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18 CHAPTER 1 Introduction
1.3 TEST AUTOMATION

Advances in manufacturing process technology have also led to very complex

designs. As a result, it has become a requirement that design-for-testability

(DFT) features be incorporated in the register-transfer level (RTL) or gate-
level design before physical design to ensure the quality of the fabricated

devices. In fact, the traditional VLSI development process illustrated in Fig-

ure 1.3 involves some form of testing at each stage, including design verifica-

tion. Once verified, the VLSI design then goes to fabrication and, at the same

time, test engineers develop a test procedure based on the design specification

and fault models associated with the implementation technology. Because the

resulting product quality is in general unsatisfactory, modern VLSI test develop-

ment planning tends to start when the RTL design is near completion. This test
development plan defines what test requirements the product must meet,

often in terms of defect level and manufacturing yield, test cost, and

whether it is necessary to perform self-test and diagnosis. Because the test
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requirements mostly target manufacturing defects rather than soft errors,
which would require online fault detection and correction [Wang 2007],
one need is to decide what fault models should be considered.

The test development process now consists of (1) defining the targeted fault

models for defect level and manufacturing yield considerations, (2) deciding

what types of DFT features should be incorporated in the RTL design to meet

the test requirements, (3) generating and fault-grading test patterns to calculate

the final fault coverage, and (4) conducting manufacturing test to screen bad

chips from shipping to customers and performing failure mode analysis
(FMA) when the chips do not achieve desired defect level or yield requirements.
1.3.1 Fault models
A defect is a manufacturing flaw or physical imperfection that may lead to a

fault, a fault can cause a circuit error, and a circuit error can result in a failure
of the device or system. Because of the diversity of defects, it is difficult to gen-

erate tests for real defects. Fault models are necessary for generating and evalu-
ating test patterns. Generally, a good fault model should satisfy two criteria: (1)

it should accurately reflect the behavior of defects and (2) it should be compu-

tationally efficient in terms of time required for fault simulation and test genera-

tion. Many fault models have been proposed but, unfortunately, no single fault

model accurately reflects the behavior of all possible defects that can occur.

As a result, a combination of different fault models is often used in the genera-

tion and evaluation of test patterns. Some well-known and commonly used fault

models for general sequential logic [Bushnell 2000; Wang 2006] include the
following:
1. Gate-level stuck-at fault model: The stuck-at fault is a logical fault

model that has been used successfully for decades. A stuck-at fault trans-

forms the correct value on the faulty signal line to appear to be stuck-at a
constant logic value, either logic 0 or 1, referred to as stuck-at-0 (SA0) or

stuck-at-1 (SA1), respectively. This model is commonly referred to as the

line stuck-at fault model where any line can be SA0 or SA1, and also

referred to as the gate-level stuck-at fault model where any input or out-

put of any gate can be SA0 or SA1.

2. Transistor-level stuck fault model: At the switch level, a transistor can

be stuck-off or stuck-on, also referred to as stuck-open or stuck-
short, respectively. The line stuck-at fault model cannot accurately
reflect the behavior of stuck-off and stuck-on transistor faults in comple-
mentary metal oxide semiconductor (CMOS) logic circuits because

of the multiple transistors used to construct CMOS logic gates. A stuck-

open transistor fault in a CMOS combinational logic gate can cause the

gate to behave like a level-sensitive latch. Thus, a stuck-open fault in a

CMOS combinational circuit requires a sequence of two vectors for
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detection instead of a single test vector for a stuck-at fault. Stuck-short
faults, on the other hand, can produce a conducting path between power

(VDD) and ground (VSS) and may be detected by monitoring the power

supply current during steady state, referred to as IDDQ. This technique

of monitoring the steady state power supply current to detect transistor

stuck-short faults is called IDDQ testing [Bushnell 2000; Wang 2007].

3. Bridging fault models: Defects can also include opens and shorts in

the wires that interconnect the transistors that form the circuit. Opens

tend to behave like line stuck-at faults. However, a resistive open does
not behave the same as a transistor or line stuck-at fault, but instead

affects the propagation delay of the signal path. A short between two

wires is commonly referred to as a bridging fault. The case of a wire

being shorted to VDD or VSS is equivalent to the line stuck-at fault model.

However, when two signal wires are shorted together, bridging fault

models are needed; the three most commonly used bridging fault mod-

els are illustrated in Figure 1.9. The first bridging fault model proposed

was the wired-AND/wired-OR bridging fault model, which was origi-
nally developed for bipolar technology and does not accurately reflect

the behavior of bridging faults typically found in CMOS devices. There-

fore, the dominant bridging fault model was proposed for CMOS

where one driver is assumed to dominate the logic value on the two

shorted nets. However, the dominant bridging fault model does not

accurately reflect the behavior of a resistive short in some cases. The

most recent bridging fault model, called the 4-way bridging fault model

and also known as the dominant-AND/dominant-OR bridging fault
model, assumes that one driver dominates the logic value of the shorted

nets for one logic value only [Stroud 2002].
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4. Delay fault models: Resistive opens and shorts in wires and parameter
variations in transistors can cause excessive delay such that the total

propagation delay falls outside the specified limit. Delay faults have

become more prevalent with decreasing feature sizes, and there are dif-

ferent delay fault models. In gate-delay fault and transition fault mod-

els, a delay fault occurs when the time interval taken for a transition

through a single gate exceeds its specified range. The path-delay fault
model, on the other hand, considers the cumulative propagation delay

along any signal path through the circuit. The small delay defect model
takes timing delay associated with the fault sites and propagation paths

from the layout into consideration [Sato 2005; Wang 2007].
1.3.2 Design for testability
To test a given circuit, we need to control and observe logic values of internal

nodes. Unfortunately, some nodes in sequential circuits can be difficult to con-

trol and observe. DFT techniques have been proposed to improve the controlla-
bility and observability of internal nodes and generally fall into one of the

following three categories: (1) ad-hoc DFT methods, (2) scan design, and
(3) built-in self-test (BIST). Ad-hoc methods were the first DFT technique

introduced in the 1970s [Abramovici 1994]. The goal was to target only por-

tions of the circuit that were difficult to test and to add circuitry (typically test
point insertion) to improve the controllability and/or observability of internal

nodes [Wang 2006].

Scan design was the most significant DFT technique proposed [Williams
1983]. This is because the scan design implementation process was easily auto-

mated and incorporated in the EDA flow. A scan design can be flip-flop based

or latch based. The latch-based scan design is commonly referred to as level-
sensitive scan design (LSSD) [Eichelberger 1978]. The basic idea to create a

scan design is to reconfigure each flip-flop (FF ) or latch in the sequential circuit

to become a scan flip-flop (SFF ) or scan latch (often called scan cell),
respectively. These scan cells, as illustrated in Figure 1.10, are then connected

in series to form a shift register, or scan chain, with direct access to a primary
input (Scan Data In) and a primary output (Scan Data Out). During the shift

operation (when Scan Mode is set to 1), the scan chain is used to shift in a test

pattern from Scan Data In to be applied to the combinational logic. During one

clock cycle of the normal system operation (when Scan Mode is set to 0), the

test pattern is applied to the combinational logic and the output response is

clocked back or captured into the scan cells. The scan chain is then used in scan

mode to shift out the combinational logic output response while shifting in the

next test pattern to be applied. As a result, scan design reduces the problem of
testing sequential logic to that of testing combinational logic and, thereby,

facilitates the use of automatic test pattern generation (ATPG) techniques

and software developed for combinational logic.
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BIST was proposed around 1980 to embed test circuitry in the device or sys-

tem to perform self-test internally. As illustrated in Figure 1.11, a test pattern
generator (TPG) is used to automatically supply the internally generated test
patterns to the circuit under test (CUT), and an output response analyzer
(ORA) is used to compact the output responses from the CUT [Stroud 2002].

Because the test circuitry resides with the CUT, BIST can be used at all levels

of testing from wafer through system level testing. BIST is typically applied on

the basis of the type of circuit under test. For example, scan-based BIST

approaches are commonly used for general sequential logic (often called logic
BIST); more algorithmic BIST approaches are used for regular structures such

as memories (often called memory BIST). Because of the complexity of cur-
rent VLSI devices that can include analog and mixed-signal (AMS) circuits,

as well as hundreds of memories, BIST implementations are becoming an

essential part of both system and test requirements [Wang 2006, 2007].

Test compression can be considered as a supplement to scan design and is

commonly used to reduce the amount of test data (both input stimuli and out-

put responses) that must be stored on the automatic test equipment (ATE)
[Touba 2006]. Reduction in test data volume and test application time by 10�
or more can be achieved. This is typically done by including a decompressor
before the m scan chain inputs of the CUT to decompress the compressed input
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stimuli and a compactor after the m scan chain outputs of the CUT to compact

output responses, as illustrated in Figure 1.12. The compressed input stimulus
and compacted output response are each connected to n tester channels on

the ATE, where n < m and n is typically at least 10� smaller than m. Modern

test synthesis tools can now directly incorporate these test compression fea-

tures into either an RTL design or a gate-level design as will be discussed in

more detail in Chapter 3.
1.3.3 Fault simulation and test generation
The mechanics of testing for fault simulation, as illustrated in Figure 1.13, are

similar at all levels of testing, including design verification. First, a set of target

faults (fault list) based on the CUT is enumerated. Often, fault collapsing is

applied to the enumerated fault set to produce a collapsed fault set to reduce

fault simulation or fault grading time. Then, input stimuli are applied to the

CUT, and the output responses are compared with the expected fault-free

responses to determine whether the circuit is faulty. For fault simulation,

the CUT is typically synthesized down to a gate-level design (or circuit netlist).
Ensuring that sufficient design verification has been obtained is a difficult

step for the designer. Although the ultimate determination is whether or not

the design works in the system, fault simulation, illustrated in Figure 1.13, can

provide a rough quantitative measure of the level of design verification much

earlier in the design process. Fault simulation also provides valuable information
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on portions of the design that need further design verification, because design

verification vectors are often used as functional vectors (called functional
testing) during manufacturing test.

Test development consists of selecting specific test patterns on the basis of

circuit structural information and a set of fault models. This approach, called
structural testing, saves test time and improves test efficiency, because the

total number of test patterns is largely decreased since the test patterns target

specific faults that would result from defects in the manufactured circuit. Struc-

tural testing cannot guarantee detection of all possible manufacturing defects,

because the test patterns are generated on the basis of specific fault models.
However, fault models provide a quantitative measure of the fault detection cap-

abilities for a given set of test patterns for the targeted fault model; this measure

is called fault coverage and is defined as:

fault coverage ¼ number of detected faults

total number of faults

Any input pattern, or sequence of input patterns, that produces a different out-

put response in a faulty circuit from that of the fault-free circuit is a test pattern,

or sequence of test patterns, which will detect the fault. Therefore, the goal of

automatic test pattern generation (ATPG) is to find a set of test patterns

that detects all faults considered for that circuit. Because a given set of test pat-
terns is usually capable of detecting many faults in a circuit, fault simulation is

typically used to evaluate the fault coverage obtained by that set of test patterns.

As a result, fault models are needed for fault simulation and for ATPG.
1.3.4 Manufacturing test
The tester, also referred to as the automatic test equipment (ATE), applies
the functional test vectors and structural test patterns to the fabricated circuit

and compares the output responses with the expected responses obtained from

the design verification simulation environment for the fault-free (and hopefully,

design error-free) circuit. A “faulty” circuit is now considered to be a circuit

with manufacturing defects.
Some percentage of the manufactured devices, boards, and systems is

expected to be faulty because of manufacturing defects. As a result, testing is

required during the manufacturing process in an effort to find and eliminate

those defective parts. The yield of a manufacturing process is defined as the

percentage of acceptable parts among all parts that are fabricated:

yield ¼ number of acceptable parts

total number of parts fabricated
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A fault is a representation of a defect reflecting a physical condition that causes

a circuit to fail to perform in a required manner. When devices or electronic sys-
tems are tested, the following two undesirable situations may occur: (1) a faulty

circuit appears to be a good part passing the test, or (2) a good circuit fails the

test and appears as faulty. These two outcomes are often due to a poorly

designed test or the lack of DFT. As a result of the first case, even if all products

pass the manufacturing test, some faulty devices will still be found in the man-

ufactured electronic system. When these faulty circuits are returned to the man-

ufacturer, they undergo failure mode analysis (FMA) or fault diagnosis for

possible improvements to the manufacturing process [Wang 2006]. The ratio
of field-rejected parts to all parts passing quality assurance testing is referred

to as the reject rate, also called the defect level:

reject rate ¼ number of faulty parts passing final test

total number of parts passing final test

Because of unavoidable statistical flaws in the materials andmasks used to fabricate

the devices, it is impossible for 100% of any particular kind of device to be defect

free. Thus, the first testing performed during the manufacturing process is to test

the devices fabricated on the wafer to determine which devices are defective.

The chips that pass the wafer-level test are extracted and packaged. The packaged

devices are retested to eliminate those devices that may have been damaged during

the packaging process or put into defective packages. Additional testing is used to
ensure the final quality before shipping to customers. This final testing includes

measurement of parameters such as input/output timing specifications, voltage,

and current. In addition, burn-in or stress testing is often performed when chips

are subject to high temperature and supply voltage. The purpose of burn-in testing

is to accelerate the effect of defects that could lead to failures in the early stages of

operation of the device. FMA is typically used at all stages of the manufacturing test

to identify improvements to processes that will result in an increase in the number

of defect-free electronic devices and systems produced.
In the case of a VLSI device, the chip may be discarded or it may be investi-

gated by FMA for yield enhancement. In the case of a PCB, FMA may be per-

formed for yield enhancement or the board may undergo further testing for

fault location and repair. A “good” circuit is assumed to be defect free, but this

assumption is only as good as the quality of the tests being applied to the man-

ufactured design. Once again, fault simulation provides a quantitative measure

of the quality of a given set of tests.
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Design for testability (DFT) has become an essential part for designing very-
large-scale integration (VLSI) circuits. The most popular DFT techniques in

use today for testing the digital portion of the VLSI circuits include scan and

scan-based logic built-in self-test (BIST). Both techniques have proved to

be quite effective in producing testable VLSI designs. In addition, test com-
pression, a supplemental DFT technique for scan, is growing in importance

for further reduction in test data volume and test application time during

manufacturing test.

To provide readers with an in-depth understanding of the most recent DFT
advances in scan, logic BIST, and test compression, this chapter covers a num-

ber of fundamental DFT techniques to facilitate testing of modern digital cir-

cuits. These techniques are required to improve the product quality and

reduce the defect level and test cost of a digital circuit, while at the same time

simplifying the test, debug, and diagnosis tasks.

In this chapter, we first cover the basic DFT concepts and methods for

performing testability analysis. Next, scan design, the most widely used

structured DFT method, is discussed, including popular scan cell designs, scan
architectures, and at-speed clocking schemes. After a brief introduction to the

basic concept of logic BIST, we then discuss BIST pattern generation and output

response analysis schemes along with a number of logic BIST architectures for

in-circuit self-test. Finally, we present a number of test compression circuit

structures for test stimuli compression and test response compaction. The chap-

ter also includes a description of logic BIST and test compression architectures

currently practiced in industry.
97



98 CHAPTER 3 Design for testability
3.1 INTRODUCTION

With advances in semiconductor manufacturing technology, integrated cir-
cuits (ICs) can now contain tens to hundreds of millions of transistors running

in the gigahertz range. The production and use of these integrated circuits has

run into a variety of test challenges during wafer probe, wafer sort, preship

screening, incoming test of chips and boards, test of assembled boards, system
test, periodic maintenance, repair test, etc. During the early stages of IC pro-

duction history, design and test were regarded as separate functions, performed

by separate and unrelated groups of engineers. During these early years, a

design engineer’s job was to implement the required functionality on the basis

of design specifications, without giving any thought to how the manufactured

device was to be tested. Once the functionality was implemented, the design

information was transferred to test engineers. A test engineer’s job was to

determine how to best test each manufactured device within a reasonable
amount of time and to screen out the parts that may contain manufacturing

defects while shipping all defect-free devices to customers. The final quality

of the test was determined by keeping track of the number of defective parts

shipped to the customers on the basis of customer returns. This product qual-

ity, measured in terms of defective parts per million (DPM) shipped, was a

final test score for quantifying the effectiveness of the developed test.

Although this approach worked well for small-scale integrated circuits that

mainly consisted of combinational logic or simple finite-state machines, it was
unable to keep up with the circuit complexity as designs moved from small-
scale integration (SSI) to very large-scale integration (VLSI). A common

approach to testing these VLSI devices during the 1980s relied heavily on fault

simulation to measure the fault coverage of the supplied functional patterns.

Functional patterns were developed to navigate through the long sequential

depths of a design, hoping to exercise all internal states and to detect all possi-

ble manufacturing defects. A fault simulation or fault-grading tool was used

to quantify the effectiveness of the functional patterns. If the supplied func-
tional patterns did not reach the target fault coverage goal, additional functional

patterns were added. Unfortunately, this approach typically failed to improve

the circuit’s fault coverage beyond 80%, and the quality of the shipped products

suffered.

Gradually, it became clear that designing devices without paying much atten-

tion to test resulted in increased test cost and decreased test quality. Some

designs, which were otherwise best-in-class with regard to functionality and per-

formance, failed commercially because of prohibitive test costs or poor product
quality. These problems have since led to the development and deployment of

DFT engineering in the industry.

The first challenge facing DFT engineers was to find simpler ways of exercis-

ing all internal states of a design and reaching the target fault coverage goal.
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Various testability measures and ad hoc testability enhancement methods

were proposed and used in the 1970s and 1980s to serve this purpose. These
methods were mainly used to aid in the circuit’s testability or to increase the

circuit’s controllability and observability [McCluskey 1986; Abramovici

1994]. Although attempts to use these methods have substantially improved

the testability of a design and eased sequential automatic test pattern gener-
ation (ATPG), their end results at reaching the target fault coverage goal were

far from satisfactory; it was still quite difficult to reach more than 90% fault cov-

erage for large designs. This was mostly because even with these testability aids,

deriving functional patterns by hand or generating test patterns for a sequential
circuit is a much more difficult problem than generating test patterns for a com-

binational circuit [Fujiwara 1982; Bushnell 2000; Jha 2003].

Today, the semiconductor industry relies heavily on two techniques for test-

ing digital circuits: scan and logic built-in self-test (BIST) [Abramovici 1994;

McCluskey 1986]. Scan converts a digital sequential circuit into a scan design

and then uses ATPG software [Bushnell 2000; Jha 2003; Wang 2006a] to detect

faults that are caused by manufacturing defects (physical failures) and manifest

themselves as errors, whereas logic BIST requires the use of a portion of the
VLSI circuit to test itself on-chip, on-board, or in-system. To keep up with the

design and test challenges [SIA 2005, 2006], more advanced design-for-test-
ability (DFT) techniques, such as test compression, at-speed delay fault testing,

and power-aware test generation, have been developed over the past few years

to further address the test cost, delay fault, and test power issues [Gizopoulos

2006; Wang 2006a, 2007a].

Scan design is implemented by first replacing all selected storage elements

of the digital circuit with scan cells and then connecting them into one or
more shift registers, called scan chains, to provide them with external access.

With external access, one can now control and observe the internal states of the

digital circuit by simply shifting test stimuli into and test responses out of the

shift registers during scan testing. The DFT technique has since proved to

be quite effective in improving the product quality, testability, and diagnosability

of scan designs [Crouch 1999; Bushnell 2000; Jha 2003; Gizopoulos 2006;

Wang 2006a, 2007a]. Although scan has offered many benefits during manufac-

turing test, it is becoming inefficient to test deep submicron or nanometer VLSI
designs. The reasons are mostly because (1) traditional test schemes that use

ATPG software to target single faults have become quite expensive and (2) suf-

ficiently high fault coverage for these deep submicron or nanometer VLSI

designs is hard to sustain from the chip level to the board and system levels.

To alleviate these test problems, the scan approach is typically combined

with logic BIST that incorporates BIST features into the scan design at the

design stage [Bushnell 2000; Mourad 2000; Stroud 2002; Jha 2003]. With logic

BIST, circuits that generate test patterns and analyze the output responses of
the functional circuitry are embedded in the chip or elsewhere on the same

board where the chip resides to test the digital logic circuit itself. Typically,
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pseudo-random patterns are applied to the circuit under test (CUT), while

their test responses are compacted in a multiple-input signature register
(MISR) [Bardell 1987; Rajski 1998; Nadeau-Dostie 2000; Stroud 2002; Jha

2003; Wang 2006a]. Logic BIST is crucial in many applications, in particular,

for safety-critical and mission-critical applications. These applications, com-

monly found in the aerospace/defense, automotive, banking, computer, health-

care, networking, and telecommunications industries, require on-chip, on-

board, or in-system self-test to improve the reliability of the entire system,

as well as the ability to perform in-field diagnosis.

Since the early 2000s, test compression, a supplemental DFT technique to
scan, is gaining industry acceptance to further reduce test data volume and test

application time [Touba 2006; Wang 2006a]. Test compression involves

compressing the amount of test data (both test stimulus and test response)

that must be stored on automatic test equipment (ATE) for testing with

a deterministic ATPG-generated test set. This is done by use of code-based
schemes or adding additional on-chip hardware before the scan chains to decom-

press the test stimulus coming from the ATE and after the scan chains to compress

the test response going to the ATE. This differs from logic BIST in that the test
stimuli that are applied to the CUT are a deterministic (ATPG-generated) test set

rather than pseudo-random patterns. Typically, test compression can provide

10� to 100� or evenmore reduction in test application time and test data volume

and hence can drastically save scan test cost.
3.2 TESTABILITY ANALYSIS

Testability is a relative measure of the effort or cost of testing a logic circuit. In

general, it is based on the assumption that only primary inputs and primary out-
puts can be directly controlled and observed, respectively. Testability reflects

the effort required to perform the main test operations of controlling internal

signals from primary inputs and observing internal signals at primary outputs.

Testability analysis refers to the process of assessing the testability of a logic

circuit by calculating a set of numeric measures for each signal in the circuit.

One important application of testability analysis is to assist in the decision-

making process during test generation. For example, if during test generation, it

is determined that the output of a certain AND gate must be set to 0, testability
analysis can help decide which AND gate input is the easiest to set to 0. The con-

ventional application is to identify areas of poor testability to guide testability

enhancement, such as test point insertion, for improving the testability of the

design. For this purpose, testability analysis is performed at various design stages

so that testability problems can be identified and fixed as early as possible.

Since the 1970s, many testability analysis techniques have been proposed

[Rutman 1972; Stephenson 1976; Breuer 1978; Grason 1979]. The Sandia
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Controllability/Observability Analysis Program (SCOAP) [Goldstein

1979, 1980] was the first topology-based program that populated testability
analysis applications. Enhancements based on SCOAP have also been devel-

oped and used to aid in test point selection [Wang 1984, 1985]. These meth-

ods perform testability analysis by calculating the controllability and

observability of each signal line, where controllability reflects the difficulty

of setting a signal line to a required logic value from primary inputs, and

observability reflects the difficulty of propagating the logic value of the signal

line to primary outputs.

Traditionally, gate-level topologic information of a circuit is used for testabil-
ity analysis. Depending on a target application, deterministic and/or random

testability measures are calculated. In general, topology-based testability
analysis, such as SCOAP or probability-based testability analysis, is computa-

tionally efficient but can produce inaccurate results for circuits containing many

reconvergent fanouts. Simulation-based testability analysis, on the other

hand, can generate more accurate estimates by simulating the circuit behavior

with deterministic, random, or pseudo-random test patterns, but may require

a long simulation time.
In this section, we first describe the method for performing SCOAP testabil-

ity analysis. Then, probability-based testability analysis and simulation-based test-

ability analysis are discussed.
3.2.1 SCOAP testability analysis
The SCOAP testability analysis program [Goldstein 1979, 1980] calculates six

numeric values for each signal s in a logic circuit:
n CC0(s): Combinational 0-controllability of s

n CC1(s): Combinational 1-controllability of s

n CO(s): Combinational observability of s
n SC0(s): Sequential 0-controllability of s

n SC1(s): Sequential 1-controllability of s

n SO(s): Sequential observability of s
Roughly speaking, the three combinational testability measures, CC0, CC1, and
CO, are related to the number of signals that need to be manipulated to control

or observe s from primary inputs or at primary outputs, whereas the three

sequential testability measures, SC0, SC1, and SO, are related to the number

of clock cycles required to control or observe s from primary inputs or at pri-

mary outputs [Bushnell 2000]. The values of controllability measures range

between 1 and infinite, whereas the values of observability measures range

between 0 and infinite. As a boundary condition, the CC0 and CC1 values of

a primary input are set to 1, the SC0 and SC1 values of a primary input are
set to 0, and the CO and SO values of a primary output are set to 0.
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3.2.1.1 Combinational controllability and observability calculation

The first step in SCOAP is to calculate the combinational controllability mea-

sures of all signals. This calculation is performed from primary inputs toward

primary outputs in a breadth-first manner. More specifically, the circuit is

leveled from primary inputs to primary outputs to assign a level order for

each gate. The output controllability for each gate is then scheduled in level

order after the controllability measures of all of its inputs have been calcu-

lated. The rules for combinational controllability calculation are summarized

in Table 3.1, where a 1 is added to each rule to indicate that a signal passes

through one more level of logic gate. From this table, we can see that CC0

(s) � 1 and CC1(s) � 1 for any signal s. A larger CC0(s) or CC1(s) value implies

that it is more difficult to control s to 0 or 1 from primary inputs.

Once the combinational controllability measures of all signals are calculated,

the combinational observability of each signal can be calculated. This calcula-
tion is also performed in a breadth-first manner while moving from primary out-

puts toward primary inputs. The rules for combinational observability

calculation are summarized in Table 3.2, where a 1 is added to each rule to indi-

cate that a signal passes through one more level of logic. From this table, we can

see that CO(s) � 0 for any signal s. A larger CO(s) value implies that it is more

difficult to observe s at any primary output.
Table 3.1 SCOAP Combinational Controllability Calculation Rules

0-Controllability (Primary
Input, Output, Branch)

1-Controllability (Primary
Input, Output, Branch)

Primary Input 1 1

AND min {input 0-controllabilities} þ 1 S (input 1-controllabilities) þ 1

OR S (input 0-controllabilities) þ 1 min {input 1-controllability} þ 1

NOT Input 1-controllability þ 1 Input 0-controllability þ 1

NAND S (input 1-controllabilities) þ 1 min {input 0-controllability} þ 1

NOR min {input 1-controllability) þ 1 S (input 0-controllabilities) þ 1

BUFFER Input 0-controllability þ 1 Input 1-controllability þ 1

XOR min {CC1(a) þ CC1(b),
CC0(a) þ CC0(b)} þ 1

min {CC1(a) þ CC0(b),
CC0(a) þ CC1(b)} þ 1

XNOR min {CC1(a) þ CC0(b),
CC0(a) þ CC1(b)} þ 1

min {CC1(a) þ CC1(b),
CC0(a) þ CC0(b)} þ 1

Branch Stem 0-controllability Stem 1-controllability

a, b: inputs of an XOR or XNOR gate



Table 3.2 SCOAP Combinational Observability Calculation Rules

Observability (Primary Output, Input, Stem)

Primary Output 0

AND/NAND S (output observability, 1-controllabilities of other inputs) þ 1

OR/NOR S (output observability, 0-controllabilities of other inputs) þ 1

NOT/BUFFER Output observability þ 1

XOR/XNOR a: S (output observability, min {CC0(b), CC1(b)}) þ 1
b: S (output observability, min {CC0(a), CC1(a)}) þ 1

Stem min {branch observabilities}

a, b: inputs of an XOR or XNOR gate
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FIGURE 3.1

SCOAP full-adder example.
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Figure 3.1 shows the combinational controllability and observability mea-

sures of a full-adder. The three-value tuple v1/v2/v3 on each signal line repre-

sents the signal’s 0-controllability (v1), 1-controllability (v2), and observability

(v3). The boundary condition is set by initializing the C0 and C1 values of the

primary inputs A, B, and Cin to 1, and the CO values of the primary outputs

Sum and Cout to 0. By applying the rules given in Tables 3.1 and 3.2 and starting
with the given boundary condition, one can first calculate all combinational

controllability measures forward and then calculate all combinational obser-

vability measures backward in level order.

3.2.1.2 Sequential controllability and observability calculation

Sequential controllability and observability measures are calculated in a similar

manner as combinational measures, except that a 1 is not added as we move

from one level of logic to another, but rather a 1 is added when a signal passes

through a storage element. The difference is illustrated in the sequential circuit

example shown in Figure 3.2, which consists of an AND gate and a positive



CK

d
q

r

a
b

Reset

D Q

FIGURE 3.2

SCOAP sequential circuit example.
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edge–triggered D flip-flop. The D flip-flop includes an active-high asynchronous

reset pin r. SCOAP measures of a D flip-flop with a synchronous, as opposed to

asynchronous, reset are shown in [Bushnell 2000].
First, we calculate the combinational and sequential controllability measures

of all signals. To control signal d to 0, either input a or b must be set to 0. To

control d to 1, both inputs a and b must be set to 1. Hence, the combinational

and sequential controllability measures of signal d are:

CC0(d) ¼min {CC0(a), CC0(b)} þ 1
SC0(d) ¼min {SC0(a), SC0(b)}

CC1(d) ¼ CC1(a) þ CC1(b) þ 1

SC1(d) ¼ SC1(a) þ SC1(b)

To control the data output q of the D flip-flop to 0, the data input d and the

reset signal r can be set to 0, while applying a rising clock edge (a 0-to-1 transi-

tion) to the clock CK. Alternately, this can be accomplished by setting r to 1
while holding CK at 0, without applying a clock pulse. Because a clock pulse

is not applied to CK, a 1 is not added to the sequential controllability calculation

in the second case. Therefore, the combinational and sequential 0-controllability

measures of q are:

CC0(q) ¼min{CC0(d) þ CC0(CK) þ CC1(CK) þ CC0(r), CC1(r) þ CC0(CK)}

SC0(q) ¼min{SC0(d) þ SC0(CK) þ SC1(CK) þ SC0(r) þ 1, SC1(r) þ SC0(CK)}

Here, CC0(q) measures how many signals in the circuit must be set to con-

trol q to 0, whereas SC0(q) measures how many flip-flops in the circuit must

be clocked to set q to 0. To control the data output q of the D flip-flop to 1,

the only way is to set the data input d to 1 and the reset signal r to 0, while

applying a rising clock edge to the clock CK. Hence,

CC1(q) ¼ CC1(d) þ CC0(CK) þ CC1(CK) þ CC0(r)

SC1(q) ¼ SC1(d) þ SC0(CK) þ SC1(CK) þ SC0(r) þ 1

Next, we calculate the combinational and sequential observability measures

of all signals. The data input d can be observed at q by holding the reset signal
r at 0 and applying a rising clock edge to CK. Hence,

CO(d) ¼ CO(q) þ CC0(CK) þ CC1(CK) þ CC0(r)

SO(d) ¼ SO(q) þ SC0(CK) þ SC1(CK) þ SC0(r) þ 1
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The asynchronous reset signal r can be observed by first setting q to 1, and

then holding CK at the inactive state 0. Again, a 1 is not added to the sequential
controllability calculation because a clock pulse is not applied to CK:

CO(r) ¼ CO(q) þ CC1(q) þ CC0(CK)

SO(r) ¼ SO(q) þ SC1(q) þ SC0(CK)

There are two ways to indirectly observe the clock signal CK at q: (1) set q

to 1, r to 0, d to 0, and apply a rising clock edge at CK, or (2) set both q and r

to 0, d to 1, and apply a rising clock edge at CK. Hence,

CO(CK) ¼ CO(q) þ CC0(CK) þ CC1(CK) þ CC0(r) þ
min{CC0(d) þ CC1(q), CC1(d) þ CC0(q)}

SO(CK) ¼ SO(q) þ SC0(CK) þ SC1(CK) þ SC0(r) þ
min{SC0(d) þ SC1(q), SC1(d) þ SC0(q)} þ 1

To observe an input of the AND gate at d requires setting the other input

to 1. Therefore, the combinational and sequential observability measures for

both inputs a and b are:

CO(a) ¼ CO(d) þ CC1(b) þ 1

SO(a) ¼ SO(d) þ SC1(b)

CO(b) ¼ CO(d) þ CC1(a) þ 1

SO(b) ¼ SO(d) þ SC1(a)

It is important to note that controllability and observability measures calcu-
lated with SCOAP are heuristics, and only approximate the actual testability of

a logic circuit. When scan design is used, testability analysis can assume that

all scan cells are directly controllable and observable. It was also shown in

[Agrawal 1982] that SCOAP may overestimate testability measures for circuits

containing many reconvergent fanouts. However, with the capability of

performing testability analysis in an O(n) computational complexity for n sig-

nals in a circuit, SCOAP provides a quick estimate of the circuit’s testability that

can be used to guide testability enhancement and test generation.
3.2.2 Probability-based testability analysis
Topology-based testability analysis techniques, such as SCOAP, have been found

to be extremely helpful in supporting test generation, which is a main topic of

Chapter 14. These testability measures are able to analyze the deterministic
testability of the logic circuit in advance and during the ATPG search process

[Ivanov 1988]. On the other hand, in logic built-in self-test (BIST), which is the
main topic of Section 3.4, random or pseudo-random test patterns are generated

without specifically performing deterministic test pattern generation operations

on any signal line. In this case, topology-based testability measures that use sig-

nal probability to analyze the random testability of the circuit can be used

[Parker 1975; Savir 1984; Jain 1985; Seth 1985]. These measures are often

referred to as probability-based testability measures or probability-based

testability analysis techniques.
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For example, given a random input pattern, one can calculate three mea-

sures for each signal s in a combinational circuit as follows:
Tab

Prim
Inp

AN

OR

NO

NA

NO

BU

XO

XNO

Bra

a, b
n C0(s): Probability-based 0-controllability of s

n C1(s): Probability-based 1-controllability of s

n O(s): Probability-based observability of s
Here, C0(s) and C1(s) are the probability of controlling signal s to 0 and 1 from

primary inputs, respectively. O(s) is the probability of observing signal s at pri-

mary outputs. These three probabilities range between 0 and 1. As a boundary

condition, the C0 and C1 probabilities of a primary input are typically set to 0.5,
and the O probability of a primary output is set to 1. For each signal s in the

circuit, C0(s) þ C1(s) ¼ 1.

Many methods have been developed to calculate the probability-based test-

ability measures. A simple method is given in the following, whose basic proce-

dure is similar to the one used for calculating combinational testability measures

in SCOAP, except that different calculation rules are used. The rules for proba-

bility-based controllability and observability calculation are summarized in

Tables 3.3 and 3.4, respectively. In Table 3.3, p0 is the initial 0-controllability
chosen for a primary input, where 0 < p0 < 1.

Compared with SCOAP testability measures, where non-negative integers are

used, probability-based testability measures range between 0 and 1. The smaller
le 3.3 Probability-Based Controllability Calculation Rules

0-Controllability (Primary Input,
Output, Branch)

1-Controllability (Primary
Input, Output, Branch)

ary
ut

p0 p1 ¼ 1 � p0

D 1 � (output 1-controllability) P(input 1-controllabilities)

P(input 0-controllabilities) 1 � (output 0-controllability)

T Input 1-controllability Input 0-controllability

ND P(input 1-controllabilities) 1 � (output 0-controllability)

R 1 � (output 1-controllability) P(input 0-controllabilities)

FFER Input 0-controllability Input 1-controllability

R 1 � 1-controllability S (C1(a) � C0(b),C0(a) � C1(b))

R 1 � 1-controllability S (C0(a) � C0(b),C1(a) � C1(b))

nch Stem 0-controllability Stem 1-controllability

: inputs of an XOR or XNOR gate



Table 3.4 Probability-Based Observability Calculation Rules

Observability (Primary Output, Input, Stem)

Primary output 1

AND/NAND P (output observability, 1-controllabilities of other inputs)

OR/NOR P (output observability, 0-controllabilities of other inputs)

NOT/BUFFER Output observability

XOR/XNOR a: P (output observability, max {0-controllability of b,
1-controllability of b})

b: P (output observability, max {0-controllability of a,
1-controllability of a})

Stem max {branch observabilities}

1/1/3
1/1/3
1/1/3

(a) (b)

2/4/0
0.5/0.5/0.25
0.5/0.5/0.25
0.5/0.5/0.25

0.875/0.125/1

FIGURE 3.3

Comparison of SCOAP and probability-based testability measures: (a) SCOAP combinational

measures. (b) Probability-based measures.
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a probability-based testability measure of a signal, the more difficult it is to con-

trol or observe the signal. Figure 3.3 illustrates the difference between SCOAP

testability measures and probability-based testability measures of a 3-input

AND gate. The three-value tuple v1/v2/v3 of each signal line represents the sig-

nal’s 0-controllability (v1), 1-controllability (v2), and observability (v3).
Signals with poor probability-based testability measures tend to be difficult

to test with random or pseudo-random test patterns. The faults on these signal

lines are often referred to as random pattern resistant (RP-resistant) [Savir
1984]. That is, either the probability of these signals randomly receiving a

0 or 1 from primary inputs, or the probability of observing these signals at pri-

mary outputs is low, assuming that all primary inputs have the equal probability

of being set to 0 or 1.

The existence of such RP-resistant faults is the main reason why fault cover-
age that uses random or pseudo-random test patterns is low compared with the

use of deterministic test patterns. In applications such as logic BIST, to solve

this low fault coverage problem, test points are often inserted in the circuit to

enhance the circuit’s random testability. A few commonly used test point inser-

tion techniques are discussed in [Wang 2006a].
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3.2.3 Simulation-based testability analysis
In the calculation of SCOAP and probability-based testability measures as described
previously, only the topologic information of a logic circuit is explicitly explored.

These topology-basedmethods are static, in the sense that they do not use input test

patterns for testability analysis. Their controllability and observability measures can

be calculated in linear time, thus making them very attractive for applications that

need fast testability analysis, such as test generation and logic BIST. However, the

efficiency of these methods is achieved at the cost of reduced accuracy, especially

for circuits that contain many reconvergent fanouts [Agrawal 1982].

As an alternative or supplement to static or topology-based testability analysis,
dynamic or simulation-based methods that use input test patterns for testability

analysis or testability enhancement can be performed through statistical sam-
pling. Logic simulation and fault simulation techniques can be used [Bushnell

2000; Wang 2006a].

In statistical sampling, a sample set of input test patterns is selected, which

is either generated randomly or derived from a given pattern set, and logic sim-

ulation is conducted to collect the responses of all or part of signal lines of inter-

est. The commonly collected responses are the number of occurrences of 0’s,
1’s, 0-to-1 transitions, and 1-to-0 transitions, which are then used to profile sta-

tistically the testability of a logic circuit. These data are then analyzed to find

locations of poor testability. If a signal line exhibits only a few transitions or

no transitions for the sample input patterns, it might be an indication that the

signal likely has poor controllability.

In addition to logic simulation, fault simulation has also been used to enhance

the testability of a logic circuit with random or pseudo-random test patterns. For

instance, a random resistant fault analysis (RRFA) method has been success-
fully applied to a high-performance microprocessor to improve the circuit’s ran-

dom testability in logic BIST [Rizzolo 2001]. This method is based on statistical

data collected during fault simulation for a small number of random test patterns.

Controllability and observability measures of each signal in the circuit are calcu-

lated by use of the probability models developed in the statistical fault analy-
sis (STAFAN) algorithm [ Jain 1985]. (STAFAN is the first method able to give

reasonably accurate estimates of fault coverage in combinational circuits purely

by use of input test patterns and without running fault simulation.) With these
data, RRFA identifies signals that are difficult to control and/or observe, as well

as signals that are statistically correlated. On the basis of the analysis results, RRFA

then recommends test points to be added to the circuit to improve the circuit’s

random testability.

Because it can take a long simulation time to run through all input test pat-

terns, these simulation-based methods are, in general, used to guide testability

enhancement in test generation or logic BIST, when it is required to meet a very

high fault coverage goal. This approach is crucial for life-critical and mission-
critical applications, such as in the healthcare and defense/aerospace industries.
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3.3 SCAN DESIGN

Scan design is currently the most widely used structured DFT approach. It is

implemented by connecting selected storage elements of a design into one or

more shift registers, called scan chains, to provide them with external access.

Scan design accomplishes this task by replacing all selected storage elements with

scan cells, each having one additional scan input (SI) port and one shared/addi-
tional scan output (SO) port. By connecting the SO port of one scan cell to the SI

port of the next scan cell, one or more scan chains are created.

The scan-inserted design, called scan design, is now operated in three

modes: normal mode, shift mode, and capture mode. Circuit operations

with associated clock cycles conducted in these three modes are referred to

as normal operation, shift operation, and capture operation, respectively.

In normal mode, all test signals are turned off, and the scan design operates

in the original functional configuration. In both shift and capture modes, a test
mode signal TM is often used to turn on all test-related fixes in compliance with

scan design rules. A set of scan design rules that can be found in [Cheung

1997; Wang 2006a] are necessary to simplify the test, debug, and diagnose

tasks, improve fault coverage, and guarantee the safe operation of the device

under test. These circuit modes and operations are distinguished by use of addi-

tional test signals or test clocks. Fundamental scan architectures and at-speed

clocking schemes are described in the following subsections.
3.3.1 Scan architectures
In this subsection, we first describe a few fundamental scan architectures.

These fundamental scan architectures include (1) muxed-D scan design, in

which storage elements are converted into muxed-D scan cells, (2) clocked-scan

design, in which storage elements are converted into clocked-scan cells, and (3)

LSSD scan design, in which storage elements are converted into level-sensitive

scan design (LSSD) shift register latches (SRLs).

3.3.1.1 Muxed-D scan design

Figure 3.4 shows a sequential circuit example with three D flip-flops. The
corresponding muxed-D full-scan circuit is shown in Figure 3.5. An edge-trig-

gered muxed-D scan cell design is shown in Figure 3.5a. This scan cell is com-

posed of a D flip-flop and a multiplexer. The multiplexer uses a scan enable
(SE ) input to select between the data input (DI ) and the scan input (SI ).

In normal/capture mode, SE is set to 0. The value present at the data input

DI is captured into the internal D flip-flop when a rising clock edge is applied.

In shift mode, SE is set to 1. The scan input SI is now used to shift in new

data to the D flip-flop, while the content of the D flip-flop is being shifted out.
Sample operation waveforms are shown in Figure 3.5b. The three D flip-flops,
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FF1, FF2, and FF3, shown in Figure 3.4, are replaced with three muxed-D scan

cells, SFF1, SFF2, and SFF3, respectively, shown in Figure 3.6.

In Figure 3.6, the data input DI of each scan cell is connected to the output

of the combinational logic as in the original circuit. To form a scan chain, the

scan inputs SI of SFF2 and SFF3 are connected to the outputs Q of the previous

scan cells, SFF1 and SFF2, respectively. In addition, the scan input SI of the
first scan cell SFF1 is connected to the primary input SI, and the output Q of

the last scan cell SFF3 is connected to the primary output SO. Hence, in shift

mode, SE is set to 1, and the scan cells operate as a single scan chain, which

allows us to shift in any combination of logic values into the scan cells.
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In capture mode, SE is set to 0, and the scan cells are used to capture the test

response from the combinational logic when a clock is applied.

In general, combinational logic in a full-scan circuit has two types of inputs:

primary inputs (PIs) and pseudo primary inputs (PPIs). Primary inputs

refer to the external inputs to the circuit, whereas pseudo primary inputs refer

to the scan cell outputs. Both PIs and PPIs can be set to any required logic

values. The only difference is that PIs are set directly in parallel from the exter-

nal inputs, whereas PPIs are set serially through scan chain inputs. Similarly, the
combinational logic in a full-scan circuit has two types of outputs: primary
outputs (POs) and pseudo primary outputs (PPOs). Primary outputs refer

to the external outputs of the circuit, whereas pseudo primary outputs refer to

the scan cell inputs. Both POs and PPOs can be observed. The only difference

is that POs are observed directly in parallel from the external outputs, whereas

PPOs are observed serially through scan chain outputs.

3.3.1.2 Clocked-scan design

An edge-triggered clocked-scan cell can also be used to replace a D flip-flop in

a scan design [McCluskey 1986]. Similar to a muxed-D scan cell, a clocked-scan

cell also has a data input DI and a scan input SI; however, in the clocked-scan
cell, input selection is conducted with two independent clocks, data clock

DCK and shift clock SCK, as shown in Figure 3.7a.

In normal/capture mode, the data clock DCK is used to capture the contents

present at the data input DI into the clocked-scan cell. In shift mode, the shift

clock SCK is used to shift in new data from the scan input SI into the

clocked-scan cell, while the content of the clocked-scan cell is being shifted

out. Sample operation waveforms are shown in Figure 3.7b.

The major advantage of the use of a clocked-scan cell is that it results in no
performance degradation on the data input. A major disadvantage, however, is

that it requires additional shift clock routing.
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Figure 3.8 shows a clocked-scan design of the sequential circuit given in Fig-

ure 3.4. This clocked-scan design is tested with shift and capture operations,

similar to a muxed-D scan design. The main difference is how these two opera-

tions are distinguished. In a muxed-D scan design, a scan enable signal SE is
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used, as shown in Figure 3.6. In the clocked scan shown in Figure 3.8, these

two operations are distinguished by properly applying the two independent
clocks SCK and DCK during shift mode and capture mode, respectively.

3.3.1.3 LSSD scan design

Figure 3.9a shows a polarity-hold shift register latch (SRL) design described

in [Eichelberger 1977] that can be used as an LSSD scan cell. This scan cell con-

tains two latches, a master two-port D latch L1 and a slave D latch L2. Clocks C,

A, and B are used to select between the data input D and the scan input I to

drive þL1 and þL2.
To guarantee race-free operation, clocks A, B, and C are applied in a nonover-

lapping manner. In designs in which þL1 is used to drive the combinational

logic, the master latch L1 uses the system clock C to latch system data from
the data input D and to output this data onto þL1. In designs in which þL2 is
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FIGURE 3.9

Polarity-hold SRL design and operation: (a) Polarity-hold SRL. (b) Sample waveforms.
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used to drive the combinational logic, clock B is used after clock C to latch the

system data from latch L1 and to output these data onto þL2. In both cases, cap-
ture mode uses both clocks C and B to output system data onto þL2. Finally, in
shift mode, clocks A and B are used to latch scan data from the scan input I and

to output these data onto þL1, and then latch the scan data from latch L1 and to

output these data onto þL2, which is then used to drive the scan input of the

next scan cell. Sample operation waveforms are shown in Figure 3.9b.

LSSD scan designs can be implemented with either a single-latch design or

a double-latch design. In single-latch design [Eichelberger 1977], the output

port þL1 of the master latch L1 is used to drive the combinational logic of the
design. In this case, the slave latch L2 is used only for scan testing. Because LSSD

designs use latches instead of flip-flops, at least two system clocks C1 and C2 are

required to prevent combinational feedback loops from occurring. In this case,

combinational logic driven by the master latches of the first system clock C1 are

used to drive the master latches of the second system clock C2, and vice versa.

For this to work, the system clocks C1 and C2 should be applied in a nonoverlap-

ping fashion. Figure 3.10a shows an LSSD single-latch design with the polarity-

hold SRL shown in Figure 3.9.
Figure 3.10b shows an example of LSSD double-latch design [DasGupta

1982]. In normal mode, the C1 and C2 clocks are used in a nonoverlapping man-

ner, where the C2 clock is the same as the B clock. The testing of an LSSD scan

design is conducted with shift and capture operations, similar to a muxed-D

scan design. The main difference is how these two operations are distinguished.

In a muxed-D scan design, a scan enable signal SE is used, as shown in Fig-

ure 3.6. In an LSSD scan design, these two operations are distinguished by prop-

erly applying nonoverlapping clock pulses to clocks C1, C2, A, and B. During the
shift operation, clocks A and B are applied in a nonoverlapping manner, and the

scan cells SRL1 � SRL3 form a single scan chain from SI to SO. During the cap-

ture operation, clocks C1 and C2 are applied in a nonoverlapping manner to load

the test response from the combinational logic into the scan cells.

The major advantage of the use of an LSSD scan cell is that it allows us to

insert scan into a latch-based design. In addition, designs that use LSSD are guar-

anteed to be race-free, which is not the case for muxed-D scan and clocked-scan

designs. A major disadvantage, however, is that it requires routing for the addi-
tional clocks, which increases routing complexity.

The operation of a polarity-hold SRL is race-free if clocks C and B, as well as

A and B, are nonoverlapping. This characteristic is used to implement LSSD cir-

cuits that are guaranteed to have race-free operation in normal mode and in test

mode.
3.3.2 At-speed testing
Although scan design is commonly used in the industry for slow-speed stuck-at

fault testing, its real value is in providing at-speed testing for high-speed and
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high-performance circuits. These circuits often contain multiple clock domains,

each running at an operating frequency that is either synchronous or asyn-

chronous to the other clock domains. Two clock domains are said to be

synchronous if the active edges of both clocks controlling the two clock

domains can be aligned precisely or triggered simultaneously. Two clock domains

are said to be asynchronous if they are not synchronous.
There are two basic capture-clocking schemes for testing multiple clock

domains at-speed: (1) skewed-load [Savir 1993] (also called launch-on-shift

[LOS]) and (2) double-capture [Wang 2006a] (also called launch-on-capture

[LOC] or broad-side [Savir 1994]). Both schemes can be used to test path-delay

faults and transition faults within each clock domain (called intra-clock-domain
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faults) or across clock domains (called inter-clock-domain faults). Skewed-

load uses the last shift clock pulse followed immediately by a capture clock pulse
to launch the transition and capture the output test response, respectively. Dou-

ble-capture uses two consecutive capture clock pulses to launch the transition

and capture the output test response, respectively. In both schemes, both launch

and capture clock pulses must be running at the domain’s operating speed or at-

speed. The difference is that skewed-load requires the domain’s scan enable sig-

nal SE to switch its value between the launch and capture clock pulses making

SE act as a clock signal. Figure 3.11 shows sample waveforms that use the basic

skewed-load and double-capture at-speed test schemes.
Scan designs typically include a few clock domains that will interact with

one another. To guarantee the success of the capture operation, additional care

must be taken in terms of the way the capture clocks are applied. This is mainly

because the clock skew between different clock domains is typically large. To

prevent this from happening, clocks can be applied sequentially (with the stag-
gered clocking scheme [Wang 2005a, 2007b]), such that any clock skew that

exists between the clock domains can be tolerated during the test generation

process. It is also possible to apply only one clock during each capture opera-
tion by use of the one-hot clocking scheme. Most modern ATPG programs

used currently can also automatically mask off unknown values (X’s) at the ori-

ginating scan cells or receiving scan cells across clock domains. In this case, all

clocks can also be applied simultaneously with the simultaneous clocking
scheme [Wang 2007b]. During simultaneous clocking, if the launch clock pulses

[Rajski 2003; Wang 2006a] or the capture clock pulses [Nadeau-Dostie 1994;

Wang 2006a] can be aligned precisely, which applies only for synchronous

clock domains, then the aligned clocking scheme can be used, and there is
no need to mask off unknown values across these synchronous clock domains.

These clocking schemes are illustrated in Figure 3.12.

In general, one-hot clocking produces the highest fault coverage at the

expense of generating many more test patterns than other schemes. Simulta-

neous clocking can generate the smallest number of test patterns but may result
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Basic at-speed test schemes: (a) Skewed-load. (b) Double-capture.



(a)

Shift Window Capture Window Shift Window Capture Window Shift Window

CK1    … …    …

C1 C2

CK2    …

C4

   ……

C3

GSE

(b)

Shift Window Capture Window Shift Window

…

…

…

…

CK1

CK2

C1C2

C3 C4

Shift Window Capture Window Shift Window

(c)

…

…

…

…

CK1

CK2

C1C2

C3 C4

GSE

(d)

Shift Window Capture Window Shift Window

…

…

…

…CK2

C1 C2

CK1

GSE

C3 C4

GSE

FIGURE 3.12

At-speed clocking schemes for testing two interacting clock domains: (a) One-hot clocking.
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in high fault coverage loss because of unknown (X ) masking. The staggered

clocking scheme is a happy medium because of its ability to generate test pat-

tern count close to simultaneous clocking and fault coverage close to one-hot

clocking. For large designs, it is no longer uncommon for transition fault ATPG
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to take more than 2 to 4 weeks to complete. To reduce test generation time

while at the same time obtaining the highest fault coverage, modern ATPG pro-
grams tend to either (1) run simultaneous clocking followed by one-hot clock-

ing or (2) use staggered clocking followed by one-hot clocking. As a result,

modern at-speed scan architectures now start supporting a combination of

at-speed clocking schemes for test circuits comprising multiple synchronous

and asynchronous clock domains. Some programs can even generate test

patterns by mixing skewed-load and double-capture schemes.
3.4 LOGIC BUILT-IN SELF-TEST

Logic built-in self-test (BIST) requires using a portion of the circuit to test itself

on-chip, on-board, or in-system. A typical logic BIST system is illustrated in

Figure 3.13. The test pattern generator (TPG) automatically generates test

patterns for application to the inputs of the circuit under test (CUT). The out-
put response analyzer (ORA) automatically compacts the output responses

of the CUT into a signature. Specific BIST timing control signals, including scan
enable signals and clocks, are generated by the logic BIST controller for

coordinating the BIST operation among the TPG, CUT, and ORA. The logic BIST

controller provides a pass/fail indication once the BIST operation is complete. It

includes comparison logic to compare the final signature with an embedded

golden signature, and often comprises diagnostic logic for fault diagnosis.

Because compaction is commonly used for output response analysis, it is

required that all storage elements in the TPG, CUT, and ORA be initialized to

known states before self-test, and no unknown (X ) values are allowed to prop-
agate from the CUT to the ORA. In other words, the CUT must comply with

more stringent BIST-specific design rules [Wang 2006a] in addition to those

scan design rules required for scan design.
Logic
BIST

Controller

Test Pattern Generator
(TPG)

Output Response Analyzer
(ORA)

Circuit Under Test
(CUT)

FIGURE 3.13

A typical logic BIST system.
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3.4.1 Test pattern generation
For logic BIST applications, in-circuit TPGs constructed from linear feedback
shift registers (LFSRs) are most commonly used to generate test patterns or test

sequences for exhaustive testing, pseudo-random testing, and pseudo-exhaustive

testing.

Exhaustive testing always guarantees 100% single-stuck and multiple-stuck

fault coverage. This technique requires all possible 2n test patterns to be applied

to an n-input combinational CUT, which can take too long for combinational cir-

cuits where n is huge. Therefore, pseudo-random testing [Bardell 1987] is

often used for generating a subset of the 2n test patterns and uses fault simula-
tion to calculate the exact fault coverage. In some cases, this might become quite

time-consuming, if not infeasible. To eliminate the need for fault simulation while

at the same time maintaining 100% single-stuck fault coverage, we can use

pseudo-exhaustive testing [McCluskey 1986] to generate 2w or 2k – 1 test

patterns, where w < k < n, when each output of the n-input combinational

CUT at most depends on w inputs. For testing delay faults, hazards must also be

taken into consideration.

Standard LFSR
Figure 3.14 shows an n-stage standard LFSR. It consists of n D flip-flops

and a selected number of exclusive-OR (XOR) gates. Because XOR gates are

placed on the external feedback path, the standard LFSR is also referred to as

an external-XOR LFSR [Golomb 1982].

Modular LFSR
Similarly, an n-stage modular LFSR with each XOR gate placed between two

adjacent D flip-flops, as shown in Figure 3.15, is referred to as an internal-XOR
LFSR [Golomb 1982]. The modular LFSR runs faster than its corresponding
standard LFSR, because each stage introduces at most one XOR-gate delay.
Si0 Si1 Sin-2 Sin-1

hn-1 hn-2 h2 h1

FIGURE 3.14

An n-stage (external-XOR) standard LFSR.

Si0 Si1 Sin-2 Sin-1

h1 h2 hn-2 hn-1

FIGURE 3.15

An n-stage (internal-XOR) modular LFSR.
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LFSR Properties
The internal structure of the n-stage LFSR in each figure can be described by

specifying a characteristic polynomial of degree n, f(x), in which the symbol

hi is either 1 or 0, depending on the existence or absence of the feedback path,

where

f ðxÞ ¼ 1þ h1x þ h2x
2 þ . . .þ hn�1xn�1 þ xn

Let Si represent the contents of the n-stage LFSR after ith shifts of the initial con-
tents, S0, of the LFSR, and Si(x) be the polynomial representation of Si. Then,

Si(x) is a polynomial of degree n�1, where

Si(x) ¼ Si0 þ Si1x þ Si2x
2 þ . . . þ Sin-2x

n�2 þ Sin�1x
n�1

If T is the smallest positive integer such that f(x) divides 1 þ x
T, then the inte-

ger T is called the period of the LFSR. If T ¼ 2n�1, then the n-stage LFSR gen-

erating the maximum-length sequence is called a maximum-length LFSR.
For example, consider the four-stage standard and modular LFSRs shown in

Figures 3.16a and 3.16b below. The characteristic polynomials, f(x), used to

construct both LFSRs are 1 þ x
2 þ x

4 and 1 þ x þ x
4, respectively.

The test sequences generated by each LFSR, when its initial contents, S0, are

set to {0001} or S0(x) ¼ x
3, are listed in Figures 3.16c and 3.16d, respectively.
(b)

0 0 0 1 0 0 0 1
1 1 0 01 0 0 0
0 1 1 00 1 0 1
0 0 1 11 0 1 0
1 1 0 10 1 0 1
1 0 1 00 0 1 0

0 0 0 1 0 1 0 1
1 1 1 01 0 0 0
0 1 1 10 1 0 1
1 1 1 11 0 1 0
1 0 1 10 1 0 1
1 0 0 10 0 1 0

0 0 0 1 1 0 0 0
0 1 0 01 0 0 0
0 0 1 00 1 0 0

1 0 1 0 0 0 0 1

(d)(c)

(a)

FIGURE 3.16

Example four-stage test pattern generators (TPGs): (a) Four-stage standard LFSR. (b) Four-

stage modular LFSR. (c) Test sequence generated by (a). (d) Test sequence generated by (b).
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Because the first test sequence repeats after 6 patterns and the second test

sequence repeats after 15 patterns, the LFSRs have periods of 6 and 15, respec-
tively. This further implies that 1 þ x

6 can be divided by 1 þ x
2 þ x

4, and

1 þ x
15 can be divided by 1 þ x þ x

4.

Define a primitive polynomial of degree n over Galois field GF(2), p(x),

as a polynomial that divides 1 þ x
T, but not 1 þ x

i, for any integer i < T, where

T ¼ 2n � 1 [Golomb 1982]. A primitive polynomial is irreducible. Because

T ¼ 15 ¼ 24 � 1, the characteristic polynomial, f(x) ¼ 1 þ x þ x
4, used to con-

struct Figure 3.16b is a primitive polynomial, and thus the modular LFSR is a

maximum-length LFSR. Let

rðxÞ ¼ f ðxÞ�1 ¼ xnf ðx�1Þ
Then r(x) is defined as a reciprocal polynomial of f(x) [Peterson 1972]. A

reciprocal polynomial of a primitive polynomial is also a primitive polynomial.

Thus, the reciprocal polynomial of f(x) ¼ 1 þ x þ x
4 is also a primitive polyno-

mial, with p(x) ¼ r(x) ¼ 1 þ x
3 þ x

4.

Table 3.5 lists a set of primitive polynomials of degree n up to 100. It was

taken from [Bardell 1987]. A different set was given in [Wang 1988a]. Each poly-
nomial can be used to construct minimum-length LFSRs in standard or modular

form. For primitive polynomials of degree up to 300, consult [Bardell 1987].
3.4.1.1 Exhaustive testing

Exhaustive testing requires applying 2n exhaustive patterns to an n-input

combinational CUT. Any binary counter can be used as an exhaustive
pattern generator (EPG) for this purpose. Figure 3.17 shows an example of

a 4-bit binary counter design for testing a 4-input combinational CUT.

Exhaustive testing guarantees that all detectable, combinational faults (those

that do not change a combinational circuit into a sequential circuit) will be
detected. This approach is especially useful for circuits in which the number

of inputs, n, is a small number (e.g., 20 or less). When n is larger than 20, the

test time may be prohibitively long and is thus not recommended. The following

techniques are aimed at reducing the number of test patterns. They are recom-

mended when exhaustive testing is impractical.
3.4.1.2 Pseudo-random testing

One approach, which can reduce test length but sacrifices the circuit’s fault

coverage, uses a pseudo-random pattern generator (PRPG) for generating

a pseudo-random sequence of test patterns [Bardell 1987; Rajski 1998; Bushnell

2000; Jha 2003]. Pseudo-random testing has the advantage of being applica-

ble to both sequential and combinational circuits; however, there are difficulties

in determining the required test length and fault coverage.



Table 3.5 Primitive Polynomials of Degree n up to 100

n Exponents n Exponents n Exponents n Exponents

1 0 26 8 7 1 0 51 16 15 1 0 76 36 35 1 0

2 1 0 27 8 7 1 0 52 3 0 77 31 30 1 0

3 1 0 28 3 0 53 16 15 1 0 78 20 19 1 0

4 1 0 29 2 0 54 37 36 1 0 79 9 0

5 2 0 30 16 15 1 0 55 24 0 80 38 37 1 0

6 1 0 31 3 0 56 22 21 1 0 81 4 0

7 1 0 32 28 27 1 0 57 7 0 82 38 35 3 0

8 6 5 1 0 33 13 0 58 19 0 83 46 45 1 0

9 4 0 34 15 14 1 0 59 22 21 1 0 84 13 0

10 3 0 35 2 0 60 1 0 85 28 27 1 0

11 2 0 36 11 0 61 16 15 1 0 86 13 12 1 0

12 7 4 3 0 37 12 10 2 0 62 57 56 1 0 87 13 0

13 4 3 1 0 38 6 5 1 0 63 1 0 88 72 71 1 0

14 12 11 1 0 39 4 0 64 4 3 1 0 89 38 0

15 1 0 40 21 19 2 0 65 18 0 90 19 18 1 0

16 5 3 2 0 41 3 0 66 10 9 1 0 91 84 83 1 0

17 3 0 42 23 22 1 0 67 10 9 1 0 92 13 12 1 0

18 7 0 43 6 5 1 0 68 9 0 93 2 0

19 6 5 1 0 44 27 26 1 0 69 29 27 2 0 94 21 0

20 3 0 45 4 3 1 0 70 16 15 1 0 95 11 0

21 2 0 46 21 20 1 0 71 6 0 96 49 47 2 0

22 1 0 47 5 0 72 53 47 6 0 97 6 0

23 5 0 48 28 27 1 0 73 25 0 98 11 0

24 4 3 1 0 49 9 0 74 16 15 1 0 99 47 45 2 0

25 3 0 50 27 26 1 0 75 11 10 1 0 100 37 0

Note: “24 4 3 1 0” means p(x) ¼ x24 þ x4 þ x3 þ x1 þ x0 ¼ x24 þ x4 þ x3 þ x þ 1.
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3.4.1.2.1 Maximum-length LFSR

Maximum-length LFSRs are commonly used for pseudo-random pattern genera-

tion. Each LFSR produces a sequence with 0.5 probability of generating 1’s
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FIGURE 3.17

Example binary counter as EPG.
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(or with probability distribution 0.5) at every output. The LFSR pattern gener-
ation technique that uses these LFSRs, in standard or modular form, to gener-

ate patterns for the entire design has the advantage of being very easy to

implement. The major problem with this approach is that some circuits may
be random pattern resistant (RP-resistant). For instance, consider a 5-input

OR gate. The probability of applying an all-zero pattern to all inputs is 1/32. This

makes it difficult to test the RP-resistant OR-gate output stuck-at-1.

3.4.1.2.2 Weighted LFSR

It is possible to increase fault coverage (and detect most RP-resistant faults) in

RP-resistant designs. A weighted pattern generation technique that uses

an LFSR and a combinational circuit was first described in [Schnurmann
1975]. The combinational circuit inserted between the output of the LFSR and

the CUT is to increase the frequency of occurrence of one logic value while

decreasing the other logic value. This approach may increase the probability

of detecting those faults that are hard to detect with the typical LFSR pattern

generation technique.

Implementation methods for realizing this scheme are further discussed in

[Chin 1984]. The weighted pattern generation technique described in that paper

modifies the maximum-length LFSR to produce an equally weighted distribution
of 0’s and 1’s at the input of the CUT. It skews the LFSR probability distribution

of 0.5 to either 0.25 or 0.75 to increase the chance of detecting those faults

that are hard to detect with just a 0.5 distribution. Better fault coverage was also

found in [Wunderlich 1987], where probability distributions in a multiple of

0.125 (rather than 0.25) are used. Figure 3.18 shows a four-stage weighted

(maximum-length) LFSR with probability distribution 0.25 [Chin 1984].

3.4.1.2.3 Cellular automata

Cellular automatawere first introduced in [Wolfram 1983]. They yielded better

randomness property than LFSRs [Hortensius 1989]. The cellular automaton

based (or CA-based) pseudo-random pattern generator (PRPG) is attractive for

BIST applications [Khara 1987; Gloster 1988; Wang 1989; van Sas 1990] because

it (1) provides patterns that lookmore random at the circuit inputs, (2) has higher

opportunity to reach very high fault coverage in a circuit that is RP-resistant, and
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FIGURE 3.19

Example cellular automaton (CA) as PRPG: (a) General structure of an n-stage CA. (b) Four-

stage CA. (c) Test sequence generated by (b).
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FIGURE 3.18

Example weighted LFSR as PRPG.
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(3) has implementation advantages because it only requires adjacent neighbor

communication (no global feedback unlike the modular LFSR case).

A cellular automaton (CA) is a collection of cells with forward and back-

ward connections. A general structure is shown in Figure 3.19a. Each cell can

only connect to its local neighbors (adjacent left and right cells). The connec-

tions are expressed as rules; each rule determines the next state of a cell on

the basis of the state of the cell and its neighbors. Assume cell i can only talk
with its neighbors, i � 1 and i þ 1. Define:

Rule 90 : xiðt þ 1Þ ¼ xi�1ðtÞ þ xiþ1ðtÞ
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and

Rule 150 : xiðt þ 1Þ ¼ xi�1ðtÞ þ xiðtÞ þ xiþ1ðtÞ
Then the two rules, rule 90 and rule 150, can be established on the basis of the

following state transition table:

xi�1ðtÞxiðtÞxiþ1ðtÞ 111 110 101 100 011 010 001 000

Rule 90: xi(t þ 1) 0 1 0 1 1 0 1 0

26 þ 24 þ 23 þ 21 ¼ 90

Rule 150: xi(t þ 1) 1 0 0 1 0 1 1 0

27 þ 24 þ 22 þ 21 ¼ 150

The terms rule 90 and rule 150 were derived from their decimal equivalents

of the binary code for the next state of cell i [Hortensius 1989]. Figure 3.19b

shows an example of a four-stage CA generated by alternating rules 150 (on

even cells) and 90 (on odd cells). Similar to the four-stage modular LFSR given

in Figure 3.16b, the four-stage CA generates a maximum-length sequence of

15 distinct states as listed in Figure 3.19c.

It has been shown in [Hortensius 1989] that by combining cellular automata

rules 90 and 150, an n-stage CA can generate a maximum-length sequence of
2n�1. The construction rules for 4 � n � 53 can be found in [Hortensius 1989]

and are listed in Table 3.6.

The CA-based PRPG can be programmed as a universal CA for generating

different orders of test sequences. A universal CA-cell for generating patterns

on the basis of rule 90 or rule 150 is given in Figure 3.20 [Wang 1989]. When

the RULE150_SELECT signal is set to 1, the universal CA-cell will behave as a

rule 150 cell; otherwise, it will act as a rule 90 cell. This universal CA structure

is useful for BIST applications where it is required to obtain very high fault
coverage for RP-resistant designs or detect additional classes of faults.
3.4.1.3 Pseudo-exhaustive testing

Another approach to reduce the test time to a practical value while retaining

many of the advantages of exhaustive testing is the pseudo-exhaustive test
technique. It applies fewer than 2n test patterns to an n-input combinational
CUT. The technique depends on whether any output is driven by all of its

inputs. If none of the outputs depends on all inputs, a verification test
approach proposed in [McCluskey 1984] can be used to test these circuits.

In circuits in which there is one output that depends on all inputs or the test

time that uses verification testing is still too long, a segmentation test
approach must be used [McCluskey 1981]. Pseudo-exhaustive testing guaran-

tees single-stuck fault coverage without any detailed circuit analysis.



Table 3.6 Construction Rules for Cellular Automat of Length n up to 53

n Rule* n Rule*

4 05 29 2,512,712103

5 31 30 7,211,545,075

6 25 31 04,625,575,630

7 152 32 10,602,335,725

8 325 33 03,047,162,605

9 625 34 036,055,030,672

10 0,525 35 127,573,165,123

11 3,252 36 514,443,726,043

12 2,252 37 0,226,365,530,263

13 14,524 38 0,345,366,317,023

14 17,576 39 6,427,667,463,554

15 44,241 40 00,731,257,441,345

16 152,525 41 15,376,413,143,607

17 175,763 42 11,766,345,114,746

18 252,525 43 035,342,704,132,622

19 0,646,611 44 074,756,556,045,302

20 3,635,577 45 151,315,510,461,515

21 3,630,173 46 0,112,312,150,547,326

22 05,252,525 47 0,713,747,124,427,015

23 32,716,532 48 0,606,762,247,217,017

24 77,226,526 49 02,675,443,137,056,631

25 136,524,744 50 23,233,006,150,544,226

26 132,642,730 51 04,135,241,323,505,027

27 037,014,415 52 031,067,567,742,172,706

28 0,525,252,525 53 207,121,011,145,676,625

*Rule is given in octal format. For n ¼ 7, Rule ¼ 152 ¼ 001,101,010 ¼ 1,101,010, where "0" denotes a
rule 90 cell and "1" denotes a rule 150 cell, or vice versa.
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FIGURE 3.20

A universal CA-cell structure.
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FIGURE 3.21

An (n,w) ¼ (4,2) CUT.
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Verification testing [McCluskey 1984] divides the circuit under test into m

cones, where m is the number of outputs. It is based on backtracing from each
circuit output to determine the actual number of inputs that drive the output.

Each cone will receive exhaustive test patterns, and all cones are tested

concurrently.

Assume the combinational CUT has n inputs and m outputs. Let w be the

maximum number of input variables on which any output of the CUT depends.

Then, the n-input m-output combinational CUT is defined as an (n,w) CUT,

where w < n. Figure 3.21 shows an (n,w) ¼ (4,2) CUT that will be used as an

example for designing the pseudo-exhaustive pattern generators (PEPGs).

3.4.1.3.1 Syndrome driver counter

The first method for pseudo-exhaustive pattern generation was proposed in

[Savir 1980]. Syndromedriver counters (SDCs) are used to generate test patterns
[Barzilai 1981]. The SDC can be a binary counter, amaximum-length LFSR, or a com-

plete LFSR. Thismethod checkswhether somecircuit inputs can share the same test

signal. If n-p inputs, p < n, can share the test signalswith the other p inputs, then
the circuit can be tested exhaustively with these p inputs. In this case, the test

length becomes 2p if p ¼ w, or 2p � 1 if p > w. Figure 3.22 shows a three-stage

SDC used to test the circuit given in Figure 3.21. Because both inputs x1 and x4 do
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FIGURE 3.22

Example syndrome driver counter as PEPG.
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not drive the same output, one test signal can be used to drive both inputs. In this

case, p is 3, and the test length becomes 23 � 1 ¼ 7. Designs based on the SDC

method for in-circuit test pattern generation are simple. The problem with

this method is that when p is close to n, it may still take too long to test the circuit.
3.4.1.3.2 Condensed LFSR

The problem can be solved by use of the condensed LFSR approach proposed

in [Wang 1986a]. Condensed LFSRs are constructed on the basis of linear
codes [Peterson 1972]. An (n,k) linear code over GF(2) generates a code space

C containing 2k distinct code words (n-tuples) with the following property: if

c1 2 C and c2 2 C, then c1 þ c2 2 C. Define an (n,k) condensed LFSR as an n-
stage modular LFSR with period 2k�1. A condensed LFSR for testing an (n,w)

CUT is constructed by first computing the smallest integer k such that:

w � dk=ðn� kþ 1Þe þ bk=ðn� kþ 1Þc
where dxe denotes the smallest integer equal to or greater than the real number

x, and byc denotes the largest integer equal to or smaller than the real number y.

Then, by use of:

f ðxÞ ¼ gðxÞpðxÞ ¼ ð1þ x þ x2 þ . . .þ xn�kÞpðxÞ
an (n,k) condensed LFSR can be realized, where g(x) is a generator polyno-
mial of degree n-k generating the (n,k) linear code, and p(x) is a primitive poly-

nomial of degree k.

Consider the (n,k) ¼ (4,3) condensed LFSR shown in Figure 3.23a used to

test the (n,w) ¼ (4,2) CUT. Because n ¼ 4 and w ¼ 2, we obtain k ¼ 3 and



(b)

(a)

X1 X2 X3 X4

1 1 0 0
0 1 1 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 1
1 1 1 1

FIGURE 3.23

Example condensed LFSR as PEPG: (a) (4,3) condensed LFSR. (b) Test sequence

generated by (a).
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(n � k) ¼ 1. Selecting p(x) ¼ 1 þ x þ x
3, we have f(x) ¼ (1 þ x)(1 þ x þ x

3) ¼
1 þ x

2 þ x
3 þ x

4. Figure 3.23b lists the generated period-7 test sequence. It is

important to note that the seed polynomial S0(x) of the LFSR must be divisible

by g(x). In the example, we set S0(x) ¼ g(x) ¼ 1 þ x, or S0 to {1100}.

For any given (n,w) CUT, this method uses at most two seeds and has shown

to be effective when w � n/2. Designs based on this method are simple. How-

ever, this technique uses more patterns than the combined LFSR/SR
approach, which uses a combination of an LFSR and a shift register (SR)

[Barzilai 1983; Tang 1984; Chen 1987] and the cyclic LFSR approach [Wang
1987, 1988b] when w < n/2. For other verification test approaches, refer to

[Abramovici 1994; Wang 2006a].
3.4.2 Output response analysis
For scan designs, our assumption was that output responses coming out of the

circuit under test (CUT) are compared directly on a tester. For BIST operations,

it is impossible to store all output responses on-chip, on-board, or in-system to
perform bit-by-bit comparison. An output response analysis technique must

be used such that output responses can be compacted into a signature and

compared with a golden signature for the fault-free circuit either embedded

on-chip or stored off-chip.

Compaction differs from compression in that compression is loss-less,

whereas compaction is lossy. Compaction is a method for dramatically reducing

the number of bits in the original circuit response during testing in which some

information is lost. Compression is a method for reducing the number of bits
in the original circuit response in which no information is lost, such that the

original output sequence can be fully regenerated from the compressed sequence

[Bushnell 2000]. Because all output response analysis schemes involve informa-

tion loss, they are referred to as output response compaction. However, there is

no general consensus in academia yet as to when the terms compaction or

compression are to be used. However, for output response analysis, throughout

the book, we will refer to the lossy compression as compaction.
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In this section, we will present three different output response compaction

techniques: (1) ones count testing, (2) transition count testing, and (3) sig-
nature analysis. We will also describe the architectures of the output response

analyzers (ORAs) that are used. The signature analysis technique will be

described in more detail, because it is the most popular compaction technique

in use today.

When compaction is used, it is important to ensure that the faulty and fault-

free signatures are different. If they are the same, the fault(s) can go undetected.

This situation is referred to as error masking, and the erroneous output

response is said to be an alias of the correct output response [Abramovici
1994]. It is also important to ensure that none of the output responses contains

an unknown (X ) value. If an unknown value is generated and propagated

directly or indirectly to the ORA, then the ORA can no longer function reliably.

Therefore, it is required that all unknown (X ) propagation problems be fixed

to ensure that the logic BIST system will operate correctly. Such X-blocking
or X-bounding techniques have been extensively discussed in [Wang 2006a].

3.4.2.1 Ones count testing

Assume that the CUT has only one output and the output contains a stream of L

bits. Let the fault-free output response, R0, be {r0 r1 r2 . . . rL�1}. The ones
count test technique will only need a counter to count the number of 1’s in
the bit stream. For instance, if R0 ¼ {0101100}, then the signature or ones count

of R0, OC(R0), is 3. If fault f1 present in the CUT causes an erroneous response

R1 ¼ {1100110}, then it will be detected because OC(R1) ¼ 4. However, fault f2
causing R2 ¼ {0101010} will not be detected because OC(R2) ¼ OC(R0) ¼ 3. Let

the fault-free signature or ones count be m. There will be C(L,m) possible

ways having m 1’s in an L-bit stream. Assuming all faulty sequences are

equally likely to occur as the response of the CUT, the aliasing probability
or masking probability of the use of ones count testing having m 1’s [Savir
1985] can be expressed as

POCðmÞ ¼
�
CðL;mÞ � 1

�
=ð2L � 1Þ

In the previous example, where m ¼ OC(R0) ¼ 3 and L ¼ 7, POC(m) ¼ 34/

127 ¼ 0.27. Figure 3.24 shows the ones count test circuit for testing the CUT

with T patterns. The number of stages in the counter design must be equal to
or greater than dlog2ðLþ 1Þe:
SignatureCUTT Counter

CLK

FIGURE 3.24

Ones counter as ORA.
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3.4.2.2 Transition count testing

The theory behind transition count testing is similar to that for ones count test-

ing, except the signature is defined as the number of 0-to-1 and 1-to-0 transitions.

The transition count test technique [Hayes 1976] simply requires the use of

a D flip-flop and an XOR gate connected to a ones counter (see Figure 3.25) to

count the number of transitions in the output data stream. Consider the exam-
ple given previously. Because R0 ¼ {0101100}, the signature or transition count

of R0, TC(R0), will be 4. Assume that the initial state of the D flip-flop, r�1, is 0.
Fault f1 causing an erroneous response R1 ¼ {1100110} will not be detected

because TC(R1) ¼ TC(R0) ¼ 4, whereas fault f2 causing R2 ¼ {0101010} will be

detected because TC(R2) ¼ 6.

Let the fault-free signature or transition count be m. Because a given L-bit

sequence R0 that starts with r0 ¼ 0 has L � 1 possible transitions, the number

of sequences with m transitions can be given by C(L � 1,m). Because R0 can
also start with r0 ¼ 1, there will be a total of 2C(L � 1,m) possible ways having

m 0-to-1 and 1-to-0 transitions in an L-bit stream. Assuming all faulty sequences

are equally likely to occur as the response of the CUT, the aliasing probability

or masking probability of the use of transition count testing having m transi-

tions [Savir 1985] is

PTCðmÞ ¼
�
2CðL� 1;mÞ � 1

�
=ð2L � 1Þ

In the previous example, where m ¼ TC(R0) ¼ 4 and L ¼ 7, PTC (m) ¼ 29/

127 ¼ 0.23. Figure 3.25 shows the transition count test circuit. The number

of stages in the counter design must be equal to or greater than dlog2ðLþ 1Þe:

3.4.2.3 Signature analysis

Signature analysis is the most popular response compaction technique used

today. The compaction scheme, based on cyclic redundancy checking
(CRC) [Peterson 1972], was first developed in [Benowitz 1975]. Hewlett-

Packard commercialized the first logic analyzer, called HP 5004A Signature Ana-

lyzer, based on the scheme and referred to it as signature analysis [Frohwerk
1977].
CUTT SignatureCounter

CLK

D Q

ri
ri-1

FIGURE 3.25

Transition counter as ORA.
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In this subsection, we will discuss two signature analysis schemes: (1) serial
signature analysis for compacting responses from a CUT having a single output
and (2) parallel signature analysis for compacting responses from a CUT hav-

ing multiple outputs.

3.4.2.3.1 Serial Signature Analysis

Consider the n-stage single-input signature register (SISR) shown in

Figure 3.26. This SISR uses an additional XOR gate at the input for compacting an

L-bit output sequence, M, into the modular LFSR. Let M ¼ {m0 m1 m2 . . . mL�1},
and define:

MðxÞ ¼ m0 þm1x þm2x
2 þ . . .þmL�1xL�1

After shifting the L-bit output sequence, M, into the modular LFSR, the con-

tents (remainder) of the SISR, R, is given as {r0 r1 r2 . . . rn�1}, or

rðxÞ ¼ r0 þ r1x þ r2x
2 þ . . .þ rn�1xn�1

The SISR is basically a CRC code generator [Peterson 1972] or a cyclic code

checker [Benowitz 1975]. Let the characteristic polynomial of the modular

LFSR be f(x). The authors in [Peterson 1972] have shown that the SISR performs

polynomial division of M(x) by f(x), or

MðxÞ ¼ qðxÞf ðxÞ þ rðxÞ
The final state or signature in the SISR is the polynomial remainder, r(x), of

the division. Consider the four-stage SISR given in Figure 3.27 with f(x) ¼ 1 þ
x þ x

4. Assuming M ¼ {10011011}, we can express M(x) ¼ 1 þ x
3 þ x

4 þ
x
6 þ x

7. By use of polynomial division, we obtain q(x) ¼ x
2 þ x

3 and r(x) ¼
1 þ x

2 þ x
3 or R ¼ {1011}. The remainder {1011} is equal to the signature

derived from Figure 3.27a when the SISR is first initialized to a starting pattern

(seed) of {0000}.

Now, assume fault f1 produces an erroneous output stream M0 ¼ {11001011}

or M0(x) ¼ 1 þ x þ x
4 þ x

6 þ x
7, as given in Figure 3.27b. By use of polynomial

division, we obtain q0(x) ¼ x
2 þ x

3 and r0(x) ¼ 1 þ x þ x
2 or R0 ¼ {1110}.

Because the faulty signature R0, {1110}, is different from the fault-free signature

R, {1011}, fault f1 is detected. For fault f2 with M00 ¼ {11001101} or M00(x) ¼
1 þ x þ x

4 þ x
5 þ x

7 as given in Figure 3.27c, we have q00(x) ¼ x þ x
3 and

r00(x) ¼ 1 þ x
2 þ x

3 or R00 ¼ {1011}. Because R00 ¼ R, fault f2 is not detected.
r0 rn-2 rn-1

h1 h2 hn-2 hn-1

M r1

FIGURE 3.26

An n-stage single-input signature register (SISR).



M r0 r1 r2 r3

1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
1 0 1 1 0
1 1 0 1 1
0 0 0 0 1
0 1 1 0 0
1 0 1 1 0
R 1 0 1 1

M’ r0 r1 r2 r3

1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
1 0 1 1 0
0 1 0 1 1
0 1 0 0 1
1 1 0 0 0
1 1 1 0 0
R’ 1 1 1 0

M” r0 r1 r2 r3

1 0 0 0 0
0 1 0 0 0
1 0 1 0 0
1 1 0 1 0
0 1 1 0 1
0 1 0 1 0
1 0 1 0 1
1 0 1 1 0
R” 1 0 1 1

(a) (b) (c)

M

FIGURE 3.27

A four-stage SISR: (a) Fault-free signature. (b) Signature for fault f1. (c) Signature for fault f2.
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The fault detection or aliasing problem of an SISR can be better understood

by looking at the error sequence E or error polynomial E(x) of the fault-free

sequence M and a faulty sequence M0. Define E ¼ M þ M0, or:

EðxÞ ¼ MðxÞ þM 0ðxÞ
If E(x) is not divisible by f(x), then all faults generating the faulty sequenceM0 will

be detected. Otherwise, these faults are not detected. Consider fault f1 again. We

obtain E ¼ {01010000} ¼ M þ M0 ¼ {10011011} þ {11001011} or E(x) ¼ x þ x
3.

Because E(x) is not divisible by f(x) ¼ 1 þ x þ x
4, fault f1 is detected. Consider

fault f2 again. We have E ¼ {01010110} ¼ M þ M00 ¼ {10011011} þ {11001101}

or E(x) ¼ x þ x
3 þ x

5 þ x
6. Because f(x) divides E(x), i.e., E(x) ¼ (x þ x

2) f(x),

fault f2 is not detected.
Assume the SISR consists of n stages. For a given L-bit sequence, L > n, there

are 2(L�n) possible ways of producing an n-bit signature of which one is the

correct signature. Because there are a total of 2L � 1 erroneous sequences in

an L-bit stream, the aliasing probability with an n-stage SISR for serial signa-

ture analysis (SSA) is:

PSSAðnÞ ¼
�
2ðL�nÞ � 1

�
=ð2L � 1Þ

If L >> n, then PSSA(n) � 2�n. When n ¼ 20, PSSA(n) < 2�20 ¼ 0.0001%.

3.4.2.3.2 Parallel Signature Analysis

A common problem when using ones count testing, transition count testing,

and serial signature analysis is the excessive hardware cost required to test an

m-output CUT. It is possible to reduce the hardware cost by use of an m-to-1

multiplexer, but this increases the test time m times.
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Consider the n-stage multiple-input signature register (MISR) shown in

Figure 3.28. The MISR uses n extra XOR gates for compacting n L-bit output
sequences, M0 to Mn�1, into the modular LFSR simultaneously.

[Hassan 1984] has shown that the n-input MISR can be remodeled as a sin-

gle-input SISR with effective input sequence M(x) and effective error polyno-

mial E(x) expressed as:

MðxÞ ¼ M0ðxÞ þ xM1ðxÞ þ . . .þ xn�2Mn�2ðxÞ þ xn�1Mn�1ðxÞ
and

EðxÞ ¼ E0ðxÞ þ xE1ðxÞ þ . . .þ xn�2En�2ðxÞ þ xn�1En�1ðxÞ
Consider the four-stage MISR shown in Figure 3.29 that uses f(x) ¼ 1 þ x þ x

4.
Let M0 ¼ {10010}, M1 ¼ {01010}, M2 ¼ {11000}, and M3 ¼ {10011}. From this

information, the signature R of the MISR can be calculated as {1011}. With

M(x) ¼ M0(x) þ xM1(x) þ x
2
M2(x) þ x

3
M3(x), we obtain M(x) ¼ 1 þ x

3þ
x
4 þ x

6 þ x
7 or M ¼ {10011011} as shown in Figure 3.30. This is the same data

stream we used in the SISR example in Figure 3.27a. Therefore, R ¼ {1011}.
M1 M2M0 Mn-2 Mn-1

h1 h2 hn-2 hn-1

r0 r1 rn-1rn-2

FIGURE 3.28

An n-stage multiple-input signature register (MISR).

M0 M1 M2 M3

FIGURE 3.29

A four-stage MISR.

M0
M1
M2
M3

1 0 0 1 0
0 1 0 1 0

1 1 0 0 0
1 0 0 1 1

1 0 0 1 1 0 1 1M

FIGURE 3.30

An equivalent M sequence.
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Assume there are m L-bit sequences to be compacted in an n-stage MISR,

where L > n �m � 2. The aliasing probability for parallel signature analysis

(PSA) now becomes:

PPSAðnÞ ¼
�
2ðmL�nÞ � 1

�
=ð2mL � 1Þ

If L >> n, then PPSA(n) � 2�n. When n ¼ 20, PPSA(n) < 2�20 ¼ 0.0001%. The

result suggests that PPSA(n) mainly depends on n, when L >> n. Hence, increas-

ing the number of MISR stages or the use of the same MISR but with a different
f(x) can substantially reduce the aliasing probability [Hassan 1984; Williams

1987].
3.4.3 Logic BIST architectures
Several architectures for incorporating offline BIST techniques into a design

have been proposed. These BIST architectures can be classified into two classes:

(1) those that use the test-per-scan BIST scheme and (2) those that use the

test-per-clock BIST scheme. The test-per-scan BIST scheme takes advantage

of the already built-in scan chains of the scan design and applies a test pattern
to the CUT after a shift operation is completed; hence, the hardware overhead

is low. The test-per-clock BIST scheme, however, applies a test pattern to the

CUT and captures its test response every system clock cycle; hence, the scheme

can execute tests much faster than the test-per-scan BIST scheme but at an

expense of more hardware overhead.

In this subsection, we only discuss three representative BIST architectures,

the first two for pseudo-random testing and the last for pseudo-exhaustive test-

ing. Although pseudo-random testing is commonly adopted in industry, the
exhaustive and pseudo-exhaustive test techniques are applicable for designs

that use the test-per-clock BIST scheme. For a more comprehensive survey of

these BIST architectures, refer to [Abramovici 1994; Bardell 1987; McCluskey

1985; Wang 2006a]. Fault coverage enhancement with the pseudo-random test

technique can also be found in [Tsai 1999; Wang 2006a; Lai 2007].

3.4.3.1 Self-testing with MISR and parallel SRSG (STUMPS)

A test-per-scan BIST design was presented in [Bardell 1982]. This design, shown

in Figure 3.31, contains a PRPG (parallel shift register sequence generator
[SRSG]) and a MISR. The scan chains are loaded in parallel from the PRPG.

The system clocks are then triggered, and the test responses are shifted to the
MISR for compaction. New test patterns are shifted in at the same time while

test responses are being shifted out. This BIST architecture that uses the test-

per-scan BIST scheme is referred to as self-testing with MISR and parallel
SRSG (STUMPS) [Bardell 1982].

Because of the ease of integration with traditional scan architecture, the

STUMPS architecture is the only BIST architecture widely used in industry to



PRPG

MISR

CUT

FIGURE 3.31

STUMPS.

CUT

Linear Phase Compactor

MISR

Linear Phase Shifter

PRPG

FIGURE 3.32

A STUMPS-based architecture.

136 CHAPTER 3 Design for testability
date. To further reduce the lengths of the PRPG and MISR and improve the ran-

domness of the PRPG, a STUMPS-based architecture that includes an optional

linear phase shifter and an optional linear phase compactor is often used in

industrial applications [Nadeau-Dostie 2000; Cheon 2005]. The linear phase

shifter and linear phase compactor typically comprise a network of XOR gates.

Figure 3.32 shows the STUMPS-based architecture.

3.4.3.2 Built-in logic block observer (BILBO)

The architecture described in [Könemann 1979, 1980] applies to circuits that

can be partitioned into independent modules (logic blocks). Each module is

assumed to have its own input and output registers (storage elements), or such
registers are added to the circuit where necessary. The registers are redesigned

so that for test purposes they act as PRPGs for test generation or MISRs for

signature analysis. The redesigned register is called a built-in logic block
observer (BILBO).
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The BILBO is operated in four modes: normal mode, scan mode, test genera-

tion or signature analysis mode, and reset mode. A typical three-stage BILBO,
which is reconfigurable into a TPG or a MISR during self-test is shown in

Figure 3.33. It is controlled by two control inputs B1 and B2. When both control

inputs B1 and B2 are equal to 1, the circuit functions in normal mode with the

inputs Yi gated directly into the D flip-flops. When both control inputs are equal

to 0, the BILBO is configured as a shift register. Test data can be shifted in

through the serial scan-in port or shifted out through the serial scan-out port.

Setting B1 ¼ 1 and B2 ¼ 0 converts the BILBO into a MISR. It can then be used

in this configuration as a TPG by holding every Yi input to 1. The BILBO is reset
after a system clock is triggered when B1 ¼ 0 and B2 ¼ 1.

This technique is most suitable for testing circuits, such as random-access

memories (RAMs), read-only memories (ROMs), or bus-oriented circuits, where

input and output registers of the partitioned modules can be reconfigured inde-

pendently. For testing finite-state machines or pipeline-oriented circuits as

shown in Figure 3.34, the signature data from the previous module must be
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A three-stage built-in logic block observer (BILBO).
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used as test patterns for the next module, because the test generation and signa-

ture analysis modes cannot be separated. In this case, a detailed fault simulation
is required to achieve 100% single-stuck fault coverage.

3.4.3.3 Concurrent built-in logic block observer (CBILBO)

One technique to overcome the above BILBO fault coverage loss problem is to

use the concurrent built-in logic block observer (CBILBO) approach [Wang

1986b]. Reconfigured from the BILBO design, the CBILBO is based on the

test-per-clock BIST scheme and uses two registers to perform test generation and

signature analysis simultaneously. A CBILBO design is illustrated in Figure 3.35,

where only three modes of operation are considered: normal, scan, and test genera-

tion and signature analysis. When B1 ¼ 0 and B2 ¼ 1, the upper D flip-flops act as a

MISR for signature analysis, whereas the lower two-port D flip-flops form a TPG for
test generation. Because signature analysis is separated from test generation, an

exhaustive or pseudo-exhaustive pattern generator (EPG/PEPG) can now be used

for test generation; therefore, no fault simulation is required, and it is possible to

achieve 100% single-stuck fault coverage with the CBILBO architectures for testing

designs shown in Figure 3.36. However, the hardware cost associated with the use

of the CBILBO approach is generally higher than for the STUMPS approach.
3.4.4 Industry practices
Logic BIST has a history of more than 30 years since its invention in the 1970s.

Although it is only a few years behind the invention of scan, logic BIST has yet
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A three-stage concurrent BILBO (CBILBO).
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to gain strong industry support. The worldwide market is estimated to be close

to 10% of the scan market. The logic BIST products available in the marketplace
now include Encounter Test from Cadence Design Systems [Cadence 2008],

ETLogic from LogicVision [LogicVision 2008], LBIST Architect from Mentor

Graphics [Mentor 2008], and TurboBIST-Logic from SynTest Technologies

[SynTest 2008]. The logic BIST product offered in Encounter Test by Cadence

currently includes support for test structure extraction, verification, logic simu-

lation for signatures, and fault simulation for coverage. Unlike all other three

BIST vendors that provide their own logic BIST structures in their respective

products, Cadence offers a service to insert custom logic BIST structures or to
use any customer-inserted logic BIST structures, including working with the

customer to have custom on-chip clocking for logic BIST. A similar case exists

in ETLogic from LogicVision when the double-capture clocking scheme is used.

All these commercially available logic BIST products support the STUMPS-

based architectures. Cadence supports a weighted-random spreading network

(XOR network) for STUMPS with multiple-weight selects [Foote 1997]. For at-

speed delay fault testing, ETLogic [LogicVision 2008] uses a skewed-load-
based at-speed BIST architecture; TurboBIST-Logic [Wang 2005b, 2006b;
SynTest 2008] implements the double-capture-based at-speed BIST archi-
tecture; and LBIST Architect [Mentor 2008] adopts a hybrid at-speed BIST
architecture that supports both skewed-load and double-capture. In addition,

all products provide inter-clock-domain delay fault testing for synchronous

clock domains. On-chip clock controllers for testing these inter-clock-domain

faults at-speed can be found in [Rajski 2003; Furukawa 2006; Nadeau-Dostie

2006, 2007; Keller 2007], and Table 3.7 summarizes the capture-clocking

schemes for at-speed logic BIST that is used by the EDA vendors.
3.5 TEST COMPRESSION

Test compression can provide 10� to 100� reduction or even more in the

amount of test data (both test stimulus and test response) that must be stored

on the automatic test equipment (ATE) [Touba 2006; Wang 2006a] for testing



Table 3.7 Summary of Industry Practices for At-Speed Logic BIST

Industry Practices Skewed-Load Double-Capture

Encounter test Through service Through service

ETLogic
ffip

Through service

LBIST Architect
ffip ffip

TurboBIST-Logic ffip
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with a deterministic ATPG-generated test set. This greatly reduces ATE memory

requirements and even more importantly reduces test time, because less data
have to be transferred across the limited bandwidth between the ATE and the

chip. Moreover, test compression methods are easy to adopt in industry because

they are compatible with the conventional design rules and test generation

flows used for scan testing.

Test compression is achieved by adding some additional on-chip hardware

before the scan chains to decompress the test stimulus coming from the tester

and after the scan chains to compact the response going to the tester. This is

illustrated in Figure 3.37. This extra on-chip hardware allows the test data to
be stored on the tester in a compressed form. Test data are inherently highly

compressible because typically only 1% to 5% of the bits on a test pattern that

is generated by an ATPG program have specified (care) values. Lossless com-

pression techniques can thus be used to significantly reduce the amount of test

stimulus data that must be stored on the tester. The on-chip decompressor
expands the compressed test stimulus back into the original test patterns

(matching in all the care bits) as they are shifted into the scan chains. The on-

chip compactor converts long output response sequences into short signa-
tures. Because the compaction is lossy, some fault coverage can be lost because
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Architecture for test compression.
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of unknown (X ) values that might appear in the output sequence or aliasing

where a faulty output response signature is identical to the fault-free output
response signature. With proper design of the circuit under test (CUT) and
the compaction circuitry, however, the fault coverage loss can be kept negligi-

bly small.
3.5.1 Circuits for test stimulus compression
A test cube is defined as a deterministic test vector in which the bits that are

not assigned values by the ATPG procedure are left as don’t cares (X’s). Nor-

mally, ATPG procedures perform random fill in which all the X’s in the test

cubes are filled randomly with 1’s and 0’s to create fully specified test vectors;
however, for test stimulus compression, random fill is not performed during

ATPG so the resulting test set consists of incompletely specified test cubes.

The X’s make the test cubes much easier to compress than fully specified test

vectors.

As mentioned earlier, test stimulus compression should be an information

lossless procedure with respect to the specified (care) bits to preserve the fault

coverage of the original test cubes. After decompression, the resulting test pat-

terns shifted into the scan chains should match the original test cubes in all the
specified (care) bits.

Many schemes for compressing test cubes have been surveyed in [Touba

2006; Wang 2006a]. Two schemes based on linear decompression and broadcast

scan are described here in greater detail mainly because the industry has

favored both approaches over code-based schemes from area overhead and

compression ratio points of view. These code-based schemes can be found in

[Wang 2006a].

3.5.1.1 Linear-decompression-based schemes

A class of test stimulus compression schemes is based on the use of linear
decompressors to expand the data coming from the tester to fill the scan
chains. Any decompressor that consists of only XOR gates and flip-flops is a lin-
ear decompressor [Könemann 1991]. Linear decompressors have a very use-

ful property: their output space (i.e., the space of all possible test vectors that

they can generate) is a linear subspace that is spanned by a Boolean matrix.

In other words, for any linear decompressor that expands an m-bit compressed

stimulus from the tester into an n-bit stimulus (test vector), there exists a Bool-

ean matrix An�m such that the set of test vectors that can be generated by the

linear decompressor is spanned by A. A test vector Z can be compressed by a
particular linear decompressor if and only if there exists a solution to a system

of linear equations, AX ¼ Z, where A is the characteristic matrix of the linear

decompressor and X is a set of free variables stored on the tester (every bit

stored on the tester can be thought of as a “free variable” that can be assigned

any value, 0 or 1).
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The characteristic matrix for a linear decompressor can be obtained by sym-

bolic simulation where each free variable coming from the tester is represented
by a symbol. An example of this is shown in Figure 3.38, where a sequential lin-

ear decompressor containing an LFSR is used. The initial state of the LFSR is

represented by free variables X1 to X4, and the free variables X5 to X10 are

shifted in from two channels as the scan chains are loaded. After symbolic sim-

ulation, the final values in the scan chains are represented by the equations for

Z1 to Z12. The corresponding system of linear equations for this linear decom-

pressor is shown in Figure 3.39.

The symbolic simulation goes as follows. Assume that the initial seed X1 to

X4 has been already loaded into the flip-flops. In the first clock cycle, the top

flip-flop is loaded with the XOR of X2 and X5; the second flip-flop is loaded with

X3; the third flip-flop is loaded with the XOR of X1 and X4; and the bottom flip-

flop is loaded with the XOR of X1 and X6. Thus, we obtain Z1 ¼ X2 � X5,

Z2 ¼ X3, Z3 ¼ X1 � X4, and Z4 ¼ X1 � X6. In the second clock cycle, the top

flip-flop is loaded with the XOR of the contents of the second flip-flop (X3)

and X7; the second flip-flop is loaded with the contents of the third flip-flop

(X1 � X4); the third flip-flop is loaded with the XOR of the contents of the first
flip-flop (X2 � X5) and the fourth flip-flop (X1 � X6); and the bottom flip-flop is

loaded with the XOR of the contents of the first flip-flop (X2 � X5) and X8.

Thus, we obtain Z5 ¼ X3 � X7, Z6 ¼ X1 � X4, Z7 ¼ X1 � X2 � X5 � X6, and

Z8 ¼ X2 � X5 � X8. In the third clock cycle, the top flip-flop is loaded with
Z9  = X1 ⊕ X4 ⊕ X9 Z5 = X3 ⊕ X7 Z1 = X2 ⊕ X5

Z10 = X1 ⊕ X2 ⊕ X5 ⊕ X6 Z6 = X1 ⊕ X4 Z2 = X3

Z11 = X2 ⊕ X3 ⊕ X5 ⊕ X7 ⊕ X8 Z7 = X1 ⊕ X2 ⊕ X5 ⊕ X6 Z3 = X1 ⊕ X4

Z12 = X3 ⊕ X7 ⊕ X10 Z8 = X2 ⊕ X5 ⊕ X8 Z4 = X1 ⊕ X6
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FIGURE 3.38

Example of symbolic simulation for linear decompressor.
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System of linear equations for the decompressor in Figure 3.38.
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the XOR of the contents of the second flip-flop (X1 � X4) and X9; the second

flip-flop is loaded with the contents of the third flip-flop (X1 � X2 � X5 �
X6); the third flip-flop is loaded with the XOR of the contents of the first flip-

flop (X3 � X7) and the fourth flip-flop (X2 � X5 � X8); and the bottom flip-flop

is loaded with the XOR of the contents of the first flip-flop (X3 � X7) and X10.

Thus, we obtain Z9 ¼ X4 � X9, Z10 ¼ X1 � X6, Z11 ¼ X2 � X5 � X8, and

Z12 ¼ X3 � X7 � X10. At this point, the scan chains are fully loaded with a test
cube, so the simulation is complete.

3.5.1.1.1 Combinational linear decompressors

The simplest linear decompressors use only combinational XOR networks.
Each scan chain is fed by the XOR of some subset of the channels coming

from the tester [Bayraktaroglu 2001, 2003; Könemann 2003; Mitra 2006;

Han 2007; Wang 2004, 2008]. The advantage compared with sequential linear

decompressors is simpler hardware and control. The drawback is that, to

encode a test cube, each scan slice (the n-bits that are loaded into the n scan

chains in each clock cycle) must be encoded with only the free variables that

are shifted from the tester in a single clock cycle (which is equal to the num-

ber of channels). The worst-case most highly specified scan slices tend to
limit the amount of compression that can be achieved, because the number

of channels from the tester has to be sufficiently large to encode the most

highly specified scan slices. Consequently, it is very difficult to obtain a high

encoding efficiency (typically it will be less than 0.25); for the other less

specified scan slices, a lot of the free variables end up getting wasted, because

those scan slices could have been encoded with many fewer free variables.

One approach for improving the encoding efficiency of combinational linear

decompressors that was proposed in [Krishna 2003] is to dynamically adjust the
number of scan chains that are loaded in each clock cycle. So for a highly
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specified scan slice, four clock cycles could be used in which 25% of the scan

chains are loaded in each cycle, whereas for a lightly specified scan slice, only
one clock cycle can be used in which 100% of the scan slices are loaded. This

allows a better matching of the number of free variables with the number of

specified bits to achieve a higher encoding efficiency. Note that it requires that

the scan clock be divided into multiple domains.

3.5.1.1.2 Sequential linear decompressors

Sequential linear decompressors are based on linear finite-state machines

such as LFSRs, cellular automata, or ring generators [Mrugalski 2004]. The advan-
tage of a sequential linear decompressor is that it allows free variables from ear-

lier clock cycles to be used when encoding a scan slice in the current clock

cycle. This provides much greater flexibility than combinational decompressors

and helps avoid the problem of the worst-case most highly specified scan slices

limiting the overall compression. The more flip-flops that are used in the

sequential linear decompressor, the greater the flexibility that is provided.

[Tobua 2006] classifies the sequential linear decompressors into two classes:
FIG

Typ
1. Static reseeding that computes a seed (an initial state) for each test cube

[Touba 2006]. This seed, when loaded into an LFSR and run in autono-

mous mode, will produce the test cube in the scan chains [Könemann

1991]. This technique achieves compression by storing only the seeds
instead of the full test cubes.

2. Dynamic reseeding calls for the injection of free variables coming from

the tester into the LFSR as it loads the scan chains [Krishna 2001; Köne-

mann 2001; Rajski 2004].
Figure 3.40 shows a generic example of a sequential linear decompressor that

uses b channels from the tester to continuously inject free variables into the

LFSR as it loads the scan chains through a combinational linear decompressor

that typically is a combinational XOR network.
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ical sequential linear decompressor.
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3.5.1.2 Broadcast-scan-based schemes

Another class of test stimulus compression schemes is based on broadcasting

the same value to multiple scan chains. This was first proposed in [Lee 1998]

and [Lee 1999]. Because of its simplicity and effectiveness, this method has

been used as the basis of many test compression architectures, including some

commercial design for testability (DFT) tools.

3.5.1.2.1 Broadcast scan

To illustrate the basic concept of broadcast scan, first consider two indepen-

dent circuits C1 and C2. Assume that these two circuits have their own test sets

T1 ¼ < t11,t12, . . . , t1k > and T2 ¼ < t21,t22, . . . , t2l >, respectively. In general,

a test set may consist of random patterns and deterministic patterns. In the

beginning of the ATPG process, usually random patterns are initially used to

detect the easy-to-detect faults. If the same random patterns are used when gen-
erating both T1 and T2, then we may have t11 ¼ t21, t12 ¼ t22, . . . , up to some ith

pattern. After most faults have been detected by the random patterns, determin-

istic patterns are generated for the remaining difficult-to-detect faults. Generally,

these patterns have many “don’t care” bits. For example, when generating

t1(i þ 1), many “don’t care” bits may still exist when no more faults in C1 can be

detected. By use of a test pattern with bits assigned so far for C1, we can further

assign specific values to the “don’t care” bits in the pattern to detect faults in C2.

Thus, the final pattern would be effective in detecting faults in both C1 and C2.
The concept of pattern sharing can be extended to multiple circuits as illu-

strated in Figure 3.41. One major advantage of the use of broadcast scan for

independent circuits is that all faults that are detectable in all original circuits

will also be detectable with the broadcast structure. This is because if one test

vector can detect a fault in a stand-alone circuit, then it will still be possible to

apply this vector to detect the fault in the broadcast structure. Thus, the broad-

cast scan method will not affect the fault coverage if all circuits are indepen-

dent. Note that broadcast scan can also be applied to multiple scan chains of
a single circuit if all subcircuits driven by the scan chains are independent.
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FIGURE 3.41

Broadcasting to scan chains driving independent circuits.
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3.5.1.2.2 Illinois scan

If broadcast scan is used for multiple scan chains of a single circuit where the
subcircuits driven by the scan chains are not independent, then the property of

always being able to detect all faults is lost. The reason for this is that if two scan

chains are sharing the same channel, then the ith scan cell in each of the two

scan chains will always be loaded with identical values. If some fault requires

two such scan cells to have opposite values to be detected, it will not be possi-

ble to detect this fault with broadcast scan.

To address the problem of some faults not being detected when broadcast

scan is used for multiple scan chains of a single circuit, the Illinois scan archi-
tecture was proposed in [Hamzaoglu 1999] and [Hsu 2001]. This scan architec-

ture consists of two modes of operations, namely a broadcast mode and a serial

scan mode, which are illustrated in Figure 3.42. The broadcast mode is first

used to detect most faults in the circuit. During this mode, a scan chain is

divided into multiple subchains called segments, and the same vector can be

shifted into all segments through a single shared scan-in input. The response

data from all subchains are then compacted by a MISR or other space/time com-

pactor. For the remaining faults that cannot be detected in broadcast mode, the
serial scan mode is used where any possible test pattern can be applied. This

ensures that complete fault coverage can be achieved. The extra logic required

to implement the Illinois scan architecture consists of several multiplexers and

some simple control logic to switch between the two modes. The area overhead

of this logic is typically quite small compared with the overall chip area.

The main drawback of the Illinois scan architecture is that no test compres-

sion is achieved when it is run in serial scan mode. This can significantly

degrade the overall compression ratio if many test patterns must be applied
in serial scan mode. To reduce the number of patterns that need to be applied

in serial scan mode, multiple-input broadcast scan or reconfigurable broadcast

scan can be used. These techniques are described next.
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Two modes of Illinois scan architecture: (a) Broadcast mode. (b) Serial scan mode.



3.5 Test compression 147
3.5.1.2.3 Multiple-input broadcast scan

Instead of the use of only one channel to drive all scan chains, a multiple-input
broadcast scan could be used where there is more than one channel [Shah

2004]. Each channel can drive some subset of the scan chains. If two scan

chains must be independently controlled to detect a fault, then they could be

assigned to different channels. The more channels that are used and the shorter

each scan chain is, the easier to detect more faults because fewer constraints are

placed on the ATPG. Determining a configuration that requires the minimum

number of channels to detect all detectable faults is thus highly desired with a

multiple-input broadcast scan technique.

3.5.1.2.4 Reconfigurable broadcast scan

Multiple-input broadcast scanmay require a large number of channels to achieve

high fault coverage. To reduce the number of channels that are required, a recon-
figurable broadcast scan method can be used. The idea is to provide the

capability to reconfigure the set of scan chains that each channel drives. Two pos-

sible reconfiguration schemes have been proposed, namely static reconfigura-
tion [Pandey 2002; Wang 2002; Samaranayake 2003; Chandra 2007], and

dynamic reconfiguration [Li 2004; Sitchinava 2004; Wang 2004, 2008; Mitra

2006; Wohl 2007a]. In static reconfiguration, the reconfiguration can only be

done when a new pattern is to be applied. For this method, the target fault set

can be divided into several subsets, and each subset can be tested by a single
configuration. After testing one subset of faults, the configuration can be changed

to test another subset of faults. In dynamic reconfiguration, the configuration

can be changed while scanning in a pattern. This provides more reconfiguration

flexibility and hence can, in general, lead to better results with fewer channels.

This is especially important for hard cores, when the test patterns provided by

core vendor cannot be regenerated. The drawback of dynamic reconfiguration

versus static reconfiguration is that more control information is needed for recon-

figuring at the right time, whereas for static reconfiguration the control informa-
tion is much less because the reconfiguration is done only a few times (only

after all the test patterns that use a particular configuration have been applied).

Figure 3.43 shows an example multiplexer (MUX) network that can be used

for dynamic configuration. When a value on the control line is selected, partic-

ular data at the four input pins are broadcasted to the eight scan chain inputs.

For instance, when the control line is set to 0 (or 1), the scan chain 1 output

will receive input data from Pin 4 (or Pin 1) directly.

3.5.1.2.5 Virtual scan

Rather than the use of MUX networks for test stimulus compression, combina-

tional logic networks can also be used as decompressors. The combinational logic

network can consist of any combination of simple combinational gates, such as

buffers, inverters, AND/OR gates, MUXs, and XOR gates. This scheme, referred

to as virtual scan, is different from reconfigurable broadcast scan and
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Example MUX network with control line(s) connected only to select pins of the multiplexers.
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combinational linear decompression where pure MUX and XOR networks are

allowed, respectively. The combinational logic network and the order of the scan
chains can be specified as a set of constraints or just as an expanded circuit for

ATPG. In either case, the test cubes that ATPG generates are the compressed

stimuli for the decompressor itself. There is no need to solve a system of linear

equations, and dynamic compaction can be effectively used during the ATPG

process. Hence, only one-pass ATPG is required during test stimulus compression.

The virtual scan scheme was proposed in [Wang 2002, 2004, 2008]. In these

papers, the decompressor was referred to as a broadcaster. The authors also pro-
posed adding additional logic, when required, through VirtualScan inputs to
reduce or remove the constraints imposed by the broadcaster on the circuit,

thereby yielding very little or no fault coverage loss caused by test stimulus com-

pression. For instance, a scan connector consisting of a set of multiplexers that

places scan cells in the scan chains in a particular order can be connected to the

outputs of the combinational logic network during each virtual scan test mode.

Because the scan chains are reordered in each test mode, the imposed constraints

of the combinational logic network on the circuit are reduced or removed.
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In a broad sense, virtual scan is a generalized class of broadcast scan, Illinois

scan, multiple-input broadcast scan, reconfigurable broadcast scan, and combina-
tional linear decompression. The advantage of the use of virtual scan is that it

allows the ATPG to directly search for a test cube that can be applied by the

decompressor and allows very effective dynamic compaction. Thus, virtual scan

may produce shorter test sets than any test stimulus compression scheme based

on solving linear equations; however, because this scheme may impose XOR or

MUX constraints directly on the original circuit, it may take longer than those

based on solving linear equations to generate test cubes or compressed stimuli.

Two example virtual scan decompression circuits are shown in Figures 3.44a
and 3.44b, respectively [Wang 2008]. Additional VirtualScan inputs are used

to further reduce the XOR or MUX constraints imposed on the original circuit.

An XOR network similar to the broadcaster shown in Figure 3.44a is sometimes

referred to as a space expander or a spreading network in logic BIST

applications.
3.5.2 Circuits for test response compaction
Test response compaction is performed at the outputs of the scan chains. The

purpose is to reduce the amount of test response that needs to be transferred

back to the tester. Although test stimulus compression must be lossless, test

response compaction can be lossy. A large number of different test response

compaction schemes and associated (response) compactors have been pre-

sented in the literature [Wang 2006a]. The effectiveness of each compaction

scheme and the chosen compactor depends on its ability to avoid aliasing

and tolerate unknown test response bits or X’s. These schemes can be grouped

into three categories: (1) space compaction, (2) time compaction, and (3)

mixed space and time compaction.
A space compactor compacts an m-bit-wide output pattern to an n-bit-wide

output pattern (where n < m). A time compactor compacts p output patterns

to q output patterns (where q < p). A mixed space and time compactor has

both space and time compaction performed concurrently. Typically, a space

compactor is composed of XOR gates [Saluja 1983]; a time compactor includes
a multiple-input signature register (MISR) [Frohwerk 1977]; and a mixed space

and time compactor adds a space compactor at either the input or the output

side of a time compactor [Saluja 1983; Wohl 2001]. Because test response com-

paction can be combinational-logic-based or sequential-logic-based, without loss

of generality, we refer space compaction to as a combinational compaction
scheme, and time compaction as well as mixed space and time compaction to

as sequential compaction schemes.

There are three sources of aliasing according to [Wohl 2001]: (1) combina-
tional cancellation occurs when two or more erroneous scan chain outputs

(compactor inputs) are XORed in the compactor during the same cycle, which
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Example virtual scan decompression circuits: (a) Broadcaster that sees an example XOR

network with additional VirtualScan inputs to reduce coverage loss. (b) Broadcaster that uses

an example MUX network with additional VirtualScan inputs that can be also connected to

data pins of the multiplexers.
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cancel out the error effects in that cycle; (2) shift cancellation occurs when

one or more erroneous scan chain output bits captured into the compactor

are cancelled out by other erroneous scan chain output bits when the former

are shifted down the shift path of the compactor; and (3) feedback cancella-
tion occurs when one or more errors captured into the compactor during

one cycle propagate through some feedback path of the compactor and cancel

out with errors in later cycles. Combinational cancellation will exist in space
compaction as well as mixed space and time compaction, because non-aliasing
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space compactors are impractical for real designs [Chakrabarty 1998;

Pouya 1998]. On the other hand, shift cancellation and feedback cancellation
are only present when either time compaction or mixed space and time com-

paction is used; however, shift cancellation is independent of the compactor

feedback structure and its polynomial, whereas feedback cancellation depends

on the compactor polynomial chosen.

Because unknown test response bits (X’s) can potentially reduce the fault

coverage of the circuit under test when a combinational compactor is used

and corrupt the final signature in a sequential compactor, one safe approach

is to completely block these X’s before they reach the response compactor
(combinational compactor or sequential compactor). During design, these

potential X-generators (X-sources) can be identified with a scan design rule

checker. When the X effects of an X-generator are likely to reach the response

compactor, these X’s must be blocked before they reach the compactor

[Gu 2001]. The process is often referred to as X-blocking or X-bounding.
In X-blocking, an X-source can be blocked either at the X-source or any-

where along its propagation paths before X’s reach the compactor. In case

the X-source has been blocked at a nearby location during test and will not
reach the compactor, there is no need to block the X-source; however, care

must be taken to ensure that no observation points are added between the

X-source and the location at which it is blocked to avoid capturing potential

X’s into the compactor.

A simple example illustrating the X-blocking scheme for an X-source is

shown in Figure 3.45. The output of the X-source is blocked and forced to

0 by setting the select signal of the multiplexer (MUX) to a fixed value (selecting

the 0 input) in test mode. As a separate example, a non-scan flip-flop that is nei-
ther scanned nor initialized is a potential X-generator (X-source). If the flip-flop

has two outputs (Q and QB), one can add two multiplexers forcing both outputs

to opposite values in test mode. Alternately, if the flip-flip has an asynchronous

set/reset pin, an AND/OR control point can be added to permanently force the

flip-flip to 0 or 1 during test. Although an AND/OR control point can be added

to force the non-scan flip-flop to a constant value, it is recommended that for
X-source

select 

0

X Compactor 

FIGURE 3.45

A simple illustration of the X-blocking scheme.
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better fault coverage inserting a MUX control point driven by a nearby existing

scan cell is preferred.
X-blocking can ensure that no X’s will be propagated to the compactor;

however, it also blocks the fault effects that can only propagate to an observable

point through the now-blocked X-source (e.g., the non-scan flip-flop). This can

result in fault coverage loss. This problem can be addressed by use of a more flexi-

ble control on the select signal such that the X-source is blocked only during the

cycles at which it may generate X’s. Alternately, if the number of such faults for

a given bounded X-generator justifies the cost, one or more observation points

can be added before the X-source (e.g., at the D input of the non-scan flip-flop)
to provide an observable point to which those faults can propagate. These X-

blocking or X-bounding methods have been extensively discussed in [Wang

2006a].

In this subsection, we only present some compactor designs that are widely

used in industry along with some emerging compactors. For more information,

refer to the key references cited in [Patel 2003; Mitra 2004b; Rajski 2004;

Volkerink 2005; Wang 2006a; Touba 2007; Wohl 2007b].

3.5.2.1 Combinational compaction

A combinational compactor uses a combinational circuit to compact m outputs

of the circuit under test into n test outputs, where n <m. If each output
sequence contains only known (non-X) values (0’s and 1’s), then a combina-

tional compactor that uses XOR gates with each internal scan chain output

connected to only one XOR gate input is sufficient to guarantee no-fault cover-

age loss when the number of errors appearing at the m outputs is always odd

[Saluja 1983]. A compactor that uses such XOR gates is referred to as a conven-
tional combinational compactor or simple space compactor. An example

is illustrated in Figure 3.46 [Wang 2008]. On the contrary, if any output

sequence contains unknown values (X’s), the combinational compaction
scheme must have the capability to mask off or tolerate unknowns to prevent

faults from going undetected. A compactor able to mask off or tolerate X’s is

referred to as an X-tolerant combinational compactor or X-tolerant space
compactor. Two representative schemes currently practiced in industry are

discussed in the following: (1) X-compact and (2) X-impact. Other schemes to

further tolerate the amount of X’s can be found in [Patel 2003; Rajski 2004;

Wohl 2004, 2007b; Wang 2008].

3.5.2.1.1 X-compact

X-compact [Mitra 2004a] is an X-tolerant space compaction technique that
connects each internal scan chain output to two or more external scan output

ports through a network of XOR gates to tolerate unknowns. A response

compaction circuit designed by use of the X-compact technique is called an

X-compactor. Figure 3.47 shows an X-compactor with eight inputs and five

outputs. It is composed of four 3-input XOR gates and eleven 2-input XOR gates.



External Scan Output Ports

Internal Scan Chain Outputs

FIGURE 3.46

A conventional combinational compactor with nine inputs and three outputs.
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FIGURE 3.47

An X-compactor with eight inputs and five outputs.
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Only one aliasing source, namely combinational cancellation, can exist in

an X-compactor because of its combinational property. As an extreme example,

if an X-compactor has only one output, it is, indeed, a parity checker, and any

two error bits occurring simultaneously from the internal scan chain outputs
will lead to aliasing.

Although aliasing may still exist when the X-compact technique is used, one

can design an X-compactor that guarantees zero-aliasing in many practical cases.

Consider Figure 3.47 again. If only one error bit occurs at the SC inputs, the

error will be propagated to some output of the compactor and thus detected.

One can also find that the compactor can detect any two or any odd number

of errors that occur at the same cycle. In the following we use a binary matrix,

called an X-compact matrix, to represent an X-compactor and to illustrate the
fault detectability and X-tolerability of the compactor.
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Suppose that the outputs of m scan chains are to be compacted into n bits

for each scan cycle with an X-compactor. The associated X-compact matrix

then contains n rows and k columns, in which each row corresponds to a scan

chain output (e.g., SC in Figure 3.47), and each column corresponds to an

X-compactor output (e.g., Out in Figure 3.47). The entry at row i and column

j of the matrix is 1 if and only if the jth X-compactor output depends on the

ith scan chain output; otherwise, the matrix entry is 0. Thus, the corresponding

X-compact matrix M of the X-compactor shown in Figure 3.47 is:
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With the help of an X-compact matrix, it was shown in [Mitra 2004a] that

errors from any one, two, or an odd number of scan chains at the same scan-

out cycle are guaranteed to be detected by an X-compactor if every row of
the corresponding X-compact matrix of the compactor is distinct and contains

an odd number of 1’s. This can be proved by the observation that (1) if all rows

of the X-compact matrix are distinct, then a bitwise XOR of any two rows is

nonzero, and (2) if each row further contains an odd number of 1’s, then the

bitwise XOR of any odd number of rows also contains an odd number of 1’s.

The most distinctive feature of the X-compact technique is its X-tolerant capa-

bility (i.e., detecting error bits even when the scan chain outputs have unknown

bits). Refer to Figure 3.47 again. If one unknown bit occurs at SC1, then the
unknown value will be spread to Out1, Out2, and Out3. Thus, after the XOR oper-

ation, the values at Out1, Out2, and Out3 are masked (becoming unknown). How-

ever, if there is only one error bit in all other scan chain outputs, then the error bit

will still be detected, because the error bit will be spread to at least one output that

is not Out1, Out2, or Out3. For example, an error bit occurring at SC2 will be

detected from Out4. Thus, we have the following X-tolerant theorem:

Theorem 3.1:

An error from any scan chain with one unknown bit from any other scan chain at

the same cycle is guaranteed to be observed at the outputs of an X-compactor if

and only if:
1. No row of the X-compact matrix contains all 0’s.

2. For any X-compact matrix row, the submatrix obtained by removing the

row responding to the scan chain output with unknown bit and all col-

umns having 1’s in that row does not contain a row with all 0’s.
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The X-compact matrix of Figure 3.47 satisfies the preceding theorem. For exam-

ple, if we remove row 1 and columns 1, 2, and 3, then each of the remaining
rows in the submatrix contains at least a 1. Theorem 3.1 can be further

extended to deal with errors from any k1 or fewer scan chains with unknown

bits from any k2 or fewer scan chains (k1 þ k2 � n) as follows:

Theorem 3.2:

Errors from any k1 or fewer scan chains with unknown bits from any k2 or fewer scan

chains at the same cycle, where k1 þ k2 � n and n is the number of scan chains, are

guaranteed to be observed at the outputs of an X-compactor if and only if:
1. No row of the X-compact matrix contains all 0’s.

2. For any set S of k1 X-compact matrix rows, any set of k2 rows in the sub-

matrix obtained by removing the rows in S and the X-compact matrix col-

umns having 1’s in the rows in S are linearly independent.
Designing an X-compact matrix to satisfy Theorem 3.2 is a complicated problem

when an X-compactor is expected to tolerate three or more unknown bits.

In some cycles, the number of actual knowns appearing at the scan chain out-

puts could exceed the number of unknowns designed to be tolerated by the

X-compactor. Hence, the fault detectability and X-tolerability of an X-compactor

highly depends on its actual implementation and the number of unknowns to

be tolerated.

3.5.2.1.2 X-impact

Although X-blocking and X-compact each can achieve significant reduction in

fault coverage loss caused by X’s present at the inputs of a combinational com-

pactor, the X-impact technique described in [Wang 2004] is helpful in that it

can further reduce fault coverage loss simply by use of ATPG to algorithmically

handle the impact of residual X’s on the combinational compactor without add-

ing any extra circuitry. The combinational compactor in use can be either a con-
ventional combinational compactor or an X-tolerant combinational compactor.
Example 3.1 An
 example of algorithmically handling X-impact is shown in Figure 3.48. Here, SC1 to

SC4 are scan cells connected to a conventional combinational compactor composed

of XOR gates G7 and G8. Lines a, b, . . . , h are internal signals, and line f is assumed

to be connected to an X-source (memory, non-scan storage element, etc.). Now con-

sider the detection of the stuck-at-0 (SA0) fault f1. Logic value 1 should be assigned to

both lines d and e to activate f1. The fault effect will be captured by scan cell SC3. If

the X on f propagates to SC4, then the compactor output q will become X and f1 cannot

be detected. To avoid this, ATPG can try to assign either 1 to line g or 0 to line h to block

the X from reaching SC4. If it is impossible to achieve this assignment, ATPG can then try

to assign 1 to line c, 0 to line b, and 0 to line a to propagate the fault effect to SC2. As a

result, fault f1 can be detected. Thus, X-impact is avoided by algorithmic assignment

without adding any extra circuitry.
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Handling of X-impact.
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Example 3.2 It
 is also possible to use the X-impact approach to reduce combinational cancellation (an

aliasing source). An example of algorithmically handling aliasing is shown in Figure 3.49.

Here, SC1 to SC4 are scan cells connected to a conventional combinational compactor

composed of XOR gates G7 and G8. Lines a, b, . . . , h are internal signals. Now consider

the detection of the stuck-at-1 fault f2. Logic value 1 should be assigned to lines c, d,

and e to activate f2, and logic value 0 should be assigned to line b to propagate the fault

effect to SC2. If line a is set to 1, then the fault effect will also propagate to SC1. In this

case, aliasing will cause the compactor output p to have a fault-free value, resulting in an

undetected f2. To avoid this, ATPG can try to assign 0 to line a to block the fault effect

from reaching SC1. As a result, fault f2 can be detected. Thus, aliasing can be avoided

by algorithmic assignment without any extra circuitry.

3.5.2.2 Sequential compaction

In contrast to a combinational compactor that typically uses XOR gates to com-

pact output responses, a sequential compactor uses sequential logic instead.
The sequential compactor can be a time-space compressor or a space-time
compressor as described in [Saluja 1983], although the authors only consid-

ered output bit streams of 0’s and 1’s. The type of sequential logic to be used
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for response compaction depends on whether the output responses contain

unknown values (X’s). A sequential compactor capable of masking off or toler-
ating these X’s is often referred to as an X-tolerant sequential compactor.

3.5.2.2.1 Signature analysis

If X-bounding as described previously has been used such that each output

response does not contain any unknown (X ) values, then the multiple-input

signature register (MISR) widely used for logic BIST applications can be simply

used [Frohwerk 1977]. Referred to as a conventional sequential compactor,
the MISR uses an XOR gate at each MISR stage input to compact the output
sequences, M0 to M3, into the linear feedback shift register (LFSR) simulta-

neously. The final contents stored in the MISR after compaction is often called

the ( final) signature of the MISR. A conventional sequential compactor that

uses a four-stage MISR is illustrated in Figure 3.50. For more information on sig-

nature analysis and the MISR design, the reader is referred to Section 3.4.2.3.

3.5.2.2.2 X-masking

On the contrary, if the output response contains unknown (X ) values, then one
must make sure when the sequential compactor is used that no X’s from the cir-

cuit under test will reach the compactor. Although it may not result in fault cov-

erage loss, the X-bounding scheme described previously does add area overhead

and may impact delay because of the inserted logic. It is not surprising to find

that, in complex designs, more than 25% of scan cycles could contain one or

more X’s in the test response. It is difficult to eliminate these residual X’s by

DFT; thus, an encoder with high X-tolerance is very attractive. Instead of block-

ing the X’s where they are generated, the X’s can also be masked off right
before the sequential compactor. This scheme is referred to as X-masking. A
typical X-masking circuit is shown in Figure 3.51. The mask controller applies

a logic value 1 at the appropriate time to mask off any scan output that contains

an X before the X reaches the compactor.

The X-masking compactor is one type of X-tolerant sequential compactors.

Typically, it implies that sequential logic (comprising one or more MISRs or SISRs)

is used in the compactor for response compaction. Almost all existing X-tolerant

sequential compactors proposed in the literature use X-masking, including
OPMISRþ [Barnhart 2002; Naruse 2003], ETCompression [Nadeau-Dostie 2004],
M1 M2M0 M3

FIGURE 3.50

A conventional sequential compactor that uses a four-stage MISR.
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An example X-masking circuit in use with a compactor.
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and convolutional compactors [Mitra 2004b; Rajski 2005, 2008]. In fact, combina-

tional logic (such as XOR gates) can also be used in the compactor. Such an X-

masking compactor that uses combinational logic is referred to as a selective
compactor [Rajski 2004]. Mask data are needed to indicate when the masking

should take place. These mask data can be stored in compressed format and

can be decompressed with on-chip hardware. Possible compression techniques

are weighted pseudo-random LFSR reseeding or run-length encoding [Volkerink
2005].

Another type of X-tolerant sequential compactor is an X-canceling MISR
[Touba 2007, 2008] that does not mask the X’s before they enter the MISR. It

allows the X’s to be compacted in a MISR and then selectively XORs together

combinations of MISR signature bits that are linearly dependent in terms of

the X’s such that all the X’s are canceled out.

3.5.2.2.3 q-compact

In case none of the X-bounding, X-masking, or X-canceling schemes is available

to block, mask off, or cancel all X’s, the sequential logic in use must not have a

feedback path so these X’s will only stay in the sequential compactor for a few

clock cycles. Such an X-tolerant sequential compaction scheme is referred to as

q-compact. A q-compactor that uses this X-tolerant compaction scheme is

illustrated in [Han 2006].

Figure 3.52 shows an example of a q-compactor assuming the inputs are

coming from internal scan chain outputs [Han 2006]. The spatial part of the
q-compactor consists of single-output XOR networks (called spread networks)

connected to the flip-flops by means of additional 2-input XOR gates inter-

spersed between successive storage elements. As can be seen, every error in

a scan cell can reach storage elements and then outputs in several possible

ways. The spread network that determines this property is defined in terms of
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An example q-compactor with single output.
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spread polynomials indicating how particular scan chains are connected to the

register flip-flops.

Different from a conventional MISR, the q-compactor presented in Figure 3.52

does not have a feedback path; consequently, any error or X injected into the

compactor is shifted out after at most five clock cycles. The shifted-out data will

be compared with the expected data and then the error will be detected.
3.5.3 Industry practices
Several test compression products and solutions have been introduced by some

of the major DFT vendors in the CAD industry. These products differ signifi-

cantly with regard to technology, design overhead, design rules, and the ease

of use and implementation. A few second-generation products have also been

introduced by a few of the vendors [Kapur 2008]. This subsection summarizes

a few of the products introduced by companies such as Cadence Design Systems

[Cadence 2008], LogicVision [LogicVision 2008], Mentor Graphics [Mentor
2008], Synopsys [Synopsys 2008], and SynTest Technologies [SynTest 2008].

Current industry solutions can be grouped under two main categories for

stimulus decompression. The first category uses linear-decompression–based

schemes, whereas the second category uses broadcast-scan–based schemes.

The main difference between the two categories is the manner in which the

ATPG engine is used. The first category includes products, such as ETCompres-

sion [LogicVision 2008] from LogicVision, TestKompress [Rajski 2004]

from Mentor Graphics, XOR Compression [Cadence 2008] from Cadence, and
SOCBIST [Wohl 2003] from Synopsys. The second category includes products,

such as OPMISRþ [Barnhart 2002; Cadence 2008] from Cadence, VirtualScan

[Wang 2004, 2008] from SynTest, and DFT MAX [Sitchinava 2004; Wohl

2007a] from Synopsys.
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For designs that use linear-decompression–based schemes, test compression

is achieved in two distinct steps. During the first step, conventional ATPG is used
to generate sparse ATPG patterns (called test cubes), in which dynamic compac-

tion is performed in a nonaggressive manner, while leaving unspecified bit loca-

tions in each test cube as X. This is accomplished by not aggressively performing

the random fill operation on the test cubes, which is used to increase coverage

of individual patterns, and hence reduce the total pattern count. During the second

step, a system of linear equations, describing the hardware mapping from the

external scan input ports to the internal scan chain inputs, are solved to map each

test cube into a compressed stimulus that can be applied externally. If a mapping is
not found, a new attempt at generating a new test cube is required.

For designs that use broadcast-scan–based schemes, only a single step is

required to perform test compression. This is achieved by embedding the con-

straints introduced by the decompressor as part of the ATPG tool, such that

the tool operates with much more restricted constraints. Hence, whereas in

conventional ATPG, each individual scan cell can be set to 0 or 1 independently,

for broadcast-scan–based schemes the values to which related scan cells can

be set are constrained. Thus, a limitation of this solution is that in some cases,
the constraints among scan cells can preclude some faults from being tested.

These faults are typically tested as part of a later top-up ATPG process if

required, similar to the use of linear-decompression–based schemes.

On the response compaction side, industry solutions have used either combina-

tional compactors such as XOR networks, or sequential compactors such as MISRs,

to compact the test responses. At present, combinational compactors have a

higher acceptance rate in the industry because they do not involve the process

of guaranteeing that no unknown (X ) values are generated in the circuit under test.
A summary of the different compression architectures used in the commer-

cial products is shown in Table 3.8. Six products from five DFT companies

are included. Since June 2006, Cadence has added XOR Compression as an alter-

native to the OPMISRþ product described in [Wang 2006a].
Table 3.8 Summary of Industry Practices for Test Compression

Industry Practices Stimulus Decompressor
Response
Compactor

XOR Compression or
OPMISRþ

Combinational XOR Network or
Fanout Network

XOR Network with or
without MISR

TestKompress Ring Generator XOR Network

VirtualScan Combinational Logic Network XOR Network

DFT MAX Combinational MUX Network XOR Network

ETCompression (Reseeding) PRPG MISR



Table 3.9 Summary of Industry Practices for At-Speed Delay Fault Testing

Industry Practices Skewed-Load Double-Capture

XOR Compression or OPMISRþ ffip ffip
TestKompress

ffip ffip
VirtualScan

ffip ffip
DFT MAX ffip ffip
ETCompression ffip Through Service
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It is evident that the solutions offered by the current EDA DFT vendors are

quite diverse with regard to stimulus decompression and response compaction.

For stimulus decompression, OPMISRþ, VirtualScan, and DFT MAX are

broadcast-scan–based, whereas TestKompress and ETCompression are linear-

decompression–based. For response compaction, OPMISRþ and ETCompression
can include MISRs, whereas four other solutions purely adopt (X-tolerant) XOR

networks. What is common is that all six products provide their own diagnostic

solutions.

Generally speaking, any modern ATPG compression program supports at-

speed clocking schemes used in its corresponding at-speed scan architecture.

For at-speed delay fault testing, ETCompression currently uses a skewed-
load–based at-speed test compression architecture for ATPG. The product

can also support the double-capture clocking scheme through service. All other
ATPG compression products, including OPMISRþ, TestKompress, VirtualScan,

and DFT MAX, support the hybrid at-speed test compression architecture
by use of both skewed-load (a.k.a. launch-on-shift) and double-capture (a.k.a.

launch-on-capture). In addition, almost every product supports inter-clock-

domain delay fault testing for synchronous clock domains. A few on-chip clock

controllers for detecting these inter-clock-domain delay faults at-speed have

been proposed in [Beck 2005; Nadeau-Dostie 2005, 2006; Furukawa 2006;

Fan 2007; and Keller 2007].
The clocking schemes used in these commercial products are summarized in

Table 3.9. It should be noted that compression schemes might be limited in

effectiveness if there are a large number of unknown response values, which

can be exacerbated during at-speed testing when many paths do not make the

timing being used.
3.6 CONCLUDING REMARKS

Design for testability (DFT) has become vital for ensuring circuit testability and

product quality. Scan design, which has proven to be themost powerful DFT tech-

nique ever invented, allowed the transformation of sequential circuit testing into
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combinational circuit testing and has since become an industry standard. Cur-

rently, a scan design can contain a billion transistors [Naffziger 2006; Stackhouse
2008]. To screen all possible physical failures (manufacturing defects) caused by

manufacturing imperfection, test compression coupled to scan design has rapidly

emerged, becoming a crucial DFT technique to address the explosive test data vol-

ume and long test application time problems. At the same time, scan-based logic

built-in self-test (BIST) is of growing importance because of its inherent advantage

of performing self-test on-chip, on-board, or in-system, which can substantially

improve the reliability of the system and the ability of in-field diagnosis.

Whereas the STUMPS-based architecture [Bardell 1982] is the most popular
logic BIST architecture practiced currently for scan-based designs, the efforts

required to implement the BIST circuitry and the loss of the fault coverage for

the use of pseudo-random patterns have prevented the BIST architecture from

being widely used in industry. As the semiconductor manufacturing technology

moves into the nanometer design era, it remains to be seen how the CBILBO-

based architecture proposed in [Wang 1986b], which can always guarantee

100% single stuck-at fault coverage and has the ability of running 10 times more

BIST patterns than the STUMPS-based architecture, will perform. Challenges lie
ahead with regard to whether or not pseudo-exhaustive testing will become a

preferred BIST pattern generation technique.

Because the primary objective of this chapter is to familiarize the reader with

basic DFT techniques, many advanced DFT techniques, along with novel design-

for-reliability (DFR), design-for-manufacturability (DFM), design-for-yield (DFY),

design-for-debug-and-diagnosis (DFD), and low-power test techniques, are left

out. For advanced reading, the reader is referred to [Gizopoulos 2006; Wang

2006a, 2007a]. These techniques are of growing importance to help us cope with
the physical failures of the nanometer design era.

The DFT chapter is the first of a series of three chapters devoted to VLSI test-

ing. These chapters are chosen to equip the reader with basic DFT skills to design

quality digital circuits. Chapter 7 discusses the design rules and test synthesis

steps required to implement testability logic into these digital circuits. Chapter

14 jumps into the important fault simulation and test generation techniques for

generating quality test patterns to screen defective chips frommanufacturing test.
3.7 EXERCISES
3.1. (Testability Analysis) Calculate the SCOAP controllability and

observability measures for a 3-input XOR gate and for its NAND-NOR

implementation.

3.2. (Testability Analysis) Use the rules given in Tables 3.3 and 3.4 to cal-

culate the probability-based testability measures for a 3-input XNOR

gate and for its NAND-NOR implementation. Assume that the
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probability-based controllability values at all primary inputs and the
probability-based observability value at the primary output are 0.5

and 1, respectively.

3.3. (Testability Analysis) Repeat Exercise 3.2 for the full-adder circuit

shown in Figure 3.1.

3.4. (Muxed-D Scan Cell) Show a possible CMOS implementation of the

muxed-D scan cell shown in Figure 3.5a.

3.5. (Low-Power Muxed-D Scan Cell) Design a low-power version of the

muxed-D scan cell given in Figure 3.5a by adding gated-clock logic
that includes a lock-up latch to control the clock port.

3.6. (At-Speed Scan) Assume that a scan design contains three clock

domains running at 100 MHz, 200 MHz, and 400 MHz, respectively.

In addition, assume that the clock skew between any two clock

domains is manageable. List all possible at-speed scan ATPG methods

and compare their advantages and disadvantages in terms of fault cov-

erage and test pattern count.

3.7. (At-Speed Scan) Describe two major capture-clocking schemes for at-
speed scan testing and compare their advantages and disadvantages.

Also discuss what will happen if three or more captures are used.

3.8. (BIST Pattern Generation) Implement a period-8 in-circuit test pat-

tern generator (TPG) with a binary counter. Compare its advantages

and disadvantages with a Johnson counter (twisted-ring counter).

3.9. (BIST Pattern Generation) Implement a period-31 in-circuit test pat-

tern generator (TPG) with a modular linear feedback shift register

(LFSR) with characteristic polynomial f(x) ¼ 1 þ x
2 þ x

5. Convert the
modular LFSR into amuxed-D scan designwithminimum area overhead.

3.10. (BIST Pattern Generation) Implement a period-31 in-circuit test pat-

tern generator (TPG) with a five-stage cellular automaton (CA) with

construction rule ¼ 11001, where “0” denotes a rule 90 cell and “1”

denotes a rule 150 cell. Convert the CA into an LSSD design with min-

imum area overhead.

3.11. (Cellular Automata) Derive a construction rule for a cellular autom-

aton of length 54, and then construction rules up to length 300 to
match the list of primitive polynomials up to degree 300 reported in

[Bardell 1987].

3.12. (BIST Response Compaction) Discuss in detail what errors can and

cannot be detected by a MISR.

3.13. (STUMPS versus CBILBO) Compare the performance of a STUMPS

design and a CBILBO design. Assume that both designs operate at

400 MHz and that the circuit under test has 100 scan chains each hav-

ing 1000 scan cells. Compute the test time for each design when
100,000 test patterns are to be applied. In general, the shift (scan)

speed is much slower than a circuit’s operating speed. Assume that
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the scan shift frequency is 50 MHz, and compute the test time for the
STUMPS design again. Explain further why the STUMPS-based archi-

tecture is gaining more popularity than the CBILBO-based

architecture.

3.14. (Scan versus Logic BIST versus Test Compression) Compare the

advantages and disadvantages of a scan design, a logic BIST design,

and a test compression design in terms of fault coverage, test applica-

tion time, test data volume, and area overhead.

3.15. (Test Stimulus Compression) Given a circuit with four scan chains,
each having five scan cells, and with a set of test cubes listed:

1 X X 1 0

0 1 0 0 0

X 1 X 0 X

X 0 1 1 0
a. Design the multiple-input broadcast scan decompressor that ful-

fills the test cube requirements.

b. What is the compression ratio?

c. The assignment of X’s will affect the compression performance

dramatically. Give one X-assignment example that will unfortu-
nately lead to no compression with this multiple-input broadcast

scan decompressor.
3.16. (Test Stimulus Compression) Derive mathematical expressions for

the following in terms of the number of tester channels, n, and the
expansion ratio, k.
a. The probability of encoding a scan slice containing 2 specified

bits with Illinois scan.

b. The probability of encoding a scan slice containing 3 specified

bits, where each scan chain is driven by the XOR of a unique

combination of 2 tester channels such that there are a total of

Cn
2 ¼ n(n � 1) / 2 scan chains.
3.17. (Test Stimulus Compression) For the sequential linear

decompressor shown in Figure 3.38 whose corresponding system of lin-

ear equations is shown in Figure 3.39, find the compressed stimulus,

X1 � X10, necessary to encode the following test cube: < Z1,. . .,
Z12 > ¼ <0 - - - 1 - 0 - - 010>.

3.18. (Test Stimulus Compression) For the MUX network shown in Fig-

ure 3.43 and then the XOR network shown in Figure 3.44a, find the

compressed stimulus at the network inputs necessary to encode the

following test cube: <1 - 0 - - - 01>.
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3.19. (Test Response Compaction) Explain further how many errors and
howmany unknowns (X’s) can be detected or tolerated by theX-compac-

tor and q-compactor as shown in Figures 3.47 and 3.52, respectively.

3.20. (Test Response Compaction) For the X-compact matrix of the

X-compactor given below:

0 1 1 1 0

0 1 0 1 1

1 1

1

1

1

0

0

0

0 1

1 0

1 0 1

1 0 0 1 1

1 0 1 1 0

0 0 1 1 1
a. What is the compaction ratio?
b. Which outputs after compaction are affected by the second scan

chain output?

c. How many errors can be detected by the X-compactor?
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[Nadeau-Dostie 2005] B. Nadeau-Dostie, J.-F. Côté, and F. Maamari, Structural test with functional

characteristics, in Proc. IEEE Current and Defect-Based Testing Workshop, pp. 57–60, May 2005.

[Nadeau-Dostie 2006] B. Nadeau-Dostie and J.-F. Côté, Clock Controller for At-Speed Testing of Scan
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Very large-scale integration (VLSI) circuits can be defective because of the

imperfect manufacturing process. One of the most important tasks in VLSI testing
is to minimize the number of defective chips shipped to customers. The quality of

test patterns is critical in determining the thoroughness of testing. This requires

the assessment of the quality of test patterns either developed manually or gener-

ated automatically so that a desired product quality can be achieved.

This chapter consists of two major VLSI testing topics: fault simulation and test

generation. In fault simulation, we start with a discussion on fault collapsing. After

an introduction of equivalent faults and dominant faults, the serial, parallel, concur-

rent, and differential fault simulation techniques are described, followed by qualita-
tive comparisons between their advantages and drawbacks. These techniques trade

accuracy for reduced execution time, which is crucial for managing the complexity

of large designs. After fault simulation, basic automatic test pattern generation
(ATPG) techniques, including Boolean difference, PODEM, and FAN, are described

in detail. Advanced test generation techniques are also introduced to meet the

demand for quality testing, including sequential ATPG, delay fault ATPG, and bridg-

ing fault ATPG. Throughout this chapter, the reader will learn about the major fault

simulation and test generation techniques. This background will be valuable
in selecting the test method that best meets the design needs and understands the

relationship between test patterns and product quality.
14.1 INTRODUCTION
851
Simulation techniques have been widely used in VLSI designs for digital circuit
verification, test development, design debug, and fault diagnosis. During the

design stage, logic simulation, which has been extensively discussed in
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Chapter 8, is performed to help verify whether the design meets its specifica-

tions and contains any design errors. It also helps locate design errors that
may have escaped from detection during design debug.

Once the design meets its specifications and is ready for physical implementa-

tion, one must ensure that the manufactured devices will function as intended

and no defective parts are shipped to customers. To achieve high product quality,

typically with a defect level less than 500 defective parts per million (DPM),

quality test patterns must be developed. At present, as we move to the nanometer

design era, this has required applying fault simulation and automatic test pat-
tern generation (ATPG) to the design that has been embedded with design for
testability (DFT) features during test development.

In contrast to logic simulation, fault simulation is used to measure the

effectiveness of test patterns in detecting defects that might have been intro-

duced during the manufacturing process. This requires simulating the faulty

behavior of the circuit in detecting the modeled faults of interest. (For this rea-

son, logic simulation is generally referred to as fault-free simulation.) Further-
more, fault simulation is an integral component of any ATPG program.

The major difference between logic simulation and fault simulation lies in
the nature of the non-idealities they deal with. Logic simulation is intended

for checking whether the circuit’s responses to a given set of input vectors con-

form to the given specifications or a known good design as the reference.

Design errors may be introduced by human designers or electronic design
automation (EDA) tools, and they should be caught before physical implemen-

tation. Fault simulation, on the other hand, is concerned with checking the

behavior of fabricated circuits as a consequence of inevitable fabrication pro-

cess imperfections. The manufacturing defects (e.g., wire shorts and opens), if
present, may cause the circuits to behave differently from the expected behav-

ior. Fault simulation generally assumes that the design is functionally correct

(i.e., free of design errors), and it is targeted at capturing manufacturing defects.

However, we note that fault simulation methods may be applied during the

design verification stage as well.

The capability of fault simulation to predict the faulty circuit behavior is of

great importance for test and diagnosis. First, fault simulation evaluates the

effectiveness of a set of test patterns in detecting manufacturing defects. The
quality of a test set is expressed in terms of fault coverage, which is the ratio

of detected faults to the total number of faults in the circuit. In practice, the

designer uses a fault simulator to evaluate the fault coverage of a set of input

stimuli (test vectors or test patterns) with respect to the modeled faults of inter-

est. Because fault simulation concerns the fault coverage of a test set rather than

the detection of design bugs, it is also termed fault grading. Low fault coverage

test patterns will jeopardize the manufacturing test quality and eventually lead

to unacceptable field returns from customers. Second, fault simulation helps
to identify undetected faults, which is especially important when the achieved

fault coverage is below an acceptable level. In this case, either the designer or
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the ATPG has to generate additional test vectors to improve the fault coverage

(i.e., to detect those remaining undetected faults). Third, as part of the test
compaction process, fault simulation identifies redundant test patterns, which

may be discarded with no negative impact on the fault coverage. With the pre-

ceding capabilities and applications, fault simulation is one of the crucial com-

ponents of ATPG. In fact, the implementation of an ATPG program usually

starts with the fault simulator. Finally, fault simulation assists fault diagnosis,
which determines the type and location of faults that best explain the faulty cir-

cuit behavior of the device under diagnosis. The fault simulation results are

compared with the observed circuit responses to identify the most likely faults.
The fault type and location information can then be used as a starting point for

locating the defects that cause the circuit malfunction.

Although logic and fault simulators can provide important information about

the behavior of the circuit, they require a set of test vectors with which the cir-

cuit is simulated. The objective of test generation, then, is the task of producing

a set of test vectors that will uncover any defect in a chip. Figure 14.1 illustrates

a high-level concept of test generation. In this figure, the circuit at the top is

defect free, and for any defective chip that is functionally different from the
defect-free one there must exist some input that can differentiate the two. Gen-

erating effective test patterns efficiently for a digital circuit is thus the goal of an

ATPG system.

Because this problem is extremely difficult, DFT methods have been fre-

quently used to relieve the burden on the ATPG. In this sense, a powerful ATPG

can be regarded as the “Holy Grail” in testing, with which all DFT methods

could potentially be eliminated. In other words, if the ATPG engine is capable

of efficiently delivering high-quality test patterns that achieve high fault cov-
erages and small test sets on large, complex chips, DFT would no longer be

necessary.

Because fault simulation can help to determine those faults that could

be detected by the same generated test, it becomes an essential component of

ATPG. By removing those incidentally detected faults, ATPG is able to significantly
Defect-free
Inputs

Outputs

: Defect

Generate a vector that
can produce a logic 1

Defective

FIGURE 14.1

Conceptual view of test generation.
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reduce the number of faults that it needs to consider after the generation of each

new test vector, thereby improving the efficiency of the ATPG process.
For some fault models, the circuit layout information is needed. For example,

wire delay values are needed to compute the longest paths, and the actual posi-

tions of gates and wires are needed to identify those likely bridges. However,

because ATPG is a time-consuming process, we would like to start the ATPG

process before the layout is available. In this regard, an ATPG may be performed

to obtain an initial test set without the layout information. Then, after place
and route, any faults that require circuit layout information that are undetected

by the test set would be identified, and the ATPG can be invoked again to target
these specific undetected faults to ensure test quality.
14.2 FAULT COLLAPSING

Fault collapsing reduces the number of faults to be considered in fault simula-

tion and ATPG so the overall run time can be reduced. Two requirements must

be met for fault collapsing to become effective. First, fault collapsing must run

much faster than fault simulation or ATPG; otherwise, fault collapsing may not

be worth doing. Second, the collapsed faults must be representative of all original

faults modeled in the circuit. In this section, we introduce two fault-collapsing
techniques: equivalence fault collapsing and dominance fault collapsing.
Linear time algorithms are given to meet the first requirement. We illustrate that

dominance fault collapsing produces a fewer number of faults than equivalence

fault collapsing. However, from a fault coverage accuracy viewpoint, equivalence

fault collapsing is more often quoted than dominance fault collapsing, because

the former results in a better indication of the test quality.
14.2.1 Equivalence fault collapsing
Let two faults f and g be said to be functionally equivalent (or simply

equivalent) if the faulty outputs of these two faults are identical for any input

[McCluskey 1971; Abramovici 1994; Bushnell 2000]. Equivalent faults are indis-
tinguishable, because there is no test pattern that can tell them apart. Con-

sider the example of a two-input AND gate shown in Figure 14.2. The good

outputs and faulty outputs of the AND gate for all four possible input combina-

tions are listed in Table 14.1. From this table, we can see that A stuck-at zero
fault (denoted as A/0) and C stuck-at zero fault (denoted as C/0) are equivalent.
A

B

C

FIGURE 14.2

An example two-input AND gate.



Table 14.1 Good and faulty outputs for Figure 14.2

Input Output

A B C A/0 C/0 B/0 A/1 C/1 B/1

0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 1 1 0

1 0 0 0 0 0 0 1 1

1 1 1 0 0 0 1 1 1

A/1

B/1

C/1
C/0

A/0

B/0

C/1

C/0

A/0

B/0

C/1

C/0

A/1

B/1
C/0
C/1

FIGURE 14.3

Equivalence collapsed fault list for four elementary gates.
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This is because the faulty outputs of these two faults are always the same for all

the four input combinations. On the other hand, the A stuck-at one fault (A/1)

and the C stuck-at one fault (C/1) are not equivalent, because the input pattern

A ¼ B ¼ 0 can distinguish these two faults. Another input pattern is A ¼ 1 and
B ¼ 0. For clear illustration, the faulty outputs that are different from good

outputs are underlined and highlighted in bold.

The equivalence relationship is symmetric. This means, if fault f is equiva-

lent to fault g, then fault g is equivalent to fault f. The equivalence relationship

is also transitive. That is, if fault f is equivalent to fault g and fault g is equiva-

lent to fault h, then fault f is equivalent to fault h. For the example given in

Figure 14.2, A/0 fault is equivalent to B/0 fault, and B/0 fault is equivalent to

C/0 fault. These three faults {A/0, B/0, C/0} belong to the same equivalence
class.

Equivalence fault collapsing reduces the set of faults that needs to be con-

sidered with the fault equivalence relation. Only one representative fault is

selected from every equivalent class. Figure 14.3 shows the equivalence col-
lapsed fault list for four types of elementary gates. Originally, there are six

faults associated with a two-input AND gate: A/1, A/0, B/0, B/1, C/0, and C/1.

After equivalence fault collapsing, the number of faults is reduced to four:

A/1, B/1, C/1, and C/0. The other types of gates can be examined in the same
way. Generally speaking, an n-input elementary gate has 2n and n þ 2 stuck-

at faults before and after equivalence fault collapsing, respectively. Note that

the equivalence fault collapsed fault list is not unique, and there are other ways

to collapse the faults than are shown in Figure 14.3. For example, {A/0, A/1, B/1,

C/1} is another possible way to perform equivalence fault collapsing.
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Equivalence fault collapsing can be performed by either functional analysis

or structural analysis. Exhaustive functional analysis is time-consuming, because
enumeration of 2n patterns may be needed for an n-input circuit (like Table 14.1

for the AND gate shown in Figure 14.2). Therefore, in the following text, we

only demonstrate a linear-time structural analysis to perform equivalence fault

collapsing. The resulting equivalence collapsed fault list may not be minimal,

but structural analysis is good enough for most applications.

For a fanout-free circuit consisting of elementary gates (such as buffers,

inverters AND, OR, NAND, and NOR gates), equivalence fault collapsing can

be performed by keeping two kinds of faults: (1) both stuck-at one and stuck-
at zero faults on every primary output, and (2) one collapsed fault on each gate

input whose stuck value is shown in Figure 14.3. Inverters and buffers should

be treated as wires. For the example in Figure 14.4, we keep both H/0 and H/1

faults on primary output H. We also keep one fault on each gate input, such

as A/0 and B/0 for OR gate G1, etc. Note that faults on the gate outputs are

removed, because they are equivalent to some other faults in the figure. For

example, gate G1 output stuck-at zero fault is equivalent to C/0 fault, which is

again equivalent to E/1 fault, which is in turn equivalent to H/0 fault.
For circuits with fanouts, fault collapsing becomes complicated, because

faults on the fanout stem are now always equivalent to the faults on the fanout

branches. Figure 14.5 shows a circuit with a fanout stem E and two fanout

branches L and F. According to Table 14.2, E/0 fault is equivalent to F/0 fault

but not equivalent to L/0 fault. Also, none of the stuck-at one faults are equiva-

lent. Stem analysis is required to determine equivalent faults on a fanout stem

and its branches. However, stem analysis is generally not cost-effective in terms

of CPU time, so the details are skipped in this chapter.
G1
G2

G3

A/0 

B/0 

D/1 
F/0 

H/0
H/1

C/1
E/0

FIGURE 14.4

Equivalence fault collapsing on a fanout-free circuit.
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Equivalence fault collapsing for faults on fanouts.



Table 14.2 Good and faulty outputs for Figure 14.5

Input Output

A B C E E/0 F/0 L/0 E/1 F/1 L/1

0 0 0 0 0 0 0 1 1 0

0 0 1 1 0 0 1 1 1 1

0 1 0 1 0 0 1 1 1 1

0 1 1 1 0 0 1 1 1 1

1 0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 1 0 0 0

1 1 0 0 0 0 1 0 0 0

1 1 1 0 0 0 1 0 0 0

G1

G2

G3

G4

B/0

FC/0

A/1

L/1

E/0
E/1

J/0

H/0 K/0
K/1

FIGURE 14.6

Equivalence collapsed fault list for Figure 14.5.
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To avoid stem analysis, an approximation solution is used to partition the cir-

cuit into independent fanout-free regions (FFRs). Every fanout stem is treated

as a primary output, so both stuck-at one and stuck-at zero faults are included in

the collapsed fault list. Algorithm 14.1 introduces a simple equivalence fault-

collapsing (simple_EFC) algorithm without stem analysis. Figure 14.6 shows

the resulting equivalence collapsed fault list with the simple_EFC algorithm.

The circuit is partitioned into two independent fanout-free regions: four faults

in one region and six faults in the other. The simple_EFC algorithm reduces
the number of faults from 18 to 10. Please note that inverter G3 is ignored in

this algorithm, because its input stuck-at one fault is always equivalent to its out-

put stuck-at zero fault and vice versa. Also note that simple_EFC is not the

only way to perform fault collapsing; other implementations of fault collapsing

are possible.
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Algorithm 14.1 A simple equivalence fault-collapsing algorithm

simple_EFC (N) /*N is a netlist*/
1.
2.
3.
4.
5.
6.
7.
8.
fault_list ¼ {};
foreach gate or PO or PI g in N
if ((g is PO) || (g is PI and fanout stem)) then
fault_list ¼ fault_list [ g stuck-at 0 and 1;

else if (output of gate g is fanout stem) then
fault_list ¼ fault_list [ g output stuck-at 0 and 1;

end if
if (gate g is AND) || (gate g is NAND) then
fault_list ¼ fault_list [ g input stuck-at 1;
9.

10. else if (gate g is OR) || (gate g is NOR) then
11. fault_list ¼ fault_list [ g input stuck-at 0;
12. end if
13. end foreach
14. return (fault_list);

The simple_EFC algorithm can complete in linear time because it checks every

gate exactly once. However, this algorithm has two drawbacks. First, the result
is not optimal, because it lacks stem analysis. For example, Table 14.2 shows that

E/0 fault is actually equivalent to K/0 fault, but they both appear in Figure 14.6.

This small error, however, is often acceptable in most cases. Second, the relation-

ship between the original (uncollapsed) faults and the corresponding collapsed

faults is lost. For example, the link is lost between the four faults {F/0, J/1, H/1,

K/0} in the same equivalence class and their collapsed fault K/0. The relation

between uncollapsed faults and collapsed faults is needed when calculating

the fault coverage of the circuit. Fault coverage can be calculated on the basis
of either the uncollapsed faults or the collapsed faults. The uncollapsed fault
coverage is the number of detected uncollapsed faults over the total number

of uncollapsed faults, whereas the collapsed fault coverage is the number of

detected collapsed faults over the total number of collapsed faults. Oftentimes,

these two numbers are not identical but close to each other. Missing the link

between the collapsed faults and the uncollapsed fault makes it difficult to con-

vert the collapsed fault coverage to the uncollapsed fault coverage. However,

modern fault simulators and ATPG programs have found an easy way to rebuild
the link by performing another pass of linear-time analysis on equivalent faults.
14.2.2 Dominance fault collapsing
The equivalence collapsed fault list can be further compressed with the fault
dominance relationship. Let the detecting set of fault f (denoted as Tf) be

the set of all test patterns that detect fault f. Fault f dominates fault g if the
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detecting set of fault f contains that of fault g. That means, Tf � Tg. For the

example in Figure 14.2, fault C/1 dominates fault A/1 because the detecting
set of C/1 {00, 01, 10} contains the detecting set of A/1 {01}. The dominance

relation is not symmetric but is transitive.

If a test pattern detects the dominated fault, then it must detect the

corresponding dominating fault. To reduce the run time, the dominating faults

can be removed from the fault list. The reduction of fault list with the fault domi-

nance relation is called dominance fault collapsing. If two faults are equivalent,

then they dominate each other. Therefore, the number of dominance-collapsed

faults must be smaller or equal to that of equivalence-collapsed faults.
Figure 14.7 shows the dominance collapsed fault list of four elementary

gates. Originally, there are four equivalence-collapsed faults for a two-input AND

gate: A/1, B/1, C/0, and C/1. After dominance fault collapsing, the number of

faults is reduced to three: A/1, B/1, and C/0. The other types of gates can be

examined in the same way. Generally speaking, for an n-input elementary gate,

there are n þ 1 stuck-at faults after dominance fault collapsing.

For a fanout-free circuit consisting of elementary gates (such as buffers,

inverters AND, OR, NAND, and NOR gates), dominance fault collapsing can
be performed according to the following two rules: (1) one collapsed fault on

every primary input whose value is shown in Figure 14.7, and (2) one collapsed

fault on each gate output whose gate inputs are all primary inputs. Those gates

whose inputs are all primary inputs are called input gates. Inverters and buf-

fers should be treated as wires. Figure 14.8 shows the dominance collapsed fault

list of the example fanout-free circuit. Note that no fault is needed on G2 gate

output, because G2 is not an input gate. E/0 fault dominates C/1 fault, so the for-

mer can be removed. E/1 fault is equivalent to C/0 fault, which dominates A/0
fault, so both C/0 and E/1 faults are removed. The explanation of the other

faults is similar so it is left as an exercise for the readers. This circuit has 14

uncollapsed faults, which are reduced to 8 equivalent faults and then to 5 domi-

nant faults after equivalence and dominance fault collapsing, respectively.
A/1

B/1

A/1

B/1

A/0

B/0

A/0

B/0

C/0 C/1 C/1 C/0

FIGURE 14.7

Dominance collapsed fault list for four elementary gates.
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FIGURE 14.8

Dominance fault collapsing on a fanout-free circuit.
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Faults on the fanout branches do not always dominate faults on the fanout

stem. Consider again the example in Figure 14.5. According to Table 14.2, F/1 fault
dominates E/1 fault. However, L/1 fault does not dominate E/1 fault. (Actually, L/1

fault has an empty detecting set so L/1 is a redundant fault. More details on

redundant faults are given in the test generation section.) Again, stem analysis is

needed to determine whether fanout branch faults dominate fanout stem faults.

An approximation method to avoid stem analysis is to partition the circuit

into fanout-free regions and perform fault collapsing on each fanout-free region

independently. A simple_DFC algorithm is shown in Algorithm 14.2. The domi-

nance fault collapsed result is shown in Figure 14.9. The number of faults is reduced
to seven. Without stem analysis, the result is not optimal because J/0 is equivalent

to F/1, which dominates E/1.

Algorithm 14.2 A simple dominance fault-collapsing algorithm

simple_DFC (N) /*N is a netlist*/
1.
2.
3.
4.
5.
6.
fault_list ¼ {};
foreach gate or PI or PO g in N
if ((g is PI and fanout stem) || (g is PO and fanout branch)) then
fault_list ¼ fault_list [ g output stuck-at 0 and 1;

else if (g is gate) then
foreach gate input i of gate g

h ¼ backtrace inverters starting from i;
7.
8. if (h is PI or fanout branch) then /* rule #1 */
9. if ( gate g is AND) jj ( gate g is NAND) then

10. fault_list ¼ fault_list [ i stuck-at 1;
11. else if ( gate g is OR) jj ( gate g is NOR)
12. fault_list ¼ fault_list [ i stuck-at 0;
13. end if
14. end if
15. end foreach
16. if (every input of g has a fault) then /* rule #2 */
17. if ( gate g is AND) jj ( gate g is NOR) then
18. fault_list ¼ fault_list [ g output stuck-at 0;
19. else if (gate g is OR) jj ( gate g is NAND) then
20. fault_list ¼ fault_list [ g output stuck-at 1;
21. end if
22. end if
23. end if
24. end foreach
25. return (fault_list);

Although the dominance collapsed fault list is smaller than the equivalence

collapsed fault list, fault coverage of the former is not as representative as that of

the latter. The reason is that a test pattern may detect a dominating fault without
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FIGURE 14.9

Dominance collapsed fault list for Figure 14.5.
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detecting thedominated fault. For theexamplegiven inFigure14.5, testpatternABC

¼ 100 does not detect the dominated fault E/1 but it detects the dominating fault F/

1. If thedominance collapsed fault list is usedduring fault simulation, thedominance

collapsed fault coverage may underestimate the test quality. As a result, modern

fault simulators and ATPG programs favor the use of equivalence fault collapsing

only.
14.3 FAULT SIMULATION

Fault simulation is a more challenging task than logic simulation because of the

added dimension of complexity (i.e., the behavior of the circuit containing

all the modeled faults must be simulated). When simulating one fault at a time,

the amount of computation is approximately proportional to the circuit size,
the number of test patterns, and the number of modeled faults. Because the

number of modeled faults are roughly proportional to the circuit size, the over-

all time complexity of fault simulation is O( pn2), for p test patterns and n logic

gates, which becomes infeasible for large circuits. To improve fault simulation

performance, various fault simulation techniques have been developed. In this

section, we restrict our discussion to the single stuck-at fault model and illus-

trate the key fault simulation techniques along with qualitative comparisons

between their advantages and drawbacks.
14.3.1 Serial fault simulation
Serial fault simulation is the simplest fault simulation technique. It consists of

fault-free and faulty circuit simulations. Initially, fault-free logic simulation is per-

formed on the original circuit to obtain the fault-free output responses. The
fault-free responses are stored and later used to determine whether a test pat-

tern can detect a fault or not. After fault-free simulation, a serial fault simulator

simulates faults one at a time. For each fault, fault injection is first performed,
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which modifies the original circuit to mimic the circuit behavior in the presence

of the fault. Then, the faulty circuit is simulated to derive the faulty responses of
the current fault with respect to the given test patterns. This process repeats

until all faults in the fault list have been simulated.

The serial fault simulation process is demonstrated with the example circuit N.

In this example, the fault list comprises two faults, A stuck-at one (denoted

by f ) and J stuck-at zero (denoted by g), which are depicted in Figure 14.10.

Note that, although both faults are drawn in the figure, only one fault is present

at a time under the single stuck-at fault model. The test set consists of three test

patterns (denoted by P1, P2, P3, respectively, and shown in the “Input” columns
of Table 14.3).

The serial fault simulator starts from fault-free simulation. The fault-free

responses are K ¼ {1, 1, 0} for input patterns P1, P2, and P3, respectively. After the

fault-free responses are available, fault f is processed—fault injection is achieved

by forcing A to a constant one, and the obtained faulty circuit is simulated. The cir-

cuit responses for fault f are Kf ¼ {0, 0, 0} with respect to the three input

patterns. Compared with the fault-free responses (the “Output” column in

Table 14.3), it is observed that patterns P1 and P2 detect fault f, but pattern P3 does
not. After fault f has been simulated, circuit N is restored by removing fault f.

The next fault g is then injected by forcing J to zero. Simulation of the resulting

faulty circuit is then performed to obtain the faulty outputsKg¼ {1, 1, 1} (also listed

in Table 14.3). Fault g is detected by pattern P3 but not P1 and P2.
A
f: A stuck-at 1

g: J stuck-at 0

K
L

E
G1 G3

G2

G4

H

JF

B

C

FIGURE 14.10

An example circuit with two faults.

Table 14.3 Serial Fault Simulation Results for Figure 14.10

Pat. # Input Internal Output

A B C E F L J H Kgood Kf Kg

P1 0 1 0 1 1 1 0 0 1 0 1

P2 0 0 1 1 1 1 0 0 1 0 1

P3 1 0 0 0 0 0 1 0 0 0 1
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In this example, nine simulation runs are performed: three fault-free and six

faulty circuit simulations. These nine simulation runs can be divided into three sim-
ulation passes. In each simulation pass, either the fault-free or the faulty circuit is

simulated for the whole test pattern set. Thus, the first simulation pass consists of

fault-free simulations for P1, P2, and P3, and the second and third passes correspond

to the faulty circuit simulations of faults f and g, respectively, for P1, P2, and P3.

By careful inspection of the simulation results in Table 14.3, one can observe

that if we are only concerned with the set of faults that are detected by the test

set {P1, P2, P3}, simulations of the faulty circuit with fault f for patterns P2 and

P3 are redundant, because f is already detected by P1. (It is assumed that the test
patterns are simulated in the order P1, P2, and then P3.) Halting simulation of

detected faults is called fault dropping. For the purpose of fault grading, fault

dropping dramatically improves fault simulation performance, because most

faults are detected after relatively few test patterns have been applied. Fault

dropping, however, should be avoided in fault diagnosis applications in which

the entire fault simulation results are usually required to facilitate the identifica-

tion of the fault type and location.

The simplified serial fault simulation flow is depicted in Figure 14.11. Before
fault simulation, fault collapsing is executed to reduce the size of the fault list,

denoted by F. Fault-free simulation is then performed for all test patterns to

obtain the correct responses Og. The algorithm then proceeds to fault simula-

tion. For each fault f in F, if there exists a test pattern whose output response

Of differs from that of the corresponding good circuit Og, f is removed from F,

indicating that it is detected. When all patterns have been simulated, the

remaining faults in F are the undetected faults.

The major advantage of serial fault simulation is its ease of implementa-
tion—a regular logic simulator plus fault injection and output comparison pro-

cedures will suffice. In addition, serial fault simulation can handle a wide

range of fault models, as long as the fault effects can be properly injected into

the circuit. The major disadvantage of serial fault simulation is its low perfor-

mance. As will be discussed in the following subsections, practical fault simula-

tion techniques exploit parallelism and/or similarities among the faulty circuits

to speed up the fault simulation process.
14.3.2 Parallel fault simulation
Similar to parallel logic simulation, fault simulation can take advantage of the bitwise
parallelism inherent in the host computer to reduce fault simulation time. For

instance, in a32-bitwideCPU, logicoperations (AND,OR,orXOR)canbeperformed

on all 32 bits at once. There are twoways to realize bitwise parallelism in fault simu-

lation: parallelism in faults and parallelism in patterns. These two approaches are

referred to as parallel fault simulation and parallel pattern fault simulation.
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The serial fault simulation algorithm flow.
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14.3.2.1 Parallel fault simulation

Parallel fault simulation was proposed in the early 1960s [Seshu 1965]. Assum-

ing that binary logic is used, one bit is sufficient to store the logic value of a sig-
nal. Thus, in a host computer that uses w-bit wide data words, each signal is

associated with a data word of which w-1 bits are allocated for w-1 faulty cir-

cuits, and the remaining bit is reserved for the fault-free circuit. This way, w-1

faulty circuits and one fault-free circuit can be processed in parallel by use of bit-

wise logic operations, which corresponds to a speedup factor of approximately
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w-1 compared with serial fault simulation. A fault is detected if its bit value dif-

fers from that of the fault-free circuit at any of the outputs.
We will reuse the example from serial fault simulation to illustrate the parallel

fault simulation process. Assuming that the width of a computer word is three

bits, the first bit stores the fault-free (FF) circuit response, and the second and

third bits store the faulty responses in the presence of faults f and g, respectively.

The simulation results are shown in Table 14.4. Because the fault f, A stuck-at 1,

uses the second bit, it is injected by forcing the second bit of the data word of sig-

nal A to 1 during fault simulation (shown in the “Af” column with the forced value

underlined—the “A” column corresponds to the fault-free case). Similarly, the “Jg”
column depicts how fault g is injected by forcing the third bit to 0.

As we have mentioned, parallel fault simulation is performed by use of bit-

wise logic operations. For example, the logic value of signal H is obtained by

a bitwise AND operation on the data words of signals A and L. (A, J, and L are

circled in Table 14.4.) The faulty response of the first pattern is {1, 0, 1}. This
means that fault f is detected (the second bit), but fault g (the third bit) is

not. Similarly, the outputs of P2 and P3 are {1 0 1} and {0 0 1}, respectively. In
this example, three simulations (in one simulation pass) are performed. Com-
pared with serial fault simulation, which requires nine simulations, parallel fault

simulation saves two thirds of the simulation time.

To perform parallel fault simulation with regular parallel logic simulators,

one may inject the faults by adding extra logic gates. Figure 14.12 shows how

this is done for faults f and g in N. To inject f, a stuck-at one fault, an OR gate

(Gf) is inserted, and to force the second bit of Af to be one without affecting

the other two bits, the side input of Gf is set to be 010. Note that the injection

of fault f does not affect the fault-free circuit and the faulty circuit with fault g.
Table 14.4 Parallel fault simulation for Figure 14.10

Pat # Input Internal Output

A Af B C E F L J Jg H K

P1 FF 0 0 1 0 1 1 1 0 0 0 1

f 0 1 1 0 1 1 1 0 0 1 0

g 0 0 1 0 1 1 1 0 0 0 1

P2 FF 0 0 0 1 1 1 1 0 0 0 1

f 0 1 0 1 1 1 1 0 0 1 0

g 0 0 0 1 1 1 1 0 0 0 1

P3 FF 1 1 0 0 0 0 0 1 1 0 0

f 1 1 0 0 0 0 0 1 1 0 0

g 1 1 0 0 0 0 0 1 0 0 1
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FIGURE 14.12

Fault injection for parallel fault simulation.

866 CHAPTER 14 Fault simulation and test generation
Similarly, injecting fault g, a stuck-at 0 fault, is achieved by adding the AND gate

Gg and setting its side input to be 110.

Note that the parallel fault simulation technique is applicable to the unit or

zero delay models only. More complicated delay models cannot be modeled,

because several faults are evaluated at the same time. Furthermore, a simulation

pass cannot terminate unless all the faults in this pass are detected. For instance,

we cannot drop fault f alone after simulating pattern P1, because fault g is not

detected yet. Parallel fault simulation is best used for simulating the beginning
of the test pattern sequence, when a large number of faults are detected by each

pattern.

14.3.2.2 Parallel pattern fault simulation

Bitwise parallelism can be used to simulate test patterns in parallel. For a host

computer with a w-bit data width, the signal values for a sequence of w test pat-

terns are packed into a data word. For the fault-free or faulty circuit, w test pat-

terns can be simulated in parallel by use of bitwise logic operations. This

approach was first reported in [Waicukauski 1985], in which it is called paral-
lel pattern single fault propagation (PPSFP), because one fault at a time is

simulated. This approach is especially useful for combinational circuits or full-
scan sequential circuits.

In PPSFP, logic simulations on the fault-free circuit are first performed on the

first w test patterns, and the circuit outputs are recorded. Then, the faults are

simulated one at a time on these w test patterns. For each fault, the simulation

results are compared with the correct responses to determine whether the fault

is detected. Simulation continues until the fault is detected and dropped, or all

the test patterns are simulated. The faulty circuit is restored to its original state,

and the next fault is processed. The same procedure repeats until all faults in
the fault list are simulated.

The PPSFP results of the fault simulation example are shown in Table 14.5.

The “Fault-Free” row lists the fault-free simulation results. Note that the three

patterns are packed into one single word and thus are evaluated simultaneously



Table 14.5 PPSFP for Figure 14.10

Input Internal Output

A B C E F L J H K

Fault Free P1 0 1 0 1 1 1 0 0 1

P2 0 0 1 1 1 1 0 0 1

P3 1 0 0 0 0 0 1 0 0

f P1 1 1 0 1 1 1 0 1 0

P2 1 0 1 1 1 1 0 1 0

P3 1 0 0 0 0 0 1 0 0

g P1 0 1 0 1 1 1 0 0 1

P2 0 0 1 1 1 1 0 0 1

P3 1 0 0 0 0 0 0 0 1
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by use of bitwise logic operations. The “f” row represents the simulation results

with fault f injected. In PPSFP, faults are injected by activating rising or falling

events, depending on the stuck-at value, at the faulty signal. Thus, fault f, A

stuck-at one, is injected by activating two rising events on input A. The faulty

responses are {0, 0, 0}, which indicates that fault f is detected by the first and

second patterns but not the third one. After fault f is simulated, fault f is
removed by activating two falling events on input A at pattern P1 and P2. Then,

fault g is injected by activating one falling event on signal J at pattern P3. A total

of three simulation runs are carried out.

Figure 14.13 illustrates the simplified PPSFP flow. Again, fault collapsing is

first executed to obtain the collapsed fault list F. Then, the first w patterns are

simulated on the fault-free circuit in parallel, and the good outputs (Og) are

stored. Then, each fault f in the fault list F is simulated one by one with the

same w test patterns. A fault is dropped and not simulated against the remaining
test patterns if its output response Of is different from Og. To fault simulate the

next fault, the fault effect of the current fault is removed, and the next fault is

injected. This process continues until all faults are either detected or simulated

against all test patterns. If the number of test patterns is not an even multiple of

the machine word width, only part of the machine word is used when simulat-

ing this last batch of patterns.

PPSFP is best suited for simulation of test patterns that come later in the test

sequence, where the fault drop rate per pattern is lower. Parallel fault simula-
tion does not work well in this situation, because it cannot terminate a simula-

tion pass until all w-1 faults being processed are detected. PPSFP is not suitable

for sequential circuits, because the circuit state for test pattern i in the w-bit
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The PPSFP flowchart.
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word depends on the previous i-1 patterns in the word, and this state is not

available when the patterns are processed in parallel.
14.3.3 Concurrent fault simulation
Because a fault only affects the logic in the fanout cone from the fault site, the good

circuit and faulty circuits typically only differ in a small region. Concurrent fault
simulation exploits this fact and simulates only the differential parts of thewhole

circuit [Ulrich 1974]. Concurrent fault simulation is essentially an event-driven

simulation with the fault-free circuit and faulty circuits simulated altogether.

In concurrent fault simulation, every gate has a concurrent fault list,
which consists of a set of bad gates. A bad gate of gate x represents an
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imaginary copy of gate x in the presence of a fault. Every bad gate contains a

fault index and the associated gate I/O values in the presence of the
corresponding fault. Initially, the concurrent fault list of gate x contains local
faults of gate x. The local faults of gate x are faults on the inputs or outputs

of gate x. As the simulation proceeds, the concurrent fault list contains not only

local faults but also faults propagated from previous stages (called fault
effects). Local faults of gate x remain in the concurrent fault list of gate x until

they are detected.

Figure 14.14 illustrates the concurrent simulation of the example circuit for

test pattern P1. For clear illustration, we demonstrate three faults in this example:
A stuck-at one, C stuck-at zero, and J stuck-at zero faults. The concurrent fault lists

with bad gates in grey are drawn beside the good gates. The fault indices are

labeled in the middle of bad gates and their associated bad gate I/O values are

labeled beside their I/O pins. The fault list of G1, G2, and G3 initially contains their

local faults: C/0, A/1, and J/0. When we apply the first pattern, three events occur

in the primary inputs: u! 0 on A, u! 1 on B, and u! 0 on C. They are good
events, because they happen in the good circuit. The output of good gate G1

changes from unknown to one. In the presence of fault C/0, the output of faulty
G1 is the same as that of good G1. A bad gate is invisible if its faulty output is the

same as the good output. The bad gates C/0 and J/0 are both invisible so they are

not propagated to the subsequent stages.

The output of G2 changes from unknown to zero. In the presence of fault

A/1, the faulty output changes from unknown to one. Because the faulty output

differs from the good output, bad gate A/1 becomes visible. A bad gate is visi-
ble if its faulty output is different from the good output. The visible bad gate
A
u → 0

u → 1
u → 1 u → 0

u → 0

u → 1

u → 0
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FIGURE 14.14

Concurrent fault simulation (P1).
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A/1 creates a bad event u! 1 on net H (in gray). A bad event does not occur in
the good circuit; it only occurs in the faulty circuit of the corresponding fault.
A new copy of bad gate A/1 is added to the concurrent fault list of G4, because

it has one input different from the good gate. It is said that bad gate A/1

diverges from its good gate. Finally, fault A/1 is detected because the faulty

output K is different from the good output. At this time, we could drop detected

fault A/1, but we keep it for illustration purposes.

Figure 14.15 illustrates the concurrent fault simulation for test pattern P2.

Two good events occur in this figure: 0! 1 on C and 1! 0 on B. The bad gate

C/0, which was invisible in pattern P1, now becomes newly visible. The newly
visible bad gate creates a bad event, net E falls to zero, which in turn creates

two divergences in G2 and G3. The former is invisible, but the latter creates a

bad event, net J rises to one. Finally, the concurrent fault list of G4 contains

two bad gates; both faults A/1 and C/0 are detected.

For the last test pattern P3 (Figure 14.16), two good events occur at primary

inputs A and C. The bad gate C/0 now becomes invisible. The bad gate C/0 is

deleted from the concurrent fault list ofG3. A bad gate converges to its good gate

if it is not a local fault and its I/O values are identical to those of the good gate. Simi-
larly, the other bad gates C/0 also converge to G2 and G4. Note that bad gate C/0

does not converge to G1, because it is a local fault for G1. The bad gate A/1 can

be examined in the same way. For gate G3, although the faulty output of bad gate

J/0 does not change, the good event 0! 1 on Jmakes bad gate J/0 newly visible.
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FIGURE 14.15

Concurrent fault simulation (P2).
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Concurrent fault simulation (P3).
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The newly visible event (in gray) is propagated toG4, and a new bad gate J/0 diver-

ges from G4. Eventually, the fault J/0 is detected by pattern P3.

Figure 14.17 shows a simplified concurrent fault simulation flowchart. The

fault simulator applies one pattern at a time. The concurrent fault simulation

is an event-driven simulation with both good events and bad events simulated

at the same time. The events on the gate inputs are first analyzed. A good event

affects both good and bad gates but a bad event only affects bad gates of the
corresponding fault. After the analysis, events are then executed. The diverged

bad gates and converged bad gates are added to or deleted from the fault list,

respectively. Determining whether a bad gate diverges or converges depends

on three factors: the visibility, the bad event, and the concurrent fault list (see

[Abramovici 1994] for more details). After the event execution, new events

are computed at the gate outputs. If an event reaches the primary outputs,

detected faults can be removed from concurrent fault lists of all gates. This pro-

cess repeats until there are no more test patterns, or no undetected faults.
14.3.4 Differential fault simulation
Concurrent fault simulation constructs the state of the faulty circuit from that of

the same faulty circuit of the previous test pattern. Concurrent fault simulation

has a potential memory problem, because the size of the concurrent fault list

changes at runtime. In contrast, the single fault propagation technique
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Concurrent fault simulation flowchart.
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constructs the state of the faulty circuit from that of the good circuit. For

sequential circuits, the single fault propagation technique would require a large

overhead to store the states of the good circuit. Neither of the preceding two

techniques are good for sequential fault simulation. Differential fault simulation

combines the merits of concurrent fault simulation and single fault propagation
techniques [Cheng 1989]. The idea is to simulate, in turn, every faulty circuit by

tracking only the difference between a faulty circuit and the last simulated one.

An event-driven simulator can easily implement differential fault simulation with

the differences injected as events. This differential fault simulation technique
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Differential fault simulation.
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has been further combined with the parallel fault simulation technique, as

implemented in PROOFS [Niermann 1992].

Figure 14.18 illustrates how differential fault simulation works. First, the first

pattern P1 is simulated on the good circuit G1, and the good primary outputs are
stored. Then the faulty circuit (F1,1) is simulated with fault f1 injected as an

event. The first subscript indicates the fault and the second subscript indicates

the pattern. The difference of states between G1 and F1,1 is stored. Note that

only the states of storage elements, such as flip-flops, are stored, so the memory

needed is small compared with concurrent fault simulation. If the primary out-

puts of F1,1 and G1 are not the same, then fault f1 is detected. Following F1 the

second faulty circuit (F2,1) is simulated with f1 removed and f2 injected. Simi-

larly, the difference of states between F1 and F2 is stored. The preceding process
continues until pattern P1 has been simulated for all faults ( f1 to fm).

Following the first pattern, the state of the good circuit G2 is restored and the

second pattern P2 is applied. After the fault-free simulation, the primary outputs

ofG2 are stored. The state of faulty circuit F1,2 is restored by injecting the difference

of G1 and F1,1. The fault f1 is again injected as an event. The differential fault simu-

lation for P2 is the same as that of pattern P1. Differential fault simulation goes in the

direction of the arrows in Figure 14.18—Gi, F1,i, F2,i, . . . , Fm,i, Giþ1, F1,iþ1, . . . .
Figure 14.19 shows a simplified flowchart for differential fault simulation.

For every test pattern, a fault-free simulation is performed first. Then the faulty

circuits are simulated one after another. The states of every circuit are restored

from the last simulation. If the faulty circuit outputs are different from the good

outputs, the fault is detected and dropped. The state difference of every circuit

is stored. With fault dropping, the state difference of the dropped fault must be

accumulated into the state differences of its next undetected fault. This process

repeats until there are no test patterns or no undetected faults.

The problem with differential fault simulation is that the order of events
caused by fault sites is not the same as the order of the timing of their occur-

rence. If the circuit behavior depends on the gate delay of the circuit, the timing
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information of every event must be included. This solution, however, may

potentially require high memory consumption.
14.3.5 Comparison of fault simulation techniques
In terms of simulation speed, it is apparent that serial fault simulation is the slowest

among all the techniques. Differential fault simulation is shown to be up to twelve

times faster than concurrent fault simulation and PPSFP [Cheng 1989], when the
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sequential circuit under test does not contain memories, such as static random-

access memories (SRAMs) and dynamic random-access memories (DRAMs).
Memory use is, in general, not a problem for serial fault simulation, because

it deals with one fault at a time. Similarly, parallel fault simulation and PPSFP

do not require much more memory than the fault-free simulation. Concurrent

fault simulation has severe memory problems, because the size of the concur-

rent fault list is unpredictable. Furthermore, the I/O values of every bad gate

in the concurrent fault simulation must be recorded. Differential fault simula-

tion relieves the memory management problem of concurrent fault simulation,

because only the difference in storage elements is stored.
When the unknown (X ) and/or high-impedance (Z ) values are present in

the circuit, a multiple-valued fault simulation becomes necessary. Serial fault

simulation has no problem in handling multiple-valued fault simulation, because

it can be realized with a regular logic simulator. In contrast, to exploit bitwise

word parallelism, it is more difficult for parallel fault simulation or PPSFP to han-

dle X or Z. In concurrent fault simulation, dealing with multiple-valued simula-

tions is straightforward, because every bad gate is evaluated in the same way as

in the fault-free simulation. Finally, differential fault simulation can simulate X or
Z without a problem, because it is based on event-driven simulation.

From the aspect of delay and functional modeling capability, serial fault sim-

ulation does not encounter any difficulty. Parallel fault simulation and PPSFP

cannot take delay or functional models into account, because they pack the

information of multiple faults or test patterns into the same word and rely on

bitwise logic operations. Being event-driven, both concurrent and differential

fault simulation techniques are capable of handling functional models; however,

only the former is able to process circuit delays.
When sequential circuits are of concern, serial and parallel fault simulation

techniques do not have a problem. The PPSFP technique, however, is not suited

for sequential circuit simulation, because a large memory space is required to

store the states of the fault-free circuit. Concurrent and differential fault simula-

tions are able to perform sequential fault simulation without difficulty.

On the basis of the previous discussions, PPSFP and parallel fault simulation

techniques are currently the most popular fault simulation techniques for com-

binational (full-scan) circuits. On the other hand, concurrent fault simulation
techniques have been widely adopted for sequential circuits embedded with

memories, whereas differential fault simulation techniques are mostly suitable

for sequential circuits without memories. Algorithm switching has also been

used to improve performance. Parallel fault simulation can be used when the

fault drop rate per test pattern is high, and then PPSFP is used when more

patterns are required to drop each fault.

Even for fault simulation techniques that are efficient in time and memory, the

problems of memory explosion and long simulation time still exist as integrated
circuit (IC) complexity continues growing. To overcome the memory problem,

the multiple-pass fault simulation approach is often adopted. The idea of
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multiple-pass fault simulation is to partition the faults into smaller groups, each of

which is simulated independently. If the faults are well partitioned, multiple-pass
fault simulation prevents the memory explosion problem. To further reduce the

fault simulation time, distributed fault simulation approaches may be used.

Distributed fault simulation divides the whole fault simulation into smaller tasks,

each of which is performed independently on a separate processor.

There are several alternatives to fault simulation. The fault-sampling technique

was proposed to simulate only a sampled group of faults [Butler 1974]. Critical

path tracing is another alternative to fault simulation [Abramovici 1984]. Instead

of performing actual fault simulation, the statistical fault analysis (STAFAN)
approach proposes to use probability theory to estimate the expected value of

fault coverage [ Jain 1985]. These alternatives to fault simulation have also been

extensively discussed in [Abramovici 1994], [Bushnell 2000], and [Wang 2006].
14.4 TEST GENERATION

First, consider the single stuck-at fault model. Figure 14.20 shows a circuit with a

single stuck-at fault in which signal d is tied to logic 1 (d/1). A logic 0 must be

applied to node d from the primary inputs of the circuit to produce a difference

between the fault-free (or good) circuit and the circuit with the stuck-at fault pres-

ent. Next, to observe the effect of the fault, a logic 1 must be applied to signal c.

So, if the fault d/1 is present, it can be detected at the output ewith the derived vec-

tor. Test generation attempts to generate test vectors for every possible fault in the
circuit. In this example, in addition to the d/1 fault, faults such as a/1, b/1, and e/1

are also targeted by the test generator. Because some of the faults in the circuit can

be logically equivalent, no test can be obtained to distinguish between them. Thus,

equivalence fault collapsing as described in Section 14.2 is often used to identify

equivalent faults a priori to reduce the number of faults that must be targeted

[Abramovici 1994; Bushnell 2000; Jha 2003]. Subsequently, the ATPG is only

concerned with generating test vectors for each fault in the collapsed fault list.
14.4.1 Random test generation
Random test generation (RTG) is one of the simplest methods for generating

vectors. Vectors are randomly generated and fault-simulated (or fault-graded)

on the circuit under test (CUT). Because no specific fault is targeted, the
a

b

c

d
e

stuck-at 1

FIGURE 14.20

Example of a single stuck-at fault.
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complexity of RTG is low. However, RTG often results in generating a

large number of tests that achieves sub-par fault coverage because of the diffi-
cult-to-test faults.

In RTG, logic values are randomly generated at the primary inputs, with

equal probability of assigning a logic 1 or logic 0 to each primary input. Thus,

the random vectors are uniformly distributed in the test set. Note that the ran-

dom test set is not truly random, because a pseudo-random number generator

is generally used. In other words, the random test set can be repeated with

the same pseudo-random number generator. Nevertheless, the vectors gener-

ated hold the necessary statistical properties of a random vector set.
The level of confidence one can have on a random test set T can be

measured as the probability that T can detect all the stuck-at faults in the circuit.

For N random vectors, the test quality tN indicates the probability that all

detectable stuck-at faults are detected by these N random vectors. Thus, the test

quality of a random test set highly depends on the circuit under test. Consider a

circuit with an eight-input AND gate (or equivalently a cone of seven two-input

AND gates) illustrated in Figure 14.21. Although achieving a logic 0 at the out-

put of the AND gate is easy, getting a logic 1 is difficult. A logic 1 would require
all the inputs to be at logic 1. If the RTG assigns each primary input with an

equal probability of logic 0 or logic 1, the chance of getting eight logic 1’s simul-

taneously would only be 0.58 ¼ 0.0039. In other words, the AND gate output

stuck-at-0 fault would be difficult to test by the RTG. Such faults are called

random-pattern resistant faults.
As discussed earlier, the quality of a random test set depends on the underly-

ing circuit. More random-pattern resistant faults will more likely reduce the

quality of the random test set. To tackle the problem of targeting random-
pattern resistant faults, biasing is required so the input vectors are no longer

viewed as uniformly distributed. Consider the same eight-input AND gate exam-

ple again. If each input of the AND gate has a much higher probability of
FIGURE 14.21

Two equivalent circuits.
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receiving a logic 1, the probability of getting a logic 1 at the output of the AND

gate significantly increases. For example, if each input has a 75% probability of
receiving a logic 1, then getting a logic 1 at the output of the AND gate now

becomes 0.758 ¼ 0.1001, rather than the previous 0.0039.

Determining the optimal bias values for each primary input that can achieve

the highest coverage is not an easy task. Thus, rather than trying to obtain the

best set of values, the objective is frequently to increase the probabilities for

those difficult-to-control and difficult-to-observe nodes in the circuit. For

instance, suppose a circuit has an eight-input AND gate; any fault that requires

the AND gate output equal to logic 1 for detection will be considered difficult to
test. It would then be beneficial to attempt to increase the probability of obtain-

ing a logic 1 at the output of this AND gate.

Another issue regarding random test generation is the number of random

vectors needed. Given a combinational circuit with n primary inputs, there

are clearly 2n possible input vectors. One can express the probability of detect-

ing fault f by any random vector to be:

df ¼ Tf =2
n

where Tf is the set of vectors that can detect fault f. Consequently, the probabil-

ity that a random vector will not detect f (i.e., f escapes a random vector) is: ef ¼
1 � df .

Therefore, given N random vectors, the probability that none of the N

vectors detect fault f is:

eNf ¼ 1� df

� �N
In other words, the probability that at least one of N vectors will detect fault f is:

1� 1� df

� �N
If the detection probability, df, for the hardest fault is known, N can be readily

computed by solving the following inequality:

1� 1� df
� �

N � p

where p is the probability that N vectors should detect fault f.

If the detection probability is not known, it can be computed directly from

the circuit. The detection probability of a fault is directly related to: (1) the con-

trollability of the line that the fault is on and (2) the observability of the fault-

effect to a primary output. The controllability and observability computations

have been introduced previously in the chapter on design for testability. It is
worth noting that the minimum detection probability of a detectable fault f

can be determined by the output cone in which f resides. In fact, if f is detect-

able, it must be excited and propagated to at least one primary output, as illu-

strated in Figure 14.22. It is clear that all the primary inputs necessary to

excite f and propagate the fault-effect must reside in the cone of the output
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Detection of a fault.
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to which f is detected. Thus, the detection probability for f is at least (0.5)m,

where m is the number of primary inputs in the cone of the corresponding pri-

mary output. Taking this concept a step further, the detection probability of

the most difficult fault can be obtained with the following lemma [David

1976; Shedletsky 1977].

Lemma 1: In a combinational circuit with multiple outputs, let nmax be the

number of primary inputs that can lead to a primary output. Then, the detec-

tion probability for the most difficult detectable fault, dmin, is:

dmin � 0:5ð Þnmax

Proof

The proof follows from the preceding discussion.

14.4.1.1 Exhaustive testing

If the combinational circuit has few primary inputs, exhaustive testing may

be a viable option, where every possible input vector is enumerated. This
may be superior to random test generation, because RTG can produce dupli-

cated vectors and may miss certain ones.

In circuits in which the number of primary inputs is large, exhaustive testing

becomes prohibitive. However, on the basis of the results of Lemma1, itmay bepos-

sible to partition the circuit and only exhaust the input vectorswithin each cone for

each primary output. This is called pseudo-exhaustive testing. In doing so, the

number of input vectors can be drastically reduced. When enumerating the input

vectors for a given primary output cone, the values for the primary inputs that are
outside the cone are simply assigned random values. Therefore, if a circuit has three

primary outputs, each has a corresponding primary output cone. Note that these

three primary output cones may overlap. Let n1, n2, and n3 be the number of pri-

mary inputs corresponding to these three cones. Then the number of pseudo-

exhaustive vectors is simply at most 2n1 þ 2n2 þ 2n3.
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14.4.2 Theoretical Background: Boolean difference
Consider the circuit shown in Figure 14.23. Let the target fault be the stuck-at-0
fault on primary input y. Recall the high-level concept of test generation

illustrated in Figure 14.1, where the objective is to distinguish the fault-free

circuit from the faulty circuit. In the example circuit shown in Figure 14.23,

the faulty circuit is the circuit with y stuck at 0. Note that the circuit output

can be expressed as a Boolean formula:

f ¼ xyþ y0z

Let f2 be the faulty circuit with the fault y/0 present. In other words,

f 2 ¼ f y ¼ 0ð Þ
To distinguish the faulty circuit f2 from the fault-free counterpart f, any input
vector that can make f � f2 ¼ 1 would suffice. Furthermore, because the aim

is test generation, the target fault must be excited. In this example, the logic

value on primary input y must be logic 1 to excite the fault y/0. Putting these

two conditions together, the following equation is obtained:

y � f y ¼ 1ð Þ � f y ¼ 0ð Þ ¼ 1 ð14:1Þ
Note that f ( y ¼ 1) � f ( y ¼ 0) indicates the exclusive-or operation on the two

functions f ( y ¼ 1) and f ( y ¼ 0); it evaluates to logic 1 if and only if the two

functions evaluate to opposing values. In terms of ATPG, this is synonymous

to propagating the fault effect at node y to the primary output f. Therefore,

any input vector on primary inputs x, y, and z that can satisfy Equation (14.1)

is a valid test vector for fault y/0:

y � f y ¼ 1ð Þ � f y ¼ 0ð Þ ¼ y x � zð Þ ¼ y xz0 þ x0zð Þ ¼ xyz0 þ x0yz

In this running example, the two vectors xyz ¼ {110, 011} are candidate test

vectors for fault y/0. Formally, f (y ¼ 1) � f (y ¼ 0) is called the Boolean dif-
ference of f with respect to y and is often written as:

d f =d y ¼ f y ¼ 1ð Þ � f y ¼ 0ð Þ
x

y

z w

f

FIGURE 14.23

Example circuit to illustrate the concept of Boolean difference.
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In general, if f is a function of x1, x2, . . . , xn, then:

d f =dxi ¼ f x1; x2; . . . ; xi ¼ 1; . . . ; xnð Þ � f x1; x2; . . . ; xi ¼ 0; . . . ; xnð Þ
In terms of test generation, for any target fault on some fault a/v, the set of all

vectors that can propagate the fault-effect to the primary output f is then those
vectors that can satisfy:

df =da ¼ 1

(Note that this is independent of the polarity of the fault, whether it is stuck-at-0

or stuck-at-1.) Next, the constraint that the fault must be excited, a set to value

v0, must be added. Subsequently, the set of test vectors that can detect the fault

becomes all those input values that can satisfy the following equation:

a ¼ v0ð Þ � df =da ¼ 1 ð14:2Þ
Consider the same circuit shown in Figure 14.23 again. Suppose the target fault

is w/0. The same analysis can be performed for this new fault. The set of test
vectors that can detect w/0 is simply:

w � df =dw ¼ 1

)w � f ðw ¼ 1Þ � f ðw ¼ 0Þ ¼ 1

)w � ð1 � xyÞ ¼ 1

)w � ðxyÞ0 ¼ 1

)w � ðx0 þ y0Þ ¼ 1

)wx0 þwy0 ¼ 1

Now, w can be expanded from the circuit shown in the figure to be w ¼ y0 � z.
Plugging this into the equation above gives us:

w � x0 þw � y0 ¼ 1
) y0 � zx0 þ y0 � z � y ¼ 1

) x0 � y0zþ y0 � z ¼ 1

) y0 � z ¼ 1

Therefore, the set of vectors that can detect w/0 is {001, 101}.

14.4.2.1 Untestable faults

If the target fault is untestable, it would be impossible to satisfy Equation (14.2).

Consider the circuit shown in Figure 14.24. Suppose the target fault is z/0. Then

the set of vectors that can detect z/0 are those that can satisfy:

z � df =dz ¼ 1

) z � f z ¼ 1ð Þ � f z ¼ 0ð Þ ¼ 1

) z � xy � xyð Þ ¼ 1
) z � 0 ¼ 1

) UNSATISFIABLE

In other words, there exists no input vectors that can satisfy z � df/dz ¼ 1, indi-

cating that the fault z/0 is untestable.
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FIGURE 14.24

Example circuit for an untestable fault.
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14.4.3 Designing a stuck-at ATPG for
combinational circuits
In deterministic ATPG algorithms, there are two main tasks. The first is to excite
the target fault, and the second is to propagate the fault-effect to a primary out-

put. Because the logic values in both the fault-free and faulty circuits are

needed, composite logic values are used. For each signal in the circuit, the

values v/vf are needed, where v denotes the value for the signal in the fault-free

circuit, and vf represents the value in the corresponding faulty circuit. When-

ever v ¼ vf, v is sufficient to denote the signal value. To facilitate the manipula-

tion of such composite values, a 5-valued algebra was proposed [Roth 1966], in

which the five values are 0, 1, X, D, and �D; 0, 1, and X are the conventional
values found in logic design for true, false, and “don’t care.” D represents the

composite logic value 1/0 and �D represents 0/1. Boolean operators such as

AND, OR, NOT, and XOR can work on the 5-valued algebra as well. The simplest

way to perform Boolean operations is to represent each composite value into

the v/vf form and operate on the fault-free value first, followed by the faulty

value. For example, 1 AND D is 1/1 AND 1/0. AND-ing the fault-free values

yields 1 AND 1 ¼ 1, and AND-ing the faulty values yields 1 AND 0 ¼ 0. So the

result of the AND operation is 1/0 ¼ D. As another example,

D OR D� ¼ 1=0 OR 0=1
¼ 1=1
¼ 1

Tables 14.6, 14.7, and 14.8 show the AND, OR, and NOT operations for the

5-valued algebra, respectively. Operations on other Boolean conjunctives can

be constructed in a similar manner.

14.4.3.1 A naive ATPG algorithm

A very simple and naive ATPG algorithm is shown in Algorithm 14.3, in which

combinational circuits with fanout structures can be handled.



Table 14.6 AND Operation

AND 0 1 D D X

0 0 0 0 0 0

1 0 1 D D X

D 0 D D 0 X

D D 1 1 D X

X X 1 X X X

Table 14.7 OR Operation

OR 0 1 D D X

0 0 1 D D X

1 1 1 1 1 1

D D 1 D 1 X

D D 1 1 D X

X X 1 X X X

Table 14.8 NOT Operation

NOT

0 1

1 0

D D

D D

X X
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Algorithm 14.3 Naive ATPG (C, f )
1. while a fault-effect of f has not propagated to a PO and all possible vec-
tor combinations have not been tried do

2. pick a vector, v, that has not been tried;
3. fault simulate v on the circuit C with fault f;
4. end while
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Note that in an ATPG, the worst-case computational complexity is exponen-

tial, because all possible input patterns may have to be tried before a vector is
found or that the fault is determined to be undetectable. One may go about line

#2 of the algorithm in an intelligent fashion, so a vector is not simply selected

indiscriminately. Whether or not intelligence is incorporated, some mechanism

is needed to account for those attempted input vectors so no vector would be

repeated. If it is possible to deduce some knowledge during the search for the

input vector, the ATPG may be able to mark a set of solutions as tried and thus

reduce the remaining search space. For instance, after attempting a number of

input vectors, this naive ATPG realizes that any input vector with the first primary
input set to logic 0 cannot possibly detect the target fault, and it can safely mark

all vectors with the first primary input equal to 0 as a tried input vector. Subse-

quently, only those vectors with the first primary input set to 1 will be selected.

In certain cases, it may not be possible for the ATPG to deduce that all vec-

tors with a given primary input set to some logic value would definitely not

qualify to be solution vectors. However, it may be able to make an intelligent

guess that input vectors with primary input #i set to some specific logic value

are more likely to lead to a solution. In such a case, the ATPG would make a
decision on primary input #i. Because the decision may actually be wrong,

the ATPG may eventually have to alter its decision, trying the vectors that have

the opposite Boolean value on primary input #i.

The process of making decisions and reversing decisions will result in a

decision tree. Each node in the decision tree represents a decision variable.

If only two choices are possible for each decision variable, then the decision

tree is a binary tree. However, there may be cases in which multiple choices

are possible in a general search tree.
Figure 14.25 shows an example decision tree. Although this figure only

allows decisions to be made at the primary inputs, in general, this may not be
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the case. This is used simply to allow the reader to have a clearer picture of the

concept behind decision trees. At each decision, the search space is halved. For
example, if the circuit has n primary inputs, then there are a total of 2n possible

vectors in the solution space. After a decision is made, the solution spaces

under the two branches of a decision node are disjoint. For instance, the space

under the decision a ¼ 1 does not contain any vectors with a ¼ 0. Note that the

decision tree for a solution vector may not require the ATPG to exhaustively

enumerate every possible vector; rather, it implicitly enumerates the vectors.

If a solution vector exists, there must be a path along the decision tree that leads

to the solution. On the other hand, if the fault is undetectable, every path in the
decision tree would lead to no solution. It is important to note that a fault may

be detected without having made all decisions. For example, the circuit nodes

that do not play a role in exciting or propagating the fault would not have to

be included in the decision process. Likewise, it may not require all decision

variables before the ATPG can determine that it is on the wrong path. For exam-

ple, if a certain path already sets a value on the fault site such that the fault is

not excited, then no value combination on the remaining decision variables

can help to excite and propagate the fault. With Figure 14.25 as an example again,
suppose the path a ¼ 0, c ¼ 1, d ¼ 1 cannot excite the target fault a. Then,
the rest of the decision variables, b, e, f, . . . , cannot undo the effect rendered by

a¼ 0, c¼ 1, d¼ 1.

14.4.3.1.1 Backtracking

Whenever a conflict is encountered (i.e., a path segment in the decision tree

leading to no solution), the search must not continue searching beneath that

path but must go back to some earlier point and re-decide on a previous deci-
sion. If only two choices are possible for a decision variable, then some previous

decision needs to be reversed if the other branch has not been explored before.

This reversal of decision is called a backtrack. To keep track of where the

search spaces have been explored and avoid repeating the search in the same
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Backtrack on a decision.
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spaces, the easiest mechanism is to reverse the most recent decision made.

When reversing any decision, the signal values implied by the assignment of
the previous decision variable must be undone.

Consider the decision tree illustrated in Figure 14.26 as an example. Suppose

the current decisions made so far are a ¼ 0, c ¼ 1, d ¼ 0, and this causes a con-

flict in detecting the target fault. Then, the search must reverse the most

recently made decision, which is d ¼ 0. When reversing d ¼ 0 to d ¼ 1, all

values that resulted from d ¼ 0 must be first undone. Then, the search con-

tinues with the path a ¼ 0, c ¼ 1, d ¼ 1. If the reversal of a decision also caused

a conflict (in this case, reversing d ¼ 0 also caused a conflict), then it means
a ¼ 0, c ¼ 1 actually cannot lead to any solution vector that can detect the tar-

get fault. The backtracking mechanism would then take the search to the previ-

ous decision and attempt to reverse that decision. In the running example, it

would undo the decision on d, assigning d to “don’t care,” followed by reversing

of the decision c ¼ 1 and searching the portion of the search space under a ¼ 0,

c ¼ 0. Finally, if there is no previous decision that can be reversed, the ATPG

concludes that the target fault is undetectable.

Technically, whenever a decision is reversed, say d ¼ 0 is reversed to d ¼ 1
as shown in Figure 14.26, d ¼ 1 is no longer a decision; rather, it becomes an

implied value by a subset of the previous decisions made. The exact subset

of decisions that implied d ¼ 1 can be computed by a conflict analysis
[Marques-Silva 1999b]. However, the details of conflict analysis are beyond the

scope of this chapter and are thus omitted. The reader can refer to [Marques-

Silva 1999b] for details of this mechanism. In addition, intelligent conflict analy-

sis can also allow for nonchronological backtracking.

14.4.3.2 A basic ATPG algorithm

Given a target fault g/v in a fanout-free combinational circuit C, a simple proce-

dure to generate a vector for the fault is shown in Algorithm 14.4, where Justi-
fyFanoutFree() and PropagateFanoutFree() are both recursive functions.

Algorithm 14.4 Basic Fanout Free ATPG (C, g/v)
1. initialize circuit by setting all values to X;
2. JustifyFanoutFree(C, g, v0 ); /* excite the fault by justifying line g to v0 */
3. PropagateFanoutFree(C, g); /* propagate fault-effect from g to a PO */
The JustifyFanoutFree(g, v) function recursively justifies the predecessor signals

of g until all signals that need to be justified are, indeed, justified from the pri-

mary inputs. The simple outline of the JustifyFanoutFree routine is listed in

Algorithm 14.5. In line #10 of the algorithm, controllability measures can be

used to select the best input to justify. Selecting a good gate input may help
to reach a primary input sooner.
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Consider the circuit C shown in Figure 14.27. Suppose the objective is to jus-

tify g ¼ 1. According to the preceding algorithm, the following sequence of

recursive calls to JustifyFanoutFree would have been made:

call #1: JustifyFanoutFree(C, g, 1)

call #2: JustifyFanoutFree(C, a, 1)

call #3: JustifyFanoutFree(C, f, 1)

call #5: JustifyFanoutFree(C, c, 0)
Algorithm 14.5 JustifyFanoutFree(C, g, v)
1. g ¼ v;
2. if gate type of g ¼¼ primary input then
3. return;
4. else if gate type of g ¼¼ AND gate then
5. if v ¼¼ 1 then
6. for all inputs h of g do
7. JustifyFanoutFree(C, h, 1);
8. end for
9. else {v ¼¼ 0}

10. h ¼ pick one input of g whose value ¼¼ X;
11. JustifyFanoutFree(C, h, 0);
12. end if
13. else if gate type of g ¼¼ OR gate then
14. . . .
15. end if
After these calls to JustifyFanoutFree(), abcd ¼ 1X0X is an input vector that can

justify g ¼ 1.

Consider another circuit C shown in Figure 14.28. Note that the circuit is not

fanout-free, but the preceding algorithm will still work for the objective of
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trying to justify the signal g ¼ 1. According to the algorithm, the following

sequence of calls to the JustifyFanoutFree function would have been made:

call #1: JustifyFanoutFree(C, g, 1)

call #2: JustifyFanoutFree(C, a, 1)

call #3: JustifyFanoutFree(C, f, 1)

call #4: JustifyFanoutFree(C, d, 0)
call #5: JustifyFanoutFree(C, c, 0)

After these five calls to JustifyFanoutFree(), abc ¼ 1X0 is an input vector that

can justify g ¼ 1. Note that in a fanout-free circuit, the JustifyFanoutFree() rou-
tine will always be able to set g to the desired value v, and no conflict will ever

be encountered. However, this is not always true for circuits with fanout struc-

tures, such as the circuit shown in Figure 14.29. This is because in circuits with

fanout branches, two or more signals that can be traced back to the same fanout

stem are correlated, and setting arbitrary values on these correlated signals

may not always be possible. For example, in the simple circuit shown in

Figure 14.29, justifying d ¼ 1 is impossible, because it requires both b ¼ 1

and c ¼ 1, thereby causing a conflict on a.
Consider again the circuit shown in Figure 14.28. Suppose the objective is to

set z ¼ 0. On the basis of the JustifyFanoutFree() algorithm, it would first justify

both g ¼ 0 and h ¼ 0. Now, for justifying g ¼ 0, suppose it picks the signal f for

justifying the objective g ¼ 0; it would eventually assign c ¼ 1 through the

recursive JustifyFanoutFree() function. Next, for justifying h ¼ 0, it no longer

can choose e ¼ 0 as a viable option, because choosing e ¼ 0 will eventually

cause a conflict on signal c. In other words, a different decision has to be

made for justifying h ¼ 0. In this case, b ¼ 0 should be chosen. Although this
example is very simple, it illustrates the possibility of making poor decisions,

causing potential backtracks in the search. In the rest of this chapter, more dis-

cussion on avoiding conflicts will be covered.
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In the preceding running example, suppose the target fault is g/0, and Justi-

fyFanoutFree(C, g, 1) would have successfully excited the fault. With the fault
g/0 excited, the next step is to propagate the fault-effect to a primary output.

Similar to the JustifyFanoutFree() function, PropagateFanoutFree() is a recursive

function as well, where the fault-effect is propagated one gate at a time until it

reaches a primary output. Algorithm 14.6 illustrates the pseudo-code for one

possible implementation of the propagate function.

Again, although the PropagateFanoutFree() routine is meant for fanout-free cir-

cuits, it is sufficient for the running example. With the PropagateFanoutFree() func-

tion on the fault-effect D at signal g, listed in Algorithm 14.5, the following calls to
the JustifyFanoutFree and PropagateFanoutFree functions would have been made:

call #1: PropagateFanoutFree(C, g)

call #2: JustifyFanoutFree(C, h, 0)
call #3: JustifyFanoutFree(C, b, 0)

call #4: PropagateFanoutFree(C, z)

Algorithm 14.6 PropagateFanoutFree(C, g)
1. if g has exactly one fanout then
2. h ¼ fanout gate of g;
3. if none of the inputs of h has the value of X then
4. backtrack;
5. end if
6. else { g has more than one fanout}
7. h ¼ pick one fanout gate of g that is unjustified;
8. end if
9. if gate type of h ¼¼ AND gate then

10. for all inputs, j, of h, such that j 6¼ g do
11. if the value on j ¼¼ X then
12. JustifyFanoutFree(C, j, 1);
13. end if
14. end for
15. else if gate type of h ¼¼ OR gate then
16. for all inputs, j, of h, such that j 6¼ g do
17. if the value on j ¼¼ X then
18. JustifyFanoutFree(C, j, 0);
19. end if
20. end for
21. else if gate type of h ¼¼ . . . gate then
22. . . .
23. end if
24. PropagateFanoutFree(C, h);



890 CHAPTER 14 Fault simulation and test generation
Because the fault-effect has successfully propagated to the primary output z, the

fault g/0 is detected, with the vector abc ¼ 100. The reader may notice that
once g/0 has been excited, it is also propagated to z as well, because c ¼ 0 also

has made h ¼ 0. In other words, the JustifyFanoutFree(C, h, 0) step is unneces-

sary. However, this is only possible if logic simulation or implication capability is

embedded in the BasicFanoutFreeATPG() algorithm. For this discussion, it is not

assumed that logic simulation is included.

With the same circuit shown in Figure 14.28, consider the fault g/1. The Basic-

FanoutFreeATPG() algorithm will again be used to generate a test vector for this

fault. In this case, the ATPG first attempts to justify g ¼ 0, followed by propagat-
ing the fault-effect to z. During the justification of g¼ 0, the ATPG can pick either

a or f as the next signal to justify. At this point, the ATPG must make a decision.
Testability measures discussed in an earlier chapter can be used as a guide to

make more intelligent decisions. In this example, choosing a is considered to

be better than f, because choosing a requires no additional decisions to be made.

Note that testability measures only serve as a guide to decision selection; they do

not guarantee that the guidance will always lead to better decision selection.

It is important to note that in circuits with fanout structures, because
the simple JustifyFanoutFree() and PropagateFanoutFree() functions described

previously are meant for fanout-free circuits, will not always be applicable as illu-

strated in some of the earlier examples because of potential conflicts. To generate

test vectors for general combinational circuits, theremust bemechanisms thatwill

allow the ATPG to avoid conflicts, as well as get out of a conflict when a conflict is

encountered. To do so, the corresponding decision tree must be constructed dur-

ing the search for a solution vector, and backtracks must be enforced for any con-

flict encountered. The following sections describe a few ATPG algorithms.
14.4.3.3 D algorithm

TheD algorithmwas proposed to tackle the generation of vectors in general com-

binational circuits [Roth 1966, 1967]. As indicated by the name of the algorithm,

the D algorithm tries to propagate a D or D of the target fault to a primary output.
Initially, every signal in the circuit has the unknown value, X. At the end of the D

algorithm, some signals will be assigned 0, 1, D, or D, while the rest of the signals

may remain as unknown. Note that because each detectable fault can be excited,

a fault-effect can always be created. In the following discussion, propagation of

the fault-effect will take precedence over the justification of the signals. This

allows for enhanced efficiency of the algorithm and for simpler discussion.

Before proceeding to discussing the details of the D algorithm, two important

terms should be defined: the D-frontier and the J-frontier. The D-frontier con-
sists of all the gates in the circuit whose output value is unspecified and a fault-

effect (D orD) is at one or more of its inputs. For this to occur, one or more inputs

of the gate must currently have an unknown value, X. For example, at the start of

theD algorithm, for a target fault f there is exactly oneD (or D) placed in the circuit
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corresponding to the stuck-at fault. All other signals currently have a “don’t care”

value. Thus, the D-frontier consists of the successor gate(s) from the line with the

fault f. Two scenarios of a D-frontier are illustrated in Figure 14.30. Clearly, at any

time if the D-frontier is empty, the fault no longer can be detected. For example,
consider Figure 14.30a. If the bottom input of gate a is assigned a value of 0, the

output of gate a will become 0, and the D-frontier now becomes empty. At this

time, the search must backtrack and try a different search path.

The J-frontier consists of all the gates in the circuit whose output values are

known (can be any value in the 5-valued logic except X) but is not justified by

its inputs. Figure 14.31 illustrates an example of a J-frontier. Thus, to detect the

target fault, all gates in the J-frontier must be justified; otherwise, some gates in

the J-frontier must have caused a conflict, where these gates cannot be justified
to the desired values.

Having discussed the two fundamental concepts of the D-frontier and the

J-frontier, the explanation for the D algorithm can begin. The D algorithm

begins by trying to propagate the initial D (or D) at the fault site to a primary out-

put. For example, in Figure 14.32, the propagation routine will set all the side

inputs of the path necessary (gates a!b!c) to propagate the fault-effect to the

respective noncontrolling values. These side input gates, namely x, y, and z, thus

form the J-frontier, because they are not currently justified. Because the D is pro-
pagated to the primary output, theD-frontier eventually becomes the output gate.
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Whenever there are paths to choose from in advancing the D-frontier,

observability values can be used to select the corresponding gates. However,
this does not guarantee that the more observable path will definitely lead to a

solution. When a D or a D has reached a primary output, all the gates in the

J-frontier must now be justified. This is done by advancing the J-frontier back-

ward by placing predecessor gates in the J-frontier such that they justify the pre-

vious unjustified gates. Similar to propagation of the fault-effect, whenever

a conflict occurs, a backtrack must be invoked. In addition, at each step, the

D-frontier must be checked so the D (or D) that has reached a primary output

is still there. Otherwise, the search returns to the propagation phase and
attempts to propagate the fault-effect to a primary output again. The overall pro-

cedure for the D algorithm is shown in Algorithms 14.7 and 14.8.

Note that the previous procedure has not incorporated any intelligence in

the decision-making process. In other words, sometimes it may be possible to

determine that some value assignments are not justifiable, given the current
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circuit state. For instance, consider the circuit fragment shown in Figure 14.33.

Justifying gate a ¼ 1 and gate b ¼ 0 is not possible, because a ¼ 1 requires both
of its inputs set to logic 1, whereas b ¼ 0 requires both of its inputs set to logic

0. Noting such conflicting scenarios early can help to avoid future backtracks.

Such knowledge can be incorporated into line #1 of the D-Alg-Recursion()

shown in Algorithm 14.8. In particular, implications can be used to identify such

potential conflicts, and they are used extensively to enhance the performance

of the D algorithm (as well as other ATPG algorithms).

Algorithm 14.7 D-Algorithm(C, f )
1. initialize all gates to don’t-cares;
2. set a fault-effect (D or D) on line with fault f and insert it to the D-frontier;
3. J-frontier ¼ f;
4. result ¼ D-Alg-Recursion(C );
5. if result ¼¼ success then
6. print out values at the primary inputs;
7. else
8. print fault f is untestable;
9. end if
Consider the multiplexer circuit shown in Figure 14.28. If the target fault is f

stuck-at-0, then, after initializing all gate values to X, the D algorithm places a

D on line f. The algorithm then tries to propagate the fault-effect to z. First, it

will place a ¼ 1 in the J-frontier, followed by h ¼ 0 in the J-frontier. At this time,

the fault-effect has reached the primary output. Now, the ATPG tries to justify all

unjustified values in the J-frontier. Because a is a primary input, it is already jus-

tified. The other signals in the J-frontier are f ¼ D and h ¼ 0. For f ¼ D, d ¼ 0,

thereby making c ¼ 0. For h ¼ 0, either e ¼ 0 or b ¼ 0 is sufficient. Whichever

one it picks, the search process will terminate, as a solution has been found.
Consider the same multiplexer circuit (see Figure 14.28) again. Suppose the

target fault now is f stuck-at-1. Following the similar discussion as the previous

target fault f/0, the algorithm initializes the circuit and places a D on f. Next, to

propagate the fault-effect to a primary output, it likewise inserts a ¼ 1 and h ¼
0 into the J-frontier. Now, the ATPG needs to justify all the gates in the J-frontier,
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Algorithm 14.8 D-Alg-Recursion(C )
1. if there is a conflict in any assignment or D-frontier is f then
2. return failure
3. end if
4. /* first propagate the fault-effect to a PO */
5. if no fault-effect has reached a PO then
6. while not all gates in D-frontier has been tried do
7. g ¼ a gate in D-frontier that has not been tried;
8. set all unassigned inputs of g to non-controlling value and add them

to the J-frontier;
9. result ¼ D-Alg-Recursion(C );

10. if result ¼¼ success then
11. return (success);
12. end if
13. end while
14. return (failure);
15. end if {fault-effect has reached at least one PO}
16. if J-frontier is f then
17. return (success);
18. end if
19. g ¼ a gate in J-frontier;
20. while g has not been justified do
21. j ¼ an unassigned input of g;
22. set j ¼ 1 and insert j ¼ 1 to J-frontier;
23. result ¼ D-Alg-Recursion(C );
24. if result ¼¼ success then
25. return (success);
26. else try the other assignment
27. set j ¼ 0;
28. end if
29. end while
30. return(failure);
which includes a ¼ 1, f ¼ D, and h ¼ 0. Because a is a primary output, it is

already justified. For f ¼ D, d ¼ 1. For h ¼ 0, suppose it selects e ¼ 0. At this
time, the J-frontier consists of two gate values: d ¼ 1 and e ¼ 0. No value assign-

ment on c can satisfy both d ¼ 1 and e ¼ 0; therefore, a conflict has occurred,

and backtrack on the previous decision is needed. The only decision that has

been made is e ¼ 0 for h ¼ 0, because there were two choices possible for
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justifying h ¼ 0. At this time, the value on e is reversed, and b ¼ 0 is added to
the J-frontier. The process continues and all gate values in the J-frontier can be

successfully justified, ending the process with the vector abc ¼ 101.

Note that, in the preceding example, if some learning procedure (such as

implications) is present, the decision for h ¼ 0 would not result in e ¼ 0,

because the ATPG would have detected that e ¼ 0 would conflict with d ¼ 1.

This knowledge could potentially improve the performance of the ATPG, which

will be discussed later in this chapter.

Consider another example circuit shown in Figure 14.34. Suppose the target
fault is g/1. After circuit initialization, the D algorithm places a D on g. Now, the

J-frontier consists of g ¼ D and the D-frontier consists of h. To advance the

D-frontier, f is set to logic 1; f ¼ 1 is added to the J-frontier, and the D-frontier

is now i. Next, to propagate the fault-effect to the output, c ¼ 1 is added to

the J-frontier. At this time, the fault-effect has been propagated to the output,

and the task is to justify the signal values in the J-frontier: {g ¼ D, f ¼ 1, c ¼ 1}. To

justify g ¼ D, two choices are possible: a ¼ 0 or b ¼ 0. If a ¼ 0 is selected,

it is necessary to justify f ¼ 1, b ¼ 1. Finally, c ¼ 1 remains in the J-frontier
which is still unjustified. At this time, a contradiction has occurred (a ¼ 0 and

c¼ 1), and the search reverses its last decision, changing a¼ 0 to a¼ 1. The search

discovers that this reversal also causes a conflict. Thus, a backtrack occurs where

line b is chosen instead of a for the previous decision, so a is reset to “don’t care.”

By assigning b ¼ 0, a conflict is observed. Reversing b also cannot justify all

the J-frontier. At this time, backtracking on b leads to no prior decisions.

Thus, target fault g/1 is declared to be untestable.
14.4.4 PODEM
In the D algorithm, the decision space encompasses the entire circuit. In other

words, every internal gate could be a decision point. However, noting that the

end result of anyATPGalgorithm is to derive a solution vector at the primary inputs

and that the number of primary inputs generally is much fewer than the total num-

ber of gates, it may be possible to arrive at a very different ATPG algorithm that

makes decisions only at primary inputs rather than at internal nodes of the circuit.
The path-oriented decision-making (PODEM) algorithm [Goel 1981] is

based on this notion and makes decisions only at the primary inputs. Similar
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to the D algorithm, a D-frontier is kept. However, because decisions are made at

the primary inputs, the J-frontier is unnecessary. At each step of the ATPG search

process, it checks whether the target fault is excited. If the fault is excited, it then

checkswhether there is anX-path from at least one fault- effect in theD-frontier to

a primary output, where an X-path is a path of unspecified values from the fault-
effect to a primary output. If no X-path exists, it means that all the fault-effects

in the D-frontier are blocked, as illustrated in Figure 14.35, where both possible

propagation paths of the D have been blocked. Otherwise, PODEM will pick the

best X-path to propagate the fault-effect. Note that if the target fault has not been

excited, the first steps of PODEM will be to excite the fault.

The basic flow of PODEM is illustrated in Algorithms 14.9 and 14.10.

Although it is still a deterministic search algorithm, the decisions are limited

to the primary inputs. All internal signals obtain their logic values by means of
logic simulation (or implications) from the decision points. As a result, no con-

flict will ever occur at the internal signals of the circuit. The only possible con-

flicts in PODEM are either (1) the target fault is not excited or (2) the D-frontier

becomes empty. In either of these cases, the search must backtrack.

Algorithm 14.9 PODEM(C, f )
1. initialize all gates to don’t-cares;
2. D-frontier ¼ f;
3. result ¼ PODEM-Recursion(C );
4. if result ¼¼ success then
5. print out values at the primary inputs;
6. else
7. print fault f is untestable;
8. end if
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Algorithm 14.10 PODEM-Recursion(C )
1. if fault-effect is observed at a PO then
2. return (success);
3. end if
4. (g, v) ¼ getObjective(C );
5. (pi, u) ¼ backtrace (g, v);
6. logicSimulate_and_imply (pi, u);
7. result ¼ PODEM-Recursion(C );
8. if result ¼¼ success then
9. return(success);

10. end if
11. /* backtrack */
12. logicSimulate_and_imply (pi, u);
13. result ¼ PODEM-Recursion(C );
14. if result ¼¼ success then
15. return(success);
16. end if
17. /* bad decision made at an earlier step, reset pi */
18. logicSimulate_and_imply ( pi, X);
19. return(failure);
According to the algorithm in PODEM, the search starts by picking an objective,

and it backtraces from the objective to a primary input by means of the best path.

Controllability measures can be used here to determine which path is regarded as

the best. Gradually more primary inputs will be assigned logic values. At any time

the target fault becomes unexcited or the D-frontier becomes empty, a bad deci-

sion must have been made, and reversal of some previous decisions is needed.
The backtracking mechanism proceeds by reversing the most recent decision.

If reversing the most recent decision also causes a conflict, the recursive algo-

rithm will continue to backtrack to earlier decisions, until no more reversals are

possible, at which time the fault is determined to be undetectable.

Three important functions in PODEM-Recursion() are getObjective(), back-

trace(), and logicSimulate_and_imply(). The getObjective() function returns

the next objective the ATPG should try to justify. Before the target fault has been

excited, the objective is simply to set the line on which the target fault resides
to the value opposite to the stuck value. Once the fault is excited, the getObjec-

tive() function selects the best fault-effect from the D-frontier to propagate. The

pseudo-code for getObjective() is shown in Algorithm 14.11.
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Algorithm 14.11 getObjective(C )
Tab

ge

f ¼
a

1. if fault is not excited then
2. return (g, v);
3. end if
4. d ¼ a gate in D-frontier;
5. g ¼ an input of d whose value is X;
6. v ¼ noncontrolling value of d;
7. return ( g, v);
The backtrace() function returns a primary input assignment from which there is

a path of unjustified gates to the current objective. Thus, backtrace() will never
traverse through a path consisting of one or more justified gates. From the objec-

tive’s point of view, the getObjective() function returns an objective, say g ¼ v,

which means the current value of g is unspecified and should be set to value v.

If g was already specified to v, g ¼ v would have never been selected as an objec-

tive, because it is already justified. Now, if g ¼ x currently, and the objective is to

set g ¼ v, there must exist a path of unjustified gates from at least one primary

input to g. This backtrace() function can simply be implemented as a loop from

the objective to some primary inputs through a path of unspecified values. Algo-
rithm 14.12 shows the pseudo-code for the backtrace() routine.

Finally, the logicSimulate_and_imply() function can simply be a regular logic

simulation routine. The added imply is used to derive additional implications, if

any, that can enhance the getObjective() routine later on.

Consider the multiplexer circuit shown in Figure 14.28 again. Consider the

target fault f stuck-at-0. First, PODEM initializes all gate values to X. Then,

the first objective would be to set f ¼ 1. The backtrace routine selects c ¼ 0 as the

decision. After logic simulation, the fault is excited, together with e ¼ h ¼ 0.
The D-frontier at this time is g. The next objective is to advance the D-frontier,

thus getObjective() returns a ¼ 1. Because a is already a primary input, back-

trace() will simply return a ¼ 1. After simulating a ¼ 1, the fault-effect is suc-

cessfully propagated to the primary output z, and PODEM is finished with this

target fault with the computed vector abc ¼ 1X0. Table 14.9 shows the series

of objectives and backtraces for this example.
le 14.9 PODEM Objectives and Decisions for f Stuck-At-0

tObjective() backtrace() logicSim() D-frontier

1 c ¼ 0 d ¼ 0, f ¼ D, e ¼ 0, h ¼ 0 g

¼ 1 a ¼ 1 g ¼ D, z ¼ D f/0 detected
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Algorithm 14.12 backtrace(C )
Tab

ge

b

a

FIG

Dec
1. i ¼ g;
2. num_inversion ¼ 0;
3. while i 6¼ primary input do
4. i ¼ an input of i whose value is X;
5. if i is an inverted gate type then
6. num_inversion þþ;
7. end if
8. end while
9. if num_inversion ¼¼ odd then

10. v ¼ v;
11. end if
12. return (i, v);
Consider the circuit shown in Figure 14.29. Suppose the target fault is b stuck-

at-0. After circuit initialization, the first objective is b ¼ 1 to excite the fault. The

backtrace() returns a ¼ 0. After logic simulation, although the target fault is

excited, there is no D-frontier, because c ¼ d ¼ 0. At this time, PODEM reverses

its last decision a ¼ 0 to a ¼ 1. After logic simulating a ¼ 1, the target fault is
not excited and the D-frontier is still empty. PODEM backtracks but there is

no prior decision point. Thus, it concludes that fault b/0 is undetectable.

Table 14.10 shows the steps made for this example, and Figure 14.36 shows

the corresponding decision tree.

Consider again the circuit shown in Figure 14.34 with the target fault g/1.

After circuit initialization, the first objective is to excite the fault; in other

words, the objective is g ¼ 0. The backtrace() function backtraces from the

objective backward to a primary input via a path of “don’t cares.” Suppose the
le 14.10 PODEM Objectives and Decisions for b Stuck-At-0

tObjective() backtrace() logicSim() D-frontier

¼ 1 a ¼ 0 b ¼ 1, c ¼ 0, d ¼ 0 {}

¼ 1 (reversal) – b ¼ 0, c ¼ 1, d ¼ 0 {}

Conflict Conflict

0 1
a

URE 14.36

ision tree for fault b/0.
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backtrace reaches a ¼ 0. After logic simulation, g ¼ 0, c ¼ d ¼ 0, and i ¼ 0. The

D-frontier is h. However, note that there is no path of “don’t cares” from any
fault-effect in the D-frontier to a primary output! If the PODEM algorithm is

modified to check that any objective has at least a path of “don’t cares” to

one or more primary outputs, some needless searches can be avoided. For

instance, in this example, if the next objective was f ¼ 1, even after the decision

of b ¼ 1 is made, the target fault still would not have been detected, because

there was no path to propagate the fault-effect to a primary output even before

the decision b ¼ 1 was made. In other words, the search could immediately

backtrack on the first decision a ¼ 0. In this case, a ¼ 1, and the objective is
still g ¼ 0. Backtrace() will now return b ¼ 0. After logic simulation, g ¼ 0,

c ¼ 1, f ¼ 0, h ¼ 0, i ¼ 0. Again, there is no propagation path possible. As there

is no earlier decision to backtrack to, the ATPG concludes that fault g/1 is

untestable. Table 14.11 shows the steps for this example.
14.4.5 FAN
Although PODEM reduces the number of decision points from the number of

gates in the circuit to the number of primary inputs, it still can make an exces-

sive number of decisions. Furthermore, because PODEM targets one objective at

a time, the decision process may sometimes be too localized and miss the global

picture. The fanout-oriented test generation (FAN) algorithm [Fujiwara
1983] extends the PODEM-based algorithm to remedy these shortcomings.

To reduce the number of decision points, FAN first identifies the headlines
in the circuit, which are the output signals of fanout-free regions. Because of the

fanout-free nature of each cone, all signals outside the cone that do not conflict

with the headline assignment would never require a conflicting value assign-

ment on the primary inputs of the corresponding fanin cone. In other words,

any value assignment on the headline can always be justified by its fanin cone.

This allows the backtrace() function to backtrace to either headlines or primary
inputs. Because each headline has a corresponding fanin cone with several

primary inputs, this allows the number of decision points to be reduced.

Consider the circuit shown in Figure 14.37. If the current objective is to set

z ¼ 1, the corresponding decision tree based on the PODEM algorithm will

involve many decisions at the primary inputs, such as a ¼ 1, c ¼ 1, d ¼ 1,

e ¼ 1, f ¼ 1. On the other hand, the decision based on the FAN algorithm is
Table 14.11 PODEM Objectives and Decisions for g Stuck-At-1

getObjective() backtrace() logicSim() D-frontier

g ¼ 1 a ¼ 0 g ¼ D, c ¼ 0,
d ¼ 0, i ¼ 0

{h} (but no
X-path to PO)

a ¼ 1 (reversal) – c ¼ 1, d ¼ 1 {}
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Multiple backtrace to avoid potential conflicts.
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Circuit with identified headlines.
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significantly smaller, involving only two decisions: x ¼ 1 and y ¼ 1. If z ¼ 1 was

not the first objective, there would have been other decisions made earlier. In

other words, if there were a poor decision made in an earlier step, PODEM

would need to reverse and backtrack many more decisions compared with FAN.

The next improvement that FAN makes over PODEM is the simultaneous sat-

isfaction of multiple objectives, as opposed to only one target objective at each
step. Consider the circuit fragment shown in Figure 14.38. Without taking into

account multiple objectives, the backtrace() routine may choose the easier path

in trying to justify k ¼ 0. The easier path may be through the fanout stem b.

However, this would cause a conflict later on with the other objective m ¼ 1.

In FAN, multiple objectives are taken into account, and the backtrace routine

scores the nodes visited from each objective in the current set of objectives.

The nodes along the path with the best scores are chosen. In this example,

a ¼ 0 will be chosen rather than b ¼ 0, even if a ¼ 0 is less controllable.
A powerful implication engine can have a significant impact on the perfor-

mance of ATPG algorithms. Thus, much effort has been invested over the years

in the efficient computation of implications. The quality of implications was
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improved with the computation of indirect implications in SOCRATES [Schulz

1988]. Static learning was extended to dynamic learning in [Schulz 1989
and Kunz 1993], where some nodes in the circuit already had value assignments

during the learning process. A 16-valued logic was introduced in [Rajski 1990

and Cox 1994]. Reduction lists were used to dynamically determine the gate

values. In [Chakradhar 1993], the authors proposed a transitive closure proce-

dure based on the implication graph. Recursive learning was later proposed

in [Kunz 1994] in which a complete set of pairwise implications could be com-

puted. To keep the computational costs low, a small recursion depth can be

enforced in the recursive learning procedure. Finally, implications to capture
time frame information in sequential circuits in a graphical representation were

proposed in [Zhao 2001] to compactly store the implications in sequential

circuits.

The implications can be used to quickly identify untestable faults [Iyer

1996a,b; Zhao 2001; Hsiao, 2002; Syal 2003]. This will allow the ATPG not to

specifically target these faults that can often consume much of the ATPG

computational resources. For more information on implication and untestable

fault identification, refer to [Bushnell 2000, Jha 2003, and Wang 2006].
14.5 ADVANCED TEST GENERATION

Thus far, the discussions have focused primarily on the basic ATPG algorithms.

As circuits have become increasingly larger and more complex, more powerful

ATPG algorithms are needed. In particular, the handling of sequential circuits is

a must, because not all circuits may have the luxury of having a full-scan

inserted. Next, deterministic ATPGs may face tremendous hurdles when dealing

with the need to generate a sequence of many vectors. In this regard, simula-

tion-based ATPGs may be better suited. Finally, the stuck-at fault model may
be insufficient in capturing defects that occur at the deep-submicron or nano-

scale designs. Such defects include delay faults and bridging faults. This section

addresses how the basic ATPG can be extended to deal with these issues.
14.5.1 Sequential ATPG: Time frame expansion
Test generation for sequential circuits bears much similarity with that for combi-

national circuits. However, one vector may be insufficient to detect the target
fault, because the excitation and propagation conditions may necessitate some

of the flip-flop values to be specified at certain values. The general model for

a sequential circuit is shown in Figure 14.39, where flip-flops constitute the

memory/state elements of the design. All the flip-flops receive the same clock

signal, so no multiple clocks are assumed in the circuit model.

Figure 14.40 illustrates an example of a sequential circuit that is unrolled

into several time frames, also called an iterative logic array (ILA) of the
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circuit. For each time frame, the flip-flop inputs from the previous time frame

are often referred to as pseudo primary inputs with respect to that time

frame, and the output signals to feed the flip-flops to the next time frame

are referred to as pseudo primary outputs. Note that in any unrolled circuit,

a target fault is present in every time frame.

When the test generation begins, the first time frame is referred to as time
frame 0. An ATPG search similar to a combinational circuit is carried out. At

the end of the search, a combinational vector is derived, where the input vector

consists of primary inputs and pseudo primary inputs. The fault-effect for the

target fault may be sensitized to either a primary output of the time frame or

a pseudo primary output. If at least one pseudo primary input has been
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specified, then the search must attempt to justify the needed flip-flop values in

time frame �1. Similarly, if fault-effects only propagate to pseudo primary out-
puts, the ATPG must try to propagate the fault-effects across time frame þ 1.

Note that this results in a test sequence of vectors. As opposed to combina-

tional circuits, in which a single vector is sufficient to detect a detectable fault,

in sequential circuits a test sequence is often needed.

One question naturally arises: Should the ATPG first attempt the fault excita-

tion via several time frames �1, �2, etc., or should the ATPG attempt to propa-

gate the fault-effect through time frames 1, 2, etc.? It can be observed that in

propagating the fault-effect in time frame 1, the search may place additional
values on the flip-flops between the boundary of time frames 0 and 1. These

added constraints propagate backward and may add additional values needed

at the pseudo primary inputs at time frame 0. In other words, if the ATPG first

justifies the pseudo primary inputs at time frame 0, it would have missed the

additional constraints placed by the propagation. Therefore, the ATPG first tries

to propagate the fault-effect to a primary output via several time frames, with all

the intermediate flip-flop values propagated back to time frame 0. Then, the

ATPG proceeds to justify all the pseudo primary input values at time frame 0.
Although easy to understand, the process can be very complex, for example,

if the fault-effect has propagated forward for three time frames: time frames 1, 2,

and 3. Now in time frame 4, suppose the ATPG successfully propagates the fault-

effect to a primary output (i.e., it has derived a vector at time frame 4), it must go

back to time frame 3 to make sure the values assigned to the flip-flops at the

boundary between time frames 3 and 4 are, indeed, possible. It must perform this

check for time frames 2, 1, and 0. If at any time frame a conflict occurs, the vector

derived at time frame 4 is actually invalid, because it is not justifiable from the pre-
vious vectors. At this time, a backtrack occurs in time frame 4, and the ATPG

must try to find a different solution vector #4. This process is repeated.

One way to reduce the complexity discussed is to try to propagate the fault-

effect in an unrolled circuit instead of propagating the fault-effect time frame by

time frame. In doing so, a k-frame combinational circuit is obtained, say k ¼ 256,

and theATPGviews the entire 256-frame circuit as one large combinational circuit.

However, the ATPGmust keep inmind that the target fault is present in all 256 time

frames. This eliminates the need to check for state boundary justifiability and
allows the ATPG to propagate the fault-effect acrossmultiple time frames at a time.

When the fault-effect has been propagated to at least one primary output,

the pseudo primary inputs at time frame 0 must be justified. Again, the justifica-

tion can be performed in a similar process of viewing an unrolled 256-frame cir-

cuit. As before, the ATPG must ensure that the fault is present in every time

frame of the unrolled circuit.

HITEC [Niermann 1991] is a popular sequential test generator that per-

forms the search similar to the discussed methods with a 9-valued algebra. In
addition, it uses the concept of dominators to help reduce the search com-

plexity. A dominator for a target fault is a gate in the circuit through which
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the fault-effect must traverse [Kirkland 1987]. Therefore, for a given target

fault, all inputs of any dominator gate that are not in the fanout cone of the
fault must be assigned to noncontrolling values to detect the fault.

The concept of controllability and observability metrics can be extended to

sequential circuits such that the backtrace routine would prefer to backtrace

toward primary inputs and those easy-to-justify flip-flops. The use of sequential

testability metrics allows the ATPG to narrow the search space by favoring the

easy-to-reach states and avoiding getting into difficult-to-justify states.

The computational complexity of a sequential ATPG is intuitively higher than

that of the combinational ATPG. Therefore, aggressive learning can help to reduce
the computational cost. For instance, if a known subset of unreachable states is

available, this information can be used to allow the ATPG to backtrack much

sooner when an intermediate state is unreachable. This can avoid successive justi-

fication of an unreachable state. Likewise, if a justification sequence has been suc-

cessfully computed for state S before, and a different target fault requires the same

state S, the previous justification sequence can be used to guide the search. Note

that, because the target faults are different, the justification sequencemay not sim-

ply be copied from the solution for one fault to another.
For large circuits, deterministic ATPGs may suffer from a potentially large

number of backtracks. Thus, in the past two decades, effort on simulation-
based ATPGS has yielded much success, presenting themselves as a viable alter-

native to deterministic ATPGs. One class of nondeterministic ATPGs is the

genetic algorithm–based (GA-based) ATPG. There have been numerous GA-

based ATPGs proposed over the years. For example, CONTEST [Agrawal

1989] targets test generation in three phases, each having its own distinct fit-

ness measure. GATEST [Rudnick 1994] distinguishes fault detection from those
that only propagate to flip-flop boundaries. DIGATE [Hsiao 1996] targets indi-

vidual faults and uses distinguishing sequences to help propagate the faults from

flip-flops to a primary output.

STRATEGATE [Hsiao 1997; 2000] addresses fault excitation by justifying the

needed state as well. Although GA-based ATPGs have achieved success, the

underlying fault simulation engine may incur excessive computational cost. In

recent years, approaches that use logic simulation rather than fault simulation

have been proposed [Pomeranz 1995; Guo 1999; Giani 2001; Sheng 2002; Wu
2004]. Logic-simulation–based test generators usually target some inherent

“property” in the fault-free circuit and try to derive test vectors that exercise

these properties. In general, the property used often relates to the states

reached by the test sequence.
14.5.2 Delay fault ATPG
Today’s integrated circuits are seeing an escalating clock rate, shrinking dimen-
sions, increasing chip density, etc. Consequently, there arises a class of defects that

would affect the functionality of the design if the chip were run at a high speed.
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In other words, the design is functionally correct when it is operated at a slow

clock. This type of defect is referred to as a delay defect. Although the conven-
tional stuck-at testing can catch some delay defects, the stuck-at fault model is

insufficient to model delay defects satisfactorily. This has prompted engineers

and researchers to propose a variety of methods and fault models for detecting

speed failures. Among the fault models are the transition fault [Levendel 1986;

Waicukauski 1987; Cheng 1993], the path-delay fault [Smith 1985], and the seg-

ment delay fault [Heragu 1996]. The path-delay fault model considers the cumu-

lative effect of the delays along a specific combinational path in the circuit. If the

cumulative delay in a faulty circuit exceeds the clock period for the path, then the
test pattern that can exercise this path will fail the chip. The segment delay fault

model targets path segments instead of complete paths.

Because a transition has to be launched to propagate across a given path,

two vectors are needed. The first vector initializes the circuit nodes, and the

second vector launches a transition at the start of a path and ensures that the

transition is propagated along the given path. Given a path P, a signal is an

on-input of P if it is on P. Conversely, a signal is an off-input of P if it is an input

to a gate in P but is not an on-input of P. A path-delay fault can be a rising fault,
where a rising transition is at the start of the path, or a falling fault, where a falling

transition is at the start of the path. The rising and falling path-delay faults are

denoted with the up-arrow " and the down-arrow # before path P, respectively.

For example, "g1g4g7 is a rising path that traverses through gates g1, g4, and g7.

Delay tests can be applied three different ways: launch-on-capture (also

called broad-side [Savir 1994] or double-capture [Wang 2006]), launch-on-
shift (also called skewed-load [Savir 1993]), and enhanced-scan [Dervisoglu

1991]. In launch-on–capture-based testing, the first n-bit vector is scanned into
the circuit with n scan flip-flops at a slow speed, followed by another clock that

creates the transition. Finally, an at-speed functional clock is applied that captures

the response. Thus, only one vector has to be stored per test, and the second vec-

tor is directly derived from the initial vector by pulsing the clock. In launch-on–

shift-based testing, the first n � 1 bits of an n-bit vector are shifted in at a slow

speed. The final nth shift is performed, and it is also used to launch the transition.

This is followed by an at-speed quick capture. Similar to launch-on-capture, only

one vector has to be stored per test, because the second vector is simply the
shifted version of the first vector. Finally, in enhanced-scan testing, both vectors

in the vector pair (V1, V2) have to be stored in the tester memory. The first vector

V1 is loaded into the scan chain, followed by its immediate application to initialize

the circuit under test. Next, the second vector is scanned in, followed by an imme-

diate application and capture of the response. Note that the node values in the

circuit are preserved during the shifting-in of the second vector V2. To achieve

this, a hold-scan design [Dervisoglu 1991] is required.

Because both launch-on-capture and launch-on-shift place constraints on
what the second vector can be, they will achieve lower fault coverage com-

pared with enhanced-scan. However, enhanced-scan comes at a price of
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hold-scan cells (enhanced-scan cells [Wang 2006]), which consume more chip

area. This may not be viewed as a huge negative in microprocessors and some
custom-designed circuits, because hold-scan cells are used to prevent the com-

binational logic from seeing the values being shifted. This is done because the

intermediate state of the scan cells may cause contention in some of the signals

in the logic, as well as reducing the power consumption in the combinational

logic during the shifting of the data in scan cells. In addition, hold-scan cells

also help increase the diagnostic capability on failing chips in which the data

captured in the scan chain can be retrieved.

In terms of test data volume, enhanced-scan tests may actually require less
storage to achieve the same delay fault coverage. In other words, for launch-

on-capture or launch-on-shift to achieve the same level of fault coverage, many

more patterns may have to be applied.

Unlike stuck-at faults, where a fault is either detected or not detected by a

given test vector, a path-delay fault may be detected by different test patterns

(consisting of two vectors) with differing levels of quality. In other words, some

test patterns can detect a path-delay fault only with certain restrictions in place.

Higher quality test patterns place more restrictions on sensitization of the path.
On the other hand, similar to stuck-at faults, some paths may be untestable if the

sensitization requirement for a given path is not satisfiable.

For designs with two interactive clock domains, modifications can be made

to allow for tests. For example, the following at-speed delay test approaches can

be used for both launch-on-capture and launch-on-shift architectures: one-hot
double-capture, aligned double-capture, and staggered double-capture
[Bhawmik 1997; Wang 2006, 2007b].

If tests were possible for all the paths in a circuit, we would not need any
additional test vectors for capturing the delay defects. However, because very

few paths are robustly testable, and the number of path-delay faults is exponen-

tial to the number of circuit lines, other delay fault models have been proposed.

For example, transition tests have been generated to improve the detection of

speed failures in microprocessors [Tendulkar 2002], as well as application-
specific integrated circuits (ASICs) [Hsu 2001]. These reasons make transi-

tion faults popular in industry.

Similar to the stuck-at fault model, two transition faults are possible at each
node of the circuit: slow-to-rise and slow-to-fall. A test pattern for a transition

fault consists of a pair of vectors (V1, V2), where V1 (called the initial vector) is

required to set the target node to an initial value and V2 (called the test vector)

is required to launch the corresponding transition at the target node and also

propagate the fault effect to a primary output [Waicukauski 1987; Savir 1993].

Transition tests can also be applied in three different ways as for the other

delay fault models discussed earlier: launch-on-capture, launch-on-shift, and

enhanced scan. As with path-delay tests, because both launch-on-capture and
launch-on-shift place constraints on what the second vector can be, they will

achieve lower transition fault coverage compared with enhanced-scan.
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14.5.3 Bridging fault ATPG
Recall that bridging faults are those faults that involve a short between two
signals in the circuit. Given a circuit with n signals, there are potentially n �
(n � 1) possible bridging faults. However, practically, only those signals that

are locally close on the die are more likely to be bridged. Therefore, the total

number of bridging faults can be reduced to be linear in the number of signals

in the circuit.

Consider two signals x and y in the circuit that are bridged. This bridging

fault will not be excited unless different values are placed on x and y. Note that

the actual voltage at x and y may be different because of the resistance value of
the bridge. Subsequently, the logic that takes x as its input may interpret the

logic value differently from the logic that takes y as its input. To reduce the com-

plexity, five common bridging fault models are often used:
1. AND bridge—The faulty value of the bridge for x0 and y0 is taken to be the

logical AND of x and y in the original fault-free circuit.

2. OR bridge—The faulty value of the bridge for x0 and y0 is taken to be the

logical OR of x and y in the original fault-free circuit.

3. x DOM y bridge—x dominates y; in other words, the faulty value of the

bridge for both x0 and y0 is taken to be the logic value of x in the fault-free

circuit.

4. x DOM1 y bridge—x dominates y if x ¼ 1; in other words, the faulty value
of x0 is unaffected, but the faulty value for y0 is taken to be the logical OR

of x and y in the fault-free circuit.

5. x DOM0 y bridge—x dominates y if x ¼ 0; in other words, the faulty value

of x0 is unaffected, but the faulty value for y0 is taken to be the logical

AND of x and y in the fault-free circuit.
Figure 14.41 illustrates the faulty circuit models corresponding to each of these

five bridge types. If a path exists between x and y, then the bridging fault is said

to be a feedback-bridging fault. Otherwise, it is a non-feedback-bridging
fault. Figure 14.42 illustrates a feedback-bridging fault. In this figure, if abc ¼
110, then in the fault-free circuit z ¼ 0. If the bridge is an AND-bridge, then a

cycle would result. In other words, a becomes 0 and in turn makes z ¼ 1.

Because a ¼ 1 initially, it will again try to drive z ¼ 0, resulting in an infinite
loop around the bridge. For the following discussion, only non-feedback bridg-

ing faults will be considered.

Testing for bridging faults is similar to a constrained stuck-at ATPG. In other

words, when testing for the AND-bridge(x, y), either (1) x/0 has to be detected

with y ¼ 0 or (2) y/0 has to be detected with x ¼ 0 [Williams 1973]. A conven-

tional stuck-at ATPG can be modified to handle the added constraint. Likewise,

the ATPG can be modified for other bridging fault types.
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Bridging fault models.
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14.6 CONCLUDING REMARKS

For fault simulation, both event-driven simulation and compiled-code simulation

techniques can be found in commercially available electronic design automa-
tion (EDA) applications. The fault simulators can be stand-alone tools or used as
an integrated feature in the ATPG programs. As a stand-alone tool, concurrent

fault simulation with the event-driven simulation technique is used in Veri-

fault-XL (from Cadence Design Systems [Cadence 2008]) and TurboFault (from

SynTest Technologies [SynTest 2008]). As an integrated feature in ATPG, bitwise

parallel simulation with the compiled-code simulation technique is widely used
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in modern commercial ATPG programs, including Encounter Test (from

Cadence Design Systems), FastScan (from Mentor Graphics [Mentor 2008]), Tet-
raMAX (from Synopsys [Synopsys 2008]), and TurboScan (from SynTest

Technologies).

As we move to the nanometer age, we have started to see nanometer designs

that contain hundreds of millions of transistors. We anticipate the semiconduc-

tor industry will completely adopt the scan method for quality considerations.

As a result, it is becoming imperative that advanced techniques for both logic

simulation and fault simulation be developed to address the high-performance

and high-capacity issues, in particular, for addressing new fault models, such
as transition faults [Waicukauski 1986], path-delay faults [Schulz 1989], bridging

faults [Li 2003], and small delay defects [Sato 2005; Hamada 2006]. At the same

time, more innovations are needed in developing advanced concurrent fault

simulation techniques, because at present designs based on the scan method

are still not 100% scan testable. Fault simulation with functional patterns is

important for at-speed test applications to detect small delay faults and achieve

the parts-per-million (PPM) defect level goals.

The theory and implementation of an ATPG engine have also been described
in detail in the second half of this chapter. Several algorithms were laid out with

specific examples given. Advanced ATPG algorithms were discussed where

sequential ATPG and ATPG for non-stuck-at faults were covered. Test generation

remains to be an important research area as circuit sizes and complexities con-

tinue to increase. New and powerful algorithms are needed to cope with the

increased complexity. In addition, with nanoscale feature sizes, new defect

types and hence new fault models will be needed in future ATPGs.

Should there be defective chips that were uncovered by the test set, fault
diagnosis and failure analysis are often subsequently performed to identify the

causes and further reduce the defect level in the future. To ease the burden of

fault diagnosis and failure analysis, adding design-for-debug-and-diagnosis
(DFD), design-for-reliability (DFR), design-for-manufacturability (DFM),

and design-for-yield (DFY) features can be implemented in the design. These

features and techniques are extensively discussed in [Wang 2006, 2007a].

Finally, successful ATPG algorithms not only can help in the area of

manufacturing tests, but they also provide much insight to other EDA problems,
such as synthesis and verification.
14.7 EXERCISES
14.1. (Equivalence Fault Collapsing) How many uncollapsed single

stuck-at faults are there in circuit M shown in Figure 14.43 Please per-

form equivalence fault collapsing with the simple_EFC algorithm.

How many equivalence collapsed faults do you have?
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Circuit M.

14.7 Exercises 911
14.2. (Dominance Fault Collapsing) Continued from Exercise 14.1.

Please perform dominance fault collapsing with the simple_DFC algo-
rithm. How many dominance collapsed faults do you have?

14.3. (Dominance Fault Collapsing) For the circuit in Figure 14.9, please

explain why K/0 and K/1 faults can be removed from the dominance

collapsed fault list. Also explain why F/1 and F/0 can be removed.

14.4. (Parallel-Pattern Single-Fault Propagation) For circuit K shown in

Figure 14.44 and two given stuck-at faults shown in Figure 14.44, use

the parallel-pattern single-fault propagation fault simulation technique

to identify which faults can be detected by the given test patterns.
14.5. (Parallel Fault Simulation) Repeat Exercise 14.4 by use of parallel

fault simulation.

14.6. (Concurrent Fault Simulation) Repeat Exercise 14.5 with concur-

rent fault simulation.

14.7. (RandomTest Generation)Given a circuit with three primary outputs,

x,y, andz, the faninconeofx is {a,b, c}, the faninconeof y is {c,d, e, f }, and

the fanin cone of z is {e, f, g}. Devise a pseudo-exhaustive test set for this

circuit. Is this test set the minimal pseudo-exhaustive test set?
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.8. (Random Test Generation) With the circuit shown in Figure 14.28,
compute the detection probabilities for each of the following faults:
URE

mple s
a. e/0

b. e/1

c. c/0
.9. (Boolean Difference) With the circuit shown in Figure 14.28, compute
14
the set of all vectors that can detect each of the following faults using

Boolean difference:
a. e/0

b. e/1

c. c/0
14.10. (Boolean Difference) Assume a single-output combinational circuit,

where the output is denoted as f. If two faults, a and b, are indistinguish-

able, it means that there does not exist a vector that can detect only one
and not the other. Show that fa � fb ¼ 0 if they are indistinguishable.

14.11. (D Algorithm) Construct the table for the XNOR operation for the

5-valued logic similar to Tables 14.6, 14.7, and 14.8.

14.12. (D Algorithm) Consider a three-input AND gate g. Suppose g is a

D-frontier. What are all the possible value combinations the three inputs

of g can take such that g is a valid D-frontier?

14.13. (PODEM) With the circuit shown in Figure 14.28, compute a test vec-

tor that can detect each of the following faults by use of PODEM:
a. e/0

b. e/1

c. c/0
14.14. (FAN) Consider the circuit shown in Figure 14.37. Suppose the con-

straint that y ¼ 1 ! x ¼ 0 is given. How could one use this knowledge

to reduce the search space when trying to generate vectors in the

circuit? For example, suppose the target fault is y/0.

14.15. (Sequential ATPG) Consider the circuit shown in Figure 14.45. The tar-

get fault is a/0.
a
D Q z

14.45

equential circuit.
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a. Generate a test sequence for the target fault by use of only
5-valued logic.

b. Generate a test sequence for the target fault by use of 9-valued logic.
14.16. (Sequential ATPG) Given a sequential circuit, is it possible that two

stuck-at faults, a/0 and a/1, are both detected by the same vector vi in
a test sequence v0, v1, . . . , vk?

14.17. (Sequential ATPG) Consider an iterative logic array (ILA) expansion

of a sequential circuit, where the initial pseudo primary inputs are fully

controllable. Show that the states reachable in successive time frames of

the ILA shrink monotonically.

14.18. (Bridging Faults) Consider a bridging fault between the outputs of an

AND gate x ¼ ab and an OR gate y ¼ c þ d. What values to abcd would

induce the largest current in the bridge?
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