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MEC® Context: Cyber-Physical System
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» Acyber-physical system (CPS) is an integration of computation with physical processes
whose behavior is defined by both cyber and physical parts of the system.

» Embedded computers and networks
monitor and control the physical
processes, usually with feedback loops
where physical processes affect
computations and vice versa.

> As an intellectual challenge, CPS is | COMMUNICATION
about the intersection, not the union, : VIEW
of the physical and the cyber. 2] %

[1 Lee, E. A, Seshia, S. A.: Introduction to Embedded Systems, a
Cyber-Physical Systems approach, Second Edition,
LeeSeshia.org, 2015
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Mixed-Criticality Embedded Systems

» The growing complexity of embedded digital systems based on modern System-on-
Chip (SoC) adopting explicit heterogeneous parallel architectures has radically
changed the common design methodologies.

MECE

education & training

» HW/SW co-design methodologies are of
renovated relevance

» Agrowing trend in embedded systems domain is
the development of mixed-criticality systems
where multiple embedded applications with
different levels of criticality are executed on a
shared hardware platform (i.e. Mixed-Criticality
Embedded Systems)
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» Amixed criticality system is “an integrated suite of HW, QS middleware services and application software that
supports the concurrent execution of safety-critical, mission-critical, and noncritical software within a single,
secure computing platform’

» MAIN GOALS: development of EDAtools, mainly oriented to support the designer of Mixed-Criticality
and Cyber-Physical systems based on heterogeneous multi/many-core platforms, considering
Hypervisor-Based SW partitions
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Industry has shown a growing interest in integrating and running independently-
developed applications of different “criticalities” in the same (often multicore)
platform. Such integrated systems are commonly referred to as mixed-criticality
systems (MCS).

Most of the MCS-related research cite the safety-related standards associated to each
application domain (e.g. aeronautics, space, railway, automotive) to justify their
methods and results. However, those standards are not freely available and do not
always clearly and explicitly specify the requirements for mixed-criticality

New MC task model is in essence the result of combining the standard hard real-time

requirements (studied by the real-time research community since the 70’s) with the
notion of “criticality” of execution.

9 Proceedings of CPS&I0T2019 page 443
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System Design anu vevelopment

During a typical development life cycle of a safety-critical system, the behavior and
characteristics that are expected from the system are expressed in the form of a list of
requirements

based on the system operational requirements (what the system is expected to do) and also
considering non-functional properties related to safety, security and performance, including
timing and energy constraints.

System safety assessment process must be carried out as part of the development life
cycle to determine and categorize the failure conditions of the system (e.g. through a
hazard analysis).

safety-related requirements are derived as a result of the system safety assessment process,
which mayinclude functional, integrity, dependability requirements and design constraints.

Safety-related requirements are allocated to hardware and software components,
thereby specifying the mechanisms required to prevent the faults or to mitigate their
effects and avoid the propagation of failures.

Proceedings of CPS&I0T2019 page 444
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Integrity Level

» Most safety standards use the concept of an integrity level, which is assigned to a system
or a function. This level will be based on an initial analysis of the consequences of software
going wrong. Both standards have clear guidance on how to identify integrity level.

= DO-178C has Software Development Assurance Level (DAL), which are assigned based on the
outcome of "anomalous behavior" of a software component — Level A for "Catastrophic Outcome",
Level E for "No Safety Effect".

= |S0O26262 has ASIL (Automotive Safety Integrity Level), based on the exposure to issues affecting
the controllability of the vehicle. ASILs range from D for the highest severity/most probable
exposure,and Aas the least.

Most
Stringent

Level A

Level B

Level C

Level D

Level E Least
Stringent

DO-178C 1IsOz26262
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» GENERAL (IEC-61508) based on SIL (Safety Integrity Level): Functional safety standards
(of electrical, electronic,and programmable electronic)

AUTOMOTIVE (1SO26262) based on ASIL (Automotive Safety Integrity Level) (Road vehicles - Functional safety)
NUCLEAR POWER (IEC 60880-2)

MEDICAL ELECTRIC (IEC 606011
PROCESS INDUSTRIES (IEC 6151])
RAILWAY (CENELEC EN 50126/ 128/ 129])
MACHINERY (IEC 6206

~ AVIONICbased on DAL (Development Assurance Level ) related to ARPA761and ARP4754

DO-178B (Software Considerations in Airborne Systems and Equipment Certification)

DO-178C (Software Considerations in Airborne Systems and Equipment Certification, replace DO-178 B)
DO-254 (Airborne - Design), similar to DO-178B, but for hardware

DO-160F (Airborne - Test)

» MEDICAL DEVICE

. FDA-21CFR
. IEC-62304
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“The more
confidence one needs in a task

execution time bound
3 (theless tolerant oneis of
missed deadlines), the larger

Mixed Crit |Ca||ty and more conservative that

bound tends to becomein

Systems Analysis practice”
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MCS state-of-the-art Model (2

Almost 200 papers treating of the scheduling of MCS have been referenced in Burns
and Davis*paper, and tens of related papers are still published every year. Most of the
works about MCS published by the real-time scheduling research community are based
on a model proposed by Vestal*

System has several modes of execution,say modes {1, 2, ... , }. The application system is a set
of real-time tasks, where each task ; is characterized by a period T, and a deadline D, (as in
the usual real-time task model), an assurance level /;and a set of worst-case computational
estimates {C;1, C;3, ..., C;; }, under the assumption that €;; <C;, <... < Cyy,

The different WCET estimates are meant to model estimations of the WCET at different
assurance levels. The worst time observed during tests of normal operational
scenarios might be used as C;; whereas at each higher assurance level the
subsequent estimates C;,, ... , C;;, are assumed to be obtained by more conservative
WCET analysis technigues

*Burns, A Davis, Rl.: 'Mixed Qiticality Systems - AReview'*, University of York, 4 March 205.
**S \Vestal, "Rreemptive Scheduling of Multi-criticality Systems with Varying Degrees of Execution Time Assurance,” Real-Time
Systems Symposium (RISS) 28th IEEE International on, Tucson, Az, 2007, pp. 239-243.
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The system starts its execution in mode land all tasks are scheduled to execute on the core[s]. Then
at runtime, if the system is running in mode kthen each time the execution budget C;; of atask t;is
overshot, the system switches to mode A+Z It results from this transition from mode Ato mode A+
that all the tasks of criticality not greater than k(ie. /;> k) are suspended. Mechanisms have also
been proposed to eventually re-activate the dropped tasks at some later points in time¥.

one of the simplifications of this model is the Vestal’s model with only two modes, usually
referred to as LOand HI modes (which stand for Low- and High-criticality modes).

Multiple variations of that scheduling scheme exist, some for single-core, others for multicore
architectures. In the case of multicore, both global and partitioned scheduling techniques have been
studied and solutions for fixed priority scheduling (RM), Earliest Deadline First (EDF) and time
triggered scheduling have been proposed in literature.

some works also propose to change the priorities or the periods of the tasks during a mode
change rather than simply stopping the less critical ones.

Note that some works also propose to change the priorities or the periods of the tasks during a
mode change rather than simply stopping the less critical ones.

* F Santy, G Raravi, G Nelissen, V. Nelis, P Kumar, J oossens, and E Tovar. Two protocols to reduce the criticality level of
multiprocessor mixed-criticality systems. In RINS 2013, RINS’ 13, pages 13- 192. AGVI, 2013.
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Mixed-criticality principles applied to application layer modelling objects:
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Application 8 1 12 14 18
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» Safety-critical domain Ty, T1, Tz, Sg: high-critical tasks and shared objects } arrivel running access res. X
(syne required)

» Performance-critical domain Ts, T4, Ts, S3: low-critical tasks and shared objects blocked g 2CC25S on res. X :

R preemption (decoupled)
» mixed-criical shared objects: S, S;
S A I
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- communication objects U . . » 1CP(M): Interfaces for ey
» One for each criticality level (e.g. LO, Hi) > if criticality level L increases, abort active calls < L . h : access res. X -
» Criticality level » L;: eriticality level » discard T’ grouping methods i 4 arrival running EMM (sync required)
» statically defined at design time (e.g. LO, Hi) > only allow calls from tasks with criticality level > L » ®: resource arbitration £ oroemplion blocked g 200esS on res. X ;
policy A TSR osst (decoupled)
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Industrial and Academic MCS Case Study
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Safety critical tasks: All tasks which are needed for a stable and
safety flight of the multi-rotor system, eg. the flight and navigation
controllers. An error, like missing a deadline, will cause a crash-

landing!

Mission critical tasks: All tasks which are not needed for a safe
flight, but may also have defined deadlines, eg. tasks which are

belonging to the payload processing, like video processing.

Uncritical tasks: All tasks which are not needed either for a safe
flight or a correct execution of the mission task, eg. control of the

debug LEDs or transmission of telemetry data.

REFERENCE
SOFTWARE

“DEMO PLATFORM

SERIAL
M

IETHERNEE

PLATFORM

SPACEWIRE SPACEWIRE

PERIPHERAL PERIPHERAL
DEVICE 2 DEVICE 1
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MCS state-of-the-art Model (2)
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Research - Industrial Domain Misunderstandings

Academic papers: “system criticality” as a mode of execution of software tasks (e.g. high or low

criticality). Mode change allowed
Industrial domain: “system criticality” refers to the level of assurance (e.g. DAL, SIL or ASIL)

applied in the development of a software application that implements critical system
functionalities (i.e.safety functions)

Mixed-Criticality Challenges

Scheduling (Priority W& Safety), Partition (Isolation), Performance (WCET estimation),
Predictability (Graceful Degradation), Manufactory Cost, Fault-tolerance, Power-consumption,

Networking

Proceedings of CPS&I0T2019 page 452
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“Amajor industrial
challenge arises from the
need to face cost efficient

4 Integration of different
u aoplications with
different levels of safety

Mixed-Crit ICallty and security on a single

computing platform in an

CI aSSif | C a.t | on open context”
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Separation technique:
= Timing separation: scheduling policy,temporal partitioning with HVP, NoC
= Spatial separation: onetask per core, one task on HW ad hoc (DSP, FPGA), spatial partition with HVP, NoC, MMU, MPU etc.

»HW:
= Temporal isolation: Scheduling HW
= Spatial isolation: separated Task on dedicated components (HW ad hoc, FPGA etc.)

»Single core:
= Temporal isolation: Scheduling policy with SO o RTOS, Scheduling policy with HVP
= Spatial isolation : MMU, MPU, HVP Partitioning

»Multi-core

= Architecture: shared memory systems, Uniform Memory Architecture, UMA (SMP), Not Uniform Memory
Architecture, NUMA, distributed systems, NoC

= Temporal isolation: Scheduling policy with SO o RTOS, Scheduling policy with HVP

= Spatial isolation: MMU, MPU, HVP partitioning

»Many-core
= Workin progress

20 Proceedings of CPS&I0T2019 page 454
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MCS Technologies

Tecnologies:

= Hardware: HW ad hoc, FPGA, DSP, Processor
» Processor: LEON3, ARM, MICROBLAZE etc.

» Software: Bare-metal, OS, RTOS, HVP
» OS: Linux etc.
» RTOS: eCos, RTEMS, FreeRTOS, Threadx, VixWorks, EriKa etc.
» HVP: PikeCS, Xtratum, Xen etc.

( HVP N ( RTOS )

aayys» XD

N

Xen
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S 2

Scheduling:
=  (O-Levels

= Ilevel

= 2-lLevels

= 3-Levels?
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Hardware: HW ad hoc,
FPGA, DSP, Processor.

= Processor: LEONS,
ARM, MICROBLAZE,
etc.

Software: Bare-metal, OS,

RTCS, HVP

= OS: Lnux etc.

= RTOS: eCos, RTEMS,
FreeRTOS, Threadx,
VxWorks, EriKa etc.

= HVP; PikeGsS,
Xtratum, Xen etc

Many-core: WIP

Contents

C Implementation Solutions (M-CIS)

Separajtlon HW Single core Multi-core Many-core
Technique
0-levels scheduling 0-levels scheduling
[7],[129],[130],[131] [132],[124],[125],[131]
. 1-level scheduling
1-level schedullng [7],[136],[137],[125],[138],[139],[140]
0-levels [971,[133],[134],[135]
. . ,[133],[144],[141],[145],[146],[61],[14 [124],[125],
Spatial scheduling [141],[142],[143] 21,[147],[131] [126],[127],[128]
[125],[129],[130] ’ ’ ’ ’
2-levels scheduling 2-levels scheduling
[141],[148] [149],[125],[126],[150],[151],[128]
3-levels scheduling [154] 3-levels scheduling [154]
0-levels scheduling 0-levels scheduling
[7],[129],[130],[131] [132],[124],[125],[129],[130],[128]
1-level scheduling 1-level scheduling
o-levels [133],[134],[135], [71,[136],[137],[155],[125],[138],[140]
Temporal scheduling [142],[143],[131] [133],[144],[146],[61],[156],[142] [124],[125],

[125],[129],[130]

2-levels scheduling
[141],[148]

2-levels scheduling
[149],[125],[126],[152],[141],[145],
[153],[148],[49],[128]

3-levels scheduling [154]

3-levels scheduling [154]

[126],[127],[128]
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mHW
M Single-core
M Multi-core

= Many-core

ISOLATION TECHNIQUES SCHEDULING LEVELS

W HW Spatial m Single-core O-L

m Single-Core Spatial m Single-core 1-L

® Multi-Core Spatial W Single-core 2-L

m Many-Core Spatial W Single-core 3-L

| HW Temporal | Multi-core 0-L
m Single-Core Temporal B Multi-core 1-L
m Multi-Core Temporal B Multi-core 2-L
B Multi-core 3-L

W Multi-Core Temporal
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Methodologies/Tools: Gezel, CoFluent, TO(H)SCA

Vulcan, COSYMA
1985 - 1994 2005 - 2011

®
® HARDWARE
®o—0 U SOFTWARE
O
O

1995 - 2005 2012 - Nowadays

HW/SW CO-DESIGN 2.0 HW/SW CO-DESIGN 4.0

Co-Design & Modern HW/SW Co-Design
Y-CHART Platform-based Design for Double-Roof ) ) )
GAJSKI-KUHN Complex Targets Model Online Co-Design for Adaptive Systems

(1983)

(2007) Co-Design of CPS, CPSo0S
Co-Design for Monitorability & Security

Methodologies/Tools: HW/SW Co-Design for Mixed-Criticality Systems

Koski, PeaCE/HOPES, Ptolemy
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Space CoDesign, HEPSYCODE
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Hectronic System Level (ESL) is the utilization of appropriate abstractions in order to increase comprehension
about a system, and to enharnce the probability of a successful implementation of functionality in a cost-effective
manner, targeting design methodologies for electronic digital HW/ SW systems

Specification
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Partitioning
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System Integration
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SPP, Communication

structure)

D dinac nf CDC O IATINT(Q)
rHOCeeOmMyS OrorocabTzory

ge 464

o



MEC(

education & training

Contents

Mixed-Criticality HW/ SW Co-Design

Qassification of different ESL Methodology Approaches (considering Mixed-Qriticality Issues)

| I Specification I Specification | Implementation | | Decision Making | Refinement
ESL Approach | Gen.! Appl.? Arch.? Language MoS! MoP® DSES || Comp.” | Comm.® | Comp.” | Comm.®
AUTOFOCUS3 4.0 PN HeMPES Custom Component | TAPM . . o . -
CONTREP 4.0 UML, SDF | HeMPES || MARTE & SysML & SystemC TLM TAPM . . o . o
DeSyDe 3.0/4.0 SDF HeMPSoC XML - - . . o . o
Combined-DSE 4.0 CP HeMPES MiniZinc TLM TAPM . . - . -
OSSS-MC 4.0 0SSS/MC | HeMPSoC SystemC TLM T/ISAPM - . - . -
MultiPARTES 4.0 UML HoMPES MARTE TLM TAPM . . - . -
HEPSYCODE 4.0 cspP HeMPES SystemC TLM T/ISAPM . . . . o

31

I Gen.: HW /SW Co-Design Generation; 2 Appl.: Application Model;  Arch.: Architecture Model;

4 MoS: Model of Structure; ® MoP: Model of Performance; ® DSE: Design Space Exploration;
Comm.: Communication; CP: Constraint Programming;

Comp.: Computation;

PN: Process Network; CSP: communicating sequential processes; UML: Unified Modeling Language; SDF: Synchronous Dataflow;
He/HoMPS: Heterogeneous/Homogeneous Multi-processor Systems;

He/HoMPSoC: Heterogeneous/Homogeneous Multi-processor System on chip;
He/HoMPES: Heterogeneous/Homogeneous Multi-processor Embedded System;

TLM: Transaction-Level Model;
TAPM: Task Accurate Performance Model; ISAPM: Instruction Set Accurate Performance Model; CAPM: Cycle-Accurate Performance Model;
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DEFINITION OF A GENERAL
METHODOLOGY ABLE TO ABSTRACT
CLASSICAL SYSTEM DESIGN FLOW
(APPLICABLE TO DIFFERENT HW/SW
CO-DESIGN FLOW)

System Description: Introduction of a
partition layer to model HPV SW
partitions

Metrics Evaluation and Estimation:
Definition of different metrics (with
related benchmarking arctivites in
order to extract as-much-as-possible
system informations)

Search Methods: Meta-heuristic
algorithm refinement (GA
improvements)

Timing Simulator: improvement

introducing Hierarchical scheduling
feature
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Definition of a general framework able to automate system design REFERENCE SYSTEM BEHAVIORAL NF
flow (Implemented using different SW technologies) | INPUT MODEL CONSTRAINTS
System Behavioral model: Realization of a GUI to model application (SysTEM-LEVEL FLOW F ]
using the specification language defined in the system behavioral f.mct:or.:a
specification step Application Simulation Instances TL
¥
Functional Simulation: automatic generation of a SystemC code f ¥ - =
implementing Hoare’s CSP model of Computation from GUI “ 2 2 =
3 M| E HE

Co-Analysis&Co-Estimation: definition of a extensible activity step to Z S g o I
evaluate system metrics: & § S S
= Affinity “ ; ‘
. Concurre‘ncy‘ PAM parameters ‘ Application ‘ ‘ Instances TL ‘
=  Communication [ I T
= Size _ _
. Load DESIGN SPACE EXPLORATION -n'ming
" Power (WIP) Partitionin Mapping

()| Mapping | Simulation
DSE: implementation of an automatic (extensible) DSE to make analysis \ 7
and propose solutions in an HW/SW Co-simulation environment (HEPSIM) [ ALGORITHMIC-LEVEL FLOW ]

v
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Concurrency

Concurrency is the decomposability property of a program, algorithm, or
problem into order-independent or partially-ordered components or units.

Even if the concurrent units of the program, algorithm, or problem are
executed out-of-order or in partial order, the final outcome will remain the
same. This allows for parallel execution of the concurrent units, which can
significantly improve overall speed of the execution in multi-processor and
multi-core systems.

A number of mathematical models have been developed for general
concurrent computation (Petri nets, process calculi, the Parallel Random
Access Machine model,the Actor model etc.).
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Model Of Computation

A Model of Computation (MoC) is a set of operational elements used to describe the behavior
of an application (or a system). The set of operational elements and the set of relations among
them are called the semantics of a MoC.

MoC can be classified into Timed or Untimed, when introducing a totally or partially ordered
events respectively.

d Untimed MoC:

» Rendezvous of Sequential Processes: applications are modeled with sequential
processes that reach a particular point at which they have to synchronize each other
(i.e., CSP by Hoare, 1975).

= Kahn Process Networks: a process network where processes communicates using
channels, which are unbounded point-to-point FIFO queues, sending fixed amount of
data, called tokens

» Dataflow: a special case of Kahn process networks, where processes (called actors)
consume data exchanged between channels with a fixed firing rate
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Process Calculi and CSP

Process Calculi (or Process Algebras) are a diverse family of related approaches for formally
modelling concurrent systems. Process calculi provide a tool for the high-level description of
interactions, communications, and synchronizations between a collection of independent agents
or processes. They also provide algebric laws that allow process descriptions to be manipulated and
analyzed, and permit formal reasoning about equivalences between processes (eg. using
bisimulation).

Process Calculi include the Communicating Sequential Processes (CSP), the Calculus of
Communicating Systems (CCS), the Algebra of Communicating Processes (ACP) and so on.

CSP is based on message passing via channels and was highly influential in the design of the
OCCAM programming language.

CSP was first described in a 1978 paper by Tony Hoare [8], but has since evolved substantially. CSP
has been practically applied in industry as a tool for specifying and verifying the concurrent
aspects of a variety of different systems as well as a secure ecommerce system. The theory of CSP
itself is also still the subject of active research, including work to increase its range of practical
applicability (eg. increasing the scale of the systems that can be tractably analyzed).
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The system behavior modeling language introduced in AEPSYQXDE named HML (HEPSY Modeling
Language), is based on the well-known Communicating Sequential Processes (CSP) Model of
Computation (MoC)

By means of HML it is possible to specify the System Behavior Model (SBM)

SBM = {RS G} is a CSP-based executable/simulatable model of the system behaviour based on a
Concurrent Rrocesses MoCthat explicitly defines also a model of communication) among processes (FS)
using unidirectional point-to-point blocking channels (QH) for data exchange (1.e. CSPchannels).

PS={ps, ps,, .., ps,}Is a set of concurrent processes that communicate each others exclusively by means
of channels and use only local variables. Each process is described by means of a sequernce of
statements (an init section followed by a neverending loop) by using a suitable modeling language. Each
process can have a priority p. 1(lower) to 00 (higher) imposed by the designer

aH={ch, ch,, .., ch.} Is a set of channels where each channel is characterized by source and destination
processes, and some details (i.e. size, type) about transferred data. Each channel can have also a priority
p. 1(lower) to DO (higher) imposed by the designer
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HEPSYCODE Modeling Language (HML):
Process Network connected via synchronous channels

G ={PS; CH}is the graph of the specification, where the graph nodes are the processes and the
graph edges are the channel

@)

0

02

The initial HML model is then transformed into an executable SystemC model based on the
Communicating Sequential Processes (CSP) Model of Computation (MoC)
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HEPSYCODE Functional Language:
Reference languages is the SystemC, C++ class library able to capture and define system
specifications
CSP processes are modelled by exploiting basic SC THREAD (implemented as an infinite loop
with an initialization step)
CSP channels have been modeled by introducing a proper SC_CSP_CHANNEL in the SystemC
library.
System behavior is enclosed into a single SC MODULE, containing all the CSP processes and
channels
Other SC MODULE and SC CSP CHANNEL are then used to model the Test-Bench and connected
to the system by means of proper SC PORT

MAIN SYSTEM

SYSTEM

BEHAVIOR
PROCESSES STATISTICS

il -

STIMULUS SYSTEM DISPLAY

p—m 0
SC_CSP_CHANNEL SC_PORT
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» Anexample of a possible SBM in shown in Figure, where the process PS ={ps,, .., ps,}exchange data
using channel CH={ch,, ..,ch;}
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Constraints

Nor-Functional Constraints
Timing Constraints (TC)
Time-To-Completion Constraint (TTC)
Real-Time Constraints (RTC)
Time-To-Reaction Constraint (TTR)
Mixed-Criticality Constraints (MCC)
Constraint in the DSE cost function

MECGEC

education & training

Architectural Constraints
Target Form Factor (TFF)
On-chip: ASIC, FPGA SO(P)C
On-Board: SOB (PCB)
Target Template Architecture (TTA) (related to type of available Basic Blocks BB)

Scheduling Directives (SD) - Available scheduling policies for SWprocessors:
First-Come First-Served (FCFS), FCFS(no overhead), FCFS (Time Stretching)
Fixed Priority (FP)
Hypervisor (HVP - WIP)
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MEC® SBM with Real-Time Constraints
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Communicating sequential processes (CSP) System Behavioral Model (CSP-SBM): network of
concurrent processes model

Process Implementation Model (PIM): split processes into several “dependent” tasks.

Process Task Graph Model (PTM): Directed Acyclic Graph Task model (data flow)
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MECO© SBM with Real-Time Constraints

» With respect to the SBM model, it is now possible to identify two class of CSP
processes: classical CSPprocessand real-time CSPprocesses

© CSP-SBM PIM PTM :
: s Process A Process B Process A ProcessB -
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Time-to-Completion (TTO). time available to complete the SBM execution from the first input
trigger to complete output generation. This constrain should be satisfied by each (input;, output;)
couple.

Time-to-Reaction (TTR). real-time constraints related to the time available for the execution of
lealf CSPprocesses (1.e. the time available to execute the statements inside the input/output pair
that delimits the never-ending loop of a CSPprocess). This constrain should be satisfied by each

input and output
,/’/"\\ - ,"/"\\\ Process A
‘Stimulus; . Display ! > Procegi
Reference inputs {---- S auepue I g E = =i
— — —Channel C3ll- — ¥
L oms:_D 20| TTC: from thefirst input 95 .
[»20ms: 5 D tothelast outout Q.2 (from Channel c4l
/3.'30m5.' 50 22 ’0 (%44 to Channel Responfe)
l;40ms: 5 77 example: max D00 ms Q22
[€— Channel Response— A
Iy DOms: D 1 — Output-»
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49

The target HW architectures are composed of different basic HW
components. This components are collected into a Technologies
Library (7). TL can be considered a generic “database” that
provides the characterization of all the available technologies used
in industryand academic world.

IL={PU MU, BL}, where RU={pu, pu,, .., puy}is a set of Aocessing Lhits,
MU={mu, mu,, .., mu,}is a set of Memory Uhitsand BL={il, il,, .., [l }is
a set of External Interconnection Links.

Blocks built by the designer starting from the TLare called Basic
Blocks (B8

They are the basic components available during DSE step to
automatically define the HW architecture. A generic BB is
composed of a set of Processing Units (AR, a set of Memories Units
(MU, an Internal Interconnection (/) and a Communication Unit
(CU).and a Cormmunication Unit (QJ). CUrepresents the set of ALthat
can be managed by a BB.
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. . . Int8
CCACS: early stage metric to estimatein o
a HW/SW unified view process o
execution time 7
§2nﬂn
Statistical Analisys: Evaluate metric  © |
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*INPUT: ( AprpPLICATION MoDEL (CSP)
o Application Model: CSP model Process; P Process; Processs Process,
injected with safety requirements. ! channel,
0 Platform Model: subset of HW channels;
solution (also in a multi-core channel, channels
scenario) | Criticality, Criticality, Criticalitys Criticality, |
0  Metrics: results from the
Evaluation&Estimation activity —Metrics —Physical Links»
0 Constraints: F/NF constraints DESIGN SPACE EXPLORATION gLl li-aes

(depending on application domain) —Constraints> —Basic Blocks—

{

»OUTPUT: (BB,

0 Physical Links: Possible optimal
links and topology.

0 Mapping: Process to BBs.

0 Basic Blocks: Processors,
architecture and number of cores. [

BB, BB,

9”1,2

Eillln

PLATFORM MODEL (BBS)
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7 1* Phase A

0 Application Model: CSP model
injected with safety requirements.

0 Platform Model: subset of HW
solution (also in a multi-core
scenario)

0  Metrics: results from the
Evaluation&Estimation activity

O Constraints: F/NF constraints
(depending on application domain)

Annotated
Specification
(HML)

Partial Architecture
Number and type of processors
HW/SW Partitioning

Mapping

.

»OUTPUT:

0 Physical Links: Possible optimal
links and topology.

0 Mapping: Process to BBs.

0 Basic Blocks: Processors,
architecture and number of cores.

(2" Phase A

BB
Interaction
Graph

Final Architecture
Number and type of processors

Number and type of interconnection links topology
HW/SW Partitioning

Mappin

. "

N o
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*INPUT: PAM1

0 Application Model: CSP model
injected with safety requirements.

0 Platform Model: subset of HW
solution (also in a multi-core

scenario) J
0  Metrics: results from the i i e }
Evaluation&Estimation activity [ = = = = J
O Constraints: F/NF constraints @ @ @ @
(depending on application domain)
~OUTPUT: I
PAM2 oD o W SYSTEM

0 Physical Links: Possible optimal

links and topology. A i SIS
0  Mapping: Process to BBs. @ i"b)b !
by b '

o0 Basic Blocks: Processors, e ‘4'{

architecture and number of cores. s ~
‘ % Bsz T + H Ph H{ BB,

JA RT:

¥

L J
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i SYSTEM DESCRIPTION ‘: | METRICS EVALUATION AND ESTIMATION ‘i
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System System
Refinement Metrics

DESIGN SPACE EXPLORATION
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SIMULATION

]
Design Pain
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-
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» HEPSIM (HEPSYCODE SIMulator), the extended SystemC simulator used for HW/SW Co-Simulations
in HEPS YCODE:

= The SystemC library has been extended with a SC_ CSP_CHANNEL template class to implement
the point-to-point CSP channel semantic

/¥ Macro S /
SystemModel | #define S(X) \
pSystemManager—>Increase (X): \
if (! pSystemManager—>checkSPP (X)) \
wait (pSchedulingManager—>schedule [X]);
SBM | ............
W‘ ---------- /* HEPSCHED */
I Mocro i if (ready[ps.id]|==true){
LA ! schedule [ps.id]. notify (SC.ZERO.TIME ) ;
$C_CSP_CHANNEL wait (release [ps.id]);
}
/% Macro S */
SystemC Scheduml SystemManager Technology wait (pSystemManager—>upSimTime (X)); \
Library if (! pSystemManager—>checkSPP (X)) \
pSchedulingManager—>release [X]
.notify (SCZERO_TIME );
SchedulingManager #endif

/% The handle goes to HEPSCHED x/
» Implemented an Hierarchical Scheduling manager (2-Levels Scheduling)
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» Example of a Possible Deployment platform
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Multi-Objective Design Space Exploration Optimization Problem

m_in F(z) = [f1(Z), f2(T), ..., fr(@)]
subject to Z2€Q={ze€Nlj:2; <(b—7r)+7*Pmaz}

where T = {:1;1, .. ,a:n} is an n-dimensional decision variable vector representing
processes in the solution space €2 (which refers to a feasible search space, feasible
set of decision vectors) and F(z) = [fl( ), f2(Z), ..., fr(Z)] € R* consists of k
> 2 real-valued objective functions (RF refers to the objective space). The value
b is the total number of BBs, r is the number of BBs that have processor type
equal to GPP, and p,,4. is the maximum number of HPV-based SW Partition
instances for each GPP processor.

Linearization of Multi-objective Design Space Exploration Opti-
mization Problem

min Zwk fr(z Zwa fre(z1,22,...,2p)

subject to meQ={m€N>O: U<$@S(b—r)+r*pmax}

U(z) is the utility function evaluated at each iteration of the GA for each indi-
vidual Z € Q. fi. represents the value of the objective function (or metric) & for
each individual z, while wy is the weight associated to each objective function
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O Theintroduction of mixed-criticality requirements reduces the decision space due to the fact that
applications with different criticality can not share the same HW block or the same SW partition
O Introducing [ criticality levels assigned to each process (with some kind of risk analysis driven by standards

and certifications), the decision variable space (without HPV-based software partition) could be divided
into different clusters

(o | [0 (om0 [0 [0 .
> Decision Variable Space Size (No HPV SW Partitions):  P(b,1) = _ 1<b

T

O rprocessors able to support HPV, t processors not able to support HPV

[t +r- pma.x]!

([t +r- p'mu.:;:] - "!)1 !
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Allecated on the
Multi-objective optimization problem: Phenotype Space Process  OSMOtYPE SPACE  ume rocesr |
B (actual solution space) \ (computation space) and Parlmmn !
Introduction of HPV-based software Encoding 4 0N xS brhertps) | £ Eer
partitions into the decision variable T _ e e e e 3 {0 .
space. g B L STl T NN
| w | e Theeem
——————— 21" e 0.0, 0 o o . " e e o
. . . oy e . | R l/, -4 5
Pareto analysis with mixed-criticality oecoding 12 o i he o s pareto *_° °
constraints: The introduction of A 2 1 ferelele o o Fromt &~ -,
. . . | L 1 ¢ | 3
Hypervisor technologies increase the | | b Basic | ,1,'1 2Nz h 0 Pr g | A A 3
. . . ' | L Blocks ! _ a =~ P
number of feasible solutions decreasing Processes  Hpv-based DS | . b Aocated on the Process | ontiml
th l b l t Sof‘[lw:are 0CKS HPV-based same Processor | Solution
€ globat cost. Partitions ::::‘;i;es Decision Variable Space Objective Function Space
£
£y [ Population | Individual
t =i e P \M"’%‘ ps, EPS, pt, EPT, by €88
. max i IND]_ [ |— —— ] Gene 1 Gene 2 Gene | Gene n-1 Genen  Chromosome
. Mixed | ' : PS1 _ PSy . PSj e PSpn)  PSa Sy PSz PS|_ e PSiny)  PSn
Vi o Cr::c:alltv :, TIND._ 1| | Pt | Ptz [ Pl [k [Pty | Plin gl:i,l E'g.z E E;i.j E:;i,[n-l} E;i.n -
; i Ll . " . . "
Critealky £\ (With\\ ¢ = ——=—1 | bbis | bbi, |....!| bbj; I bb )| bbin LA - = - -
s\:‘:’:‘:ﬁ’:'d ] 3 . "T L T psieps ptert, bbeBB I I I ;""‘:F"s
: a onsj —— e — lecodin,
i': SRR INDP |~ _t_ =1 :— ps: | % X2 e X e Kot %, Phenotype
| : |
Lmin ! c’min :_tl;lbﬂ_ll‘___i ptl,l | | I I 1 | I I
t > i .
Crnin Cmax  Cost = ],E:;l— - L bbis J' FIR=F O, 30 e 6y o o =), R, -, 0] Shlective
= Gene I
Linear
UF)=Ea wfilXy, %an von s X vee s Moty Xo) = Eu i FufR) combination
of weights
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11.3 Processes Communication Index

The Processes Communication Index is based on the Communication Ma-
triz, calculated in the Co-Estimation step:

Crit1 cimyze e CIy n
Ch2,1  Cimzz2 -+ CMlzag

CM = ) ) : . (48)
Ciflp,1 CMp2 - CMpn

C'M is expressed by the number of bits sent /received over each channel. So, for
each individual T, it is possible to define a Processes Communication Selection
Matriz, S (%) € R"*", as listed below:
s (E) =1, if psi € pug Apsj € puy M pue # puy
S (E) = ¢ ST (F) = 0.5, if psi € pta Aps; € pty Apte #pt, ER"T (49)

sii(x) =0,

. otherwise

So, for each individual Z, the Inter Cluster Communication Cost, ICCC(Z) €
R™*™ represents the cost associated to process communication if processes are
allocated on different processors:

1CCC(2) =CM -5 (x) (50)
Starting from ICCC matrix, the Normalized Total Communication Cost index

is:
Z?:l 2k fects i (T)

mMarNToo

" n
marNToc = E E Cg &

i=1k=1

fyree(z) =

(51)

DSE Approach

Contents

11.7 Criticality Index

The metric specifically introduced in [29] [30] and extended in this paper to
consider HPV-based SW partition is the Criticality Index. related to the
criticality level associated to each process ps;. In particular, defined the array
CRIT = {[erity. crita, .., crity, .. ,erit,] @ erit; € R is the criticality level
associated to process ps;}, then it is possible to define the Criticality Index as:
_zll:l i1 Meix(E)

fenrr(®) =

n-(n—1)

me;p(F) =1 if |erit; —erity| > 0 A ps; € pu, Apsg € pu, A pu, = pu, (62)
MCO(F) = qmeje(®) =1 if |erit; = erity| =0 A ps; € pty € pue A\ psi € pli € puy, A plj = pty A pug = puy
meje(E) =0 otherwise

The goal behind this metrie is to avoid having processes with different criticality
levels on the same (shared) partition/processor/core resource. If the constraint
is not satisfied, the index value becomes 1, so the final cost function has a higher
value (in term of utility function) if an individual doesn’t satisfy criticality
constraint.
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9.

Case Studies

“In the future, everyone
will be world-famous
for 15 minutes -

Andy Warhol”
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Processors
IDO

frequency 20 MHz

ID 2

ID 4

Gaisler LEON3 |,
with frequency 75 MHz prteod

ID6

ID 8
Xilinx Virtex7 .
with frequency 250 MHz ‘g‘g‘% b

ID1

Intel MPU 8051 with m m

ID 3

Microchip DSPIC or PIC24 T T
with frequency 20 MHz ' .) ' .)

ID 5

Xilinx Spartan3AN
with frequency 50 MHz ‘ ‘

Contents
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BB]_ BBz BB3 BB4
BB; BBg BB, BB;
BBg BBIO

Proceedings of CPS&I0T2019 page 499



http://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=6iUKFAOiOFLawM&tbnid=yEjZp51UL4qiMM:&ved=0CAUQjRw&url=http://www.dreamstime.com/stock-photo-computer-chip-image10621720&ei=P6_QU7bLD8GxPJuigIAB&bvm=bv.71667212,d.ZGU&psig=AFQjCNGfBzg0qsJ7_tyKSPOwfoTIiw-d9Q&ust=1406271649758398
http://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=6iUKFAOiOFLawM&tbnid=yEjZp51UL4qiMM:&ved=0CAUQjRw&url=http://www.dreamstime.com/stock-photo-computer-chip-image10621720&ei=P6_QU7bLD8GxPJuigIAB&bvm=bv.71667212,d.ZGU&psig=AFQjCNGfBzg0qsJ7_tyKSPOwfoTIiw-d9Q&ust=1406271649758398

Contents

MEC©® Case Study I FirFirGCD

education & training

Chl Ch/ \hs Ch11
ch,

chy
. _ chys
(Sﬁnuﬂus} e
chg chy, chy, chy,
ch, wlo
/c'hg ch, Shifting

Shifting
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y 2: DigitalCam

Embedded Systems Design: A Unified Hardware/Software Introduction: Digital Camera Example

Executable model of digital camera

101011010
oo
o100

101010101
010101010
G010
0.

output file

753

|1IHII||I|IIillIIIHIIIIIIIHIII

Implementation 2_|Implementation 3 _|Implementation 4
0.099

Pari 9.1 1.5

Power (watt) 0.033 0.033 0.040

Size (gate) 98,000 90,000 128,000
Energy (joule) 0.30 0.050 0.0040

Proceedings of CPS&L1912010 page b0 1

ocD
input

Zero-bias adjust

Archive in
memory

yes .
serial output

e, 011010...
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L=t/ (IXFIRJ/N)
L, =t,/ ((X,*FIR{/N)

L, =t;/ TIR, (real-time process load)
L,=t,/ (Ix/FIRJ/N)

V. Muttillo, G. Valente, D. Ciambrone, V. Stoico, and L. Pomante. HEPSYCODE-RT: a Real-Time Extension for an ESL HW/SW Co-
Design Methodology. In Proceedings of the 10th Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools
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Ecosystem

71
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humankind (and animal
kind, too) those who
learned to collaborate
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effectively have
prevailed —

Charles Darwiri’
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European <] > " :w

Projects:
MegaM@Rt

Modeling G

Tools: eSSYN

FUI‘SVDB /\ PREESM
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Deliverable D2.3: Design, implementation, prototyping and verification approach for mixed-critical and parallel -
applications, Sep. 2015 -\k\! MCZ

Deliverable D2.4: Intermediate validation report based on selected living labs scenarios, Mar. 2016 e .

Deliverable D2.5: Complete modelling and analysis framework, Oct. 2016 D} \\

Deliverable D2.6: Comprehense validation report for the modelling frameworks and offline tools, based on \
refined living labs results, Apr. 2017

E
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framework for continuous development and runtime validation of complex systems):
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HW/SW CO-DEsign of HEterogeneous Parallel dedicated SYstems:

Tool available for free on a git repository under GPL2 for testing,
iImprovements, collaborations etc.
Web Site: www.hepsycode.com

You can download the HEPSYCODE tool on this page:

https://bitbucket.org/vittorianomulttillo87/tool-hepsycode/src/master/

Hepsy

ode
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“HEnbedded systems are the key

/nnovation ariver to improve

I 2 mechatronic proaucts with cheaper
u and even new functionalities. They
support today s information society

Conclusions and as inter-system communication

enabler. Consequently, boundaries of
F uture W or k application domains are alleviated

and ad-hoc connections and
Interoperability play an increasing
role’
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O ESL HW/SW Co-Design approach able to take into account mixed-criticality constraints

O The methodology, design flow and framework drive the designer from the input specification to the final

implementation solution, while offering timing simulation capabilities, design space exploration
activities with the support of analysis tool

O Itis possible to integrate this approach with other external tools (like Xamber, but other tools are under
evaluation)

O FUTURE WORKS:

®  Consider multi-core scenario while introducing schedulability and RT analysis

®  Combine PAM1 and PAM2 activities into a unique DSE approach
" Exploit parallel programming techniques (parallel meta-heuristics)
Analysis and tests in PAM2 considering also mixed-criticality index
®  |ntroduce fixed WCET values (taken from external tools)

®  Integrate other external tools to enhance HEPSYCODE functionality

Improve the hierarchical scheduling implementation
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» Model GR-CPCI-LEON4-N2X Quad-Core 32-bit
LEON4 SPARC VB8 processor with MMU,
IOMMU

» Model TASI/UNIVAQ Satellite Applications

» Contributed to benchmarking of fully-open
Aeroflex Gaisler quad-LEON3 system on FPGA
with Xtratum and PikeOS

» Improve case studies example, exploit works
Into some European Projects
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® HW/SW CO-DESIGN 1.0 HW/SW CO-DESIGN 3.0 HW/SW CO-DESIGN 5.0
R. ERNST J. TEICH
HW/SW Bi-Partitioning for (1998) DSE & Co-Synthesis of HMPS (2012) New HW/SW Co-Design
W. WOLF Generation:
CPUIASIC Targets (2003) Methodologies/Tools: Model driven, Approximate

SystemCoDesigner, SynDEX,
Gezel, CoFluent, TO(H)SCA

Computing, Machine Learning,
Quantum Computing, 5G, Smart
Cities, loT, DSE at runtime

Methodologies/Tools:
Vulcan, COSYMA

1985 - 1994 2005 - 2011 Towards the Future

®
® HARDWARE
o—0 U ] SOFTWARE
O
O

1995 - 2005 2012 - Nowadays

HW/SW CO-DESIGN 2.0 HW/SW CO-DESIGN 4.0

Co-Design & Modern HW/SW Co-Design
Y-CHART Platform-based Design for Double-Roof ) ) )
GAJSKI-KUHN Complex Targets Model Online Co-Design for Adaptive Systems

(1983)

(2007) Co-Design of CPS, CPSo0S
Co-Design for Monitorability & Security

Methodologies/Tools: HW/SW Co-Design for Mixed-Criticality Systems

Koski, PeaCE/HOPES, Ptolemy
(Polis), CoWare, Metropolis, TOSCA,

Methodologies/Tools:
Daedalus

ForSyDe, eSSYN, CHESS, Capella,
Space CoDesign, HEPSYCODE
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Bitw

THANKSI!

Any questions?

4
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