

System-Level HW/SW Co-Design Methodology for Real-Time and Mixed Criticality Applications

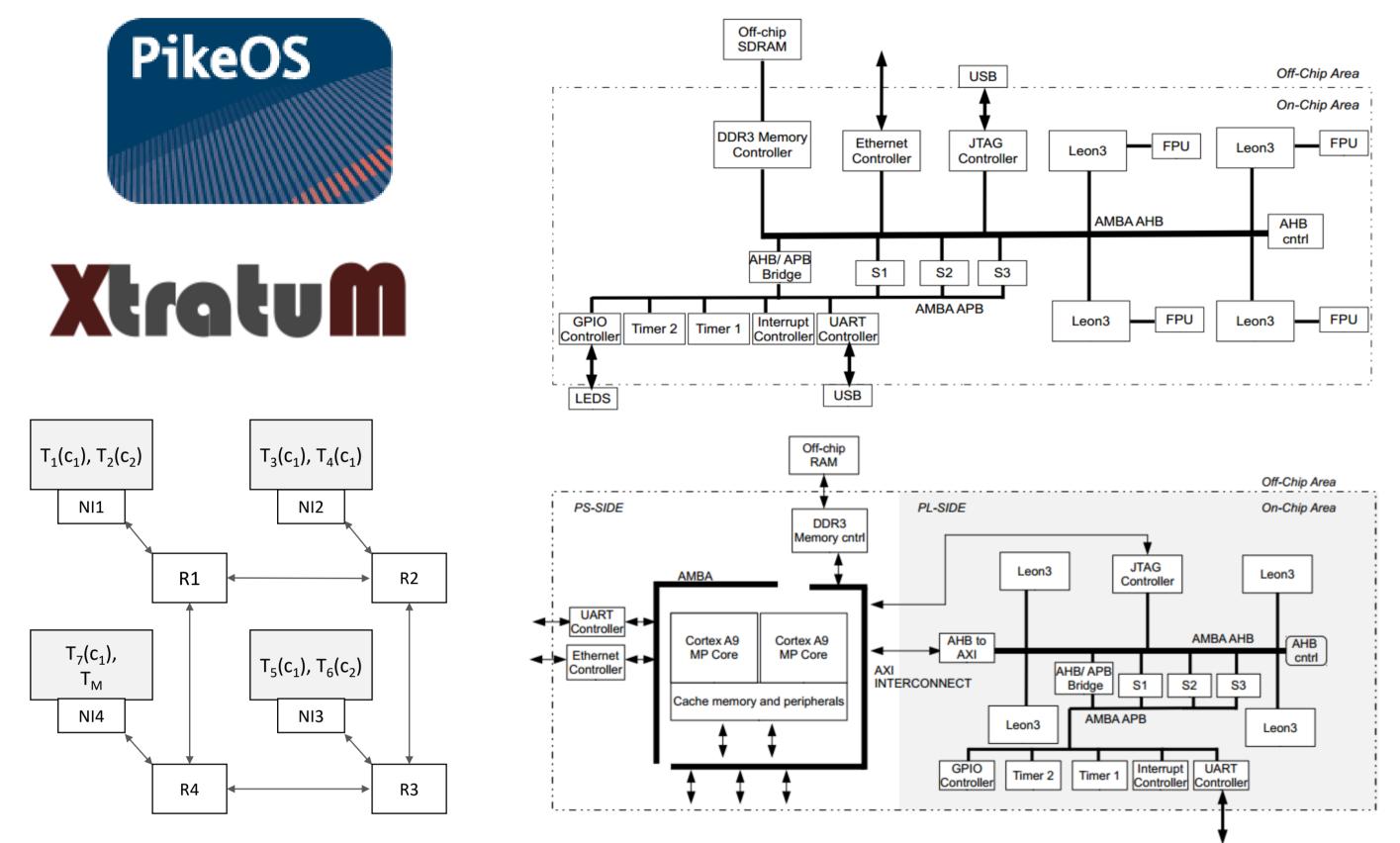
HiPEAC 2018 22-24 January 2018 Manchester, United Kingdom

Vittoriano Muttillo, Giacomo Valente, Luigi Pomante

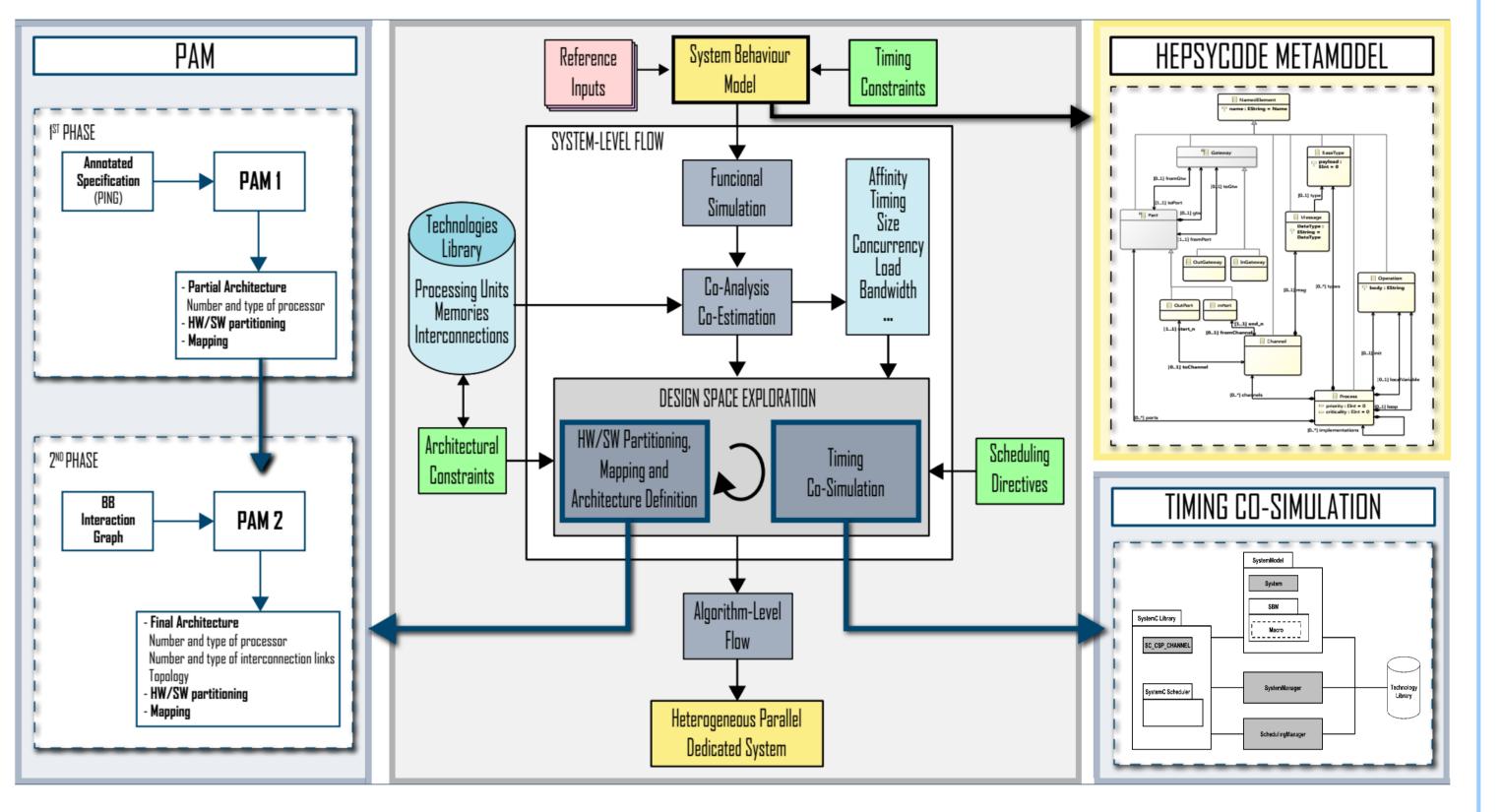
Introduction

- The early embedded system design activities are to model F/NF requirements and to validate them before final implementation. Designers use system-level models to identify best HW/SW resources allocation by simulating system behavior. Proper SW tools are fundamental to support designers to reduce costs and overall complexity of systems development.
- In such a context, this Ph.D. work is focused on the development of a framework for modeling, analysis and validation of mixed critical systems, through the use of software tools for "Model-Based" ESL HW/SW Co-design" [1][2], refined to use estimates, metrics and simulations that consider mixed-criticality and real-time requirements, identified in the context of several European project.
- An incremental Electronic System-Level HW/SW Co-Design methodology, and related tools, to design "parallel embedded systems" (e.g. multi-core systems, multi-processor systems, network-onchip) for mixed-criticality applications has been proposed.
- Starting (at least) from the system behavior specification, timing and mixed-criticality constraints, the proposed approach aims to suggest the HW/SW partitioning, the architecture and the mapping of the partitioned entities onto the HW components into the Design Space Exploration step (i.e. HW/SW partitioning, architecture definition and mapping).

Technologies Background

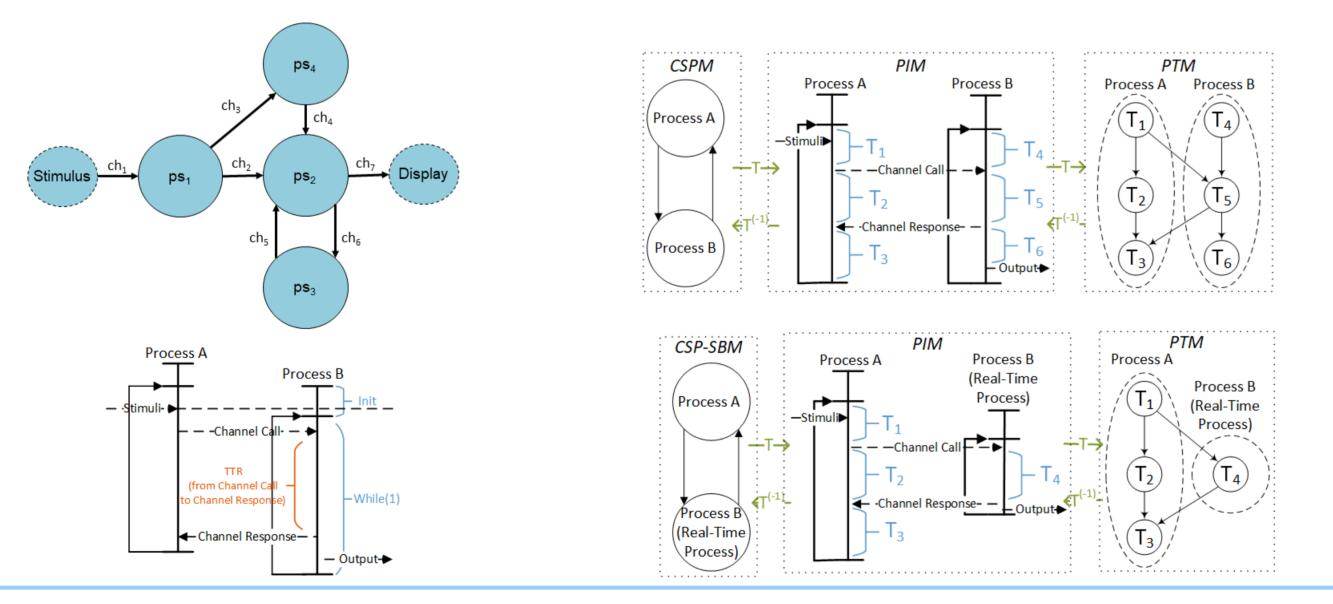

- Analysis and experimentation of technologies for mixed-criticality support
 - Hypervisors technologies (PikeOS and Xtratum) [3]
 - Ad-hoc HW mechanisms to support isolation in NoC [4]

HepsyCode Methodology

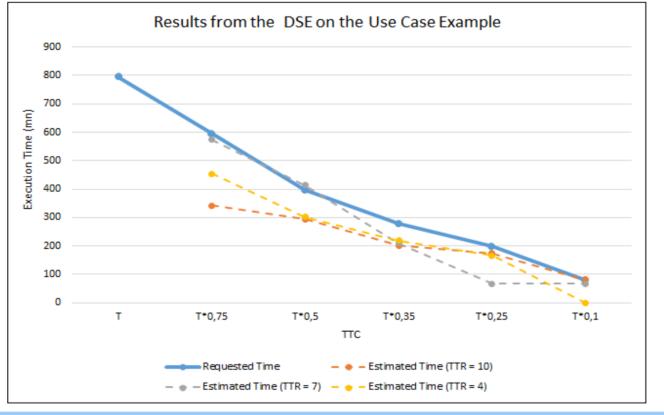

- Application model (CSP-like MoC and SystemC language)
 - CSP processes labeled with criticality and real-time constraints
 - Explicit concurrent and communicating processes

- Several parallel embedded architectures on FPGA/SoC [5][6] to validate DSE
 - 4-LOOP: 4-(soft)core LEON3 with SMP Linux and OpenMP support (both on Virtex6 FPGA and Zynq7000 SoC)
 - AMP system on Zynq7000 with an "hardwired dual-core ARM running a SMP Linux" that share memory with a "4-(soft)core LEON3 running a SMP Linux"

Simulatable Model [8][9]

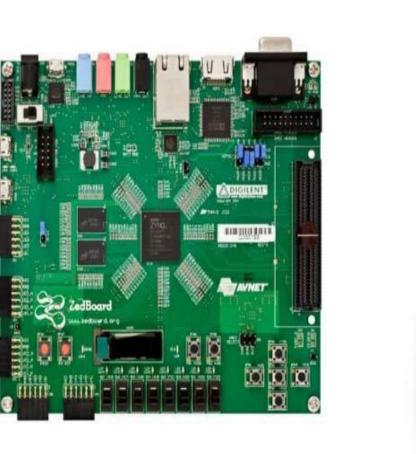


- Basic HW technologies (library describing all HW technologies available for DSE) characterized with respect to relevant features (e.g. performance, power, cost, ...)
- Evaluate system-level metrics and estimations in order to drive the DSE by means of an annotated application model


Preliminary Results

HepsyCode RTMC

- HW/SW support to mixed-critical parallel embedded platforms
- DSE for real-time and mixed-critical parallel embedded platforms
 - Extension of the first-step of the DSE methodology in order to consider also classical RT ones [7]
 - Identification of the main elements to be considered in the second-step of the DSE methodology
 - Extend system-level co-simulation approach to consider also two-levels scheduling policies typically introduced by hypervisors technologies [8]



Allocation	Simulated Time (ms)	ps ₃ (ms)	TTC (ms)	TTR (ms)	bb ₁ (SW-PU): 20 M
All on bb ₁ All on bb ₂	794,88 650,66	8,10 5,54	600 600	10 10	8-bit 8051 CISC c
ps1, ps2, ps3 on bb1 ps4 on bb2,	590,80	8,10	600	10	
ps3 on bb1 ps1, ps4 on bb2 ps2 on bb3	264,89	8,10	400	10	with 128 byte
ps1, ps3 on bb1 ps4 on bb2 ps2 on bb3	298,88	8,10	300	10	Internal RAM, 64K internal ROM, with
<u>ps4 on bb1</u> ps1, ps2, ps3 on bb3	201,48	<u>0,009</u>	<u>200</u>	<u>10</u>	cache and exter
ps3 on bb1 ps4 on bb2 ps1, ps2 on bb3	145,67	8,10	200	10	memory (cost 10);
ps3 on bb1 ps1, ps2, ps4 on bb3	81,04	8,10	100	10	
ps ₁ , ps ₂ on bb ₁ ps ₃ , ps ₄ on bb ₂ ,	562,85	5,54	600	7	$ = 00_2 (300-10).$
ps <u>1, pu4 on bb1</u> ps <u>2, ps3 on bb2</u>	462,58	5,54	<u>400</u>	2	MHz 32-bit LEO
ps1 on bb1 ps3, ps4 on bb2 ps2 on bb3	220,80	5,54	400	7	soft-processor with 2
ps1, on bb1 ps3 on bb2 ps2, ps4 on bb3	206,99	5,54	300	7	KiB L1 caches, RA
ps3 on bb2 ps1, ps2, ps4 on bb3	55,55	5,55	200	7	size of 4096 KiB an
ps1, ps4 on bb1 ps2 on bb2 ps3 on bb3	428,87	0,009	600	4	ROM of 2048 k
ps4 on bb1 ps1, ps2 on bb2 ps3 on bb3	337,56	0,009	400	4	$(\cos t 50);$
ps4 on bb1 ps1 on bb2 ps2, ps3 on bb3	214,80	0,009	300	4	• bb ₃ (HW-PU): 3 MHz Altera Stratix
ps4 on bb2 ps1, ps2, ps3 on bb3	137,62	0,009	200	4	
All on bb ₃	0.22	0.009	100	4	(cost 300).

 Experimentation of enabling technologies for mixed-criticality support that have been considered as building blocks to be exploited during DSE to provide mixed-criticality support to parallel architectures

- Customized the general DSE methodology to exploit hypervisor technologies
- Contributed to benchmarking of fully-open Aeroflex Gaisler quad-LEON3 system on FPGA with Xtratum and PikeOS

Conclusion and Future Work

- This work propose an extended and ESL Electronic Design Automation methodology (and related tools) to help designers to develop Mixed-Criticality and Real-time Embedded Systems.
- Other than on basic RT constraints, this work focuses also on mixed-criticality ones. For this, the DSE step will try also to group processes with the same level of criticality on the same processor/partition. Then, a two-levels scheduling is considered during co-simulation to model possible hypervisor technologies. Finally an extensible database of hardware components (called Technology Library) is provided to designer in order to identify the best platform to satisfy F/NF constraints.
- Future works involves model GR-CPCI-LEON4-N2X Quad-Core 32-bit LEON4 SPARC V8 processor with MMU, IOMMU and TASI/UNIVAQ Satellite Application
- This work has been partially supported by the ECSEL RIA 2016 MegaM@Rt² (https://megamart2-ecsel.eu) and AQUAS (http://aquas-project.eu) European Projects

Reference

[1] L. Pomante, "HW/SW co-design of dedicated heterogeneous parallel systems: an extended design space exploration approach," Computers & Digital Techniques, IET, vol.7, no.6, pp.246,254, 2013 [2] L. Pomante, C. Bolchini, F. Salice, D. Sciuto. "Reliability Properties Assessment at System Level: a Co-Design Framework", Journal of Electronic Testing - Theory and Application (JETTA), Kluwer Academic Publishers, The Netherlands, Vol. 18, no. 3, p. 351-356, 2002. [3] L. Pomante, C. Tieri, F. Federici, M. Colizza, M. Faccio, R. Cardinali, B. Iorio. "HW Mechanisms to Support Isolation in Mixed-Criticality NoC". Euromicro Conference on Digital System Design, 2014 [4] L. Pomante, F. Federici, G. Valente, D. Casalena, D. Andreetti, D. Pascucci. "Exploiting Paravirtualization to Support Time and Space Isolation in Multi-Core Platforms for the Avionic Domain". Euromicro Conference on Digital System Design, 2015 [5] L. Pomante, V. Muttillo, G. Valente, F. Federici, M. Faccio, C. Tieri. "Enhancing an FPGA-Based SMP Embedded Platform with OpenMP Support and Unobtrusive System Monitor". Euromicro Conference on Digital System Design, 2015 [6] L. Pomante, V. Muttillo, G. Valente, F. Federici, M. Faccio. "4-LOOP: 4-core Leon3 with Linux operating system, OpenMP library and hardware profiling system". Conference on Design and Test Automation in Europe (DATE) – University Booth, 2015 [7] L. Pomante, V. Muttillo, G. Valente, F. Federici, P. Serri: "A Model-Based ESL HW/SW Co-Design Framework for Mixed-Criticality Systems", EMC² Summit at CPS Week, Vienna, Austria, 2016 [8] D. Ciambrone, V. Muttillo, G. Valente, L. Pomante, "HW/SW Co-Simulator for Embedded Heterogeneous Parallel Systems", Euromicro Conference on Digital Systems Design (DSD) - Work in Progress Session, 2017 [9] V. Stoico, V. Muttillo, G. Valente, L. Pomante, F. D'Antonio, "CC4CS: A Unifying Statement-Level Performance Metric for HW/SW Technologies", Euromicro Conference on Digital Systems Design (DSD) - Work in Progress Session, 2017

Contact author {vittoriano.muttillo, giacomo.valente}@graduate.univaq.it, luigi.pomante@univaq.it DEWS Center of Excellence, University of L'Aquila, Italy (http://dews.univaq.it) DISIM Department of Information Engineering, Computer Science and Mathematics (http://www.disim.univaq.it)

