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ABSTRACT
Heterogeneous multi-processor platforms are becoming widely
diffused in the embedded system domain, mainly because of the
opportunity to improve timing performance and, at the same time,
to minimize energy/power consumption and costs. In using such
kind of platforms, to be able to consider the trade-offs among dif-
ferent goals, a Design Space Exploration (DSE) is generally adopted.
For this, existing DSE approaches typically rely on evolutionary
algorithms to solve Multi-Objective Optimization Problems (MOOP)
by minimizing a linear combination of weighted objective func-
tions (i.e.,Weighted SumMethod, WSM). The problem is then shifted
towards the identification of weights able to represent desired trade-
offs. In such a context, this paper focuses on DSE for heterogeneous
multi-processor embedded systems and introduces an approach
that, while still driven by a "decision maker", is able to self-tune
weights to equalize objective functions contribution. In particular,
this work presents a self-equalized WSM integrated into a genetic
algorithm used to identify sub-optimal implementation alternatives
in the context of an Electronic System Level HW/SW Co-Design
flow.

CCS CONCEPTS
•Computer systems organization→Embedded systems;Em-
bedded hardware.

KEYWORDS
Design Space Exploration, Heterogeneous Multi-Processor Systems,
Embedded Systems, Multi-objective optimization

1 INTRODUCTION
Nowadays, embedded systems are everywhere, as they are widely
used in several application domains (e.g., home automation, aerospace,
automotive, etc.) imposing different functional and non-functional
requirements. As a consequence, their design is an increasingly
complex activity since several implementation alternatives, with
different HW/SW technologies and constraints (e.g., timing perfor-
mances, power/energy consumption, cost), need to be considered.
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To improve timing performances and to minimize energy/power
consumption and cost at the same time, heterogeneous platforms
are becoming widely diffused as well as Electronic System Level
(ESL) HW/SW co-design methodologies that support designers in
reducing time-to-market and costs. In such a context, one of the
main design activity is the Design Space Exploration (DSE). In fact,
it shall be able to solve a Multi-Objective Optimization Problem
(MOOP) by optimizing a linear combination of weighted objective
functions, where the weights are related to the different objectives.
So, the problem is shifted towards the identification of weights
able to represent the desired trade-offs. For this, the present work
focuses on DSE for Heterogeneous Multi-Processor Embedded Sys-
tems (HMPESs) and proposes a "decision maker"-driven method for
weights self-equalization.

In this paper, a description of related works considering decision
maker suggestions into the DSE activity is reported in Section II,
while Section III describes the adopted DSE approach and Section
IV presents the main features of the proposedWeights Linear Equal-
ization (WLE) method. Section V analyzes experimental results
highliting some conclusions and future works.

2 LITERATURE OVERVIEW AND
MOTIVATIONS

A common classification of decision maker preferences introduc-
tion in the resolution of MOOPs [20] is related to the possibility to
explicitly indicate preferences at the beginning of the optimization
process (a priori method), to make a preferences selection at the
end of the MOOP process (a posteriori method), or a combination of
both (interactive method). The "a posteriori" methods [11] are based
on Pareto Optimal Set (ρ∗) calculation followed by an evaluation of
the worthiness of such solutions starting from Pareto Front (ρF ∗).
However, frequently, these approaches appear difficult to use since
decision makers struggle to process ρ∗ and ρF ∗ values (especially
if the number of objective functions is greater than 3). Whereas the
"a posteriori" and "interactive" methods consider the possibility to
analyze the MOOP results obtained at the end of the optimization
process, the "a priori" method introduces the decision maker pref-
erences in the early steps, taking into account the decision maker
general knowledge of the MOOP [12] itself. Different "a priori"
approaches have been presented in literature, and most of them
are related to assign a "relevance value" to each objective function,
then, using meta-heuristic algorithms, to find sub-optimal solu-
tions for MOOP [6]. A common meta-heuristic algorithm involves
the use of Genetic Algorithms (GAs) and Weighted Sum Method
(WSM). GAs are able to capture excellent Pareto solutions, leav-
ing to the decision maker the identification of the best one from a
proposed solutions set [9]. As an example of GAs used for DSE of
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embedded systems, Multicube [3] aims to realize a tool to support
platform-based design, implementing different GAs meta-heuristics
and offering different output solutions, as "a posteriori" process for
the final decision maker.

Anyway, the main issue with GAs+WSM methods is the deci-
sion maker effort. Different methods incorporate preferences and
priorities by using weights that represent an indication of how a
specific objective function is important in the meta-heuristic anal-
ysis, but no unifying analysis of them is present in literature [12].
However, such methods can be classified with respect to the kind
of rating assigned to each objective function, where a decision
maker can assign values of relative importance to each objective
function in a fixed or variable mode. Some works assign random
values to weights, or apply periodical changes following specific
pattern functions [8]. Another method is a subset of rating methods,
called ranking, where the objective functions are ordered by their
importance degree ([1 : K], i.e., from the lowest to the highest). In
a ranking method, it is also possible to apply objective functions
classification based on pairwise comparison between objective func-
tions [19] or final utility function values [5]. It is also possible to
classify objective functions in groups of broad categories (i.e., high,
average, low) [10].

By better analyzing the presented approaches, it emerges the
need to simplify as much as possible the decision maker work while
also taking into account the contribution of the involved objective
functions. In other words, it is needed a method to automatically
evaluate weights, but still able to take into account decision maker
preferences. So, this work presents an approach that introduces
decision maker preferences into "a priori" GA+WSM method, using
a "ranking categorization" based on a simple fixed value assigned
to each objective function. Then, the GA steps are modified to
automatically change, at each iteration, the weights with respect to
the average of the objective functions they have been assigned to,
so performing their self-equalization.

3 REFERENCE DESIGN SPACE EXPLORATION
APPROACH

In the context of HMPESs, this work adopts the ESL HW/SW co-
design flow presented in [4, 16, 17] where the most critical devel-
opment step is the semi-automatic Design Space Exploration one. It
involves several stages, from the definition of the solution space,
the encoding with respect to the decision variable space, and the
definition of the objective functions and the general MOOP. The
main problem is to map application processes onto a set of basic HW
components (i.e., Basic Blocks, BBs) selected by the decision maker
[13]. It is worth noting that the MOOP is modeled as a minimization
problem, defined as follows:

Definition 3.1. (Reference Design Space Exploration MOOP).

min
x̄

F̄ (x̄ ) = [F1(x̄ ), . . . , Fk (x̄ )]
⊺

s.t. x̄ ∈ Ω = {x̄ ∈ Nn>0 : xi ≤ b }
(1)

where the value b is the total number of considered BBs. Fig. 1
shows the graphical representation of the considered MOOP. The x̄
vector represents application processes and values in the decision
variable space are BB instances, so the solution space is bounded

by the total number of BBs. The cost functions depends on differ-
ent metrics evaluated/estimated during the co-design flow [2, 14].
Then, a multi-objective genetic algorithm is used to individuate
an approximation of the ρF ∗ in a single run, where, starting from
the phenotype space, the solution has been encoded considering
application processes and BBs. Considering the decision variable
space size, it is possible to evaluate the number of solutions as
the permutations with repetition of n application processes, that
compose the solution vectors x̄ , allocated on b BBs, so the space
size is bn . Note that the feasible design space Ω is convex, but it is
not possible to say anything about the feasible criterion space Z .
As said before, a GA is used to solve the HW/SW partitioning and
mapping problem.

Figure 1: Reference MOOP.

Respect to the GA population, each individual is characterized
by a "fitness", which is the value of the cost functions calculated in
correspondence of each individual. Applying a WSM with respect
to the MOOP considered in this work, it is possible to define the
utility function that quantifies the quality of each individual of
the GA population. The cost functions (called indexes) and the
methods used to evaluate them at each iteration have been defined
in [4, 16, 17]. In this context, the instance of an individual x̄ is
defined as a vector where the indexes represents processes and the
values represents BB instances.

4 PROPOSED METHODOLOGY
The proposed methodology try to respond to several research ques-
tions: (1) How is it possible to explicitly introduce decision maker
preferences? (2) How is it possible to offer the possibility to cor-
rectly understand the cost functions magnitude without a Pareto
trade-off analysis? (3) How is it possible to tune the DSE solution
to fulfill decision maker preferences?

Figure 2: GA with WLE schema.

To introduce decision maker preferences, in this work a ranking
assignment has been used, so it is possible to assign four relative
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importance values: λi = 0 - this cost function will not be considered
at all; λi = 1 - low balance, the tool considers cost function i with
low importance (it will be half weighted in the linear combination);
λi = 2 - normal balance, the tool considers cost function i equal
to others; λi = 3 - high balance, the tool considers cost function
i with high importance (it will be double weighted in the linear
combination); Starting from this ranking, the weights assigned to
each cost functionwill change depending on theGA evolution. Fig. 2
shows the proposed GA algorithm extended to incorporate theWLE
method. The starting point is the selection of GA parameters. In
this work different performance metrics [18] (i.e. Hypervolume, HV,
Ratio on Non-dominated Individuals, RNI, Generational Distance, GD,
Inverted Generational Distance, IGD, Spread, ∆, and Epsilon, ϵ) have
been used to find the best parameters related to the GA. Next step
involves the initialization activities. Since the starting population
depends only on random values, the initial weights vector values
are set equal to ωi (0) = 1/k , where k is the number of the cost
functions considered by the decision maker. After the evaluation
activity (and possible Elitism), the tool reaches the WLE step. Then,
the classical GA steps are applied and weights are changed at each
iteration according to WLE, until the stop criteria is satisfied, as
presented in the equations described in the Definition 4.1:

Definition 4.1. (Weights Linear Equalization). The weights ωi (t)
associated to each cost function F (x̄) at iteration t > 0 (t ∈ N) are
evaluated by solving the linear system:

λ1 · µ1(t) · ω1(t) = λ2 · µ2(t) · ω2(t)

· · ·

λk−1 · µk−1(t) · ωk−1(t) = λk · µk (t) · ωk (t)

ω1(t) + ω2(t) + · · · + ωk (t) = 1

(2)

The values λ̄ = {λ1, · · · , λk } are assigned by the decision maker
and µi (t )=[

∑I (t )
j=1 Fi (x̄ j (t ))]/I (t ). I(t) is the population size at iteration t,

so weights are tuned by the average cost functions values at each
step of GA. x̄ j (t) is the individual j in the population at iteration t.
Using this method it is possible to make explicit the decision maker
suggestions (by means of λi values), avoid to represents trade-off
solution in a k-dimensional design space (k>3), and to propose a
feasible solution tuned with respect to the average cost functions
values. Equation 2 admits a solution that can be found with different
methods. A possible one is to apply an iterative approach, where the
computational cost is O(k2), so it does not take too much time if k
is small [1], and it is normally the case for the number of considered
cost functions.

5 RESULTS AND CONCLUSIONS
This section presents some experimental results related to the DSE
step with GA+WLE, and some conclusions. The implemented GA
uses a random parent selection, a random one-point crossover, a
random mutation step and a fitness-based survivor activity. The
maximum number of iterations is fixed to 100, the initial population
size is fixed to 104 individuals, and the maximum population size is
fixed to 106 individuals. In the context of this validation, the refer-
ence use case is a synthetic application, called FirFirGCD, composed
by 8 processes [15]. The available BBs are: bb1, 16 MHz 8-bit 8051
CISC core with 128 byte of Internal RAM, 64KB of internal ROM
(cost 10); bb2, 16 MHz 16-bit PIC24 core with 14KB of internal ROM

and 1KB of internal RAM (cost 20); bb3, 150 MHz 32-bit LEON3
soft-processor with 2*4 KB L1 caches, RAM size of 4096 KB and a
ROM of 2048 KB (cost 100); bb4, 50 MHz Spartan3an (cost 400);
bb5, 250 MHz Virtex-7 (cost 900). The maximum number of in-
stances for each bbi is 2 (i.e., the total number of different instances
of BBs is 10), the maximum number of instances of bbi considered
into the DSE is equal to the number of application processes (i.e.,
8) and bbi are supposed to communicate by means of a shared bus.
The decision variable space size is 108.

The selected cost functions to be taken into account by the DSE
are [4, 16, 17]: (1) Affinity Index - it indicates how much a process
is suitable to be executed by a given processor technology; (2)
Parallelism Index - it expresses the set of processes pairs that
could be potentially working concurrently; (3) Load Index - it is
the load (i.e. the processor utilization percentage) that each process,
when implemented in SW, would impose to the processors in BBi
to satisfy imposed timing constraints; (4) Cost Index - it is related
to the cost (monetary cost, design effort, or any other issues of
interest for the designer) associated to each BBi considered in the
specific individual.

(a) Cost-Load (b) Parallelism-Load

Figure 3: Pareto plots w.r.t. cost functions pairs.

Fig. 3 shows the Pareto trade-off analysis for different cost func-
tions pairs. It is worth noting that it is not possible to visually
analyze simultaneously all the cost functions with a k>3 design
space plot (without some assumption or trying to visualize the
design space with different graphs [7]).

Figure 4: Normal GA and WLE-GA average population util-
ity function values.

Fig. 4 presents the weighted utility function trend w.r.t. the dif-
ferent iterations and the best solution found at each iteration. The
GA modified with WLE (the violet curves) has an higher average
utility function value (≈ 9% higher), and an higher standard devia-
tion value (the curves in the top and bottom that delimit the violet
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area, ≈ 17% higher) respect to normal GA, so the WLE method
increases the GA variance introducing more diversity respect to
the normal GA population. The GA+WLE drives in a better way
the GA evolution since it also has a better performance metrics
trend [18], considering the evolution among the initial population
(common to all) and the 100th iteration, as shown in Table 1 (e.g.
greater values for GD, IGD and ϵ , and lower ones for RNI, means
that the final ρF ∗ is better as well).
Table 1: DSE Performance Parameters Analysis (values in
bold are the most representative ones).

Type HV RNI GD IGD ∆ ϵ

Normal GA 0.870791 0.000343 0.043285 0.023377 1.073481 0.088622
GA+WLE 0.871635 0.000298 0.047934 0.027974 1.333774 0.103508
GA+Elit. 0.867554 0.000286 0.092763 0.030771 1.680116 0.227712
GA+WLE+Elit. 0.869643 0.000292 0.074056 0.027974 1.575254 0.172427

Instead, the best WLE solution found at each iteration is lower
in terms of utility function value for the different weights assigned
(Fig. 4). In terms of final best solution (at iteration 100), it is worth
noting that the normal solution is an all-HW solution (2 Spartan3an
and 1 Virtex-7, where the utility function is 0.212), because the best
solution for the Load index is the all-HW implementation, while the
WLE best solution is a real equalized trade-off among the different
metrics (2 8051, 2 PIC24 and 1 Spartan3an, where the utility function
is 0.118).

Figure 5: Execution times comparison.

Finally, Fig. 5 presents the execution time related to 4 different
GA implementations: standard GA, GA with elitism, GA with WLE
and GA with WLE and elitism. The elitism has been implemented
to save the best solution at each iteration, and also to save the
solutions with the best single cost function value at each iteration.
Unfortunately, the Elitism feature increases the execution time in
terms of about 30% respect to the normal one, but behaves better
w.r.t other GA performance metrics (as shown in Table 1). Intro-
ducing WLE in the GA increases the DSE execution time in terms
of about 2-4%, which is acceptable compared to the opportunity of
finding a result that better takes into account decision maker pref-
erences. In conclusion, a self-equalization of weights in the utility
function guarantees compliance with the decision maker qualitative
preferences, in a ranking-based "a priori" method that converges to
sub-optimal solutions, while not introducing relevant overhead in
term of execution time. However, since the use of elitism (and other
methods to increase GA performance) introduces relevant overhead

in term of execution time, future works involves the exploitation
of parallel programming techniques, considering the possibility to
implement parallel GAs still taking into account decision maker
preferences in the whole design flow.
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