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Abstract—In the domain of Cyber-Physical Systems, the FPGA
Dynamic Partial Reconfiguration (DPR) feature has been proved
to be efficient to adapt the system hardware configuration
to environment changes, also in the case of hard real-time
constraints. Often, in this context, a single task can request
multiple DPR to modify the platform configuration.

However, also if in the hard real-time literature several works
exploit the DPR process, to the best of our knowledge, no one
deals with its scalability (i.e., the efficient management of multiple
DPR requests).

Hence, in this work, focusing on hard real-time systems, we
conduct both a theoretical and practical investigation about
the DPR scalability, discussing the obtained outcomes and the
objectives to be achieved in the near future.

Index Terms—Cyber-Physical Systems, Dynamic Partial Re-
configuration, FPGA, Hard Real-Time Systems.

I. INTRODUCTION

In the Cyber-Physical Systems (CPSs) domain, embedded comput-
ers and networks monitor and control physical processes, usually with
feedback loops where computation affects physical processes and vice
versa [1]. Especially when safety is a concern, computation is often
subject to hard real-time constraints. Moreover, such kind of systems
should adapt themselves to possible changes in the environment. In
such a context, a platform that offers the possibility to modify its
configuration (e.g., a reconfigurable platform) at run-time is essential.
Nowadays, a valid solution is provided by Field Programmable
Gate Arrays (FPGAs) with Dynamic Partial Reconfiguration (DPR)
features [2] [3]. The DPR, indeed, allows to modify at run-time the
HW configuration adapting the CPSs architecture to the physical
world changes in order to continue meeting the systems requirements.

In general, when a DPR is required (typically by a SW-task [4]), the
reconfiguration occurs by moving the reconfiguration file of the task to
be implemented in HW (HW-task) from a generic memory to an FPGA
reconfiguration memory, along with an FPGA reconfiguration path,
thanks to a reconfiguration controller and an FPGA Reconfiguration
Interface (FRI) [4]. However, the variation that the DPR acts in
the FPGA platforms can produce some kind of impact also on the
system parts not involved in the HW modification [5]. This issue
has been faced over the years by reducing the granularity of the
HW-task reconfiguration file [6] (e.g., from Xilinx Virtex 2 [7] to
Virtex 7 [8], and from Intel Stratix V [9] to Stratix 10 [10]). Besides,
the satisfaction of different requirements often leads to the needs
of multiple related DPR (see e.g., [5] and [11]). Consequently, both
decreasing the reconfiguration file granularity and increasing the
DPR frequency lead to the need for reconfigurable platforms able to

Provider Controller DMA Scalability

I

Xilinx PCAP-based -
Zynq-7000 [12]

YES N.D.

Xilinx PCAP-based -
Zynq-Ultrascale [13]

YES N.D.

Xilinx MCAP-based [13] YES YES
Xilinx ICAP-based
[14] [15]

NO NO

Intel PR [16] NO NO

A

Vipin et.al [6] YES NO

Liu et.al [17] YES NO

Claus et.al [18] YES NO

Damschen et.al [19] YES NO

Pezzarossa et.al [20] NO NO

Xiao et.al [21] NO NO

Hübner et.al [22] NO NO

TABLE I
RECONFIGURATION CONTROLLERS AVAILABLE AT INDUSTRY (I) AND

ACADEMIC (A). THE THIRD COLUMN INDICATES WHETHER THEY USE OR
NOT A DMA, WHILE THE FOURTH COLUMN REPORTS THE FLAG

YES/NO/ND TO INDICATE IF A CONTROLLER SUPPORTS/DOES NOT
SUPPORT THE DPR SCALABILITY OR IF THERE ARE NO INFORMATION ON

EXISTING DOCUMENTATION.

efficiently handle multiple reconfiguration requests (DPR scalability,
hereinafter).

As reported in Table I, the Industry introduced new architectural
elements inside the FPGAs to reduce the overhead associated with
the whole DPR process management, (like Direct Memory Access
(DMA) controller in Xilinx Zynq-7000 [12]), while the Academic
proposed custom reconfiguration controllers (once more based on
DMA and able to support the DPR scalability) to further improve the
efficiency of industrial solutions [23] [24] [11]. However, even though
the DPR scalability can introduce several benefits within the systems
that adopt it, such a DPR aspect is not properly taken into account
by the hard real-time analysis approaches existing in the literature
(see e.g., [4], [25], [26], and [27]). These works do not consider
the fact that existing reconfigurable platforms embedding an FPGA
support the DPR scalability by allowing multiple DPR requests per
time. They leave the constraint that each SW-task can require at most
one DPR per time even if a HW-task needs multiple DPR requests
to be implemented. Moreover, with this constraint is also overlooked
the possibility of reducing the time that a SW-task has to wait before
the required reconfigurations are well established.

Therefore, in this work, focusing on hard real-time systems, we



conduct both a theoretical and practical investigation on the DPR
scalability reported in Section II. In more detail, in Section II.A,
we report the theoretical investigation conducted using the only
framework [4], presented in hard real-time literature, that does not
explicitly exclude the DPR scalability adoption; in Section II.B, we
report: (i) a practical investigation conducted to identify the existing
DPR-compliant platforms that could support the DPR scalability, (ii)
and a practical DPR-scalability experimentation carried out on one
of these platforms. Each subsection reports the obtained outcomes,
leaving the presentation of future objectives to Section III.

II. INVESTIGATION OUTCOMES

A. Theoretical investigation
To theoretically investigate the DPR scalability we have chosen the

FRED framework proposed in [4] since it allows a single SW-task to
make multiple DPR requests when it has to execute a single HW-task.
It is worth noting that the generic HW-task can be composed of
multiple HW fragments here referred as HW sub-tasks. In particular,
we test the DPR scalability in the FRED framework selecting an
application constituted of a number of SW-tasks, where one of them
requires multiple DPR to execute its HW-task; in this test, we evaluate
if for the considered SW-tasks the delay bound is guaranteed even
with a HW-task that needs multiple DPR requests to be executed.
Before showing the test results, we report the concepts presented
in [4] refining some of them to properly consider the fact that a
single HW-task may need the satisfaction of multiple DPR requests
before the execution start. In FRED a HW-task is a task running
on FPGA, and the activities executed on the FPGA are modeled as
a set ΓH of nH HW-tasks. In turn, for each HW-task τH

a ∈ ΓH , we
define a set ΓHS

a = {τHS
a,1 , ...,τ

HS
a,nDa
} of HW sub-tasks that compose

τH
a , where nDa is defined as the number of HW sub-tasks required

to execute the HW-task τH
a . Using the same architecture of FRED, a

HW-task τH
a can be executed only if all its HW sub-tasks have been

programmed on FPGA slots: in particular, each HW sub-task τHS
a, j ,

with j = 1, ...,nDa , needs to be programmed into a slot, since each
slot can accommodate at most one HW sub-task. Each HW sub-task
τHS

a, j requires ba, j logic blocks: to program τHS
a, j into a slot, the FRI

has to program all its logic blocks, independently on the number ba, j .
Each τHS

a, j can be programmed in any of the slots belonging to an
FPGA partition: the partition hosting it is denoted as P(τHS

a, j ) = Pk

and referred as affinity. For all τHS
a, j , with j = 1, ...,nDa and with

P(τHS
a, j ) = Pk, it must be that ba, j ≤ bS

K . The time rHS
a, j is the time

needed to program the HW sub-task τHS
a, j : the time rH

a to program a
generic HW-task is then given by ∑

nDa
j=1 rHS

a, j . When a generic SW-task
τi requires the execution of a HW-task τH

a that needs multiple HW
sub-tasks in ΓHS

a = {τHS
a,1 , ...,τ

HS
a,nDa
} to be executed, in this work

we refer to that as τH
i,a and to the set of associated HW sub-tasks as

ΓHS
i,a = {τHS

i,a,1, ...,τ
HS
i,a,nDa

}. The SW-task performs the request by means
of a blocking system call named EXECUT E HW TASK(τHS

i,a, j), with
j = 1, ...,nDa [4]. The FPGA is again modeled as done in [4] and
reported above. However, we consider that a busy slot in addition to
being reserved or active can also be contributing; a busy contributing
slot is an FPGA slot that has been programmed with a HW sub-task
but cannot start the execution until all the others HW sub-tasks have
been programmed in other slots.

At this point, we can report the result of the proposed test on
FRED. We select an application (apptest , hereinafter) that consists
of three SW-tasks: τ1 = 〈τ1,1,τ

H
1,a,τ1,2〉, τ2 = 〈τ2,1,τ

H
2,b,τ2,2〉, and

τ3 = 〈τ3,1,τ
H
3,c,τ3,2〉. The priority assignment is such that π1 > π2 > π3.

The HW-task τH
1,a requires nD1,a = 4 HW sub-tasks to be executed,

i.e., ΓHS
1,a = {τHS

1,a,1,τ
HS
1,a,2,τ

HS
1,a,3,τ

HS
1,a,4}. The HW-tasks τH

2,b and τH
3,c,

on the other hand, have one HW sub-task, i.e., nD2,b = nD3,c = 1
(therefore, we will refer to them with the HW-task notation). The

FPGA module contains four partitions P1, P2, P3, and P4, each
consisting of a single slot. The affinity is assigned as follows:
P(τHS

1,a,1) = P1, P(τHS
1,a,2) = P(τH

2,b) = P2, P(τHS
1,a,3) = P(τH

3,c) = P3, and
P(τHS

1,a,4) = P4. Fig. 1 shows the timing diagrams of the execution
of apptest scheduled with FRED in non-preemptive way. It is worth
noting that, for the τ1 SW-task, we assume that when executing
the EXECUT E HW TASK(τHS

1,a, j) system call, with j = 1, ...,nD1,a ,
differently from FRED, it self-suspends only until the end of
reconfiguration of the HW sub-task τHS

1,a, j . τ1 SW-task has to wait only
the reconfiguration of τHS

1,a, j [4] since it cannot complete its execution
until all the nDa HW sub-tasks have been programmed. Without this
modification, τ1 would remain self-suspended and never released
(deadlock). The test result highlights that FRED treats a HW-task that
requires multiple HW sub-tasks to be executed, as multiple requests
to be enqueued. Indeed, being nDPR the number of DPR requested,
FRED performs nDPR different HW-task requests. As shown in Fig. 1
introducing multiple DPR requests in the FRED framework, τ1 is
delayed in its execution more than τ2 and τ3; this is quantified by
the worst-case bound computation provided in [4]. For τ1, τ2 and τ3
the worst-case bounds can be computed as follows:

∆P
1,a = ∆P

1,a,1 +∆P
1,a,2 +∆P

1,a,3 +∆P
1,a,4 = 22

∆P
2,b = 14 ∆P

3,c = 14 (1)

With this approach, we have that τH
1,a requests can be delayed by

the execution of HW-tasks required by other SW-tasks interference
caused by τ2 and τ3 in the example), suffering a worst-case delay
that is much greater than other HW-tasks requests. Moreover, using
priority scheduling, as done in the example above, can conduce to a
delay for the highest priority task.

These results confirm that FRED supports multiple DPR requests
but, at the same time, that some revisions have to be made to
adequately consider the efficiency that can be introduced by exploiting
the DPR scalability provided by modern reconfigurable platforms.

Fig. 1. Timing diagrams of the execution of appT EST on FRED. The x-axis
reports the temporal quantum [4], while the y-axis reports the SW-tasks and the
HW-tasks with related partitions. The first three x-axes from the top represent
the SW-task behavior; each SW-task self-suspends after requiring the HW-task
reconfiguration (indicated with the letter R and the HW-task name as subscript).
The last six X-axes report the evolution of the states of each HW-task in
each partition Pk (e.g., τ1, after requiring the reconfiguration of τH

1,a,1 in P1,
self-suspends. Then τ2 requires the τH

2,b = τHS
2,b,1 reconfiguration in P2; in turn

τH
2,b = τHS

2,b,1 waits in QFRI until τHS
1,a,1 completes its reconfiguration and so

forth.)



B. Practical investigation

To practically validate the DPR scalability, reconfigurable platforms
with a reconfiguration controller capable of managing multiple DPR
requests per single HW-task would be needed. However, since no
works in literature dealt with the DPR scalability, we have conducted
an in-depth analysis of the Academic and Industrial reconfiguration
controllers, in order to identify a platform that supports the DPR
scalability and that it is suitable for edge-computing applications;
in particular, hard real-time edge-computing applications constitute
the main target of this work. From Table I, which reports the
results of such analysis, we notice that the only controller whose
documentation asserts the DPR scalability support is the Xilinx
MCAP-based [13]. In such a controller the DPR is based on the
PCI Express bus [28] that, however, is not present in DPR-compliant
platforms for edge-computing applications with limited HW resources.
Conversely, the Xilinx PCAP-based controllers are used in the
platforms (e.g., Xilinx Zynq7000 SoC [12] and the Xilinx Zynq
Ultrascale+ SoC [13]) involved in the development of edge-computing
applications. Moreover, the documents related to the Xilinx PCAP-
based controllers [13] [12] do not deny the ability of these controllers
to manage multiple DPR requests per single HW-task (i.e., DPR
scalability support). Hence, to investigate the DPR scalability in
platforms that are also suitable to develop edge-computing applications
we analyze both the PCAP controller involved in the Xilinx Zynq
Ultrascale+ SoC and Xilinx Zynq7000 SoC. The Zynq7000 has the
DevC controller, while the Zynq Ultrascale+ has the Configuration
and Security Unit (CSU). Since these two controllers have a similar
structure in the part that deals with the DPR in this work we focus
only on the DevC of Xilinx Zynq7000 SoC.

We executed on this SoC a simple bare-metal application that allows
selecting between two mathematical operations (i.e., addition and
multiplication) to be implemented in HW by exploiting the DPR [29]
with the related reconfiguration files (called partial-bitstreams pBS).
The pBS called add.bin is used to implement in HW the addition, while
the pBS called mult.bin is used to implement in HW the multiplication.
For the sake of simplicity, we have chosen two operations independent
of each other whose pBS preparation procedure is well explained in
the Xilinx Partial Reconfiguration User Guide [29]. To test the DPR
scalability, we require one DPR associating to it more than one pBSs
with the different destination address of the FPGA reconfiguration
memory (e.g., we require one DPR associating to it the pBS of the
adder and the pBS of multiplier).

To verify the correctness of the DPR: (i) we measured, through a
custom HW monitoring system [30]–[32], the time spent to fulfill all
the DPR requested (called reconfiguration time (RT) hereinafter) and
we compared this time with the RT calculated in advance with the
model proposed in [33]; (ii) we compared the outputs obtained by
the reconfigured applications with the expected ones.

Based on this scenario, the tests are carried out requiring to the
application to launch (i) the DPR with only add.bin, (ii) the DPR
with two pBSs (add.bin and mult.bin), (iii) the DPR with three pBSs
(add.bin, mult.bin, add.bin), and (iv) the DPR with four pBSs (add.bin,
mult.bin, add.bin, and mult.bin). In these tests, each DPR request can
be considered well established only when is acquired the interrupt
used to notify that all pBSs involved in the request are properly
placed inside the FPGA reconfiguration memory. The obtained results
are shown in the last three columns of Table II. In particular, we
observed that the application outputs are correct in the case of 1 and
2 DPR requests; we also noted that in these cases the expected and
the detected RTs are quite similar in the trend. Conversely, in the
cases of 3 and 4 DPR requests, the application outputs are not correct,
and the detected RTs are not only far to be the expected ones but are
also mistakenly equal to the RT detected in the case where 2 DPR
are requested.

These results highlight that in the Xilinx Zynq7000 SoC a DPR
scalability of more than 2 DPR requests cannot be efficiently managed.

pBS
Number

pBS
Name

Total
pBS
size

(KB)

Application
Output

Measured
RT

(ms)

Expected
RT

(ms)

1 add.bin 110.984 3 0.69469 0.85341

2 add.bin
mult.bin 221.968 3 1.38938 1.70682

3
add.bin
mult.bin
add.bin

332.952 7 1.38938 2.56023

4

add.bin
mult.bin
add.bin
mult.bin

442.952 7 1.38938 3.41364

TABLE II
DPR SCALABILITY EXPERIMENTATION RESULTS: THE FIRST, SECOND, AND
THIRD COLUMNS REPORT THE NUMBER OF pBSS INVOLVED, THEIR NAME,
AND THEIR SIZE, RESPECTIVELY. THE Application output COLUMN REPORTS

IF THE OUTPUT OF THE EXECUTED APPLICATION IS CORRECT OR NOT,
USING THE SYMBOLS 3INSTEAD OF YES AND 7INSTEAD OF NO,

RESPECTIVELY. THE Measured RT COLUMN REPORTS THE MEASURED
RECONFIGURATION TIME DURING EACH DPR, WHILE THE Expected RT

COLUMN REPORTS THE EXPECTED RECONFIGURATION TIME COMPUTED
WITH THE EXPRESSION IN [33].

Therefore, an implementation that takes into account that limitation
could be useful to fully exploit the DPR scalability potential.

III. FUTURE INVESTIGATIONS

In this work, we dealt with the DPR scalability investigation, both
theoretically and practically. In a theoretical investigation, we focus
on the hard real-time systems conducting scalability experimentation
on an existing approach [4], highlighting its weaknesses in managing
multiple DPR requests. In the practical investigation, using a recon-
figurable platform that supports the DPR scalability and is suitable
for the development of edge-computing applications, we have found
a limit of two concurrently manageable DPR requests.

We are now investigating the DPR scalability pointing out its
opportunities and challenges. In particular, we are working on: (i) a
revision of FRED [4] to verify if it is possible to adequately consider
the DPR scalability feature, (ii) an implementation to overcome the
discovered DPR scalability limit enabling the possibility to fully
exploiting the benefits introduced by the usage of multiple DPR
requests.

As future activities, we proceed on the DPR scalability investigation
with more complex applications on other DPR compliant platforms
(both Xilinx and Intel), also improving other existing hard real-
time analysis frameworks in order to efficiently consider the DPR
scalability.
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