VHDL

Hardware description languages
Introduction to VHDL

Xilinx ISE Design Suite

Xilinx Vivado

Altera Quartus 2

Embedded Systems | S
Universita degli Studi dell’Aquila * 2%

Outline

" |ntroduction

= Hardware description languages

" |ntroduction to VHDL

= Simulation and Synthesis

= Xilinx ISE Design Suite — Xilinx Vivado
= Altera Quartus 2

Component Instantiation

" Once a system is defined (and maybe included in a package) it
can be used in a more complex system of higher level

=" As seen, a component must be declared using the keyword
component and instantiated via a port map. Multiple
instances of the same component can coexist in a single
design.

= VHDL 93 supports an alternative syntax that combines the
declaration and the instantiation of a component

UO: entity dut _ent (dut_arch) port map(A, B);

Generic Components

= VHDL supports the construction of parametric components
through the generic construct

entity half _adder 1s
generic (N: i1nteger);
port (A, B: 1In std logic_vector (N-1 downto 0);

* |n addition to the port map, the instantiation of a parametric
component will include also a generic map

generic map (N => 10)

GCD Calculator (FSM + DP)

gﬂil_

Controller
000 1:

b) Datapath
o001 2 (b) P

oot 3 0 — 0x 0:y
x ld= - —
B e ——— 'i
e o
o0 4 Y70 | I K
% I= < subtractor subtractor
. x_neq_y=0 3 xl=y 6 x<y 8 x-y T y-x
0101 5 -) < neq 3 _, |
0110 6 X neq y=) x Ity 9:d
x It y=1 x it y=0 d_1d
7| ¥ sel=1 g x sel=1 yd o
v ld=1 x ld=1
0111 1000
10Mm 6-1
1010 5-1

Introduction to VHDL 5 of 66

GCD Calculator (FSM + DP)

entity mux 1s
port(rst, sLine: in std logic;
load, result: in std logic vector(3 downto O);
output: out std logic vector(3 downto O)
)

end mux;

architecture mux_arc of mux 1s

begin
process(rst, sLine, load, result)
begin
iIfTC rst = "1) then
output <= "0000"; -- do nothing
elsift sLine = "0 then
output <= load; -- load i1nputs
else
output <= result; -- load results
end 1T;

end process;
end mux_arc;

GCD Calculator (FSM + DP)

entity comparator is
port(rst: in std _logic;
X, y: in std logic vector(3 downto 0);
output: out std logic vector(1 downto O)
)

end comparator;

architecture comparator_arc of comparator 1is

begin
process(X, y, rst)
begin
if(rst = "1) then
output <= "00"; -- do nothing
elsit(x >y) then
output <= "10"; -— 1T X greater
elsif(x <y) then
output <= "01"; -- 1f y greater
else
output <= ""11"; -— 1T equivalence.
end if;

end process;

end comparator_arc;

GCD Calculator (FSM + DP)

entity subtractor is
port(rst: 1In std logic;
cmd: 1n std logic vector(1 downto O);
X, y: i1n std _logic vector(3 downto O);
xout, yout: out std logic vector(3 downto O)
);

end subtractor;

GCD Calculator (FSM + DP)

architecture subtractor_arc of subtractor is

begin

process(rst, cmd, X, Yy)

begin

iITC rst = "1" or cmd = "00") then
xout <= "0000*
yout <= "'0000";

elsif(cmd = 10"
xout <= (x -

) then
y);

) then

yout <= y;
elsit(cmd = "01"
xout <= Xx;
yout <= (y - X);
else
xout <= X;
yout <= y;
end 1f;

end process;
end subtractor_arc;

-- not active.

-—- X IS greater

-— y IS greater

-- X and y are equal

GCD Calculator (FSM + DP)

entity gcd is
port(rst, clk, go 1: 1n std logic;
X 1, y 1: 1In std logic vector(3 downto O);
d o: out std logic vector(3 downto O)
);
end gcd;

architecture gcd _arc of gcd i1s
begin

end gcd_arc;

GCD Calculator (FSM + DP)

component fsm 1iIs
port(rst, clk, proceed: in std _logic;
comparison: in std logic vector(1 downto 0);
enable, xsel, ysel, xld, yld: out std logic
)

end component;

component mux IS
port(rst, sLine: in std logic;
load, result: in std logic vector(3 downto 0);
output: out std logic vector(3 downto 0)
)

end component;

component comparator 1is
port(rst: in std _logic;
X, y: in std logic vector(3 downto 0);
output: out std logic vector(1 downto O)
)

end component;

GCD Calculator (FSM + DP)

component subtractor 1is
port(rst: in std _logic;
cmd: i1n std logic vector(1 downto 0);
X, y: in std _logic vector(3 downto 0);
xout, yout: out std logic vector(3 downto O)
)

end component;

component regis IS
port(rst, clk, load: in std logic;
input: in std logic vector(3 downto 0);
output: out std logic vector(3 downto 0)
)

end component;

signal xlId, yld, xsel, ysel, enable: std logic;
signal comparison: std logic vector(1 downto O);
signal result: std logic vector(3 downto O);

signal xsub, ysub, xmux, ymux, Xreg, yreg: std logic vector(3 downto O);

GCD Calculator (FSM + DP)

—-- doing structure modeling here

—-- FSM controller
TOFSM: fsm port map(rst, clk, go i1, comparison,
enable, xsel, ysel, xId, yld);
—-— Datapath
X_MUX: mux port map(rst, xsel, x 1, Xsub, xmux);
Y _MUX: mux port map(rst, ysel, y 1, ysub, ymux);
X_REG: regis port map(rst, clk, xIld, xmux, Xxreg);
Y _REG: regis port map(rst, clk, yld, ymux, yreg);
U COMP: comparator port map(rst, xreg, yreg, comparison);
X_SUB: subtractor port map(rst, comparison, xreg, yreg, Xsub, ysub);
OUT_REG: regis port map(rst, clk, enable, xsub, result);

d o <= result;

Simulation

* The simulation process allows the verification of the modeled
circuit.

= The simulation can be:

= A functional simulation, used to verify that the system effectively
implements the desired functionality. This type of simulation requires
the definition of an appropriate set of stimuli.

= A timing simulation, used to verify the (temporal) performance of the
circuit. This type of simulation requires the definition of the target
platform and the implementation of the system.

Testbenches

" The simulation of a circuit requires a model of the circuit and
a description of the stimuli to be applied

= |n VHDL this is accomplished using a testbench, i.e. a module:
= With no inputs and no outputs
® |ncluding the system to be simulated

= Whose only functionality is to apply a proper set of stimuli with the
desired timing

= The testbenches are usually the only part of the VHDL code
including temporal (non-synthesizable) statements

y <= "00" after 5s;

Working principle

entity testbench

m—)

Introduction to VHDL 16 of 66

Developing a testbench

= A testbench is usually the entity of higher level in a project
= for this reason, this entity has no ports

entity testbenchl 1s
end testbenchl;

= |t will include the device to be tested as a components and as
many signals as the inputs to be excited.

" |mplementation of a testbench:
= Connect declared signals to the inputs of the system under test using
a port map

= Specify the temporal behaviour of the signals to obtain the sequences
of desired inputs

GCD Calculator Testbench (FSMD)

entity test GCD 1s
end test GCD;

architecture Bench of test GCD 1s

component gcd

port(clk: in std logic;
rst: in std logic;
go_1i: in std _logic;
X_1: in unsigned(3 downto 0);
y i: in unsigned(3 downto 0);
d o: out unsigned(3 downto 0)
)E

end component;

signal T clk, T rst,T go i: std logic;
signal T.x 1, Ty 1, T_d o: unsigned(3 downto 0);

GCD Calculator Testbench (FSMD)

begin
Ul: GCD port map(T _clk,T rst,T go 1, T x 1, Ty 1,T d o);

Clk sig: process
begin
T clk<="1";
wait for 5 ns;
T clk<="0";
walt for 5 ns;
end process;

GCD Calculator Testbench — alternative description

begin
Ul: GCD port map
(clk => T _clk,
rst => T rst,
go 1 => T go 1,
X 1 =TXx1,
yi=Ty.ili,
do=>Tdo
);

Clk sig: process
begin
T clk<="1";
wait for 5 ns;
T clk<="0";
wait for 5 ns;
end process;

Simulation tools

= FPGAS’ Integrated Development Environments usually include a
simulation tool or support the use of external ones.

= One of the best known simulation tools is ModelSim from Mentor
Graphics.

= Manufacturers’ ModelSim versions (specifically optimized for their FPGA)
are provided by Mentor Graphics and often integrated within
manufacturers’ Design Suites.

= An open source tool to consider: GHDL (Gnu HDL)

Simulation tools

= A simulation tool allows the verification (functional or timing)
of a system given the set of input signals.

= Besides testbenches, many simulators allow to manually
specify the set of stimuli.

= Waveform Generators are usually graphical interface tools
that allow users to define with relative ease the timing
diagrams of the input signals.

Simulation of GCD (FSMD)

FA Waveform Editor 1 - |O] x|
File Edt Seawch Miew Dezign Simolation Waveform Tool: Help *H
BEH|tBR ocx|([hQolh QRARR BT 21 d e 6% 5%
Hame Walue | Stimulator Coa 100 2000 0 . 300 . 4 . 400, 0 . BOO . o . BOO . 4 . TOD . i
T clk 1 iis
: [1 I
T go | 1 | L | L |
T g I Y5
Ty & 8 i H
T do 5 10 i i Ve W b5
1] | SR
Heady | v
RTL Code Simulation
Introduction to VHDL 23 of 66

Simulation of GCD (FSMD)

E Synopsyz Wavelorm Yiewer - TEST_GCD.core 6977 ow:0 - [Untitled]
File Edit Marker GoTo Yiew Options Window Help
Sl=[@] BE[e] mmmn] == [n] mE<>[+]]
0 e
0 100 200 300 400 300 Eﬂﬂ ?ﬂﬂ BtID ‘_J
BO0: Wi iilinad g sl Ginaailivand i v dr s ddiih i +
TEST_GCDIT_CLK. |0 mNHHHI\HMHHHI\HMHHHI\HHMHHHHNHHHHHHHHHHHHHNHHH_HNHHHHHHHNHHHHHHNHHHHHHNHHHI\I -
fTEST GELDST _RST a
CLES] e Ee. | 1
B [TEST _GCDVT # 1(3.]]5 G
B STEST GCDST Y G (| A a Z A,
B (TEST GCDYT D Q. ||5 o) g "3 i B
Y
o 1 [+1[e] [o1l* 1 E3
Ready Time = 800 |'Wif=6 WWic=F5 Sel=0

Gate level implementation Simulation

Introduction to VHDL 24 of 66

Simulation of GCD (FSM + DP)

B4 Waveform Editor 2 = =] B3

Eile Edit Seach Miew Design Simulation Waveform Tool: Help

01

A% %

100 hs |

Faztes clipboard contents at current location

|EH| ¢ BR| oA QA QE| I el 20| d o
[ame Walue Sh.. [T <1111 B 1000 1 1600 1 2000 1 2800 1 3000
w7 ok : -
T Do 2 {4 3 b B, e
ML 0 i | I | I
nroT gt 1]]
L 5 fiC "3 Y7 B, {3
Ty & 15 HE hE i3,

Jl

b

-
7

RTL Code Simulation

Introduction to VHDL

25 of 66

Simulation of GCD (FSM + DP)

ﬂﬁynupsys Waveform Yiewer - TEST_GCD._core. 7275.ow:0 - [Untitled]

File Edit Marker GolTo ¥iew Options Window Help

) (==]]] e] I) el e D R EX R =0 A
0 ot
0 200 1000 1200 2(+ﬂ =l
2000 ISRV ST T T N I T T T S YT N N T O T S M I _*J
TEST GCDT Lk ||o i-‘
TEST GeDim RsT ||o }
TEST GCDT_Go | ||o I | | | |
b /TEST GCDIT_¥_I(3..||8 C 3 7 A B
B /TEST GCDT Y_I(3.. || A g g 5 A
B /TEST GCDIT_D_QOf. ||2 0 4 3 : A 2
4
«[1 [2l{e] [+llel I _ 7]
Ready Time = 2000 | Wif=E WWic=B Sel=0

Gate level implementation Simulation

Introduction to VHDL 26 of 66

Synthesis

= Synthesis is process of translating a description of a hardware
system at higher abstraction level into an (optimized)
implementation on a lower abstraction level.

= From HDL description to an implementation in terms of logic gates

= FPGA manufacturers usually provide appropriate synthesis tool
optimized for the target devices.

= Not necessarily a simulated HDL model will be also synthesizable

Synthesis tools

" The synthesis tool must interpret VHDL constructs and
translate them into the corresponding circuit implementation

» The fundamental problem is to make sure that the translation
process is correct (i.e. obtain the desired circuit)

= Afrequent problem example: undesired latches

Constraints

= Besides the model, the synthesis process is based also on
constraints fixed by the user

= Using the constraints, it is possible to try to obtain a certain
behaviour of the synthesis tool, in order to optimize the final
result

= Most of the development environments supports the
definition of the constraints by using dedicated files
= Example: Xilinx ISE User Constraints Files (.ucf)

Synthesis of GCD (FSMD)

Synthesis of GCD (FSM + DP)

clk| =

«_113:81

regi=

regis
—»d_ol3:41]

Behaviour vs. RTL Synthesis

Synopsys Area Report Information (Behavior vs. RTL)

1200

1000

alili]

@ Behaviar Design
B RTL Design

600

Mumber of Areas

400

200

Combinational Sequential Total Cell Forts Mets Cells References
Area Area Area

Categories

Introduction to VHDL 32 of 66

Implementation

Implementation is the process of generating an FPGA configuration
file (bitstream) starting from a synthesized circuit

It includes:
= Map: fitting the design into the resources of the target platform

= Place and route: placing and interconnecting logic elements satisfying
timing specifications

= Bitstream generation: creating the device configuration file

Implementation constraints are used to direct the implementation
tools about mapping, placement, timing etc.

Manufacturers and market shares

2 XILINX

49 %

Others

zLattice

Semiconductor
Corporation

& Microsemi

* Xilinx Investor Overview, 2015

Introduction to VHDL 34 of 66

Xilinx ISE Design Suite

= |SE Design Suite is a design environment from Xilinx for the
development of CPLD and FPGA based systems.

= |SE is an integrated environment for simulation and synthesis:

= Simulation: by ISIM (ISE Simulator), with support for external tools
(ModelSim, NC-Sim, VCS);

= Synthesis: by XST (Xilinx Synthesis Technology), with support for
external tools (Precision RTL, Synplify)

= Quartus Il development environment is the Altera equivalent
of ISE

ISE Design Suite - Tools

= Basic tools: editor (graphical environment as an alternative),
simulation tool, synthesis tool

" Embedded system development: rapid development of
System-on-Chip using the Embedded Design Kit

= Management Tools: Effective management of the design flow
through PlanAhead

= QOther utilities and tools: DSP design using System Generator,
analysis tools for performance or occupied area, etc..

Project Navigator

= The Project Navigator is the central environment of ISE Design Suite
= |tis the entry point for coding, simulation and synthesis

= |t also allows a consistent and integrated management of the other
software tools

Project Navigator

Edit View Project Source Process Tools Window Layout Help E@E

DPEF L knEX[wa| 22820 RN REI3 AR P L Q
|Design 08 x| & 5 -- Create Date: 16:23:13 11/16/2011 x
[|View: © {5 Implementa ™) M Simula' & —— Design Name:
g@ Hi b — 7 —— Module Name: half adder — Behavioral |
ierarchy — =
: = 8
B half_adder “ g library IEEE; |
—| = E2 scfilian Alagial L= 10 wuse IEEE.STD LOGIC 1164.ALL;
o - [l half_adder - Behavioral 11 use IEEE.NUMERIC STD.ALL;
a 2 =
= — 13
A 14 entity half adder is
) % 15 Port (A : in STID LOGIC:
2 16 B : in STD LOGIC;
- P 17 S5UM : out STID LOGIC:
= | 1e CARRY : out SID LOGIC);
1 0 al b= 19 end half adder;
» |) Mo Processes Running Q 2 .) i 3
o @ 21 architecture Behavioral of half adder is
I%'g: Processes: half_adder - Behaviora = | —— 22
el Design Summary/Re... JiEbegin
— Design Utilities o N
Ert User Constraints 25, (SIM <= ‘E and: By
=5 Synthesize - XST = 26 CARRY <= A xor B;
m View RTL Schem... 27
View Technology... =5 i
(&) Check Syntax 29 end Behavioral;
- P) Generate Post-Sy.. | 24
Implement Design ol =
Generate Programmt . I %
E Siart Elz Desngn @] Files |4EE]L half_adder.vhd* [x] | = Design Summary |
Console +08F X
\{)INFO:HDLCompiler:1061 — Parsing VHDL file "D:/Progetti/half adder/half adder.vhd" into library work -
13 INFO: ProjectMgmt : 659 — Parsing design hierarchy completed successfully. E|
Launching Design Summary/Report Viewer...
Started : "Launching ISE Text Editor to edit half adder.vhd". T
4 L} ¢
. Console |__ Errors |_ﬁ Warnings | lﬁ Find in Files Results

Ln7 Col44 VHDL

Introduction to VHDL 38 of 66

Embedded Development Kit (EDK)

= EDK is a system-on-chip design environment

= |t includes:

= XPS: hardware design environment (microprocessor systems’ design,
also supporting the development of multicore architectures)

= SDK: software development environment

= Altera Alternative : Nios || Embedded Design Suite (EDS);

System Generator

= System Generator is a development environment for FPGA-
based digital signal processing architectures

= Simulink-based tool, supports the use of all Simulink’s features
= Large number of DSP blocks immediately available
= Possibility of exploiting Matlab to generate vectors of stimuli

= System Generator also supports hardware co-simulation

= Altera also provides a similar tool (DSP Builder)

Vivado Design Suite

" Since 2012 Xilinx discontinued ISE Design Suite in favor of
Vivado Design Suite.

= Vivado is “a ground-up rewrite and re-thinking of the entire
Xilinx design flow”
= |P Integrator
= Simulator
= High-Level Synthesis

= \We will return on this...

IP Cores

= An advantage of the use of manufacture’s IDEs is the
availability of IP Cores
= Free (asin beer)
= Ready to use
= Optimized

= Xilinx provides various IP cores inside of EDK and a dedicated
signal processing core library (Core Generator)

= |P Cores are provided also by third parties

= QOpenCores.org provides a large number of IP Cores for many
application areas (free of charge, registration needed)

Embedded (Soft)-Processors

LEON3
Synthesizable
processor

Introduction to VHDL 43 of 66

Embedded Processors

= Xilinx provides two types of processors for the development
of embedded systems:

= Hard-processor: PowerPC (available in various models of Xilinx FPGAs)
and ARM based processors, available on the Zyng-7000 devices

= Soft-processors: MicroBlaze, PicoBlaze

= PowerPC and MicroBlaze are directly supported within the
Embedded Development Kit

PicoBlaze

" PicoBlaze is actually more a low-end, programmable state
machine than a programmable microprocessor
= KCPSM, Constant (K) Coded Programmable State Machine

" |t is often used within the System Generator as datapath
control element

= 8-bit RISC architecture

" Programmable assembly (max 1024 instructions programs)

References

= ANSI/IEEE Std 1076

" Frank Vahid and Tony Givargis, Embedded System Design: A
Unified Hardware/Software Introduction. John Wiley & Sons,
2002

= Peter J. Ashenden, The Designer's Guide to VHDL, Morgan
Kaufmann Publishers, 2008

= Volnei A. Pedroni, Circuit Design and Simulation with VHDL -
2nd Edition, MIT Press, 2010

= Pong P. Chu, RTL Hardware Design using VHDL, Wiley, 2006

= Pong P. Chu, FPGA Prototyping by VHDL Examples: Xilinx
Spartan-3 Version, Wiley, 2008

Free & open resources

= vhdl.org

" OpenCores: open source hardware resource

* Vendors websites: Xilinx (forum recommended), Altera
= GHDL: GPL VHDL Simulator

= ActiveHDL: simulator and various tutorials

"= Cobham Gaisler: Leon 3 processor

Thank you!

Introduction to VHDL 48 of 66

