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Advanced computations on embedded devices are nowadays a must in any application field. Often, to cope
with such a need, embedded systems designers leverage on complex heterogeneous reconfigurable platforms
that offer high performance, thanks to the possibility of specializing/customizing some computing elements on
board, and are usually flexible enough to be optimized at run-time. In this context, monitoring the system has
gained increasing interest. Ideally, monitoring systems should be non-intrusive, serve several purposes and
provide aggregated information about the behaviour of the different system components. However, current
literature is not close to such ideality: for example, existing monitoring systems lack in being applicable
to modern heterogeneous platforms. This work presents a hardware monitoring system, which is intended
to be minimally invasive on system performance and resources, composable and capable of providing to
the user homogeneous observability and transparent access to the different components of a heterogeneous
computing platform, so that system metrics can be easily computed from the aggregation of the collected
information. Building on a previous work, this paper is primarily focused on the extension of an existing
hardware monitoring system to cover also specialized coprocessing units, and the assessment is done on a
Xilinx FPGA-based System on Programmable Chip. Different explorations are presented to explain the level
of customizability of the proposed hardware monitoring system, the trade-offs available to the user, and the
benefits with respect to standard de-facto monitoring support made available by the targeted FPGA vendor.
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1 INTRODUCTION
System monitoring is typically an application- and platform-specific process, especially when
dealing with embedded systems. By definition, a generic monitoring process, implemented by a
proper monitoring system, has the goal of satisfying some given monitoring requirements (those
for the design of a monitoring system [31]), which turns out into gathering system representative
metrics [19]. Traditionally, designers have been using custom methodologies and monitoring
systems to evaluate the metrics of interest, exploiting ad-hoc Hardware (HW)/Software (SW)
components and infrastructures to make such metrics observable by the designer and/or by the
system itself. HW monitoring systems, preferable to SW since they minimally affect the execution
performance, are intended as the physical components needed in the design to gather information
from system resources (e.g., cores, memories, coprocessing units. etc.). The definition of ad-hoc
solutions, optimized for a given platform [6, 46] or on metrics [11, 30], typically fails in being
portable to other platforms, technologies, and/or contexts.

The problem of defining effective and efficient HW monitoring systems, with small engineering
effort, has become more complex in modern heterogeneous devices. To support variable workloads
and to address several and concurrent functional and non-functional requirements, modern plat-
forms tend to integrate different types of resources. Different cores and/or application-specific units
are adopted, but also configurable logic is often brought on-board. Field Programmable Gate Array
(FPGA) devices, traditionally employed for rapid prototyping and low-volume application purposes,
are gaining momentum in production (e.g., Lattice Semiconductor FPGA in edge devices [1]). The
continuous increase in the computational demand required by modern applications, coupled with
flexibility requirements typical of Cyber-Physical Systems (CPSs), began to show the limits of
traditional general-purpose SW-programmable platforms. Customizability upon the application
needs makes FPGA-based System on a Programmable Chip (SoPC) particularly suitable to this
context. Nevertheless, having available these many degrees of freedom certainly complicates the
monitoring process. The monitoring system needs not only to gather information to evaluate
different kinds of metrics (e.g., number of cache misses, number of clock cycles to execute HW
or SW tasks) and to access different types of resources (e.g., the memory), but it also needs to be
configurable enough to be customized upon designer requests, possibly with minimal effort for the
user. To the best of our knowledge such a desirable monitoring infrastructure does not exist yet,
despite the problem is known since a while. Back in 2013, Kornaros et al. [19] already expressed
this lack, surveying the existing monitoring systems for multi-core Systems on Chip (SoCs), and
trying to identify the motivations behind it. In Kornaros’ work a taxonomy for the formalization
of the monitoring problem was proposed and discussed. The concept of event to be monitored
turned out to be not really well defined, and a lot of subjectivity was there due to the fact that
“different observers can describe the same event in different terms, and may assume different sources
of the cause, or of the location, or of the time of the event monitoring in general”. Such a lack and
the need for overcoming the diversity of solutions, brought by the designer-subjectivity or by the
heterogeneity of monitored metrics and platforms/components, which is particularly true in the
context of heterogeneous FPGA SoPCs, are the major drivers behind this work.
In this paper, we propose a composable HW monitoring system for heterogeneous embedded

platforms able to gather information from different system resources to allow gathering information
from all the different components composing a traditional heterogeneous systems, which will allow
afterwards for system-level metrics evaluation. In particular:

• Following a brick-based principle, different system resources at different abstraction levels
are made observable by the proposed HW monitoring system. Each system resource/level is
observed through distributed sniffers able to get the monitoring information and to aggregate
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them in a common data structure easily accessible by the user (e.g., a designer, a run-time
manager): sniffers are composable and, together with their collected information and their
final structure, represents the monitoring system. Composability, i.e. the possibility of observing
different system resources operating at different levels of abstraction, is a key feature of the
proposed approach.

• The proposed HW monitoring system is a unifying solution that makes observable both HW
and SW Intellectual Propertys (IPs). Furthermore, the collected monitoring information is
accessible through Application Program Interfaces (APIs), guaranteeing that the events are
properly captured and that the information is correctly propagated through the SW stack, no
matter where they have been extracted from. Homogeneous observability and access provided
by the sniffers at different layers is a key feature of the proposed approach.

• The proposed HW monitoring system is based on a configurable number of distributed
sniffers, enabling a high degree of customization in terms of observed interconnections and
metrics to be gathered. No matter to which resource they are attached to, sniffers have always
the same internal architecture. These features enable the reuse of blocks among different
sniffers by means of a library-based approach. System observation is more straightforward.
Sniffers can be re-used and easily customized to gather new information from new system parts.

• The proposed approach is fully passive. The actions and elements needed to gather infor-
mation from the system are decoupled from those using the gathered information. In this
work, we focus on the Event Instance Generation, Data Capture and Data Filtering steps of
the generic monitoring process introduced in [19]. Decoupling the passive observation action
from the active reaction one allows a more generic definition of the HW monitoring system
and to make it reusable for different purposes over different platforms. The heterogeneous
system, despite its complexity and target application, is made entirely observable.

The rest of this paper is organized as follows. Section 2 describes more in details the reference
scenario and, in particular, the family of targeted computing platforms. Moreover, it explores also
the state of the art, highlighting the contributions/advances of this paper in the provided boxes.
Section 3 illustrates our composable HWmonitoring system for heterogeneous embedded platforms.
Section 4 discusses the carried out assessments, before the final remarks provided in Section 5.

2 MONITORING HETEROGENEOUS SYSTEMS: CONTEXT AND BACKGROUND
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Fig. 1. Baseline reference architecture.

The advent of SoPCs allowed for the definition of powerful
embedded computing platforms that combine the high-level
management capabilities of microprocessors with the high
performance. Concepts as FPGA overlays and FPGA com-
panion computers are nowadays extremely popular [9, 43].
They are addressed in many studies that target HW/SW sys-
tems [20, 32, 36] that aim to couple microprocessors with HW
accelerators, which may also offer different levels of reconfig-
urability [14]. This introduces the need for having visibility
at various levels of the computing infrastructure. Figure 1 de-
picts a high-level schematic overview of the target reference
architecture that we consider in this work that can present
one or more microprocessors, one or more coprocessors, and
a memory that shares data by means of one or more intercon-
nection buses. Here with coprocessors we intend dedicated
hardware accelerators, which can be either fixed function or reconfigurable ones, loosely coupled
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with the host microprocessors by means of the generic system interconnection (meaning that a
unique bus line, or parallel bus lines, can be used to better handle data and control signals). A
tightly coupled version of the work, where coprocessors are accessible through exclusive, more
efficient connections is left to future extensions. Monitoring infrastructures are already integrated
in fixed architectures [6], and HW performance counters are a built-in feature of all modern mi-
croprocessors, allowing for low-level performance analysis or tuning. Nevertheless, dealing with
heterogeneity makes the problem of system observability more complex. At the time being, the
state of the art around FPGA overlays and FPGA companion computers is still young [23, 43] and
established design and programming solutions are not there yet [22]. One of the reasons is that the
programmable part is quite always shaped according to the considered problem, and this inevitably
impacts also on the adoptable HW monitoring system. A widely applicable solution embracing all
of the components of the architecture, and allowing for a homogeneous observability and access
to all the components, is not there yet. That is the motivation at the basis of this work. Times are
mature enough to start defining a more comprehensive metric agnostic HW approach. In the rest
of this section, state of the art approaches are discussed in Section 2.1, then the contributions of
the proposed work in this context are summarized in Section 2.2.

2.1 Related Works
Several reasons for monitoring heterogeneous systems exist: e.g., to guarantee the correct execution
of a device and the right communication among its elements, to gather statistics used in subsequent
system re-design cycles, to understand run-time performance and check whether any room for
optimization is there. Such a proliferation of needs led designers to cope with them with different
solutions which turned out to be as heterogeneous as the systems they want to monitor. The lack of
standardization and homogeneity of methodologies and purposes was analysed for the first time in
2013 by Kornaros et. al [19]. Authors tried to classify the monitoring techniques according to their
purpose: Debug, Performance, Quality-of-Service, Power related, Fault Tolerance and Reliability,
Security and Others. Most of the works they analysed adopt vertical approaches (as [37, 39, 40] in
Table 1), but in nowadays complex and heterogeneous systems such classification may fail. Indeed,
in current systems different aspects and purposes are monitored concurrently, which may imply
accessing different architectural components at the same time. Kornaros et al. concluded their
analysis with an open challenge: "to understand the exact robustness, performance, and complexity
characteristics of integrating diverse HW components together with SW tasks with varying behaviour".

The issue of heterogeneity mastering is still there and when microprocessors are coupled to
embedded reconfigurable units the problem is even more severe. Designers shall tackle both the
heterogeneity of the infrastructure and of some of the elements of the infrastructure over time.
Indeed, the coprocessing units may change their internal structure over time, depending on the
tasks to be executed, leveraging on the reconfiguration capabilities of the FPGA.

In the following, we analyse and discuss different monitoring strategies available in literature,
with the intent of classifying them in terms of monitored resources. We consider only those works
that address one or more elements present in our reference architecture (see Figure 1) and we also
provide information regarding the purpose at the base of their monitoring needs. To simplify the
classification, we grouped Kornaros’ purposes as follows: Performance (including also Profiling and
Quality of Service), Debug and Verification (including also Run-time Verification, Fault Tolerance
and Reliability), Power (including also Energy and Temperature), and Security. Table 1 depicts a
schematic overview of the considered monitoring strategies, including the one presented in this
paper.
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Many works available in literature focus on microprocessor monitoring. Nelissen et al. [31]
and Seo et al. [40, 41] focus on monitoring it for verification purposes. Nelissen et al. present an
architecture for the implementation of a safe and reliable monitoring framework for run-time
SW verification. Seo et al. in [40] propose a Trace Abstraction Layer and show a methodology
that can perform verification using the Micron Automata Processors, while in [41] authors show
a methodology that can drive a designer from requirements to the configuration of a hardware
monitoring system for runtime verification, targeting the SW running on microprocessors. Similarly,
Rambo et al. [35] adopt the Trace Abstraction Layer for verification and performance monitoring,
discussing different techniques for information processing factory that make it a suitable solution
for highly dependable systems. Different researches in literature developed strategies of HW
profiling intended to foster SW optimization or system self-adaptation. Aldham et al. [4] presented
LEAP, a HW profiler for FPGA-based embedded microprocessors, where gathered information is
used to improve both performance and HW/SW partitioning. To improve this latter, Nadimpalli et
al. [29] proposed another profiler capable of identifying high computational loads to be moved to
HW execution. Scheipel et al. [39] present an approach for measuring execution time and events
of an embedded system by integrating a dedicated performance monitoring infrastructure using
HW/SW co-design techniques; on the other hand, Sadek et al. [37] propose another infrastructure
called STHEM, which is a collection of utilities for heterogeneous embedded image processing
platforms. STHEM features also a power measurement utility that enables programmers to correlate
instantaneous power samples with concurrent HW/SW traces, gathered through the Xilinx SW
debugger.

Despite the heterogeneity of their purposes, these microprocessors monitoring systems do not
address the other components of the adopted reference architecture. Moreover, to the best of
our understanding, the kind of monitored events and used monitors would make them hardly
tuneable to gather different information from other components in a composable manner.

Monitoring themicroprocessor is not sufficient to offer a complete system observability. Patrigeon
et al. [34] present an FPGA-based platform, instrumented with monitors, for real-time evaluation of
Ultra Low Power SoCs. Themicroprocessor interacts with the monitors as with common peripherals,
connected bymeans of the Advanced High-performance Bus lite system. Themonitors gather events
related to the memory execution and are enabled, disabled, and reset through SW function calls.
Doyle et al. [13, 25] present ABACUS, a HW framework that leverages on the FPGA reconfigurable
fabric to monitor the workload execution. To foster ABACUS portability to different architectures
and the extension with profiling units, microarchitecture independent metrics are supported. Also,
a trade-off analysis between application performance and amount of data gathered is performed.The
work of Valente et al. [27, 44], apart from the fact that is able to monitor also the interconnection,
introduces also the flexibility in monitoring through the definition of a custom profiling system for
embedded applications: their work split the monitor design in a number of sub-blocks (stored in a
library), each one implementing a part of a generic profiling action.

All the above-mentioned works use monitoring for SW performance understanding only, and the
considered reference architecture is still not a heterogeneous one. Nevertheless, Doyle et al. and
Valente et al., with a library of customizable monitors, moved some steps towards the concepts
of a wider applicability of the monitoring components to different resources/architectures.

Similarly to memories, also the communication elements have been addressed as monitoring
object. Kyung et al. [26] presented the first monitor for the Advanced eXtensible Interface (AXI) bus,
and Xilinx provides a dedicated monitor for AXI4 connections, the AXI Performance Monitor [46].
It can be added to the design to measure major transaction-related metrics.
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These communication-oriented solutions are limited by construction, being highly component-
specific, but are certainly complementary to others.

The ARM Coresight [6] is a commercial solution for the debug and trace of complex SoCs. It
eases the monitoring of the data infrastructure, providing a library of modular components, for the
monitoring of CPU, memory and communication elements, generalizing the access to the monitors.

One of the most interesting aspects of the ARM Coresight approach is that data gathering,
from the SW perspective, is made homogeneous despite the monitored components. This is an
appealing aspect, that goes towards the same attempt of access homogenization that we are
pursuing in this work. Nevertheless, as it should be expected, the Coresight is conceived for a
fixed infrastructure, and no (re-)configurable coprocessing units are taken into consideration.

The advent of FPGA-based SoCs opened up a plethora of new opportunities in the computing
domain and, from the monitoring perspective, it introduced coprocessors as new elements to be
monitored. SW monitoring could serve to identify parts of the application that benefit from a HW
implementation [4, 29] and some works address FPGA-based platforms [25, 34, 44], despite they do
not give a comprehensive monitoring for such systems. To enable observability, FPGA vendors,
such as Xilinx and Intel, are making available solutions to monitor SoC [5, 45, 46]. Besides AXI
Performance Monitor, intended for buses, Xilinx provides also the System Integrated Logic Analyzer
(ILA) [45] while Intel has the similar Signal Tap Logic Analyzer [5], both for debug purposes.

In all these cases, the internal signals and interfaces are monitored, requiring high HW expertise
since no API calls are available. Moreover, these techniques are conceived for the programmable
logic only. They could be combinedwith other approaches, but fail in providing awidely re-usable
and applicable solution. Finally, they are vendor-specific. To address the problem of monitoring
from a more general perspective, the level of abstraction has to be risen, and vendor-specific
approaches are not generally suitable for this.

To raise the level of abstraction and offer a user-friendly monitoring system suitable for SW
developers, Goeders et al. [16] presented a High Level Synthesis (HLS) tool for the instrumentation
of monitors for debugging. Their work has been demonstrated on the LegUp HLS [10] and, starting
from a C++ description, both systems and monitors are derived. Hammouda et al. [17] provide
an HLS tool that, starting from a C description, automatically generates the HW system instru-
mented with monitors for run-time verification. To provide a SW developer-friendly approach,
and to monitor also coprocessing units, Fanni et al. [15, 24] extended the Performance Application
Programming Interface [33], developing a configurable component for reading monitors within
an application-specific coprocessor. They also propose a toolchain that instruments the HW co-
processors, generates the configuration file for the component (compliant with the Performance
Application Programming Interface), and provides the APIs to initiate and read the monitors in the
HW coprocessors, as the ones normally present on every CPU.
HLS-based approaches are capable of overcoming the problem of low level details management.
They could potentially be extended to cover all the elements of our reference architecture.
Nevertheless, to the best of our knowledge, such extensions have not been developed yet.

By looking at the monitoring issue from a high level perspective, the work of Lee et al. has to be
mentioned. They proposed in [21] a system-level observation framework for the run-time analysis
and verification of both SW and HW tasks without perturbing the system execution. In this work,
a concrete step ahead towards a formalization of the monitoring process and the definition of a
generalizable monitoring method is made. Monitors are built upon sets of customizable observation
probes that can be adapted to monitor both microprocessors and coprocessing units. This work
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draws attention on the connection between the goal of the monitoring, which in the paper is
debugging, and the low-level event types. Moreover, the event-generation process from “what is
monitored” is considered as a fundamental activity in building the monitoring infrastructure.

Lee’s work represents a step ahead in the generalization of a monitoring action for run-time
verification, even if it focuses only on microprocessor and coprocessor (no details about the
types of supported coprocessors are provided). It defines the HW/SW observation interfaces to
gather the data from the coprocessing elements, but not the details on how events are captured.

To the best of our knowledge, only two literature works seemed to be capable of targeting all
the components of the adopted reference architecture. Both Najem et al. [30] and Zoni et al. [11]
are focused on power monitoring only, exploiting machine learning techniques, applied over the
Register Transfer Level (RTL) description of the system.

These methodologies address all the components of the reference architecture as the present
work is doing, but portability towards other monitoring purposes seems to be impractical and
would require a complete re-engineering of the discussed methodologies to enable a completely
different set of metrics/statistics gathering. Basically, to the best of our understanding, despite
these works are capable of feeding back at system level power-related information, the authors
never tried to generalize the monitoring system to define a broader applicable methodology out
of the engineering work done for power estimations.

2.2 Key Remarks and Summary of Contributions
Based on our studies we derived a list of features that an ideal monitoring system should present:
(1) It should be minimally invasive with respect to resources (with a low overhead on the

programmable logic), to the nominal behaviour (execution should be not slowed down) and
to the memory occupancy of the monitored system.

(2) It should be applicable to monitor functionalities on SW and HW in a seamless manner, which
is why the proposed HW monitoring system intends to provide homogeneous observability.

(3) It should be flexible enough to gather information from different system components to
evaluate different metrics. The HW monitoring system should be easily extendable and
re-usable, and built to facilitate heterogeneous information aggregation.

(4) From the SW developer perspective, the access to the monitoring infrastructure should be as
simple as an API call, no matter where the monitored task is executed. Lower level details on
how events are observed and captured and on the involved components should be transparent
to the user, thus providing homogeneous access to the monitoring process and data.

(5) It should be coupled to a framework/tool to enable a fast and possibly automatic integration
of the monitoring infrastructure within the target system and within the executing code.
Indeed, a user friendly design environment has to be provided.

This list is quite aligned with other lists of desiderata for monitoring systems in literature [18].
Nevertheless, the considered works (Table 1) lack in trying to embrace cross-purpose aspects and
mix observability and controllability of the passive and active monitoring activities that we are
trying to decouple. Moreover, the heterogeneity of the components has not been addressed.
The proposed HW monitoring system for heterogeneous FPGA-based SoPCs targets all the

components of the reference architecture in Figure 1. The monitoring components are built in a
similar manner, thanks to the customization capabilities of the monitors that can be specialized
for the events to be captured, but the APIs used to report the information at system level are the
same. Moreover, designers can play with different customization options trading off monitoring
overhead (in terms of resources, time and memory) versus the observation capabilities according to
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Table 1. Related Works Classification: 𝜇𝑃𝑟𝑜𝑐 , 𝑀𝑒𝑚., 𝐶𝑜𝑚𝑚. and 𝐶𝑜𝑝𝑟 . are respectively Microprocessor,
Memory, Communication and Coprocessor. [a This paper extends previous works of Valente et al. [27, 44],
where microprocessor, memory and interconnection monitoring capabilities have already been demonstrated.
Nevertheless, monitoring capabilities of the proposed system are proved for microprocessor, coprocessor and
communication (see Transaction Level within the coprocessor).

b Quantitative results comparison with respect to this work is presented in Section 4. c 𝐷&𝑉 stands for Debug
and Verification.]

References Monitored Platform Element Purpose
𝜇𝑃𝑟𝑜𝑐 𝑀𝑒𝑚. 𝐶𝑜𝑚𝑚. 𝐶𝑜𝑝𝑟 . 𝑃𝑒𝑟 𝑓 𝑜𝑟 . 𝐷&𝑉 c 𝑃𝑜𝑤𝑒𝑟 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦

State of the Art Academic Solutions
Nelissen et al. [31] X X
Seo et al. [40] X X
Seo et al. [41] X X
Rambo et al. [35] X X X
Aldham et al. [4] X X
Nadimpalli et al. [29] X X
Scheipel et al. [39] X X
Sadek et al. [37] X X
Patrigeon et al. [34] X X X
Doyle et al. [13, 25] X X X
Valente et al. [27, 44] X X X X
Kyung et al. [26] X X
Goeders et al. [16] X X X X
Hammouda et al [17] X X X X
Fanni et. al [15, 24] X X X X
Lee et al. [21] X X X
Najem et al. [30] X X X X X
Zoni et al. [11] X X X X X

State of the Art Commercial Solutions
ARM Coresight[6] X X X X X
Xilinx AXI PERF Mon [46]b X X X
Xilinx ILA [45]b X X
Altera SignalTap [5] X X
[THIS WORK] Xa Xa Xa X X X X X

the addressed context. Our approach, as we already said, can certainly be considered cross-purpose
since it focuses on the first two stages of the monitoring process formalized by Kornaros in [19],
where the emphasis is not on metrics computation, but on gathering events to compute them.

It is worth noting that we are proposing a monitoring system targeting FPGA-based SoPCs that
can be applied also to the monitoring of hardwired components. Indeed, the proposed monitor
requires to access lines at RTL. When dealing with the monitoring of hardwired components, there
can be two situations:

• the system manufacturer includes the proposed monitoring scheme in its RTL schematic
during its design phases, finally merging it in the hardwired component;

• the lines to be monitored are accessible from an FPGA part present in the same SoC where
the hardwired component lies.

In our work, we implement our monitor only on FPGAs because, except for layout activities and
manufacturing, the rest of the flow is the same of hardwired components.
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3 THE PROPOSED MONITORING SYSTEM
This section presents the paper contributions in detail. The first two subsections present the
monitoring system and its features. In particular they:
(1) discuss the development of a HW monitoring system enforcing composability and homoge-

neous observability, by designing it as assembled by modules able to implement the generic
monitoring process defined by Kornaros et al. [19]. Leveraging on the broadness of Kornaros’
process, we ensure a wider applicability of the proposed solution;

(2) review our previous work, AdaptIve Profiling Hardware Sub-system (AIPHS) [27, 44], origi-
nally applicable to microprocessors, interconnections, and memory, making it compliant to
the newly proposed HW monitoring system;

(3) present a comprehensive HW monitoring system, covering all the elements of the reference
heterogeneous processing architecture, including the coprocessors.

The last subsection provides an example of implementation, presenting the design of the proposed
monitoring system for a class of coprocessors existing in literature.

Event
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Generation

Data

Capture

Data

Filtering

Decision

Making
Reaction

Event

Instance

Generator

(EIG)

Data Capture and Filter

(DCAPF)

monitoring

information

event
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observation management

monitoring

process

HW monitoring 

system elements

Fig. 2. The steps of a generic monitoring process [19], organized in two categories, and the corresponding
HW blocks of the proposed monitoring system that implement them.

To build our monitoring system, we refer to the steps of a generic monitoring process, identified
by Kornaros et al. [19], and reported in Figure 2. This figure highlights the contribution of the paper,
which is the monitoring system, and the corresponding steps of the generic monitoring process it
takes care of. The Event Instance Generation step takes as inputs the low-level signals describing
occurrences happening on a platform and provides as output event instances, as defined in [31].
The Data Capture transforms the event instances into a meaningful representation that, after an
opportune filtering in the Data Filtering step, can be aggregated to compute metrics (monitoring
information) that satisfy given monitoring requirements. The monitoring information can be stored
as result or forwarded to the Decision Making step, that in turn can decide whether to trigger a
Reaction or not. To better depict the context of our work with respect to the generic monitoring
process steps, we identify the two following categories:

• Observation: it includes the steps that extract information from executing targets, and organize
them inmetrics (monitoring information). The steps involved in this category are fully passive,
meaning that the information is simply extracted but not used.

• Management: it includes the steps that, basing on the monitoring information, manage the
system by applying countermeasures in case of deviations from given objectives. Then, the
steps involved in this category can be considered active, since the extracted information is
translated into decisions and actions over the system.
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The proposed HWmonitoring system mainly implements the steps part of the observation category
and, for this, it can be efficiently used to support system-level methodologies that drive designers
from requirements to ad-hoc monitoring systems (e.g., [41, 42]).

3.1 The Monitoring Process Implementation
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Condition

Checker 2

Emitter

event instances

occurrences
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Fig. 3. EIG HW block diagram.

The Event Instance Generation step involves the genera-
tion of event instances when the low-level occurrences in
a defined place of the target platform verify specific condi-
tions. We implement this step by means of an Event Instance
Generator (EIG) block. An EIG is composed of an Interfacer
for the low-level occurrences, one or more Condition Check-
ers to evaluate if a specific condition is verified, and one
Emitter to generate event instances (see Figure 3). The Data
Capture step involves the management of event instances
to obtain monitoring information. We implement this step
and the Data Filtering step, with a Data CAPturer and Filter

(DCAPF) block for each metric. A DCAPF is composed of one or more Extractors to read event
instances and format them in a suitable way to be aggregated, one or more Filters of the formatted
data, and one Aggregator to exploit the filtered data to evaluate a metric (see Figure 4). The EIG
and one or more DCAPF (depending on how many metrics are evaluated) are part of a sniffer, a
HW component that takes as inputs low-level occurrences and outputs monitoring information.
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Fig. 4. DCAPF HW block diagram.

The monitoring system is composed of distributed sniffers
that make observable different system resources, at different
abstraction levels. Each sniffer provides, as output, monitor-
ing information following a given structure that is indepen-
dent from the place where the monitoring information is
extracted.
The level of customization provided through EIG and

DCAPF within each sniffer, and their derivation from a
generic monitoring process, offers the possibility to cover
the different metrics that can be associated to functional
objectives of monitoring considered in [19]. Furthermore,
the splitting of the monitor in EIG and DCAPFs allows a

reuse of internal sniffer blocks among different monitoring systems.
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The proposed sniffers deliver information to a Local Monitoring Information Collector (LMIC),
as indicated in Figure 5, that controls the sniffers in a given local area, enabling or disabling them,
and collecting their results.
LMICs are interfaced with the Interconnection through a Data Collector Interface (DCI) block

that allows a homogeneous access to monitoring information coming from all the sniffers; to this
end, the proposed monitoring system offers APIs to access monitoring information that can be used
by any external host. It is worth noting that all the LMICs offer a unique shared register space. In
order to efficiently bridging the steps of observation and management categories of the monitoring
process (i.e., to avoid the polling of results), the proposed global monitoring system also offers
the possibility to trigger an interrupt when thresholds are exceeded (by means of an Interrupt
Controller, see Figure 5).

To clarify the implemented process in the creation of a sniffer, i.e., how to manage the usage of
EIG and DCAPF, let us suppose that we are interested on monitoring all the writing transactions,
between the addresses 0x0 and 0xF, happening on a given BUSx that connects memory mapped
peripherals to multiple masters. The monitoring system will contain a single sniffer composed of
an EIG and one DCAPF. In turn, the EIG will contain:

• an Interfacer, physically connected to the control and address lines of BUSx, to bring occur-
rences of the bus as input of Condition Checker;

• one Condition Checker, to verify whether the control lines in BUSx indicate a write. When
the write happens, it is signalled to the Emitter;

• an Emitter to emit an event instance containing the address of the happened write and a
sniffer identifier, when receiving the signalling from the Condition Checker,.

On the other hand, the DCAPF will contain:
• an Extractor, to receive event instances and extract useful data for the measure;
• one Filter, to check the addresses of the writes and keep the ones in the range of 0x0 - 0xF;
• an Aggregator, to aggregate the measures to get the monitoring information.

We have reviewed our previous work, AIPHS [27, 44], to make it compliant with the new proposed
monitoring system. AIPHS is a HWmonitoring system that observes the performance of a system by
evaluating some metrics, and that is applicable to microprocessors, memories, and interconnections.
Similarly to the proposed monitoring system, AIPHS is constituted of distributed sniffers controlled
and read by a central element. Each sniffer is composed of an adapter, a nucleus, and an interface
to receive commands and to send results. AIPHS is organized in a library fashion, in particular,
there are three libraries containing elements: LIB_ADAPT for the adapter, LIB_NUCLEUS for the
nucleus, and LIB_GM for the interface.

3.1.1 Implementation and Programmability Details. In this section we provide a focus on implemen-
tation details, highlighting the configuration options, for the proposed monitoring solution blocks:
the global monitor, the sniffers, and the DCAPF. Along with the descriptions, we also discuss which
parts have been taken from AIPHS library, and which ones are new.
The global monitor interacts, through an interface connection, with a host that controls the

monitoring process and makes usage of monitoring information. The global monitor is shown in
the middle of Figure 5. The DCI receives the interface connection from host as input and propagates
some control lines and initialization values to the different LMICs. Also, the DCI receives the
sniffers results and makes them accessible through the interface connection toward the host. The
DCI, depending on how it is configured, is able to either be accessed (in a slave fashion) or to
automatically write (in a master fashion) monitoring information to an external memory. At least
one LMIC must be present in the system, with at least one sniffer inside it. Three sets of registers
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are available for each LMIC, namely the control, the initialization, and the results registers (see
Figure 6.b). The control and initialization registers are organized as reported in Figure 6.a. The
register on the top is the control one, that has the two least-significant bits assigned, respectively, to
run and soft-reset. Moving to the most significative bits of the register, there are two programming
bits associated to each sniffer; while, moving to bottom, there is an initialization register for each
sniffer for the initialization of the value of the filtering range of the DCAPF (as detailed later in the
section). To match with the number of sniffers inside the LMIC both the number of initialization
registers as well as the number of bits used in the control register can be customized. Supposing that
the control register is equal to 32 bit size, up to 15 sniffers can be connected to the LMIC. Results
registers are accessible both by sniffers (to write monitoring information) and by the host through
the interface connection (to read the monitoring information). Those registers are customizable
in number and size, and each sniffer has its own private area to write its results. The ensemble of
the LMIC registers represents the DCI register space, shown in the right-side of Figure 6.b. The
global monitor and the DCI internal construction shall be manually performed by the users, but we
provide a library of IP-cores to facilitate this action: in particular, we included in the new library
different IP-cores already available from LIB_GM of AIPHS, adding more IP-cores to provide the
DCI with the capability of writing monitoring information toward a destination memory in a
master fashion. In addition, the DCI now implements the management of Catch and Wack signals
(detailed in the next paragraph), in order to better separate the communication among sniffers and
the entities accessing (e.g., a microprocessor) the monitoring information.
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Fig. 6. Data organization in the proposed monitoring system: a) control and initialization registers of the
LMICs; b) DCI register space; c) structure of the sniffer output; d) structure of an event instance.

The sniffer is shown in the right side of Figure5. It receives the occurrences as input, together
with the control and initialization bus, and provides different monitoring information as output
(depending on the number of DCAPFs), together with the Catch andWack signals. The structure of
the sniffer output is shown in Figure 6.c: each sniffer is able to output some monitoring informa-
tion, associated to one or more DCAPFs. In particular, for each DCAPF, the sniffer outputs three
information:Wack signal, Catch signal, and monitoring information. The latter is further divided in
Event Attribute, that refers to attributes associated to the monitored events, Metric ID and Sniffer
ID, that refer to the ID of the evaluated metric and the sniffer that provides it, respectively, and
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Result, that refers to the metric value. Catch is high when the monitoring information is ready to
be stored in the register of the DCI, while Wack is high when the monitoring information is ready
to be accessed from the host. The necessity of two distinct phases, managed by Catch andWack
signals, comes from the fact that there are cases where the monitoring information is written in
multiple steps, and only at the end it can be accessed. The programming bits for each sniffer have
the following meaning:

𝑃𝑅𝑂𝐺 =


00, IDLE - the sniffer is not controlled neither by run nor soft-reset
01, INIT - the sniffer initializes its internal DCAPF
10, FILTERING - the sniffer works using its internal filters
11, NO-FILTERING - the sniffer works without using its internal filters

When the run signal (coming from the LSB of Figure 6.a) is high, all the sniffers in FILTERING
or NO-FILTERING mode connected to the corresponding LMIC start working. When the soft-reset
signal (again coming from control register of Figure 6.a) is high, all the sniffers not in IDLE mode
are internally reset. The EIG receives the occurrences as input and produces the event instances as
output, as described above. Event instances have a well-defined structure, reported in Figure 6.d,
where EVENT DATA represents the value associated to the monitored event, EVENT INCREMENT
is the increment associated to the monitored event, and event_data_good, when high, ensures
the validity of the event instance. The ratio behind the event instance structure is to produce an
interconnection independent interface that provides both the EVENT DATA and a weight to count
it (EVENT INCREMENT). The EIG strongly depends on the monitored interconnections (i.e., where
the sniffer is connected and which kind of lines need to be monitored). The development of EIG
internal blocks is left to users, and to support them we provide libraries with interfacers, condition
checkers, and emitters IP-cores. In particular, we include in the new library different IP-cores
already available from LIB_ADAPT of AIPHS, adding new IP-cores to interface with AXI4-Full bus
and to extract information from burst-based communication buses. Furthermore, as explained in
the next section, we add also IP-cores to monitor coprocessors. The description of sniffer internal
blocks ends with the dispenser, that receives some control lines (PROG, run, and soft-reset) and the
initialization value associated to the sniffer, and propagates it to the DCAPF inside the sniffer. Each
DCAPF requires two initialization values: due to the fact that the initialization register is unique
for the sniffer, in order to initialize all the DCAPFs is required a number of writes that is two times
the number of DCAPFs.

The DCAPF is shown in the middle of Figure 7. It receives control and initialization information,
together with event instances, and produces monitoring information as output, together with Catch
and Wack signals. With reference to Figure 7, the Event Monitor and Time Monitor are two blocks
that represent two different Extractors. Both of them also contain the filters, as shown in the same
Figure 7, on the left and on the right side. The Init DCAPF block stores the initialization values that
represent the low and top of the range where filters work. The Data Gating block can be used if it
is necessary to perform some gating actions on event instances, while the Aggregator block has
been already discussed above.
The Event Monitor and Time Monitor are both shown in Figure 7, on the left and right side

respectively. The Event monitor is able to count the number of event instances: depending on the
presence or not of the filter, it also checks whether the EVENT DATA fits inside a range delimited by
INF and SUP input values (they are included in the range). The Event Capture block ensures to add
the event instance with the corresponding weight (EVENT INCREMENT) to the total event count
(done with a counter). The Time Monitor has the same blocks of the Event Monitor, apart for Time
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Fig. 7. DCAPF internal structure with a focus on time and event monitors.

Capture, that is able to measure the time spent within a range of values (selected using the Filter
block). Finally, the Catcher and Acknowledger blocks provide the Catch and Wack signals. The
development of DCAPF shall be made by users, even though leveraging on provided libraries with
extractors, filters, and aggregators. In particular, the available extractors are the Time Monitor and
the Event Monitor, discussed above, that have been taken from the LIB_NUCLEUS of AIPHS and
evolved toward a more reusable and configurable structure. In addition, both IP-cores optionally
contain also catchers and acknowledgers.
The proposed monitoring system is highly configurable, thanks to the proposed libraries of

IP-cores and their level of configurability. The IP-cores are provided through a VHDL description,
and they can be configured using VHDL generics: they are all stored inside a VHDL configuration
file, named config.vhd. Some of these generics are reported here below to build an example sniffer
here named WOT (0 means that the block is not instantiated, 1 vice versa):

-- from the LSB, configure data gating block, time monitor, and event monitor
constant DCAPF_WOT_CONFIG: unsigned(4 downto 0) := "000";
-- from the LSB, configure filter, time capture block, catcher, and acknowledger
constant TIMEMON_WOT_CONFIG: unsigned(4 downto 0) := "0000";
-- size of the counter inside the event monitor
constant size_WOT_count_out_event: integer := 64;
-- size of the counter inside the time monitor
constant size_WOT_count_out_time: integer := 64;

APIs to use the monitoring system after its implementation are also available. An example of
them is reported here below (the APIs details can be accessed in the jointer open-source repository
[2]):

// initialize the selected DCAPF of the selected sniffer
void jointer_initialize(parameters)
// run sniffers of selected LMIC (works on FILTERING/NO-FILTERING sniffers)
void jointer_run(parameters)
// reset sniffers of selected LMIC (works on not IDLE sniffers)
void jointer_reset(parameters)
// print all the result registers of the selected LMICs
void jointer_print_reg(parameters)
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3.2 Extension to cover coprocessors
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are associated to different monitoring levels.

To extend the applicability of the proposed mon-
itoring system to coprocessors, we leverage on a
high-level architecture of a coprocessor, which
internal architecture is divided in three main
parts: Transaction Handler, I/O Manager and Data
Cruncher. The Transaction Handler is responsible
of interfacing each coprocessor with the intercon-
nection backbone it is attached to. The I/O Man-
ager is responsible of transferring the input data
to the computing core of the coprocessor, which
is the Data Cruncher, and to collect from it the
results that will be transferred back to the host
microprocessor through the Transaction Handler.
Such a generic coprocessor architecture is quite
common and it is adopted by different FPGA based
computing heterogeneous platforms that embed
coprocessing units [20, 32, 36]. In such architectures three monitoring levels are possible:

• transaction level - it applies to the logic within the Transaction Handler and is referred to the
monitoring of all the HW elements inside the coprocessor that manage the transactions to
interact, through the Interconnection, with other components of the reference architecture
of Figure 1. As an example, the logic necessary to handle memory-mapped or stream-based
transactions towards/from the microprocessors is monitored at transaction-level.

• task level - it applies to the logic within the I/O Manager and is referred to the monitoring
of all the HW elements inside the coprocessor that manage the start, the stop, and the I/O
data of the executed HW-task. As an example, data movement from the coprocessor internal
memory to/from the Data Cruncher are monitored at task-level.

• operation level - it applies to the logic within the Data Cruncher and is referred to the
monitoring of all the HW elements, at any granularity, inside the coprocessor that perform
the computations associated to the HW-task. As an example, the individual functional units
within the computing core of the coprocessor can be monitored at operation-level to check
whether they represent a bottleneck for the computation by monitoring their busy/idle time.

By properly configuring the sniffers for the given coprocessors, we introduce a sniffer for each of
the three levels that depends on (i) the occurrence to be observed and (ii) the metrics to be evaluated.
For instance, for a HW monitoring system able to evaluate four different metrics, associated to a
monitor for debugging [19] of the HW-tasks executed on a coprocessor, the metrics are expressed
as follows:

• 𝑀𝐸𝑇𝑅𝐼𝐶𝐷
1 - total size of data transfers;

• 𝑀𝐸𝑇𝑅𝐼𝐶𝐷
2 - number of internal custom events referred to a generic computation;

• 𝑀𝐸𝑇𝑅𝐼𝐶𝐷
3 - time spent to perform a data transfer;

• 𝑀𝐸𝑇𝑅𝐼𝐶𝐷
4 - time spent to perform a computation;

The four metrics can be computed by collecting the following event instances:
• for𝑀𝐸𝑇𝑅𝐼𝐶𝐷

1 : a data transfer and the related amount of bytes is needed (transaction level);
• for𝑀𝐸𝑇𝑅𝐼𝐶𝐷

2 an event inside the Data Cruncher is needed (operation level);
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• for𝑀𝐸𝑇𝑅𝐼𝐶𝐷
3 start and end of a data transfer are needed (transaction level);

• for𝑀𝐸𝑇𝑅𝐼𝐶𝐷
4 start and end of a computation within the coprocessor are needed (task level).

The four metrics can be computed by means of the three sniffers for the coprocessor monitoring.
If multiple clock regions are present in the system, very common situation in heterogenous plat-

forms, the proposed approach is capable of collecting, storing and retrieving monitoring information
in a consistent way. Coprocessors, which are one of the possible source of events/information in
the proposed monitoring solution, usually run at different frequencies than microprocessors, that
can act, for example, as monitoring information retrievers. According to the reference architecture
depicted in Figure 5, sniffers connected to coprocessors extract event occurrences and extract
monitoring information from them at the same frequency they are generated. Such information is
then properly collected and stored by LMICs, and made available to the microprocessor through
DCI, which can access to this latter at its own frequency. Thus, information collection and retrieving
are completely decoupled, and can run at different speeds without problems, also leveraging on the
possibility of adopting an interrupt mediated communication if reactivity is crucial.
In the next section, the design of the three sniffers for a class of coprocessors available from

literature is reported, in order to highlight the reuse of components inside each sniffer.

3.3 Implementation over a real coprocessor infrastructure
This section provides an example of implementation, over a microprocessor-coprocessor system, of
the described HW monitoring system extension presented in Section 3.2.
The class of coprocessors for which we implement the monitoring system is represented by

coprocessors provided by the Multi-Dataflow Composer (MDC) tool, a dataflow to HW tool that
automatically generates Coarse Grained Reconfigurable (CGR) HW designs [38]. Dataflows are
oriented graphs whose nodes, the actors, are accounted for data processing, while the edges are point
to point buffered communication channels. MDC takes as input dataflow network(s) specifications,
combines them if they are more than one, and generates a ready-to-use IP. Depending on the
number of input dataflows, MDC generates a non-reconfigurable (one dataflow) or CGR (more
than one dataflow) coprocessor. In this second case, different dataflow specifications are merged
together and different functionalities are enabled by multiplexing resources in time.

MDC has already been proven to be effective for the automatic instrumentation of the generated
HW custom monitors. In the previous work of Fanni et al. [15], MDC-compliant coprocessors have
been instrumented to be monitored, as already mentioned in Table 1. The HW block diagram of
an MDC-generated coprocessor for Xilinx oriented platforms is reported in Figure 8, where we
highlight the Transaction Handler, the I/O blue, and the Data Cruncher with green, black, and red
colours, respectively. The coprocessor has an assigned data-set in memory and, when required by
the host microprocessor, it streams data through a DMA, performs the computation within the Data
Cruncher, and writes back results direct to memory. MDC-compliant coprocessors are interfaced
with the rest of the computing platform through an AXI4 bus [7]. Therefore, the interface with
the host microprocessor and with the on board memory is an AXI4 Slave Interface, representing
the Transaction Handler block. Moreover, MDC-compliant coprocessors present a front-end and a
back-end that, according to the chosen dataflow-based actor to actor communication protocol, are
responsible of inputs management and outputs retrieval. Front-end and back-end, representing
together the I/O manager, can be monitored to get task level information. HW tasks are executed
within the MDC CGR accelerator that acts as the Data Cruncher.

In order to perform the monitoring process to compute the four metrics of the example reported
at the end of the previous subsection, we designed the three sniffers capable of:
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• collecting the total number of written and read bytes through the AXI4 Slave interface,
monitoring transaction level information;

• measuring the time between the start and the end of a computation, monitoring task level
information;

• collecting the total number of defined events, monitoring operation level information.

Fig. 9. Example of the proposed HW Monitoring System.

All the sniffers deliver their monitoring
information to a single LMIC, while the
DCI is an AXI4 Lite slave interface [7]. The
host can access resulting monitoring infor-
mation through a dedicated AXI4 Lite bus.
The transaction level sniffer has an

EIG that takes as input low level AXI4
bus occurrences and provides as output
event instances containing the address ac-
cessed for writing and reading as EVENT
DATA, together with the associated num-
ber of bytes related to write/read bursts as
EVENT INCREMENT. The sniffer has one
DCAPF that accumulates the number of to-
tal written/read bytes that are performed
on a predefined range. The block contains
the Init DCAPF, an Event Monitor, and
the Aggregator. In turn, the Event Moni-
tor contains the Filter, the Event Capture,
the Counter, and the Catcher.
The task level sniffer has an EIG that

takes as input low-level coprocessor trans-
actions associated to the Front-End and
Back-End, and provides as output event
instances containing the indication of a
start of computation and end of computa-
tion (both as EVENT DATA). The sniffer
has one DCAPF that measures the time
between the start and the end of the com-
putation, and provides that metric as out-
put. The block contains the Init DCAPF, a
Time Monitor, and an Aggregator. In turn,
the Time Monitor contains only the Time

Capture and the Counter.
The operation level sniffer has an EIG that takes as input low-level coprocessor transactions

associated to the CGR area, and provides as output event instances containing the number of events
occurrences (with the EVENT INCREMENT) associated to specific events. The sniffer has multiple
DCAPF, each one performing the counting of specific events. Each block contains the Init DCAPF,
an Event Monitor, and an Aggregator. In turn, the Event Monitor contains the Event Capture and
the Counter.

The final monitoring system, applied to MDC-based coprocessors, is reported in Figure 9. In this
work, the implementation of the proposed HW monitoring system for coprocessors is partially
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automated. In particular, the coprocessor has been automatically generated and integrated in the
microprocessor-coprocessor system using the MDC tool, while a Python script allows to modify the
monitor configuration through a GUI, and, taking also into account the config.vhd file, to integrate
the described sniffers, modifying the existing microprocessor-coprocessor system. Further details
are reported in Section 4.2.3.

4 ASSESSMENT
In this section, we are going to assess the proposed monitoring system for the processing and
coprocessing units considering a Xilinx Zynq-7000 XC7Z020 SoPC [47] (the coprocessing unit is
compliant with the reference architecture presented in Figure 1, as discussed in Section 4.1). The
assessment considers the dual-core ARM microprocessor and MDC-compliant coprocessors, and is
performed in terms of provided degrees of freedom and customization possibilities on a simple
fixed function coprocessor (see Section 4.2), and in terms of delivered benefits with respect to
literature solutions on a more complex system with microprocessor and reconfigurable coprocessor
(see Section 4.3).

4.1 Target Architecture and Experimental Setup
Figure 10 illustrates as the adopted device maps the elements of the reference architecture presented
in Figure 1. In particular, the microprocessors are the two ARMCortex-A9 cores, and the coprocessor
is an MDC generated IP, as illustrated in Figure 8, connected to the microprocessors by means of a
communication infrastructure that involves bus and Direct Memory Access engines (not represented
for the sake of simplicity). The MDC CGR accelerator (please, refer to Figure 8) is the coprocessor
Data Cruncher that, in this paper, can execute two applications, the Selective Accumulations (see
Section 4.2) or the Edge Detection (see Section 4.3) one. Please note that, the main memory (Data
Mem in Figure 10), where data to be processed and results are stored, for Resources and Dynamic
Power data has been substituted with an AXI accessible BRAM memory. In all the other cases, it is
an external DRAM. The monitoring system is composed of four sniffers, three for the MDC-based
coprocessor, described in the previous section, and one for the ARM microprocessor. In particular,
the sniffer for ARM is a sniffer that is able to observe a microprocessor that sends commands to
an AXI4-Lite slave component. The AXI4-Lite slave component is represented by our monitoring
system: when the microprocessor writes a value VAL in a specific memory location, the sniffer gets
a timestamp and store a monitoring information constituted of VAL + TIMESTAMP in a dedicated
memory. The dedicated memory is a BRAM (Tst Mem in Figure 10), and the microprocessor can
access the monitoring information stored in BRAM again using the AXI4-Lite bus. A similar sniffer
has been used in one of our previous works [28]: here, we reuse it by slightly changing the EIG
block. All the sniffers are controlled by a single LMIC, while the DCI contains sixteen registers
(each with a size of 32-bit). One register is left for the control associated to LMIC, while four are
left for initialization of the four sniffers. The remaining eleven registers are used for the storage of
monitoring information. In particular, the monitoring information related to the MDC-coprocessor
are accessible by the host directly in the DCI registers, while the monitoring information related to
the monitor for ARM are further stored in Tst Mem. The communication between the host (here,
the ARM core microprocessor) and the global monitor is a dedicated AXI4-Lite bus. The host can
access, using the same bus, to monitoring information stored in Tst Mem. Further details for the
sniffers for MDC-based coprocessor are reported in the following:

• transaction level sniffer: collects the total number of written bytes by the coprocessor to
the external memory. The size of the counter inside the Event Monitor is 23-bit. The sniffer
writes its results to one of the DCI registers;
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Fig. 11. Dataflow model of the Selective Accumu-
lations application.

• task level sniffer: measures the duration, in terms of clock cycles, of the computation associated
to the HW-task performed by the coprocessor. The size of the counter inside the TimeMonitor
is 53-bit size. The sniffer writes its results to two of the DCI registers, splitting the least and
most significant parts of the result;

• operation level sniffer: collects the total number of selected events inside the Data Cruncher.
The information on which are the selected events to be monitored, together with size of
monitoring information, is reported below (since they vary from test to test).

The experiments reported hereafter have been carried out with the Xilinx Vivado design suite.
Resources occupation data come from a full implementation of the considered designs under
test, while the power consumption data have been obtained through Vivado power estimations
by considering the real switching activity of the system, gathered during post-implementation
functional simulations. Execution latency and memory footprint data have been measured during
real executions on board. To reduce the statistical error, each latency number is computed as the
average among 10 executions of the same design and configuration. Memory footprint numbers
come from the actual memory occupancy of the SW part of the considered applications and from
the amount of data due to HW-task execution and monitoring. The proposed monitoring system
is designed in a way that it does not contain the system critical path (i.e., the addition of the
monitoring system in the design does not impact in the maximum system clock frequency).

4.2 Exploration of the Monitoring Solutions
For a complete exploration of the possible monitoring solutions enabled by the proposed monitoring
system, we here focus on the monitor customized to contain only the sniffer for MDC-based
coprocessor, and we adopt an application that executes Selective Accumulations of input data to
build a simple fixed function coprocessor. Figure 11 illustrates the dataflow representation of that
application, which is composed of two actors:

• 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 is responsible of data selection: it forwards data on a different output depending on
the same data value (output 0 if input is bigger than 5, output 1 if input is between 0 and 4,
output 2 if input is smaller than 0);

• 𝑚𝑎𝑐_16 is in charge of multiplying the input for a given constant and of accumulating together
the result of 16 subsequent products (one different instance of such actor is connected to
each output of 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑).

The resulting HW coprocessor is the object of the assessment for the proposed monitoring.

4.2.1 Designs Under Test. In this exploration, we compare 10 different versions of the design
under test (see Table 2). Different monitoring solutions are evaluated in different combinations of
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Table 2. Designs under test for the Selective Accumulations HW coprocessor involved in the exploration of
the monitoring solutions (trans. and oper. are respectively transaction and operation).

Design Enabled Monitor Level Operation Level Configuration
trans. task oper. #events #bits per event #regs

Y0 - - - - - -
Y1 x - - - - -
Y2 - x - - - -
Y3 - - x 1 5 1
Y4 - - x 2 10 1
Y5 - - x 3 20 3
Y6 x x - - - -
Y7 x - x 2 10 1
Y8 - x x 2 10 1
Y9 x x x 2 10 1

sniffers and in different configurations to explore the possibilities available to the user to customize
the monitoring system. Column Enabled Monitor Level illustrates the different combinations of
sniffers (transaction, task and operation levels) that have been compared (Y0 is the design without
the monitoring system). Column Operation Level Configuration gives the details of the operation
monitoring level. Column #events reports the number of different Data Cruncher events the sniffer
is able to monitor. For each event, there is a dedicated DCAPF within the sniffer: column #bits per
event reports the counter size of the Counter inside each Event Monitor contained in the DCAPF.
Column #regs reports the register mapping. Please, notice that the adopted transaction level and
operation level sniffers are a subset of the possible configurations. Indeed, the transaction level
monitoring can be applied for different aspects of AXI transactions (e.g., number of read bytes or
different address ranges), while the operation level monitoring can be applied for whatever event
the designer needs to keep trace of within the HW coprocessor Data Cruncher. On the contrary, at
the moment, besides counting events or monitoring time, the task level sniffer cannot be configured
in a different manner.

Table 3. Resources and power of the Selective Accumulations designs. Exec. refers to power consumption
during coprocessor execution, while Transf. refers to power consumption during data transfer periods.

Design Resources Dynamic Power [mW]
LUT LUT% FF FF% BRAM BRAM% Exec. Exec.% Transf. Transf.%

Y0 3397 - 2864 - 6 - 24 - 25 -
Y1 3675 +8.18 3163 +10.44 6 +0.00 25 +4.17 26 +4.00
Y2 3497 +2.94 3092 +7.96 6 +0.00 25 +4.17 26 +4.00
Y3 3478 +2.38 3043 +6.25 6 +0.00 26 +8.33 26 +4.00
Y4 3491 +2.77 3058 +6.77 6 +0.00 25 +4.17 26 +4.00
Y5 3516 +3.50 3098 +8.17 6 +0.00 25 +4.17 26 +4.00
Y6 3702 +8.98 3217 +12.33 6 +0.00 27 +12.50 28 +12.00
Y7 3690 +8.63 3183 +11.14 6 +0.00 25 +4.17 27 +8.00
Y8 3512 +3.39 3112 +8.66 6 +0.00 26 +8.33 26 +4.00
Y9 3718 +9.45 3237 +13.02 6 +0.00 26 +8.33 28 +12.00

4.2.2 Quantitative Results. Table 3 depicts resource occupancy and power consumption results of
the considered designs. Since the monitors are register-based, they present a cost in terms of LUT
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Table 4. Latency and memory footprint of the Selective Accumulations designs. Instr. is related to the whole
executable file and Data is to the real disk occupancy of the data for processing and monitoring.

Design Latency [us] Memory [B]
Tot. Tot.% Proc. Mon. Instr. Instr.% Data Data%

Y0 10.981 — — — 229988 — 204 —
Y1 14.356 30.73 10.839 4.617 235104 2.22 207 1.29
Y2 14.736 34.20 10.804 5.128 235112 2.23 211 3.25
Y3 14.161 28.96 10.597 4.692 235108 2.23 205 0.31
Y4 14.831 35.06 10.853 5.207 235172 2.25 207 1.23
Y5 15.122 37.71 10.806 5.365 235236 2.28 212 3.68
Y6 15.083 37.36 10.861 5.278 235172 2.25 213 4.53
Y7 15.172 38.17 10.813 5.593 235236 2.28 209 2.51
Y8 15.08 37.33 10.567 5.685 235240 2.28 213 4.47
Y9 15.338 39.68 10.574 5.945 235304 2.31 216 5.76

and FF, without any impact on the BRAM (we remark that we are considering only the monitor
of MDC-based coprocessor here). This overhead is always under the 10% for LUT and 13% for FF.
The lowest monitoring overhead is achieved by the Y3 design, which employs only the operation
level monitoring with 1 event (column #events) and a 5 bits counter (column #bits per events). The
transaction level monitoring is the most resource hungry solution, since it embeds all the logic
necessary for AXI protocol decoding and monitoring. Of course, when more than one monitoring
level is enabled, the amount of overhead resources grows, up to the case where all the monitoring
levels are employed (Y9).

Dealing with power numbers, a preliminary clarification is needed: the resolution of the power
estimation is 1 mW, so that differences lying below this minimum value are lost. Power consumption
presents only slight variations among different designs, variations sometimes even not expected,
such as for Y6 and Y9 where this latter is consuming less than the former, which however demands
more resources. It is mainly due to different synthesis and implementation choices that lead to
optimizations under different goals: resource and/or timing for Y6, power for Y9. In terms of data
transfer power (see Transf. column in the table), Y6 and Y9 have the same behaviour. Please note
that power results almost follow the same trend of the resource ones, since Y6 and Y9 are still the
most resource demanding solutions. Overall, the power overhead is small, since it is lower than
12.5% for both Exec. (coprocessor execution) and Transf. (data transfer) periods.

Table 4 depicts numbers gathered from real execution of the designs under test on the evaluation
board. Since the considered application is quite simple and small, the monitoring overhead on the
execution latency has a clearly visible weight, causing always about 30% additional time on the
Total duration (Tot.%). Again, Y9 presents the highest overhead in terms of latency: all the three
monitoring levels have to be configured and 216 B of monitoring information have to be retrieved.
In this case, the overhead is close to 40% of the overall execution latency. The most lightweight
solution is, instead, Y3, where the minimal operation level monitoring is enabled. Looking at the
Proc. and Mon. columns, showing processing and monitoring contribution on the overall execution
latency, it is clear how the processing latency is always almost the same, with small variations due
to statistical effects. The monitoring latency, instead, is following the monitor complexity for each
design, and it is in line with resource and power numbers depicted in Table 3.

Table 4 depicts also memory footprint split in instruction (Instr.) and data (Data), to separate the
overhead of the monitoring solutions drivers and of the additional monitoring data. From these
entries it is clear that the memory footprint overhead is very limited, being always under 2.5% and
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5.8% respectively for instructions and data memory. The trend is in line with the amount of events to
be monitored and with the amount of monitored data to be gathered. So that, Y9 is the most memory
demanding solution under both the considered metrics, while Y1 is the less demanding solution for
instruction memory (contrarily to Y3 and Y4, all adopting one single register for mapping counters,
Y1 does not require data masking since the counter width, 32 bit, is the same of the data bus) and
Y3 is the less demanding solution for data memory, requiring only one more byte than Y0 design.

Despite its simplicity, the Selective Accumulations test case gives an idea of the little invasiveness
of the proposed monitoring system, especially in terms of resources, power and memory footprint.
Execution time overhead is, instead, not negligible in general for this specific test case. A more
realistic idea of the invasiveness of the proposed monitoring system will be given in Section 4.3,
where a real application is considered.

4.2.3 Qualitative Results. It is worth to discuss also qualitatively the exploration made on the Se-
lective Accumulations application. In particular, referring specifically to the chosen implementation
flow based primarily on the MDC tool, the considered monitoring solutions can be evaluated also
in terms of designer effort and required skills. As reported in Section 3.3, the implementation of the
proposed HW monitoring system is partially automated through an external script, providing a
graphical user interface, that allows the instrumentation of both transaction and task level moni-
toring of the generated coprocessor. This means that the user does not need a specific knowledge
and understanding of HW design to place sniffers in these levels: it is sufficient to understand the
monitoring solution register mapping, that is anyway hidden by the monitor drivers, but that can be
useful for advanced actions and optimizations on the code. Dealing with the operation level sniffer,
the discussion is a bit different since the automation is only partial. In fact, this monitoring level is
strongly custom, meaning that it depends on the specific application constituting the computing
core of the HW coprocessor, and it offers the possibility of tracing any internal signal. Making the
selected signals available at the interface and accessible by the monitoring logic is not an automated
step, and the users have to modify the RTL code by hand. Nevertheless, the monitoring logic has to
be only partially modified, and automation scripts for monitoring up to four events are already
available, even if small modifications are required when the Data Cruncher changes or when more
than four events have to be monitored. Please, note that customization and freedom in monitoring
is colliding with lowering effort and skills required to the designer. Indeed, in order to be able to
choose which signals and which events have to be monitored inside the coprocessor Data Cruncher,
users have to know where and how to put their hands in the code. As it will be discussed in the
conclusion, future automation activities are foreseen to support also a more designer friendly usage
of the operation level sniffers in MDC-compliant coprocessors, to avoid such an extra effort and
required low level skills.

Finally, the proposed monitoring system brings also benefits in terms of usability. Indeed, having
a global monitoring system with different internal LMICs, that in turn aggregate all the data
coming from all the sniffers associated to all the monitored levels and not only the ones related
to coprocessors (see Section 3), implies that the user has a unique and uniform access point for
monitored data, regardless of their source, size and kind. This improves usability, on the one hand,
while facilitates, on the other, the perspective implementation of the active steps of the generic
monitoring process envisioned by Kornaros et al. [19]. Unquestionably, multi-objective run-time
optimization strategies could certainly be enabled within a system run-time manager if the metrics
are grouped together within the global monitor.

As a summary, the design automation and usability of the proposed approach can be illustrated
as follow:
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(1) user shall model application(s) as dataflow(s) to feed theMDC tool and shall provide Hardware
Description Language (HDL) descriptions for the involved actors/modules (HLS can be
exploited to provide high level descriptions, e.g., C codes, to automatically generate the
corresponding HDL instead of manually define each block);

(2) MDC automatically generates the corresponding loosely coupled fixed point or reconfigurable
(according to the number of provided dataflowmodels of the applications) coprocessor, drivers
for its easy usage, and scripts for generating the complete microprocessor-coprocessor system
within Vivado environment;

(3) a script takes the MDC generated platform, inserts the proposed monitoring system for the
coprocessor, on the three available levels according to the user preferences, and generates
drivers for it. Considering the operation level, if any event has to be monitored, the user
shall manually bring those events outside the coprocessor and shall modify the input to the
provided script accordingly;

(4) user shall develop the software application using the available drivers and APIs (available
both for the coprocessor task delegation and management and for the monitor management).

4.3 Benefits of the Monitoring Solutions
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Fig. 12. Graphs representation of the Sobel and Roberts edge
detectors.

In this section, we adopt a real ap-
plication involving Edge Detection al-
gorithms [12] to assess the benefits
of the proposed monitoring system
applied to a system involving a mi-
croprocessor and a complex reconfig-
urable coprocessor. In particular, dis-
crete first-order differentiation Edge
Detection algorithms are considered.
These algorithms detect the edges
of a certain object according to the
difference of colour intensity among
neighbour pixels, that is the gradient
of colour variations (𝐺) in a certain
neighbourhood of pixels. Such gra-
dient is obtained as the sum of the
horizontal and vertical gradients, re-
sulting from the convolution of two-
dimensional kernels with the source
image. In this case, we adopt two different algorithms, Sobel and Roberts, which employ convolution
kernels with different sizes, 3𝑥3 and 2𝑥2 pixels respectively. Such algorithms provide different
trade-offs in terms of detection power and efficiency (resources, power and execution time). Sobel is
capable of detecting more edges than Roberts, but requires more resources, power and time; while
Roberts is simpler, thus adopting less resources, power and time, but it detects less edges.

Figure 12 illustrates the dataflow representations of the Sobel and Roberts edge detectors:

• line buffer actors to memorize one previous row within the image;
• delay actors to memorize one previous pixel within a row;
• sobel x/y and roberts x/y actors to perform the convolution of the specific algorithm kernel
with the 3𝑥3 and 2𝑥2, for Sobel and Roberts respectively, image portion reconstructed by line
buffer and delay actors, thus calculating horizontal and vertical gradients;
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• abs sum actor to perform addition of horizontal and vertical gradients to obtain the overall
gradient for the specific pixel position;

• thr actor to actually decide if an edge is detected or not in the specific pixel position: if the
gradient is above a certain threshold (80), an edge is present and the output will be saturated
to the maximum value (255), while if the gradient is below the threshold, there is not any
edge and the output is forced to the minimum value (0).

The two dataflow models of Sobel and Roberts have been combined together by the MDC tool,
the resulting CGR coprocessor is the object of the assessment for the proposed monitoring.

4.3.1 Designs Under Test. Differently from the exploration of the possible monitoring solutions
made in Section 4.2, here we focus only on three monitoring configurations, each allowing for a
different level of knowledge of the system. To understand the benefits of the proposed generalized
monitoring solution, a design combining accelerator and microprocessor monitoring has been also
analysed. The considered configuration summary is the following.

• 𝐷0 designs without the monitoring system;
• 𝐷1 designs provide transaction level monitoring;
• 𝐷2 designs provide transaction level and task level monitoring;
• 𝐷3 designs provide transaction level, task level and operation level monitoring.
• 𝐷4 designs provide all the previous coprocessor monitoring levels, along with the micropro-
cessor software monitoring.

Table 5. Designs under test for the Edge Detection coprocessor.

Design
Enabled Monitor Monitor Solution

𝜇𝑃𝑟𝑜𝑐
Coprocessor

𝜇𝑃𝑟𝑜𝑐
Coprocessor

trans. task oper. trans. task oper.
𝐷0 - - - - - - - -
𝐷1𝑎 - x - - - [46] - -
𝐷1𝑏 - x - - - proposed - -
𝐷2𝑎 - x x - - [46] [45] -
𝐷2𝑏 - x x - - proposed proposed -
𝐷3𝑎 - x x x - [46] [45] [45]
𝐷3𝑏 - x x x - proposed proposed proposed
𝐷4𝑎 x x x x built-in [47] [46] [45] [45]
𝐷4𝑏 x x x x proposed proposed proposed proposed

The proposed HW monitoring system adoption (𝐷1𝑏 , 𝐷2𝑏 , 𝐷3𝑏 and 𝐷4𝑏 ) is compared with
state of the art monitoring systems widely adopted on FPGA platforms (𝐷1𝑎 , 𝐷2𝑎 , 𝐷3𝑎 and 𝐷4𝑎))
(see Table 5). In particular, such monitoring systems are based on available Xilinx IPs within the
considered VivadoDesign Suite environment and on the ARM core built-in global timer/counter [47].
The transaction level monitoring, acting on the system interconnection (system bus, hereinafter),
is compared with the Xilinx AXI Performance Monitor [46], which is the official Xilinx IP for
monitoring AXI buses. This IP offers basically the same possibilities of the proposed transaction
level monitoring solution, allowing the profiling of different events related to the AXI protocol,
such as counting reads and writes or configuring the considered address range. The task level and
operation level monitoring are compared with the Xilinx Integrated Logic Analyzer (ILA) [45].
This IP, differently from AXI Performance Monitor, allows custom monitoring of any signal on the
system netlist (thus after RTL synthesis of the design). In such a way, it is possible to monitor both
Front-End/Back-End signals (task level monitoring) and MDC CGR coprocessor Data Cruncher level
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signals (operation level monitoring). Please notice that such terms of comparison are a forced choice
for the considered target device, since they are the monitoring/debug instruments provided directly
by the vendor. Despite this, if AXI Performance Monitor is specifically conceived for monitoring
purposes, the ILA is instead intended for logic level debug through signals waveform observation,
thus its adoption for monitoring is only for comparison purposes. It has to be highlighted that these
are not Xilinx specific issues, since considering different vendors (e.g., Intel), similar instruments
with basically specular capabilities and limitations are available (e.g., Signal Tap Logic Analyzer [5]).
The monitoring of the microprocessor, in this case capable of taking and storing timestamps, is
compared to the ARM core built-in timer/counter which is an instrument always available (no
additional resources are needed) on the hardwired microprocessor of the targeted SoC.

4.3.2 Quantitative Results. Table 6 illustrates the resource and power consumption numbers of the
considered designs under test. Firstly, it is possible to see how for all the designs containing the
proposed monitoring system for coprocessors (𝐷1𝑏 , 𝐷2𝑏 and 𝐷3𝑏 ), the resource overhead is limited
to up to 9% for LUT and 10% for FF, while BRAM are not affected by monitoring. Comparing this
overhead with the one provided by Xilinx state of the art monitoring solutions (𝐷1𝑎 , 𝐷2𝑎 and 𝐷3𝑎),
we can appreciate the lightweight impact of our proposed monitoring system. Indeed, in this case
the overhead goes from about 30% to more than 60% in terms of LUT, and from about 40% to 90% for
FF. Moreover, BRAM are also increased in all the Xilinx monitoring solutions. Comparing designs
with the same monitoring capabilities, the overhead increase, going from the proposed monitoring
system to the Xilinx one, is always extremely clear, and it is maximum in the 𝐷3 designs where it
goes from 9.11% to 62.54% for LUT, from 10.18% to 89.87% for FF and from 0% to 75% for BRAM.
Overall, the resource occupancy data demonstrates that, for the given monitoring capabilities,
the proposed monitoring system is more efficient than common state of the art solutions. When
microprocessor monitoring is also enabled, resource overhead of the proposed solution (𝐷4𝑏 ) is
increased under all the considered metrics (more than 20% for both LUT and FF), including BRAM
which are doubled with respect to 𝐷0. The additional logic required to monitor the ARM core
indeed involves also a memory to store timestamps. Despite this considerable amount of additional
resources, the proposed design is smaller than the corresponding state of the art solution (𝐷4𝑎),
but for the BRAM. Please consider that 𝐷4𝑎 resources instantiated in the programmable logic and
the resulting power behavior are the same of 𝐷3𝑎 , since the adopted state of the art solution for
microprocessor monitoring is, as said, hardwired in the processing system and thus not accounted
here. However, to store timestamps with ARM built-in timer/counter, users have to write custom
software and adopt the available ARM on-chip memory, which is also not accounted here.

Table 6. Resources and power of the considered Edge Detection designs. In brackets is reported the percentage
variation with respect to 𝐷0. *Power numbers come from measures where ILA is not configured.

Design Resources Dynamic Power [mW]
LUT (%) FF (%) BRAM (%) Sobel (%) Roberts (%) Transf. (%)

𝐷0 3807 (-) 4017 (-) 2 (-) 45 (-) 22 (-) 22 (-)
𝐷1𝑎 4934 (+29.60) 5698 (+41.85) 3 (+50.00) 47 (+4.44) 25 (+13.64) 26 (+18.18)
𝐷1𝑏 4081 (+7.20) 4316 (+7.44) 2 (+0.00) 44 (-2.22) 21 (-4.55) 22 (+0.00)
𝐷2𝑎* 6017 (+58.05) 7413 (+84.54) 3.5 (+75.00) 55 (+22.22) 32 (+45.45) 33 (+50.00)
𝐷2𝑏 4116 (+8.12) 4370 (+8.79) 2 (+0.00) 45 (+0.00) 22 (+0.00) 23 (+4.55)
𝐷3𝑎* 6188 (+62.54) 7627 (+89.87) 3.5 (+75.00) 56 (+24.44) 33 (+50.00) 34 (+54.55)
𝐷3𝑏 4154 (+9.11) 4426 (+10.18) 2 (+0.00) 46 (+2.22) 22 (+0.00) 23 (+4.55)
𝐷4𝑎* 6188 (+62.54) 7627 (+89.87) 3.5 (+75.00) 56 (+24.44) 33 (+50.00) 34 (+54.55)
𝐷4𝑏 4694 (+23.30) 5031 (+25.24) 4 (+100.00) 48 (+6.67) 25 (+13.64) 26 (+18.18)
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Power numbers in Table 6 have the same trend of resource occupancy ones. The only design
showing a different behaviour is 𝐷1𝑏 which seems to save power with respect to 𝐷0 during both
applications execution, but not during data transfers. Such design is the one capable of monitoring
the system bus, thus, as expected, its overhead is related more to the data transfer period. However,
such overhead is quite low, and the resulting power consumed by the 𝐷1𝑏 while transferring data is
the same of 𝐷0. Differently, the measured power saving related to execution is due to the extremely
similar values which difference is close to the power estimation resolution (1 mW). Small synthesis
and implementation differences in these designs may cause differences in switching activity (e.g.,
due to the presence of pending flipping signals that, being not isolated, can drive unused resources
and waste power) and, in turn, have different rounding in power estimation. Apart from the saving
observed in 𝐷1𝑏 , the power data are as expected. The two coprocessor configurations differ in
terms of power consumption (Sobel consumes about twice the power of Roberts).

Comparing the state of the art Xilinx coprocessor solutions (𝐷1𝑎 , 𝐷2𝑎 and 𝐷3𝑎) and the proposed
ones (𝐷1𝑏 , 𝐷2𝑏 and 𝐷3𝑏 ), these latter are always more efficient than the former also in terms of
power. While for𝐷1, when only AXI Performance Monitor is enabled on the state of the art solution,
the increment of overhead is limited (at maximum 18.18%), in the other cases, when also ILA is
employed, the increment of overhead is stronger (always more than 22.22%, with a peak of 54.55%).
Please note that in power numbers related to ILA (𝐷2𝑎 and 𝐷3𝑎), the ILA IP has not been configured
to actually measure the monitored signals/events (the ILA is free running) since it has not been
possible to simulate it (the configuration of the ILA is performed through the JTAG interface that
is not visible in post-implementation simulation). If microprocessor monitoring is enabled (𝐷4𝑏 ),
power consumption increases in all the considered configurations and periods (Sobel, Roberts and
Transf ), with a maximum overhead with respect to 𝐷0 of 18.18% in this last case. Nevertheless, the
proposed solution is always better than the corresponding state of the art one, 𝐷4𝑎 , in terms of
power dissipation.

Table 7. Latency and memory footprint of the Edge Detection designs. Instr. is related to the whole executable
file and Data is to the real disk occupancy of the data for processing and monitoring. *A fair measure of
the considered metrics for such designs has not been possible. ** Only timestamp monitoring overhead is
considered.

Design Latency Sobel Latency Roberts Memory [B]
Instr. Instr.% Data Data%

Tot. [ms] Tot.% Tot. [ms] Tot.%
𝐷0 502.208 – 482.666 – 1295112 – 2097152 –

Mon. [us] Tot.% Mon. [us] Tot.%
𝐷1𝑎 28.382 0.0059 28.338 0.0056 1365724 +5.45 2097156 +0.0002
𝐷1𝑏 4.232 0.0009 4.153 0.0008 1302012 +0.53 2097155 +0.0001
𝐷2𝑎* – – – – – – – –
𝐷2𝑏 4.795 0.0010 4.783 0.0010 1302152 +0.54 2097161 +0.0004
𝐷3𝑎* – – – – – – – –
𝐷3𝑏 6.187 0.0012 6.17 0.0013 1302408 +0.56 2097168 +0.0008
𝐷4𝑎* – – – – – – – –
𝐷4𝑏 9.290 0.0018 9.27 0.0019 1309796 +1.14 2097168 +0.0008

𝐷4𝑎256* 230.279** 0.0459 229.641** 0.0476 – – – –
𝐷4𝑏256 137.867** 0.0275 138.454** 0.0287 1309840 +1.14 2099216 0.0984

Table 7 reports execution measures of the considered designs on the target device. Dealing
with a real Edge Detection application, which requires several runs of the coprocessor to complete,
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the overall execution latency is now extremely bigger (hundreds of ms) than monitoring one
(tens of us). It does not make anymore sense to compare total execution latency among different
designs, since the differences are flattened by the statistical fluctuations. For this reason, the total
execution time is given only for 𝐷0, that is the design without any monitoring capability. For the
remaining designs only the latency due to the monitoring is reported, together with the percentage
of this latter over the total 𝐷0 execution latency (Tot column). Please note that, for state of the
art monitoring solutions (𝐷1𝑎 , 𝐷2𝑎 , 𝐷3𝑎 and 𝐷4𝑎), it has been possible to provide fair numbers
only in the 𝐷1𝑎 case, where the AXI Performance Monitor is adopted alone, and partially in
the 𝐷4𝑎 one, as we will explain afterwards. In the other cases, where also ILA is adopted, a fair
comparison under Table 7 related metrics has not been possible. Indeed, ILA is configured through
the JTAG connection and uses dedicated BRAM modules, thus execution latency and instruction
related memory footprint is not measurable. Looking at numbers, as expected, the monitoring
latency overhead grows together with the monitoring capabilities. Differently from results reported
in Section 4.2, the overhead on the total execution time is quite limited (always around 0.001%)
demonstrating the little invasiveness of the proposed monitoring system, also in terms of latency,
when applied to a real test case. The only fully measurable state of the art case, 𝐷1𝑎 , is more time
consuming than the corresponding proposed solution, 𝐷1𝑏 and than the other proposed solutions
(with different monitoring capabilities). However, the resulting overhead is still negligible due
to the size of the application, being not more than 0.006% of the total 𝐷0 execution latency. The
adoption of microprocessor monitoring on the top of the coprocessor one, in form of timestamps,
causes a certain overhead also in terms of latency. In particular, the monitoring configuration
and finalization (𝐷4𝑏 ) is still negligible with respect to the whole execution latency. Timestamps
overhead is, instead application/user dependent, since they can be taken several times according
to the specific purpose and needs. As an example, 256 timestamps have been taken during the
execution of the application, one for each coprocessor call and just after microprocessor prepares
input before such calls. Monitor overhead due to the timestamps alone has been measured and
compared with the overall execution (𝐷0) for the proposed (𝐷4𝑏256) and for the state of the art
(𝐷4𝑎256) solution. Timestamps monitoring overhead is now heavier, but sill under 0.05% in all
cases. Looking a bit more in detail, there is a clear difference between 𝐷4𝑎256 and 𝐷4𝑏256, with the
proposed solution that is overperforming the state of the art one. In fact,𝐷4𝑏256 takes the timestamp
with a single write operation, while 𝐷4𝑏256 implements a more complex process, resulting in higher
overhead (almost doubled) in terms of latency.
Table 7 also reports results related to memory footprint. In this case, a unique value for Sobel

and Roberts is provided since such metrics do not change going from one detector to the other one.
As for latency numbers, only 𝐷1𝑎 literature solution has been profiled since for the other state of
the art monitoring designs, 𝐷2𝑎 , 𝐷3𝑎 and 𝐷4𝑎 , a fair comparison has not been possible. In terms
of instruction memory footprint (Instr column), the proposed monitoring system requires a very
low overhead that is always lower than 1.2%, meaning that the drivers necessary to configure and
manage monitors are extremely lightweight. Here, as for the other considered metrics, monitoring
the microprocessor (𝐷4𝑏 and 𝐷4𝑏256) requires a bigger overhead (more or less doubled) than
monitoring coprocessor alone with different levels (𝐷1𝑏 , 𝐷2𝑏 and 𝐷3𝑏 ). Considering the unique
state of the art monitoring solution presenting memory footprint data, 𝐷1𝑎 , it is clear that such
overhead is bigger, being about 5% of the 𝐷0 program memory occupation. Focusing on data
memory footprint such difference between state of the art and proposed monitoring system is no
more present since the overhead is always negligible (less than 0.001%) in all the considered designs,
due to the fact that the application data is huge. Anyway, fixing the monitoring capabilities to the
transaction level monitoring, the proposed monitoring system (𝐷1𝑏 ) is overperforming the state of
the art (𝐷1𝑎) by saving one byte.
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4.3.3 Qualitative Results. A qualitative analysis of the benefits provided by the adoption of the
proposed monitoring system is extremely important, especially due to the fact that the Xilinx ILA
[45] does not allow a fair comparison for certain metrics evaluated in Section 4.3.2. Again, the
aspects under which the qualitative analysis is going to be conducted are user effort and required
skills. Dealing with the effort, as already discussed in Section 4.2.3 for the exploration, the proposed
monitoring system requires almost no effort for the transaction level and task level monitoring
while, at the moment, the operation level monitoring requires the user to manually bring out
from the Data Cruncher of the coprocessor the signals to be monitored. The monitoring of the
microprocessor, being not automated so far, needs a certain design effort and skills. In particular,
the users have to insert monitors manually on the Vivado Block Design of the system, so that they
have to know the architecture and the same monitors. This process will be automated in the future
by means of the same script already available for most of coprocessor monitoring features, and all
the updates will be uploaded in the provided open-source repository [2]. From the programming
side, users have only to take timestamps wherever needed and to retrieve data afterwards. Such
operations are possible through proper APIs which have the same shape of the coprocessor related
ones, thus ensuring transparent and generic access to the monitors for the targeted heterogeneous
platform.

At transaction level, the state of the art AXI Performance Monitor solution requires the users have
to manually introduce and configure the IP in the Vivado project. This task can be easily automated,
as for the proposed monitoring system, and its usage is facilitated by Xilinx drivers that require
effort and skills similar to the ones required by the proposed monitoring system. The situation
changes when considering task level and operation level monitoring, that at the state of the art are
possible only with the ILA IP. Such IP has to be inserted in the netlist of the synthesized design.
Users have to manually choose which signals have to be monitored in the netlist. This is similar
to what is requested by the operation level monitoring in the proposed solution, with the huge
difference that in this latter case the signals should be identified on the RTL code rather than in the
netlist. Understanding and editing the netlist to find the right signals is not trivial since the design
can change drastically after synthesis, and signals can be renamed and split, so that HW design skills
and knowledge of the synthesis process are necessary to properly identify signals. For instance,
the 8 bit signal out_pel going from the Data Cruncher to local memories inside the coprocessor
IP in the 𝐷3𝑏 design has been renamed and split into the 1 bit signals i_back_end_out_pel_n_0,
i_back_end_out_pel_n_4, i_back_end_out_pel_n_5 and i_back_end_out_pel_n_6, while there is not
trace of the remaining 4 bits of the signal in the netlist. Once signals are chosen, Vivado offers
an automated wizard to insert the ILA IP and link it with the selected signals. Focusing on the
considered monitor for microprocessor, the ARM built-in timer/counter, it is hardwired in the
microprocessor chip, so that there is no need to insert it by hand. Moreover, it is extremely easy to
be used, since Xilinx already provide drivers to properly access and exploit it, as occurs for the AXI
Performance Monitor. Thus, also in this case, the effort required to the user for learning how to use
it is similar to the one of the proposed solution.
In terms of monitor usage, it is important to highlight as the ILA has a completely different

interface with respect to the AXI Performance monitor. Such interface, based on JTAG connection,
makes it difficult to manage monitoring from the same SW running on the host core, as occurs
for AXI Performance Monitor and for the proposed monitoring system. Moreover, the ILA is only
able to store samples of data of the monitored signals for a certain time period and according to
a predefined clock period. This means that, if users want to keep trace of the number of events
or the duration of a certain signal, they have to post process data provided by ILA, while the
proposed monitoring system delivers the final events or time count ready to be used. Please
consider that, even if drivers are provided by Xilinx for both transaction coprocessor monitoring
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level (AXI PerformanceMonitor) and microprocessor monitoring (ARM built-in timer/counter), they
have multiple interfaces compared to our single interface. In summary, the considered literature
solutions are not sufficient to provide monitoring for heterogeneous systems involving dedicated
coprocessors, since they require a great design effort and specific digital HW design skills to the
user. The proposed monitoring system, on the contrary, demonstrated to be a better choice under
the considered effort and required skills aspects.

4.4 On the Exploitation of the Monitoring Infrastructure for Different Purposes
As discussed in Section 1, the specific monitoring purpose is not directly addressed by the proposed
work, which is purpose-independent since focuses only on Event Instance Generation, Data Capture
and Data Filtering steps of the generic monitoring process introduced by Kornaros et al. [19]. As
the metrics are available, what to do with them depends on the purpose of the monitoring and the
process from passive becomes active with the Decision Making and Reaction steps. This section
discusses how the proposed HW monitoring system could be effective for different purposes. In
particular, we discuss below how the proposed work is capable of extracting the same metrics
of two works available in literature used for different purposes, namely monitor for debug and
verification and monitor for security.

The work of Lee et al. [21] is an example of monitor for debug and verification, as also reported
in Section 2.1: authors highlight the type of events to perform a debug, and propose observation
interfaces to monitor those events at low-level with hardware circuitry. It is worth noting that
their measure are part of two categories: either counting the number of events, or measure the
time between two events. Our monitoring system can extract all the events proposed by authors:
furthermore, the distinction between EIG and DCAPF allows to configure only two different
DCAPFs, one with Event Monitor and one with Time Monitor, and to reuse them in different
sniffers. Depending on the monitored interconnections, sniffers with different EIG blocks can be
built.

Thework of Arora et al. [8] is an example ofmonitor for security formicroprocessors; in particular,
authors propose a framework to build a HW monitoring system able to identify unintended
behaviours by performing a check of the application (i) inter-procedural control flow, (ii) intra-
procedural control flow, and (iii) instruction stream. Their monitoring system extracts the program
counter tomake a comparisonwith some expected values (for (i) and (ii)), and extracts the instruction
register value to compute a hash function and compare, again, with expected values. Our monitoring
system can perform the same extraction activity, with a proper configuration of filters inside DCAPF,
making data available for the analysis and, additionally, is not limited to work with microprocessors,
but can target also other system components.
Focusing on the proposed experimental activities, considering the different combinations of

events monitored in the Selective Accumulations example (see Table 2 in Section 4.2), for instance
the transaction level monitor can be used for:

• debug and verification - by playing with the DCAPF initialization values, it could be possible
to identify any faulty transfers;

• security - to detect potentially malicious data transfers.

The task level monitor can be used, for example, for:

• performance - by measuring coprocessor computation time, something that is typically not
available without a proper HW instrumentation of the coprocessor, useful to understand
the impact of coprocessor data management and coprocessor computation time to better
optimize the system components;
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• debug and verification - to serve as watchdog, checking if the execution completes within a
given deadline.

The operation level monitor can be used, for example, for:
• performance - by monitoring events giving hints on how data is flowing within the datapath;
• debug and verification - by detecting event occurrences not in line with expected ones;
• power - by linking events to coprocessor power models to estimate the related consumption.

Dealing with the examples provided in this paper, we can discuss how the different provided
monitoring levels can be particularly useful in terms of prospective purposes. Considering the more
realistic Edge Detection application, in which different combinations of events are monitored (see
Table 5 in Section 4.3), we can provide different examples of monitoring for debug and verification
related to fault detection and identification. The considered HW coprocessor system can be affected
by different faults, ranging from data transfer (affecting the system bus) to computational ones
(internal to the coprocessor). Moreover, also the microprocessor can be affected by faults especially
considering the CPSs, which are connected, distributed and adaptive. In order to have detection and
identification capabilities on such faults, the three envisioned monitoring levels can be effective in
different ways:

• 𝐷0: this design does not provide any monitoring feature, so that it is not possible to know
where are, which are and, sometimes, if there are faults;

• 𝐷1: this design, providing bus level monitoring, makes it possible to detect and to identify,
thanks to the programmability of the adopted monitors, faults related to data transfers, e.g.,
user selects a wrong input data location;

• 𝐷2: the monitoring in this design enables additional features with respect to 𝐷1, being able
to detect and identify faults on data transfer, but also to detect faults on the coprocessor
computation, e.g., accelerator stall;

• 𝐷3: this design delivers the maximum coprocessor monitoring possibilities, making it possible
not only to detect and identify data transfer faults and detect computation faults, but also to
identify these latter, e.g., accelerator stall caused by wrong configuration for the given input
image size, thanks to the view opened on the accelerator computing core signals of interest.

• 𝐷4: this design enables monitoring on the heterogeneous platform by adding on the top of
the coprocessor monitors of 𝐷3 a monitor for the microprocessor, which delegates operations
to the coprocessor and prepares data to be processed: if these latter are corrupted or faulty,
this monitor can detect the fault and, depending on how and where timestamps are placed,
identify it.

5 CONCLUSIONS AND FUTUREWORKS
Complex heterogeneous reconfigurable embedded computing platforms are currently widely
adopted, being capable of providing performance together with flexibility. However, heterogeneity
has raised several challenges for the designers: one of them is related to system monitoring which
is often fundamental to ensure efficiency and adaptivity required to modern CPSs. Monitoring
heterogeneous platforms means dealing with a variety of components ranging from general purpose
cores, passing through interconnections, data moving and storing modules to custom coprocessing
units. Providing a unified, homogeneously observable, composable, customizable and minimally
invasive monitoring system is not trivial, and state of the art still lacks in providing an extensively
adopted solution. In this work, we proposed a HW monitoring system limited to the passive part of
the monitoring process, from low level signals to metrics. It has been extensively assessed, firstly, on
a simple test case by considering all the possible system configurations and customization possibili-
ties, and then on a real-world image processing application comparing the proposed solutions with
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state of the art ones. Results show that our solution is flexible enough to offer to users a wide set of
monitoring possibilities, at the price of a little overhead in terms of resources, power consumption,
execution time and memory footprint. Moreover, thanks to the adopted tooling support, it requires
less engineering effort and HW expertise.

In the next future, we plan to trace a line for a comprehensive HW monitoring system where all
the components of a heterogeneous platform are monitored together in a unified, homogeneously
observable, composable, customizable and little invasive way. Active parts of the monitoring
process, taking as input metrics and performing decision making and reaction steps, will be also
tackled in the evolution of the work. Coprocessors support will be also completed by adding tightly
coupled accelerators, besides loosely coupled ones which are currently addressed. Moreover, design
automation is going to be completed and refined. At the moment, designer effort and skills are still
required concerning coprocessors operation level monitoring and processors monitoring, this latter
to be added manually on Vivado Block Design. Dealing with the former, we envision to abstract low
level details and allow users to choose signals of interest to be monitored directly on the application
model. The latter, instead, will be embedded in the provided script already supporting most of
coprocessor monitoring stuff.
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