUTOSAR – Implementation (1 of 2)
• Implementation of functions independent on distribution on different

ECU as communication will be done via ECU-individual AUTOSAR-

RTE exclusively

Example: view for one ECU

82

• The ability to transfer functions or SW modules (AutoSar Central Objective:

Transferability) supports the following technical benefits

• Reuse of Intellectual Property (reuse of IP)

• Increase in design flexibility

• Simplification of the integration task

• Reduction of SW development costs

83

Example: view
for two ECU

AUTOSAR – Implementation (2 of 2)

AUTOSAR Tools

84

AUTOSAR Tools
AutoSar is not manual - Scope of the standard support

• AutoSar MetaModel: 800 classes based of MOF with stereotypes extensions

• The standardization is based on exchanging XML at every steps

• Must be tooled:

• Manage (rights, configuration, changes,..)

• Import

• Design

• Validate

85

AUTOSAR Tools

86

AUTOSAR Builder Tool

Components

• AutoSar Requirement Management

• AUTOSAR Authoring Tool, AAT.

• ECU Extract.

• SWC Conformance Validation Tool, SCVT.

• Generic Configuration Editor, GCE.

87

AUTOSAR Builder Tool

88

Authoring Tool – SWC
Conformance Validation

Application Level,
Description and Validation

GCE,

BSW Level,

Configuration

In AutoSar Process

System Configuration &
ECU Extract, Description
and Validation

ECU Configuration,
Configuration

AUTOSAR Tools

• Integration of AUTOSAR Tools in AutoSar Process

89

AUTOSAR Tools

90

AutoSar Builder

Platform Architecture

• Eclipse Plug-in mechanism

• Leverage on the mature existing tools in the market

• Open Framework adapted to System Engineering

91

Tool Architecture

• Starting Points: ECLIPSE

92

Technical infrastructure

• Model management

• UML/MOF/MDS (model driven schema) to EMF

• Multi resources support (files, database)

• Model validation

• Model extension, AUTOSAR profiles

• Model editing

• Tree view, forms, XML model of GUI, EMF methods generation

• Graphical editor, Topcased

• Collaborative support

• Svn integration

• Documentation

• Jet & Birt technologies,

• Creating jet code from the meta model

• Code Generation

• Jet

• External Tool integration
93

AUTOSAR – Drivers and Interfaces

94

AutoSar - Drivers

An driver contains the functionality to control and access

an internal or an external device.

• Internal devices are located inside the microcontroller.

Examples for internal devices are:

• Internal EEPROM

• Internal CAN controller

• Internal ADC

A driver for an internal device is called internal driver and is

located in the MCAL “Microcontroller Abstraction Layer ”.

95

AutoSar - Drivers

• External devices are located on the ECU hardware outside the

microcontroller. Examples for external devices are:

• External EEPROM

• External watchdog

• External flash

A driver for an external device is called external driver and is located in the

EAL “ECU Abstraction Layer”. It accesses the external device via drivers of the

MCAL. This way also components integrated in SBCs (System Basis Chips) like

transceivers and watchdogs are supported by AUTOSAR.

Example: a driver for an external EEPROM with SPI interface accesses the external

EEPROM via the handler/driver for the SPI bus.

Exception: The drivers for memory mapped external devices (e.g. external flash

memory) may access the microcontroller directly. Those external drivers are

located in the MCAL because they are microcontroller dependent.
96

AutoSar - Interface

• An Interface (interface module) contains the functionality to abstract

from modules which are architecturally placed below them. E.g., an

interface module which abstracts from the hardware realization of a

specific device. It provides a generic API to access a specific type of

device independent on the number of existing devices of that type and

independent on the hardware realization of the different devices.

• The interface does not change the content of the data.

• In general, interfaces are located in the ECU Abstraction Layer.

• Example: an interface for a CAN communication system provides a

generic API to access CAN communication networks independent on

the number of CAN Controllers within an ECU and independent of

the hardware realization (on chip, off chip).

97

AutoSar – Handler and Manager
A handler

• Is a specific interface which controls the concurrent, multiple and

asynchronous access of one or multiple clients to one or more drivers. i.e.

it performs buffering, queuing, arbitration, multiplexing.

• Does not change the content of the data.

• Functionality is often incorporated in the driver or interface (e.g.

SPIHandlerDriver, ADC Driver).

A manager

• offers specific services for multiple clients. It is needed in all cases where

pure handler functionality is not enough to abstract from multiple clients.

• Besides handler functionality, a manager can evaluate and change or adapt

the content of the data.

• In general, managers are located in the Services Layer

Example: The NVRAM manager manages the concurrent access to internal and/or

external memory devices like flash and EEPROM memory. It also performs

distributed and reliable data storage, data checking, provision of default values etc.
98

AutoSar - Libraries

Libraries are a collection of functions for related purposes. They:

• Can be called by BSW modules (that including the RTE), SW-Cs,

libraries or integration code

• run in the context of the caller in the same protection environment

• can only call libraries

• are re-entrant

• do not have internal states

• do not require any initialization

• are synchronous, i.e. they do

not have wait points

99

AUTOSAR - Methodology and

Application Interfaces

Use cases

100

Sensor/Actuator AUTOSAR SW-C

The Sensor/Actuator AUTOSAR Software Component is a specific

type of AUTOSAR Software Component for sensor evaluation and

actuator control. Though not belonging to the AUTOSAR Basic

Software, it is described here due to its strong relationship to local

signals. It has been decided to locate the Sensor/Actuator SW

Components above the RTE for integration reasons (standardized

interface implementation and interface description). Because of their

strong interaction with raw local signals, relocatability is restricted.

Task:

Provide an abstraction from the specific physical properties of hardware

sensors and actuators, which are connected to an ECU.

Properties:

Implementation: μC and ECU HW independent, sensor and actuator

dependent 101

Main Concepts: Methodology

102

• AUTOSAR – Assignment of Basic SW Components

Or

Or

Main Concepts: Methodology

103

• AUTOSAR – System View

Sensor/Actuator Component Implementation possibilities

Interfaces: General Rules
• General Interfacing Rules

104

Interfaces: General Rules
• Layer Interaction Matrix

105

AUTOSAR Application Interfaces -

OEM Use case
• SHORT TERM: OEM is applying AUTOSAR Naming Convention more than

10.000 interfaces and calibrations data for industrial purposes after two years

of intensive work on the specification of the naming convention

• Middle Term: Results are foreseen as an “AUTOSAR Application Interfaces

Handbook” to support internal design & development of vehicle functions as

much as support for exchange in project where suppliers are tied.

106

Use of standardized application interfaces increase quality on exchange with
suppliers and improve software integration from system standpoint.

AUTOSAR Application Interfaces -

Supplier Use case
• Specification of application interfaces will support

integration of SW-components

107

Use of 10.x application interfaces increase quality on integration,

 i.e. they prevent from inconsistencies.

AUTOSAR –challenges

108

Challenges in Automotive E/E

Development

• Extend product offering and increase product differentiation

• Stable or decreasing development costs

• Strengthen brand image in the market

• Propose specific features and functions across the product range

• Ensure long term competitiveness, as well as presence in emerging

markets, through cost reduction

• Increase quality and reduce “non quality” costs

• Increasing share of electronics in vehicle value

• Electronics share (in value): 2004: 20% 2015: 40% (McKinsey,

Automotive Electronics - Managing innovations on the road)

• Software share (in value): 2000: 4,5% 2010: 13% (Mercer

Consulting, Automobile technologie 2010)
109

AutoSar Evolution

110

Architecture Evolution
• The basic software architecture has reached a high level of maturity.

• Commercial implementations of the basic software modules based on

Release 3.0 as well as 2.1 are available on the market.

• Major improvements were made on the

wake up and start up of ECUs and networks

providing both, harmonization

 of features and reduction of complexity.

• As an example of evolution of

existing modules the approach of

abstraction was refined by introducing

state managers as an architectural layer for

CAN (Controller Area Network),

LIN (Local Interconnection Network),

and FlexRay 111

Methodology and Templates Evolution

• The improvements made on the templates ensure the

consistency of the standard. Interfaces, behavior and

configuration parameters of the basic software are

now included in AUTOSAR models – following the

single source principle. This allows a better control of

further evolution and the automatic generation of the

relevant specification chapters

112

Release 4 - Functional safety

• Functional safety is one of the main objectives as AUTOSAR will support

safety related applications and thereby has to consider the upcoming ISO

26262 standard. Exemplarily some of the new safety features are mentioned

below:

• The memory partitioning concept will provide a fault containment technique to

separate software applications from each other. This concept is allowing safety and

non safety applications to be implemented on the same ECU.

• Defensive behavior is a solution that prevents data corruption and wrong service

calls on microcontrollers which have no hardware support for memory partitioning.

• Support for dual microcontroller architectures aims on detection of faults in the

core microcontroller by a secondary unit.

• Program flow monitoring controls the temporal and logical behavior of applications

by checking, at specified points of code execution, if the timing and logical order of

execution requirements are met.

• The end-to-end communication protection library is providing a state of the art

safety protocol at application level.
113

Standardization Levels

The standardization could be developed incrementally towards:

• Level of abstraction

• Functional aspects

• Behavior and implementation aspects

• Level of decomposition

• Low degree of decomposition of the functional domain

• High degree of decomposition of the functional domain

• Level of architecture definition

• Terminology

• Standardized data-types

• Partial description of interfaces (without semantics)

• Complete description of interfaces (without semantics)

• Complete description of interfaces (with semantics)

• Partial definition of the functional domain

• Complete definition of the functional domain 114

AUTOSAR – Topics for Research and

Development 2008

115

Graph Transformation

• Is the technology for semi-automatic configuration

• Can reduce the configuration complexity

• Needs to build domain knowledge

116

Topics for Research and Development

117

• System configuration

Topics for Research and Development

118

• System configuration/Communication Mapping.

Topics for Research and Development

119

• System configuration/Communication Mapping.

• Level 1: Primitive Data Types System Signals.

Topics for Research and Development

120

System configuration/

Communication Mapping.

Level 2:

System Signals

→ Run Time Environment

→ Interaction Protocol Data Unit

• Mapping of RTE signals to
Communication Manager

• Interaction layer defines also

timing and triggering of ISignals

Topics for Research and Development

121

System configuration/

Communication Mapping

Level 3: Interaction Protocol Data
Units → Frames.

• Mapping of Communication Mana
ger to PDU Router

• PDU Router deploys frames to
different communication protocols

• Frame definitions configure all
communication stacks of full netw
ork

• Different segments of system
configuration will be used to
configure each communication
stack at each ECU

Topics for Research and Development

122

System configuration/Communication Mapping/Tooling.

Semi-automatic mapping of communication

The first test

• After the first specification 31 software components

were ordered from 15 vendors, these components

were realized in 56 implementations

• The components were installed into two different

systems. One 16 bit system and one 32 bit system

• The test led to 260 suggestions for changes in the

specification

• Since then there has been few new suggestions for

changes but the standard has developed and grown.

123

Main Concepts: Methodology

124

• AUTOSAR System - Design Process - Implementation Process

Main Concepts: Methodology

125

• AUTOSAR System - Design Process

