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Università degli Studi dell’Aquila
Via Vetoio, L’Aquila Italy

Email:tania.dimascio@univaq.it

Giacomo Valente
DISIM Department
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Abstract—Nowadays, Cyber-Physical Systems play an impor-
tant role in the context of several large industries; the need for
interaction with a changeable physical world leads the system
adapting itself to physical changes. Adaptivity, dependability
and reducing communication overheads then appear as the most
wanted requirements that are moving on the adoption of the edge-
computing. In turn, in this world, the demand for HW platforms
able to manage increasing requirements is leading to the use
of FPGAs, due to their inherent run-time reconfigurability.
However, the dynamic partial reconfiguration process of an
FPGA has a timing performance impact that cannot be neglected.
This impact, if not well considered, can nullify the advantage
obtained using a Dynamic Partial Reconfiguration. Therefore,
when exploiting FPGAs with dynamic partial reconfiguration, a
crucial problem is to understand whether is profitable or not
to dynamically reconfigure them. In this paper, an innovative
run-time manager adopting a metric to evaluate the impact of
reconfiguration time is introduced, together with its validation
through its usage on a basic application implemented on FPGA.
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I. INTRODUCTION

Nowadays, Cyber-Physical Systems (CPSs) play an impor-
tant role in the context of several large industries, includ-
ing electronics, energy, automotive, defense and aerospace,
telecommunications and industrial automation [1]. CPSs com-
bine a cyber side, composed of computing and networking
parts, with a physical side (e.g., mechanical, electrical and
chemical processes).

The need for interaction with a changeable physical world
leads the system adapting itself to physical changes (e.g.,
a sudden temperature variation), implying the requirement
of adaptivity [2]; moreover, the criticality of the physical
entities controlled by CPSs requires that systems enforce
dependability [3]. These two requirements, together with the
further requirement of reducing communication overhead, are
moving on the adoption of edge-computing [4], i.e., trans-
ferring computation close to sensors. In order to do that,
it is mandatory using HW platforms supporting the above
mentioned requirements. Nowadays, one of the valid solutions
is based on the usage of Field Programmable Gate Arrays (FP-
GAs) [5]. These platforms allow the designer the opportunity
to implement applications both in SW, using soft-processors or
existing hard-processors (in this case, they are called System-

on-Programmable Chips (SoPCs) [6], [7]), and in HW, with
custom design circuits. FPGAs platform provide both the
flexibility of SW and the high-performance of HW. Regarding
dependability and adaptivity, the most interesting feature of
FPGAs is their capability to dynamically reconfigure a portion
of HW, while the remainder of the processes continues to op-
erate: a process called dynamic partial reconfiguration (DPR)
[8]. This process is valuable in different contexts, such as
power aware implementations [9] and timing related concerns:
for example, when a system executes different applications and
has to satisfy some timing requirements, it can use a DPR
to instantiate application specific HW accelerators to meet
deadlines [10].

When exploiting FPGAs with DPR, a crucial problem is
to understand whether is profitable or not to dynamically
reconfigure it. In fact, the process requires that a configuration
file is transferred from a storage memory to a reconfiguration
memory, requiring some time, depending on both configura-
tion file size and available bandwidth; this impact, if not
well considered, can nullify the advantage obtained using a
DPR [8]. Even if in the latest years there has been a trend
showing that reconfiguration times in FPGAs are progressively
decreasing [11], the available bandwidth to perform DPR
can have a strong impact on actual reconfiguration time, as
confirmed by the study of Papadimitriou et al. [12]. There is a
necessity of models to evaluate the reconfiguration time, also
referred as DPR time hereinafter, with necessary accuracy;
this, in turn, would enable the possibility to evaluate the
profitability of this operation, before to apply it.

Similarly to some existing works [12] [13], this paper
tries to address the problem of DPR time estimation and the
associated evaluation of its profitability by firstly proposing
a model to predict the DPR time, targeting Zynq7000 SoPC
[6]. Then, the model is introduced inside a run-time manager
that innovatively manages the self-adaptivity of CPSs at the
edge, properly using the DPR time estimation to evaluate
the profitability of the operation. Differently from [14], the
proposed solution does not require a dedicated memory to
store the configuration file, with an advantage on required area
for the implementation.

The paper is organized as follows: Section II reports
a detailed analysis of related works, whereas Section III



Fig. 1. The customary self-adaptive loop, where the four phases ”monitor,
analyze, plan, execute” [17] are shown. The managed element represents the
system whereon the adaptation is applied.

presents the proposed system, highlighting the impact on edge-
computing of the proposed manager, validated in Section IV.
Finally, Section V discusses some conclusions and future
works.

II. RELATED WORKS

The evaluation of DPR impact is a huge research area. The
work in [15] evaluates the impact of DPR on power dissi-
pation, in order to exploit that information inside a run-time
manager to select different working points. Some models to
estimate DPR time have been proposed in [12] and [13]: they
both target previous versions of FPGAs, compared to those
currently adopted, such as the Zynq7000 SoPC considered
in this work. A further work related to timing impact of
accelerators instantiated using DPR has been done in [16]:
the difference with this work is that they do not consider the
impact of reconfiguration time, that can be significative.

The DPR has been also considered in the context of real-
time systems, with the goal of growing the cardinality of
the task-set by adding HW-tasks at run-time, i.e., tasks to
be executed with accelerators on FPGA. In this context, the
work of Biondi et al. [10] proposes a model for analyzing
the temporal impact of a DPR, with the goal to analyze
the schedulability of real-time systems; in their model, they
consider the reconfiguration time as constant. This is not a
valid assumption, as demonstrated in [14], where it has been
shown how the reconfiguration bandwidth can vary up to 21x,
and consequently also the reconfiguration time. Still in the
same field, the work of Damschen et. al. [14] proposes a
new controller to have an upper bounded reconfiguration time,
in order to provide hard real-time guarantees: the controller
requires a guaranteed bandwidth access memory for reconfig-
uration file storage.

All the works above reported originate from different fields
of application. Differently, the proposed run-time manager
aims to be applicable to different contexts that involve systems
where DPR is adopted. This is guaranteed by a model that
generalize the factors that contribute to DPR time, as detailed
in the next section.

Fig. 2. Reference platform composed of an external shared memory, accessed
by two Processor Systems (PSs) with related on-chip private memory. PSs
are masters on a bus used to communicate with hardware on FPGA, for
example with accelerators put in reconfiguration area. The FPGA contains
also the proposed run-time manager, a Dynamic Reconfiguration Controller
(DRC) and a Dynamic Reconfiguration Interface (DRI) to access the Dynamic
Reconfiguration memory (DRM) and perform the DPR. DRM content acts
directly on the FPGA array. DRM and FPGA array represent the internal part
of the FPGA.

III. THE PROPOSED SYSTEM

The proposed system is constituted of a run-time man-
ager that allows to face timing performance losses in edge-
computing systems: in case of timing performance losses, the
manager evaluates whether a DPR can help on recovering
them by instantiating accelerators on FPGA. This kind of
adaptation phenomena is well described by the self-adaptive
loop model [17], shown in Fig. 1: for this reason, in next
sub-sections it is taken as reference to describe the proposed
manager. Moreover, without loss of generality, a reference
platform for edge-computing is considered, shown in Fig. 2.
With reference to it, a complete DPR operation is established
when an accelerator is loaded within the reconfiguration area:
this means that a reconfiguration file, called bitstream (BS), is
transferred from external memory to dynamic reconfiguration
memory (DRM). In more detail, BS is read from external
memory by a processor system (PS) and transferred to its on-
chip memory; then, PS transfers the BS to a dynamic reconfig-
uration branch (DRB), composed of a dynamic reconfiguration
controller (DRC), a dynamic reconfiguration interface (DRI)
and a dynamic reconfiguration memory (DRM). When the BS
is stored in DRM, the DPR is considered completed.

A. Monitor

The monitoring action in the proposed run-time manager is
implemented on the basis of the following considerations:

• edge-computing involves applications that can be exe-
cuted on heterogeneous platforms; this means that the
same monitoring system can be required to work, for
example, on different processors/accelerators. This, in



turn, requires the adoption of a re-usable monitoring
system.

• What needs to be monitored can be very different, de-
pending on the executed application and on the metrics to
be evaluated; this requires a flexible monitoring system,
i.e., that can quickly customized for different measures.

• The monitoring action is performed on systems with
limited computing resources and possible strict timing
performance requirements; this requires a monitoring
system that limits the intrusiveness on the application
execution time.

For these reasons, the monitoring system adopted in the
proposed run-time manager is implemented starting from a
framework that enforces flexibility and re-usability of the
produced components. The framework, called AIPHS [18]
[19], allows to implement custom HW monitoring systems,
in order to limit the intrusiveness, and it is based on a library
of IP-cores.

B. Analyze

Analysis is a phase where a component, called analyzer,
interprets the raw information coming from the monitoring
system, in order to obtain indications about performance.
Similar to monitoring, this phase strongly depends on the
application under analysis. The analyzer in the proposed
manager, again, is built using the AIPHS framework [19].

C. Plan

The planning phase, in the proposed run-time manager,
involves a decision on whether to adapt the system or not, i.e.,
whether to apply DPR or not. It depends on two main factors:
(i) the availability of an accelerator to regain performance
and (ii) the necessary reconfiguration time (RT) to perform
a DPR. Supposing that the first point is always true, the
decision depends only on the second one: differently from
previous works, the manager estimates the RT at run-time
and with a fixed latency. The estimation of RT at run-time
is required since it depends on two factors: the BS size and
the available bandwidth. The BS size is a parameter known
since design time: however, there can be cases where new BS
can be generated to adapt the system along its lifetime, for
example to update a system functionality to new standards,
without changing the HW platform; in that case, the manager
would keep into account the new BS size. On the other
hand, available bandwidth is a parameter that depends on the
whole path to be traversed to bring the bitstream from shared
(eventually external) memory to reconfiguration memory: the
bandwidth can be affected by shared memory arbitration and
shared system bus arbitration.

Considering the reference platform shown in Fig. 2, the
reconfiguration time can be calculated with the following
formula:

RT = RTSTO +RTCNTR +RTCONF +RTSH (1)

where RTSTO, RTCNTR, and RTCONF are the times to move
the bitstream, respectively, from external memory to processor

memory, from processor memory to DRI and from DRI to
DRM. On the other hand, RTSH represents the impact factor
of the sharing of memory and buses.

The planning is implemented by a decision maker that, in
the proposed run-time manager, has three inputs: the output of
estimator, the knowledge related to target and some informa-
tion from execution phase (discussed in the next sub-section).
The output of estimator allows checking, at run-time, whether
the required timing performance is guaranteed. The knowledge
related to target represents factors that contribute to RT, such as
the status of shared elements. The information from execution
phase is information related to configuration files related to
accelerators to be dynamically downloaded on the FPGA: in
this case, the information is given by the bitstream size.

The decision maker, in the proposed run-time manager,
has a fixed latency on estimating RT, since it is completely
implemented in HW inside the FPGA, as shown in Fig. 2.

D. Execute

In the execution phase, the adaptation to be applied to
regain timing performance losses is produced. In this context,
producing an adaptation means to enable the DPR with the
selected bitstream. The configuration files are prepared at
design-time, due to the complexity of the FPGA synthesis
operation.

IV. EXPERIMENTAL RESULTS

Dedicated experimental applications have been designed
and developed to show the run-time manager profitability,
i.e., the capability to adapt the system to possible application
changes: it has to guarantee that timing performance are
hold, in a scenario where asynchronous disturbances, i.e., that
happens independently from the application, are present. An
application running on top of an edge-computing platform
has been also designed and developed, together with the
proposed run-time manager. In order to show the effectiveness
of the proposed manager, it has been assumed, without loss of
generality, that the accelerator is not already present on FPGA.
This is a customary assumption for systems that will use this
type of manager, e.g., systems with a lot of accelerators that
represent HW tasks for processors.

A. Selected platform and model instantiation

The selected edge-computing platform is a Xilinx Zynq-
7000 SoPC [6], soldered on a Digilent ZedBoard [20], whereas
the development tool is Xilinx Vivado IPI [21]. For a bit-
stream stored inside ZedBoard DDR3 external memory, a
DPR can be managed by ARM Cortex A9 core: depending
on the dynamic reconfiguration interface (DRI), that can be
either Processor Configuration Access Port (PCAP) or Internal
Configuration Access Port (ICAP), a different reconfiguration
path is involved. By means of a comparison between Fig.
2 and Zynq7000 datasheet [6], it is possible to identify the
reconfiguration path. Supposing the use of PCAP, starting from
the external shared memory, there are three levels of arbitration
inside the memory controller, in order to handle the memory



Fig. 3. Circuit schematic of the DPR time estimator.

accesses among 4 ports; each port has two 64 bit channels
(for reading and writing) [6]. Then, there is a system bus that
supports a burst type access of 8 beats size, each one with 64
bit data width [6]. The dynamic reconfiguration branch (DRB)
is composed of a dynamic reconfiguration controller (DRC),
represented by a Direct Memory Access (DMA) contained
within a Device Configuration Controller (DevC) [6], and a
PCAP. The DMA supports a burst type access of 8 beats
size, each one with 32 bit data width [6]; it stores data in
a memory buffer, represented by a queue with a depth of 127
32-bit words. The PCAP controller takes data from the queue
and pushes them into reconfiguration memory [6]. All these
operations are done working at different clock domains.

In the first version of the model, an exclusive access path to
external memory has been assumed: this assumption has been
implemented by acting on memory arbiter configuration. This
means that, in (1), RTSH is zero. Basing on the path above
described, the instantiated model provides RTSTO, RTCNTR
and RTCONF. It is worth noting that RTSTO and RTCNTR are
merged in a unique parameter, named RTDMA, since there is
a DMA that makes direct access to memory, without passing
through processor. RTCONF is the parameter related to loading
of reconfiguration memory using PCAP. RTDMA and RTCONF
are added together and, then, multiplied by bitstream size. The
result, representing RT, is provided as input to the decision
maker of the run-time manager. The final circuit schematic
that implements the model is shown in 3. When implemented
on the FPGA side of Zynq7000, it makes use of one DSP.
Putting it in the decision maker, also one comparator needs to
be considered.

B. First test

In the first proposed test, an application constituted of some
matrix operations, organized in batches, has been executed
on one of the ARM-Cortex A9 cores, and an asynchronous
disturbance task, composed of a number of sums, has been
provided, enabled by a push-button. Two timing performance
requirements have been provided: (i) the execution time of
each batch equal at maximum to 1.5 ms and (ii) the deadline
of the application equal to 35 ms. An accelerator using the
classical DPR flow proposed by Xilinx has been prepared
and the related BS stored within the external DDR3 memory;

Fig. 4. The figure shows the results plot of the first test. Initially, the
application is totally executed on one of the dual-core ARM Cortex A9
and monitored by the run-time manager to evaluate the execution time. If
it goes over the required 1.5 ms, the manager evaluates the DPR time using
the proposed model, and it checks whether the DPR is profitable or not by
considering how much time remains before the deadline and what is the
available speed-up. It is possible to observe that there is a peak at 1.65 ms
when disturbance is triggered; then, the manager evaluates the profitability in
50 ns and it performs a DPR. The time between the peak and the return of
batch execution time under 1.5 ms represents the reconfiguration time (RT).
The application is launched four times, and the manager decides, in all four
cases, to perform the DPR, since the task can be completed in time.

the accelerator provides a speed-up of 2x for each batch
execution. When a disturbance was triggered, the manager
was responsible for guaranteeing either the required quality
of service or to give an alarm in 50 ns. Results of first test are
reported in Table I, and shown in Fig. 4.

TABLE I
RESULTS OF THE FIRST PROPOSED TEST

Parameter Value

Maximum execution time for each batch 1.5 ms

Deadline of application 35 ms

Time to response for manager 50 ns

Estimated reconfiguration time 18934577 ns

Actual reconfiguration time 18759380 ns

Absolute/Relative estimation error 175197 ns / 1%

C. Second test

In the second proposed test, the run-time manager has
been introduced within a framework called Artico3 [5], with
the future goal of making it more accessible to designers.



TABLE II
RESULTS OF THE SECOND PROPOSED TEST

Parameter Value

Bitstream size 857740 bytes

Estimated reconfiguration time 6754702 ns

Actual reconfiguration time 6588656 ns

Absolute/Relative estimation error 166046 ns / 2.5%

Artico3 is a framework to develop edge-computing platforms
that make use of FPGA and DPR. The tool is provided for
applications running in Linux user space: in order to work
with the proposed run-time manager, it has been adapted to
work with bare-metal applications on ZedBoard. In this test,
only the quality of reconfiguration time prediction has been
evaluated; results are reported in Table II.

V. DISCUSSION AND CONCLUSIONS

This paper proposes an innovative run-time manager that
handles the self-adaptivity of CPSs at the edge, by means of
a model to estimate, in advance and at run-time, the DPR
time, in order to actually evaluate when the DPR is profitable.
The proposed model is quite general and it has been proposed
since, in the state of art, there are a number of local solutions
to the DPR profitability evaluation, and only part of them
consider the impact of DPR time. The paper proposes the
manager, describes the model and instantiate it for a Zynq7000
platform. However, it is reusable for other platforms, with
opportune modifications. Observing Table I and Table II,
it can be noticed that the model is accurate, providing a
maximum error of 2.5 % respect to actual reconfiguration
time. The effectiveness of the manager on providing adaptation
by means of a DPR can be noticed by showing Fig. 4.
First validation activities have been done considering simple
applications and, in this context, future works will include
the manager in more complex scenarios with edge-computing,
where adaptivity is required to face performance variations. In
this context, preliminary works have been done on developing
HW platforms for unmanned aerial vehicles able to guarantee
certain timing performance on image computation using DPR;
the platform development has been done using Artico3 with
the proposed run-time manager.
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