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Component Instantiation

" Once a system is defined (and maybe included in a package) it
can be used in a more complex system of higher level

=" As seen, a component must be declared using the keyword
component and instantiated via a port map. Multiple
instances of the same component can coexist in a single
design.

= VHDL 93 supports an alternative syntax that combines the
declaration and the instantiation of a component

UO: entity dut _ent (dut_arch) port map(A, B);



Generic Components

= VHDL supports the construction of parametric components
through the generic construct

entity half _adder 1s
generic (N: i1nteger);
port (A, B: 1In std logic_vector (N-1 downto 0);

* |n addition to the port map, the instantiation of a parametric
component will include also a generic map

generic map (N => 10)



GCD Calculator (FSM + DP)
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GCD Calculator (FSM + DP)

entity mux 1s
port( rst, sLine: in std logic;
load, result: in std logic vector( 3 downto O );
output: out std logic vector( 3 downto O )
)

end mux;

architecture mux_arc of mux 1s

begin
process( rst, sLine, load, result )
begin
iIfTC rst = "1 ) then
output <= "0000"; -- do nothing
elsift sLine = "0 then
output <= load; -- load i1nputs
else
output <= result; -- load results
end 1T;

end process;
end mux_arc;



GCD Calculator (FSM + DP)

entity comparator is
port( rst: in std _logic;
X, y: in std logic vector( 3 downto 0 );
output: out std logic vector( 1 downto O )
)

end comparator;

architecture comparator_arc of comparator 1is

begin
process( X, y, rst )
begin
if( rst = "1 ) then
output <= "00"; -- do nothing
elsit( x >y ) then
output <= "10"; -— 1T X greater
elsif( x <y ) then
output <= "01"; -- 1f y greater
else
output <= ""11"; -— 1T equivalence.
end if;

end process;

end comparator_arc;



GCD Calculator (FSM + DP)

entity subtractor is
port( rst: 1In std logic;
cmd: 1n std logic vector( 1 downto O );
X, y: i1n std _logic vector( 3 downto O );
xout, yout: out std logic vector( 3 downto O )
);

end subtractor;



GCD Calculator (FSM + DP)

architecture subtractor_arc of subtractor is

begin

process( rst, cmd, X, Yy )

begin

iITC rst = "1" or cmd = "00" ) then
xout <= "0000*
yout <= "'0000";

elsif( cmd = 10"
xout <= ( x -

) then
y );

) then

yout <= y;
elsit( cmd = "01"
xout <= Xx;
yout <= (y - X );
else
xout <= X;
yout <= y;
end 1f;

end process;
end subtractor_arc;

-- not active.

-—- X IS greater

-— y IS greater

-- X and y are equal



GCD Calculator (FSM + DP)

entity gcd is
port( rst, clk, go 1: 1n std logic;
X 1, y 1: 1In std logic vector( 3 downto O );
d o: out std logic vector( 3 downto O )
);
end gcd;

architecture gcd _arc of gcd i1s
begin

end gcd_arc;



GCD Calculator (FSM + DP)

component fsm 1iIs
port( rst, clk, proceed: in std _logic;
comparison: in std logic vector( 1 downto 0 );
enable, xsel, ysel, xld, yld: out std logic
)

end component;

component mux IS
port( rst, sLine: in std logic;
load, result: in std logic vector( 3 downto 0 );
output: out std logic vector( 3 downto 0 )
)

end component;

component comparator 1is
port( rst: in std _logic;
X, y: in std logic vector( 3 downto 0 );
output: out std logic vector( 1 downto O )
)

end component;



GCD Calculator (FSM + DP)

component subtractor 1is
port( rst: in std _logic;
cmd: i1n std logic vector( 1 downto 0 );
X, y: in std _logic vector( 3 downto 0 );
xout, yout: out std logic vector( 3 downto O )
)

end component;

component regis IS
port( rst, clk, load: in std logic;
input: in std logic vector( 3 downto 0 );
output: out std logic vector( 3 downto 0 )
)

end component;

signal xlId, yld, xsel, ysel, enable: std logic;
signal comparison: std logic vector( 1 downto O );
signal result: std logic vector( 3 downto O );

signal xsub, ysub, xmux, ymux, Xreg, yreg: std logic vector( 3 downto O );



GCD Calculator (FSM + DP)

—-- doing structure modeling here

—-- FSM controller
TOFSM: fsm port map( rst, clk, go i1, comparison,
enable, xsel, ysel, xId, yld );
—-— Datapath
X_MUX: mux port map( rst, xsel, x 1, Xsub, xmux );
Y _MUX: mux port map( rst, ysel, y 1, ysub, ymux );
X_REG: regis port map( rst, clk, xIld, xmux, Xxreg );
Y _REG: regis port map( rst, clk, yld, ymux, yreg );
U COMP: comparator port map( rst, xreg, yreg, comparison );
X_SUB: subtractor port map( rst, comparison, xreg, yreg, Xsub, ysub );
OUT_REG: regis port map( rst, clk, enable, xsub, result );

d o <= result;



Simulation

* The simulation process allows the verification of the modeled
circuit.

= The simulation can be:

= A functional simulation, used to verify that the system effectively
implements the desired functionality. This type of simulation requires
the definition of an appropriate set of stimuli.

= A timing simulation, used to verify the (temporal) performance of the
circuit. This type of simulation requires the definition of the target
platform and the implementation of the system.



Testbenches

" The simulation of a circuit requires a model of the circuit and
a description of the stimuli to be applied

= |n VHDL this is accomplished using a testbench, i.e. a module:
=  With no inputs and no outputs
® |ncluding the system to be simulated

= Whose only functionality is to apply a proper set of stimuli with the
desired timing

= The testbenches are usually the only part of the VHDL code
including temporal (non-synthesizable) statements

y <= "00" after 5s;



Working principle

entity testbench

m—)
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Developing a testbench

= A testbench is usually the entity of higher level in a project
= for this reason, this entity has no ports

entity testbenchl 1s
end testbenchl;

= |t will include the device to be tested as a components and as
many signals as the inputs to be excited.

" |mplementation of a testbench:
= Connect declared signals to the inputs of the system under test using
a port map

= Specify the temporal behaviour of the signals to obtain the sequences
of desired inputs



GCD Calculator Testbench (FSMD)

entity test GCD 1s
end test GCD;

architecture Bench of test GCD 1s

component gcd

port( clk: in std logic;
rst: in std logic;
go_1i: in std _logic;
X_1: in unsigned(3 downto 0);
y i: in unsigned(3 downto 0);
d o: out unsigned(3 downto 0)
)E

end component;

signal T clk, T rst,T go i: std logic;
signal T.x 1, Ty 1, T_d o: unsigned(3 downto 0);



GCD Calculator Testbench (FSMD)

begin
Ul: GCD port map(T _clk,T rst,T go 1, T x 1, Ty 1,T d o);

Clk sig: process
begin
T clk<="1";
wait for 5 ns;
T clk<="0";
walt for 5 ns;
end process;



GCD Calculator Testbench — alternative description

begin
Ul: GCD port map
(clk => T _clk,
rst => T rst,
go 1 => T go 1,
X 1 =TXx1,
yi=Ty.ili,
do=>Tdo
);

Clk sig: process
begin
T clk<="1";
wait for 5 ns;
T clk<="0";
wait for 5 ns;
end process;



Simulation tools

= FPGAS’ Integrated Development Environments usually include a
simulation tool or support the use of external ones.

= One of the best known simulation tools is ModelSim from Mentor
Graphics.

= Manufacturers’ ModelSim versions (specifically optimized for their FPGA)
are provided by Mentor Graphics and often integrated within
manufacturers’ Design Suites.

= An open source tool to consider: GHDL (Gnu HDL)



Simulation tools

= A simulation tool allows the verification (functional or timing)
of a system given the set of input signals.

= Besides testbenches, many simulators allow to manually
specify the set of stimuli.

= Waveform Generators are usually graphical interface tools
that allow users to define with relative ease the timing
diagrams of the input signals.



Simulation of GCD (FSMD)
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Simulation of GCD (FSMD)
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Simulation of GCD (FSM + DP)
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Simulation of GCD (FSM + DP)
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Synthesis

= Synthesis is process of translating a description of a hardware
system at higher abstraction level into an (optimized)
implementation on a lower abstraction level.

= From HDL description to an implementation in terms of logic gates

= FPGA manufacturers usually provide appropriate synthesis tool
optimized for the target devices.

= Not necessarily a simulated HDL model will be also synthesizable



Synthesis tools

" The synthesis tool must interpret VHDL constructs and
translate them into the corresponding circuit implementation

» The fundamental problem is to make sure that the translation
process is correct (i.e. obtain the desired circuit)

= Afrequent problem example: undesired latches



Constraints

= Besides the model, the synthesis process is based also on
constraints fixed by the user

= Using the constraints, it is possible to try to obtain a certain
behaviour of the synthesis tool, in order to optimize the final
result

= Most of the development environments supports the
definition of the constraints by using dedicated files
= Example: Xilinx ISE User Constraints Files (.ucf)



Synthesis of GCD (FSMD)




Synthesis of GCD (FSM + DP)
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Behaviour vs. RTL Synthesis
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Implementation

Implementation is the process of generating an FPGA configuration
file (bitstream) starting from a synthesized circuit

It includes:
= Map: fitting the design into the resources of the target platform

= Place and route: placing and interconnecting logic elements satisfying
timing specifications

= Bitstream generation: creating the device configuration file

Implementation constraints are used to direct the implementation
tools about mapping, placement, timing etc.



Manufacturers and market shares
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Xilinx ISE Design Suite

= |SE Design Suite is a design environment from Xilinx for the
development of CPLD and FPGA based systems.

= |SE is an integrated environment for simulation and synthesis:

= Simulation: by ISIM (ISE Simulator), with support for external tools
(ModelSim, NC-Sim, VCS);

= Synthesis: by XST (Xilinx Synthesis Technology), with support for
external tools (Precision RTL, Synplify)

= Quartus Il development environment is the Altera equivalent
of ISE



ISE Design Suite - Tools

= Basic tools: editor (graphical environment as an alternative),
simulation tool, synthesis tool

" Embedded system development: rapid development of
System-on-Chip using the Embedded Design Kit

= Management Tools: Effective management of the design flow
through PlanAhead

= QOther utilities and tools: DSP design using System Generator,
analysis tools for performance or occupied area, etc..



Project Navigator

= The Project Navigator is the central environment of ISE Design Suite
= |tis the entry point for coding, simulation and synthesis

= |t also allows a consistent and integrated management of the other
software tools



Project Navigator
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Embedded Development Kit (EDK)

= EDK is a system-on-chip design environment

= |t includes:

= XPS: hardware design environment (microprocessor systems’ design,
also supporting the development of multicore architectures)

= SDK: software development environment

= Altera Alternative : Nios || Embedded Design Suite (EDS);



System Generator

= System Generator is a development environment for FPGA-
based digital signal processing architectures

= Simulink-based tool, supports the use of all Simulink’s features
= Large number of DSP blocks immediately available
= Possibility of exploiting Matlab to generate vectors of stimuli

= System Generator also supports hardware co-simulation

= Altera also provides a similar tool (DSP Builder)



Vivado Design Suite

" Since 2012 Xilinx discontinued ISE Design Suite in favor of
Vivado Design Suite.

= Vivado is “a ground-up rewrite and re-thinking of the entire
Xilinx design flow”
= |P Integrator
= Simulator
= High-Level Synthesis

= \We will return on this...



IP Cores

= An advantage of the use of manufacture’s IDEs is the
availability of IP Cores
= Free (asin beer)
= Ready to use
= Optimized

= Xilinx provides various IP cores inside of EDK and a dedicated
signal processing core library (Core Generator)

= |P Cores are provided also by third parties

= QOpenCores.org provides a large number of IP Cores for many
application areas (free of charge, registration needed)



Embedded (Soft)-Processors
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Introduction to VHDL 43 of 66



Embedded Processors

= Xilinx provides two types of processors for the development
of embedded systems:

= Hard-processor: PowerPC (available in various models of Xilinx FPGAs)
and ARM based processors, available on the Zyng-7000 devices

= Soft-processors: MicroBlaze, PicoBlaze

= PowerPC and MicroBlaze are directly supported within the
Embedded Development Kit



PicoBlaze

" PicoBlaze is actually more a low-end, programmable state
machine than a programmable microprocessor
= KCPSM, Constant (K) Coded Programmable State Machine

" |t is often used within the System Generator as datapath
control element

= 8-bit RISC architecture

" Programmable assembly (max 1024 instructions programs)
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Free & open resources

= vhdl.org

" OpenCores: open source hardware resource

* Vendors websites: Xilinx (forum recommended), Altera
= GHDL: GPL VHDL Simulator

= ActiveHDL: simulator and various tutorials

"= Cobham Gaisler: Leon 3 processor



Thank you!
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