
6th Mediterranean Conference on Embedded Computing MECO’2018, (ECyPS’2018 Workshop), Budva, Montenegro

HEPSIM: an ESL HW/SW Co-Simulator/Analysis
Tool for Heterogeneous Parallel Embedded Systems

Daniele Ciambrone, Vittoriano Muttillo, Luigi Pomante, Giacomo Valente
Università degli Studi dell’Aquila – Center of Excellence DEWS

L’Aquila, ITALY
{daniele.ciambrone, vittoriano.muttillo}@graduate.univaq.it, {luigi.pomante, giacomo.valente}@univaq.it

Abstract— Heterogeneous devices are becoming widely diffused
in the embedded system domain, mainly because of the
opportunities to increase application execution performance and,
at the same time, to substantially reduce energy consumption. In
such a context, this work faces the role of HW/SW co-
simulators/analysis tools for embedded systems based on
heterogeneous parallel architectures. In particular, it presents a
SystemC-based tool for functional/timing HW/SW co-simulation
and analysis within a reference ESL HW/SW co-design flow. The
description of the main features of the tool, the main design and
integration issues and an illustrative case study represent the
core of the paper.

Electronic System-Level Design; HW/SW Co-Design; Parallel
Embedded Systems; Heterogeneous Systems

I. INTRODUCTION
The growing complexity of nowadays embedded digital

systems, especially if based on modern System-on-Chip (SoC)
adopting explicit heterogeneous parallel architectures (e.g.
[1][2][3]), and their reduced time-to-market have radically
changed the common design methodologies. Traditional design
approaches, based on independent design of HW/SW
components are no longer sufficient to efficiently exploit
subparts of such SoCs. For this, HW/SW co-design
methodologies, where designers can early check system-level
constraints and evaluate cost/performance trade-offs, are of
renovated relevance. In fact, these kinds of methodologies are
able to lead the system-level analysis by means of proper
models, metrics, and tools, supporting the designer in all those
activities that are normally entrusted only to his experience. In
particular, HW/SW co-simulation and analysis tools cover a
very important role in every HW/SW co-design flow, because
they allow a fast analysis of the system properties. In such a
context, this work presents a SystemC-based tool for
functional/timing HW/SW co-simulation and analysis
integrated into a reference Electronic System-Level (ESL)
HW/SW Co-Design methodology targeting heterogeneous
parallel embedded systems. The main contribution is to
describe the main features of the tool, and to describe the main
design and integration issues with respect a whole
comprehensive ESL HW/SW Co-Design framework [19].

This paper is organized as follows. Section II describes
some relevant ESL co-simulation and analysis tools. Section III
briefly presents the reference ESL HW/SW co-design flow
while Sections IV and V describe the main design and

implementation issues. Then, Section VI presents an
illustrative case study to show the main features of the
proposed tool. Finally, Section VII draws out some conclusions
and outlines the future work.

II. C++/SYSTEMC BASED TOOLS
In the recent years, in the Electronic Design Automation

(EDA) domain, there has been a push towards the development
of ESL tools able to span the complete design space across
hardware and software boundaries. A lot of them are placed
within a framework of HW/SW Co-Design to perform
functional and timing simulations by using SystemC [5] as ESL
description language. Some of the most relevant ones, both
commercial and academic, are briefly described below.

As a meaningful representative of available commercial
tools, CoFluent Studio [6] by Intel is a modeling and
simulation environment for early high-level design space
exploration. It allows capturing the application functionality,
the HW architecture and their mapping. Application models are
specified as networks of communicating processes. HW
platforms can be graphically assembled out of generic
processing and interconnection elements. Once performed a
manual mapping among application and architecture elements,
CoFluent can generate a SystemC Transaction-Level Model
(TLM) of the resulting system for simulation, analysis, and
virtual prototyping. Another interesting SystemC-based
commercial tool is SpaceStudio [7] by SpaceCodesign. By
using it, designers can create process-based SystemC
application models out of predefined library blocks or by
importing and wrapping existing C, C++ or SystemC code.
Next, a system architecture can be graphically assembled, and
the application can be manually mapped by dragging
application blocks onto previously allocated processors. As a
result, SpaceStudio will generate a SystemC TLM of the
defined platform. All SystemC application models and TLMs
generated through SpaceStudio can be simulated for analysis
and performance evaluation. Among academic simulators, it is
possible to find SystemCoDesigner (System-Level Hardware-
Software-Co-Design Tool) [15]. It is a software tool for
(semi)automatic design space exploration at system-level. The
goal is to allocate resources and bind a task graph onto these
allocated resources. The designer has to specify the task graph,
the architecture template (as a graph), as well as all possible
bindings of the nodes in the task graph onto the resources in the
architecture template. Finally, eSSYn (Embedded Software

6th Mediterranean Conference on Embedded Computing MECO’2018, (ECyPS’2018 Workshop), Budva, Montenegro

SYNthesis) [8] is a software synthesis tool for embedded
systems. The system model is made of three sub-models. In
order to use eSSYn, system designers need to provide a
software component-based model of the application, a model
for the hardware platform to specify the available resources,
and a mapping of software components and cores. Then,
eSSYn will generate all required code ready to be uploaded to
the HW platform. With respect to simulation capabilities,
eSSYn is integrated with an environment called VIPPE
(VIrtual platform Parallel Performance Evaluation) [9].
VIPPE is based on the native simulation approach, it enables
the estimation of the performance by reporting a set of different
metrics and it has been designed as a simulation-based
technology for design space exploration.

The tool presented in this work, called HEPSIM, is still
based on SystemC, but presents some relevant differences with
the ones described before. First of all, the system behavior
modeling is based on a CSP-like (Communicating Sequential
Processes) Model of Computation (MoC) [10], from which is
then generated the simulated SystemC code. Such a feature can
allow also some kind of formal analysis on the model. Second,
all commercial and academic tools refer to a HW architecture
bounded to the designer’s choices in the initial steps of the
HW/SW co-design flow, while HEPSIM is designed to strictly
interact with another tool that is able to automatically define a
HW architecture and a mapping of processes to processors.
Finally, HEPSIM is able to provide information about potential
concurrency and communication in the CSP to allow exploiting
in most effective way heterogeneous parallel embedded
architectures.

Figure 1. Reference ESL HW/SW Co-Design Flow

III. REFERENCE ESL HW/SW CO-DESIGN FLOW
Figure 1 shows the reference ESL HW/SW co-design flow

while the main steps are briefly described below by giving
emphasis to the interaction with HEPSIM. More details about
the methodology can be found in [13][18][4].

The entry point of the reference HW/SW co-design flow
consists of a System Behavior Model (SBM) based on a CSP-

like MoC and described by means of SystemC SC_THREAD. It
is enriched by Timing Constraints and Reference Inputs. The
first step of the reference flow, performed by means of
HEPSIM, is the Functional Simulation. It allows to check the
correctness of SBM with respect to Reference Inputs. In the
following steps, the reference HW/SW co-design flow is
supported by a Technology Library (TL), which can be
considered as a generic "database" that provides the
characterization of all the HW technologies available to build
the final system. The next step is the Co-Analysis and Co-
Estimation. During Co-Analysis, SBM is analyzed to evaluate
two metrics: Affinity [13] and Concurrency. The first one
represents how much a process is suitable to be executed on a
specific processor class [14]: General Purpose Processor
(GPP); Application Specific Processor (ASP); Single Purpose
Processor (SPP). The second one is an indication about of how
much concurrency can be found in the activities of CSP
processes and channels. It is evaluated by means of HEPSIM
run in a configuration similar to the one used for the Functional
Simulation. Co-Estimation is in charge to estimate Timing, Size
and Load. Timing represents the time needed by each processor
in the TL to execute a SBM statement (e.g. [16][17] presents
two possible approaches). Size represents the number of bytes
in RAM and ROM needed to store data and instructions for
each process implemented in SW. For HW implementations, it
is the number of mm2 (depending on the target HW technology,
equivalent metrics like Geq, LUT, TLB, etc. can be used)
needed to implement processing, memory and connection
elements. Load represents the utilization percentage that each
process, when implemented in SW, would impose to a
processor to satisfy a timing constraint specified by the
designer (i.e. Time to Completion, TTC). After this step, the
flow enters in the Design Space Exploration (DSE) one, which
is composed by 2 activities: “HW/SW Partitioning, Mapping
and Architecture Definition” and “Timing Co-simulation”. The
first one is responsible to define the HW architecture of the
target system, and to perform partitioning and mapping of
processes and channels on available processors and links. All
these data are then provided to HEPSIM to check if timing
constraints are satisfied by the proposed architecture/mapping
item. This kind of simulation exploits all the features of the
proposed tool as described in the next sections.

Figure 2. SystemC-based HEPSIM Architecture

6th Mediterranean Conference on Embedded Computing MECO’2018, (ECyPS’2018 Workshop), Budva, Montenegro

IV. HEPSIM: SOFTWARE ARCHITECTURE
This section, together with the next one, describes main

design and implementation issues related to HEPSIM. The
description starts by briefly analyzing the HEPSIM SW
Architecture and its components (represented in Figure 2). The
large package on the left of Figure 2 is the SystemC Library,
which contains also the standard SystemC Scheduler. The
library has been extended with a SC_CSP_CHANNEL template
class to implement the point-to-point CSP channel semantic.
The other cooperating items are SystemModel, SystemManager
and SchedulingManager. All them are supported by the
Technology Library.

A. SystemModel
SystemModel contains the definition of all the processes

and channels used in the SBM (System Class) together with
their corresponding SystemC code (SBM Package). Depending
on the kind of simulation/analysis to be performed (i.e.
Functional Simulation, Concurrency Analysis, Load
Estimation, Timing Simulation) SBM code is instrumented by
means of some Macros defined in the SystemManager. It is
worth noting that the use of macros has been adopted to
simplify automatic instrumentation of code by still keeping
readability.

B. SystemManager
This class contains all the details needed to simulate the

system. In fact, it manages all the data structure needed to drive
the simulation. Moreover, it defines the macros used for SBM
code instrumentation. Depending on the kind of simulation to
be performed, they allow to take into account the concept of
simulated time, to implement different Scheduling Policies,
and to evaluate some of the metrics used in the reference
HW/SW co-design flow.

Figure 3. Blocking CSP read method

C. SC_CSP_CHANNEL
The SystemC Library has been extended with a

SC_CSP_CHANNEL. This channel has been developed
according to properties of CSP MoC and SystemC. It inherits
from the SystemC sc_prim_channel and uses two interfaces,
sc_csp_channel_in_if and sc_csp_channel_out_if, for reading
and writing respectively on the channel with blocking read()
and write() methods. This full handshake mechanism has been
realized through two Boolean flags, ready_to_read and
ready_to_write, to check the state of process on the other side
of the channel, in combination with two sc_event and the use of
notify() and wait() methods in order to properly return the
control, when needed, to the SystemC Scheduler. Figure 3
shows the code related to the read() method. Finally, it is worth
noting that there exist two versions of SC_CSP_CHANNEL:
functional and timing channels. The second one inherits from
the first one and it allows to consider also communication
times among processes depending on their allocation. The
basic policy is that, if two processes are mapped on the same
instance of a GPP/ASP or on two SPP, then the time of
communication is negligible, otherwise it will mainly depend
on the amount of data to be transferred. Such a policy can be
customized to consider different contributions and also to take
into consideration the allocation of channels on different
physical links. Currently, other than point-to-point physical
links, HEPSIM allows to consider shared buses by taking into
account also the latency needed to access the shared bus itself.

Figure 4. HEPSCHED full handshake methods

D. SchedulingManager
This class represents the central element in HEPSIM. It

implements a second-level scheduler (i.e. HEPSCHED) with
respect to the standard SystemC one. HEPSCHED has been
implemented as a SystemC SC_MODULE containing a
dedicated HEPSCHED instance for each instance of GPP and
ASP composing the system. Each HEPSCHED instance is
implemented as a SC_THREAD. The implementation of
different analysis mechanisms and scheduling policies in
HEPSIM is based on the instrumentation of code by means of
macros and their interaction with the SchedulingManager.
Such macros are defined in the SystemManager and they are of
two types. Macro P is placed at the end of the infinite loop of
each SC_THREAD representing a process, to count the
number of times it has been executed. It calls the Profiling()
method in SchedulingManager. Macro S is inserted as a prefix

6th Mediterranean Conference on Embedded Computing MECO’2018, (ECyPS’2018 Workshop), Budva, Montenegro

to the SystemC statements composing the SBM to support the
handshake mechanism for the scheduling of processes as
shown in Figure 4. It calls the Increase() method into
SchedulingManager. During this activity, control passes from S
to the HEPSCHED instance (i.e. a SC_THREAD) associated to
the GPP/ASP processor that executes the process and vice
versa. This allows to take into account the time needed to
execute each statement of the process for statistical purposes,
and then to wait for a notify() from the HEPSCHED instance.
So, the HEPSCHED instance has the opportunity to select the
next ready process to be executed following the implemented
scheduling policy. Then, the control passes again to macro S
that advance the simulated time and then the control comes
back to the HEPSCHED instance that will finally release() the
control to allow the SystemC Scheduler performing the
scheduling of the next process (i.e. SC_THREAD). Such a last
release is performed by an additional wait() that allows also to
take into account the overhead due to scheduling activities (i.e.
Context Switch Overhead). Based on such a mechanism, two
different scheduling policies have been implemented. Adding
new ones is straightforward since it is needed only to code the
desired algorithm inside a HEPSCHED instance (i.e. a
SC_THREAD). The first algorithm is a First-Come First-
Served (FCFS) scheduling, i.e., after the execution of a
SystemC statement (or a group of them) of a process it is
selected the next ready process into a First-In First-Out (FIFO)
queue, among the ones mapped on the GPP/ASP that execute
the related HEPSCHED instance. The second algorithm is a
Fixed-Priority with Statement-Level Preemption. In this case,
after the execution of each SystemC statement of a process, it
is selected the ready process with the highest priority.

V. HEPSIM: MAIN DESIGN AND IMPLEMENTATION ISSUES
This section provides more details about design and

implementation of HEPSIM analysis capabilities: Concurrency
Analysis and Load Estimation.

A. Concurrency Analysis
In the activity of co-analysis, HEPSIM is used to evaluate

the possible degree of concurrency among processes and
channels within the system. The goal is to obtain an indication
about “how much” concurrency can be found in the activities
of processes and channels pairs. It is evaluated by means of
HEPSIM run in a configuration similar to the one used for the
Functional Simulation. The difference is that, by using some
supporting data structures, it is possible to build two matrixes
of concurrency, one for processes pairs and one for channels
pairs. Values in the matrixes represent the number of times two
processes or two channels have been active concurrently. More
in detail, the strategy adopted in HEPSIM is the following one.
First, it has been defined two data structures, in particular two
arrays to represent the state of processes and channels and two
macros (C and CH) to check the state of these ones. Besides,
they have been defined two matrices to contain the
concurrency values for each pair of processes and channels.
Then, the macros have been inserted within the code of
processes, in particular at each read() and write() call on the
channel, and within the code of the SC_CSP_CHANNEL

itself. The mechanism to evaluate the possible concurrency is
the following one: in correspondence of macro C, it is called
the function checksStatesProcesses() in SystemManager, to
verify which processes are potentially concurrent. In detail, if
there is a process ready, its state value is equal to 1. Each other
process with the same state is potentially concurrent with the
first and this is accounted by increasing the corresponding
values in the matrix. The same mechanism is adopted for the
channels, by calling the function checksStatesChannels() in
SystemManager for the macro CH and using the appropriate
data structures. As said above, in general, values contained in
the matrices (properly normalized between 0 and 1) represent
the number of times (i.e. how much) two processes or two
channels are potentially concurrent. From a DSE perspective,
such values are used to evaluate which processes and channels
can benefit from an allocation on, respectively, different
processors and links.

B. Load Estimation
The load Li represents the utilization percentage that each

process, when implemented in SW, would impose to a
GPP/ASP to satisfy a timing constraint specified by the
designer (i.e. Time to Completion, TTC). Li is estimated by
allocating all the processes to a single-instance of each
software processor and performing some timing simulations.
Three parameters have to be computed: FRTj (Free Running
Time), i.e. the total simulated time needed to provide all the
expected outputs (i.e. to complete the simulation) on a specific
processor j; ti, the average net (i.e. that doesn’t consider
communication times and scheduling overhead) simulated time
needed to process i to make a loop on processor j; Ni, the
number of loops performed by process i on processor j.
Starting from this parameters, in the hypothesis of periodic
processes, it is possible to evaluate the so called Free Running
Load (FRLi) for each pair of SW-related process/processor by
the equation:

𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 =
(𝑡𝑡𝑖𝑖 ∗ 𝑁𝑁𝑖𝑖)
𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗

 (1)

where is FRTi/Ni the average period of each processes on
processor j. At this point, by imposing the requited execution
time (i.e. TTC), it is possible to estimate Li that each process
would impose to the GPP/ASP processor to satisfy TTC itself.
In fact, setting FRTj equal to TTC, for each process/processor
pair, such as:

TTC = 𝑥𝑥𝑗𝑗 ∗ 𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 0 ≤ 𝑥𝑥𝑗𝑗 ≤ 1 (2)

the value of estimated Li imposed to processor j to satisfy TTC
is:

L 𝑖𝑖 =
(𝑡𝑡𝑖𝑖 ∗ 𝑁𝑁)
𝑇𝑇𝑇𝑇𝑇𝑇 =

(𝑡𝑡𝑖𝑖 ∗ 𝑁𝑁)
𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗

∗
𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗
𝑇𝑇𝑇𝑇𝑇𝑇 =

𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗
𝑥𝑥𝑗𝑗

 (3)

If Li is greater than 1, it is possible to assert that the related
process/processor pair is not able to satisfy TTC. From a DSE
perspective, by considering the sum of the Li of all the

6th Mediterranean Conference on Embedded Computing MECO’2018, (ECyPS’2018 Workshop), Budva, Montenegro

processes allocated to a GPP/ASP, it is possible to check if the
total imposed load is acceptable (i.e. in general less than 1).

Figure 5. Illustrative case study: SBM

VI. ILLUSTRATIVE CASE STUDY
This section shows a possible use of HEPSIM to perform

analysis and co-simulations by means of an illustrative case
study. The application is called fir8-fir16-gcd and an overview
of its SBM is represented in Figure 5. The process Stimulus
generates 10 random sc_uint<8> pairs every 1 ms as input to
the system. Such pairs are sent to fir8 and fir16 processes
(where fir is the Finite Impulse Response) that respectively
interacts with other two processes. In fact, the fir computation
is decomposed in 2 parts: the first one executes multiplications
with proper coefficients (evaluation) while the other one
executes needed shifting operations (shifting). The output of
the filtering operations is sent to the gcd process (where gcd is
the Greatest Common Divisor) that cooperates with the
evaluation process to provide the greatest common divisor
between each received data pairs. In the end, the output of the
gcd process is sent to the Display process to be visualized.
Summarizing, the application is composed of 8 processes and
12 internal channels. Finally, there are 3 external channels used
to make connections with the testbench (i.e. Stimulus and
Display processes). In this case study, the processors selected
from the TL and available to implement the final system are
composed by: max 2 instances of Intel 8051 (16 MHz, CC4CS
297, Context Switch Overhead 15 ms), max 1 instance of
Microchip DSPIC (24 MHz, CC4CS 260, Context Switch
Overhead 15 ms) and max 1 instance of Xilinx Spartan 3 (50
MHz, CC4CS 10, Context Switch N/A). It is worth noting that
CC4CS has been evaluated as described in [16]. To identify
processes, different identifiers (id) have been used: 0 and 1 for
the testbench, 2 for fir8, 3 for fir8 evaluation, 4 for fir8
shifting, 5 for fir16 main, 6 for fir16 evaluation, 7 for fir16
shifting, 8 for gcd, 9 for gcd evaluation. To identify processors,
identifier 1 is for Intel 8051 instance 1, 2 for Intel 8051
instance 2, 3 for DSPIC and 4 for Xilinx Spartan3. Starting
from such a case study, HEPSIM exploitation in the different
steps of the reference ESL HW/SW co-design flow is described
below.

During the Functional Simulation, HEPSIM is used to
verify the correctness of SBM with respect to Reference Inputs
looking for situations like wrong outputs or deadlocks, without
considering communication or computation times. In Co-
Analysis and Co-Estimation steps, HEPSIM is used to evaluate
Concurrency and to estimate Load. The output related to
Concurrency is a couple of triangular matrixes (Figure 6). First
rows and columns of the two matrixes refer to processes and
channels id, and each internal value represents “how much”
processes and channels pairs have been concurrently “active”
during the simulation. This allow to discover which processes
and channels pairs could be usefully allocated respectively on
different processors and links. Anyway, such information is not
meant for human analysis but are provided to the DSE step that
will trade-off such a metric with the other ones as defined in
the reference ESL HW/SW co-design flow. With respect to
Load, the values obtained for each process represent the load
that would be imposed to each available GPP/ASP to satisfy
TTC in the case of single-instance allocation. Table 1 shows
Load Estimation results for the case study processes with
respect to an Intel 8051 and TTC equal to 0.1 s.

Figure 6. Processes and Channels Concurrency Matrixes

TABLE I. LOAD ESTIMATION FOR INTEL 8051

ID
Process

Free Running
Load

Load
(TTC=0.1 s)

2 0.06 0.65
3 0.12 1.30
4 0.10 1.02
5 0.07 2.41
6 0.23 0.23
7 0.17 1.85
8 0.05 0.50
9 0.20 2.13

Intuitively, if estimated load is greater than 1 for one or
more of the processes, these cannot be allocated on the
considered GPP/ASP instance since it will lead to TTC
violation. Again, such information is not meant for human
analysis but are provided to the DSE step that will trade-off

6th Mediterranean Conference on Embedded Computing MECO’2018, (ECyPS’2018 Workshop), Budva, Montenegro

such a metric with the other ones as defined in the reference
ESL HW/SW co-design flow. Finally, HEPSIM is exploited to
the best during the DSE step, when a Timing Co-Simulation is
needed to validate if the proposed architecture/mapping items
are able to satisfy TTC.

To give an example of the results of such an activity some
simulations have been performed by considering different
architecture/mapping items, as shown in Table 2. For each
architecture/mapping item it has been used the two scheduling
algorithms previously described (i.e. FCFS with statement-
level context-switch, and FP with statement-level preemption
in the case of the same priority for all processes). The first
column of Table 2 represents the simulated
architecture/mapping items. The second column represents the
timing constraints. It is worth noting as, while reducing TTC,
the DSE step always provides new items able to satisfy them.
Additionally, next columns show total simulated time for each
scheduling algorithm (FCFS, FP) and the related context
switch overhead (OH FCFS, OH FP).

TABLE II. RESULTS FROM THE DSE ON THE USE CASE

Allocation TTC
(s)

FCFS
(s)

OH FCFS
(s)

FP
(s)

OH FP
(s)

All (1) 0,2 0,23 0,14 (1) 0,11 0,02 (1)
All (3) 0,2 0.13 0.09 (3) 0.06 0.01 (3)

23489 (1)
567 (2) 0,1 0,11 0.06 (1)

0.13 (2) 0.06 0.01 (1)
0.02 (2)

2349 (1)
5678 (3) 0,1 0.09 0.05 (1)

0.07 (3) 0.05 0.01 (1)
0.03 (3)

234 (1)
5678 (3) 0,05 0.08 0.05 (1)

0.04 (3) 0.04 0.01 (1)
0.01 (3)

234 (1)
567 (2)
89 (3)

0,05 0,05
0.03 (1)
0.02 (2)
0.04 (3)

0,05
0.02 (1)
0.01 (2)
0.04 (3)

234 (1)
67 (4)
589 (3)

0,05 0,04 0.01 (1)
0.02 (3) 0,03 0.01 (1)

0.02 (3)

All (4) 0,02 0.001 - 0.001 -

VII. CONCLUSIONS
This work has presented a SystemC-based HW/SW co-

simulator and analysis tool, called HEPSIM, for heterogeneous
parallel embedded systems. The next steps will be to fully
integrate and validate it in the context of a full working ESL
HW/SW co-design flow [19] and its future extensions (e.g.
[20]). HEPSYM relies only on the SystemC Scheduler and the
need to manage the concept of simulated time is very minimal
so the simulation time is near to the fastest one obtainable by
means of SystemC technology. The proposed case study has
been simulated in less than 2 seconds on a Windows 10 Home
64 bit with an Intel Core i7-6700HQ CPU 2.60 GHz and 16
GB RAM. Future works will consider the possibility to
increase the simulator performance by introducing code
parallelization in the final implementation. The instrumentation
associated with macro S, that is placed in correspondence of all
statements within the code of processes, involve a not
negligible overhead in the simulation time but it ensures the
simulatability of all the possible combinations of mapping of

processes to processors allowing also to adopt a different
(customizable) scheduling policy for each GPP/ASP. So, future
works involves also the quantification and limitation of this
kind of overhead in order to improve simulation time.

ACKNOWLEDGMENT
This work has been partially supported by the ECSEL RIA

2016 MegaM@Rt2 and AQUAS projects.

REFERENCES
[1] OMAP Platform, http://www.omap.com.
[2] SH Mobile Series, http://www.renesas.com.
[3] Zynq SoC, http://www.xilinx.com.
[4] L. Pomante, P. Serri. “SystemC-based HW/SW Co-Design of

Heterogeneous Multiprocessor Dedicated Systems”. International
Journal of Information Systems, 2014.

[5] SystemC, http://www.accellera.org.
[6] Intel Cofluent. http://www.intel.com.
[7] SpaceStudio, http://www.spacecodesign.com/.
[8] H. Posadas, P. Penil, A. Nicolas, and E. Villar. “Automatic synthesis of

communication and concurrency for exploring component-based system
implementations considering uml channel semantics”. Journal of
Systems Architecture, 2015.

[9] Virtual Platform Parallel Performance Evaluation,
http://vippe.teisa.unican.es/.

[10] Hoare, C. A. R. 1978. Communicating sequential processes. Springer,
New York, NY, 413-443.

[11] Elliott J.P. Case Study: FIR Filter. In: Understanding Behavioral
Synthesis. Springer, Boston, MA, 1999.

[12] Pomante, L. 2011. System-level design space exploration for dedicated
heterogeneous multi-processor systems. 22nd IEEE International
Conference on Application-specific Systems, Architectures and
Processors (ASAP), IEEE International Conference on, 79-86.

[13] L. Pomante, D. Sciuto, F. Salice, W. Fornaciari, C. Brandolese. Affinity-
Driven System Design Exploration for Heterogeneous Multiprocessor
SoC. IEEE Transactions on Computers, vol. 55, no. 5, May 2006.

[14] Frank Vahid and Tony Givargis. 2001. Embedded System Design: A
Unified Hardware/Software Introduction (1st ed.). John Wiley & Sons,
Inc., New York, NY, USA.

[15] C. Haubelt, T. Schlichter, J. Keinert, and M. Meredith, “SystemCo-
Designer: Automatic design space exploration and rapid prototyping
from behavioral models,” in Proc. Design Automat. Conf., 2008, pp.
580–585.

[16] V. Stoico, V. Muttillo, L. Pomante, G. Valente, F. D'Antonio, F. Salice.
"CC4CS: a Off-the-Shelf Unifying Statement-Level Performance Metric
for HW/SW Technologies". International Workshop on Load Testing
and Benchmarking of Software Systems (LTB), 2018.

[17] A. Allara, C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto, "System-
level performance estimation strategy for sw and hw," Proceedings
International Conference on Computer Design. VLSI in Computers and
Processors (Cat. No.98CB36273), Austin, TX, 1998, pp. 48-53

[18] L. Pomante. “System-Level Design Space Exploration for Dedicated
Heterogeneous Multi-Processor Systems”. ASAP 2011.

[19] HEPSYCODE, http://www.hespsycode.com.
[20] F. Federici, V. Muttillo, L. Pomante, P. Serri, G. Valente. A Model-

Based ESL HW/SW Co-Design Framework for Mixed Criticality
Systems. EMCSummit, CPSWeek 2016.

	I. Introduction
	II. C++/SystemC Based Tools
	III. Reference ESL HW/SW Co-Design Flow
	IV. HEPSIM: Software Architecture
	A. SystemModel
	B. SystemManager
	C. SC_CSP_CHANNEL
	D. SchedulingManager

	V. HEPSIM: Main Design and Implementation Issues
	A. Concurrency Analysis
	B. Load Estimation

	VI. Illustrative Case Study
	VII. CONCLUSIONS
	Acknowledgment
	References

