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Abstract— Heterogeneous devices are becoming widely diffused 
in the embedded system domain, mainly because of the 
opportunities to increase application execution performance and, 
at the same time, to substantially reduce energy consumption. In 
such a context, this work faces the role of HW/SW co-
simulators/analysis tools for embedded systems based on 
heterogeneous parallel architectures. In particular, it presents a 
SystemC-based tool for functional/timing HW/SW co-simulation 
and analysis within a reference ESL HW/SW co-design flow. The 
description of the main features of the tool, the main design and 
integration issues and an illustrative case study represent the 
core of the paper. 

Electronic System-Level Design; HW/SW Co-Design; Parallel 
Embedded Systems; Heterogeneous Systems 

I.  INTRODUCTION 
The growing complexity of nowadays embedded digital 

systems, especially if based on modern System-on-Chip (SoC) 
adopting explicit heterogeneous parallel architectures (e.g. 
[1][2][3]), and their reduced time-to-market have radically 
changed the common design methodologies. Traditional design 
approaches, based on independent design of HW/SW 
components are no longer sufficient to efficiently exploit 
subparts of such SoCs. For this, HW/SW co-design 
methodologies, where designers can early check system-level 
constraints and evaluate cost/performance trade-offs, are of 
renovated relevance. In fact, these kinds of methodologies are 
able to lead the system-level analysis by means of proper 
models, metrics, and tools, supporting the designer in all those 
activities that are normally entrusted only to his experience. In 
particular, HW/SW co-simulation and analysis tools cover a 
very important role in every HW/SW co-design flow, because 
they allow a fast analysis of the system properties. In such a 
context, this work presents a SystemC-based tool for 
functional/timing HW/SW co-simulation and analysis 
integrated into a reference Electronic System-Level (ESL) 
HW/SW Co-Design methodology targeting heterogeneous 
parallel embedded systems. The main contribution is to 
describe the main features of the tool, and to describe the main 
design and integration issues with respect a whole 
comprehensive ESL HW/SW Co-Design framework [19]. 

This paper is organized as follows. Section II describes 
some relevant ESL co-simulation and analysis tools. Section III 
briefly presents the reference ESL HW/SW co-design flow 
while Sections IV and V describe the main design and 

implementation issues. Then, Section VI presents an 
illustrative case study to show the main features of the 
proposed tool. Finally, Section VII draws out some conclusions 
and outlines the future work. 

II. C++/SYSTEMC BASED TOOLS 
In the recent years, in the Electronic Design Automation 

(EDA) domain, there has been a push towards the development 
of ESL tools able to span the complete design space across 
hardware and software boundaries. A lot of them are placed 
within a framework of HW/SW Co-Design to perform 
functional and timing simulations by using SystemC [5] as ESL 
description language. Some of the most relevant ones, both 
commercial and academic, are briefly described below. 

As a meaningful representative of available commercial 
tools, CoFluent Studio [6] by Intel is a modeling and 
simulation environment for early high-level design space 
exploration. It allows capturing the application functionality, 
the HW architecture and their mapping. Application models are 
specified as networks of communicating processes. HW 
platforms can be graphically assembled out of generic 
processing and interconnection elements. Once performed a 
manual mapping among application and architecture elements, 
CoFluent can generate a SystemC Transaction-Level Model 
(TLM) of the resulting system for simulation, analysis, and 
virtual prototyping. Another interesting SystemC-based 
commercial tool is SpaceStudio [7] by SpaceCodesign. By 
using it, designers can create process-based SystemC 
application models out of predefined library blocks or by 
importing and wrapping existing C, C++ or SystemC code. 
Next, a system architecture can be graphically assembled, and 
the application can be manually mapped by dragging 
application blocks onto previously allocated processors. As a 
result, SpaceStudio will generate a SystemC TLM of the 
defined platform. All SystemC application models and TLMs 
generated through SpaceStudio can be simulated for analysis 
and performance evaluation. Among academic simulators, it is 
possible to find SystemCoDesigner (System-Level Hardware-
Software-Co-Design Tool) [15]. It is a software tool for 
(semi)automatic design space exploration at system-level. The 
goal is to allocate resources and bind a task graph onto these 
allocated resources. The designer has to specify the task graph, 
the architecture template (as a graph), as well as all possible 
bindings of the nodes in the task graph onto the resources in the 
architecture template. Finally, eSSYn (Embedded Software 
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SYNthesis) [8] is a software synthesis tool for embedded 
systems. The system model is made of three sub-models. In 
order to use eSSYn, system designers need to provide a 
software component-based model of the application, a model 
for the hardware platform to specify the available resources, 
and a mapping of software components and cores. Then, 
eSSYn will generate all required code ready to be uploaded to 
the HW platform. With respect to simulation capabilities, 
eSSYn is integrated with an environment called VIPPE 
(VIrtual platform Parallel Performance Evaluation) [9]. 
VIPPE is based on the native simulation approach, it enables 
the estimation of the performance by reporting a set of different 
metrics and it has been designed as a simulation-based 
technology for design space exploration. 

The tool presented in this work, called HEPSIM, is still 
based on SystemC, but presents some relevant differences with 
the ones described before. First of all, the system behavior 
modeling is based on a CSP-like (Communicating Sequential 
Processes) Model of Computation (MoC) [10], from which is 
then generated the simulated SystemC code. Such a feature can 
allow also some kind of formal analysis on the model. Second, 
all commercial and academic tools refer to a HW architecture 
bounded to the designer’s choices in the initial steps of the 
HW/SW co-design flow, while HEPSIM is designed to strictly 
interact with another tool that is able to automatically define a 
HW architecture and a mapping of processes to processors. 
Finally, HEPSIM is able to provide information about potential 
concurrency and communication in the CSP to allow exploiting 
in most effective way heterogeneous parallel embedded 
architectures. 

 
Figure 1. Reference ESL HW/SW Co-Design Flow 

III. REFERENCE ESL HW/SW CO-DESIGN FLOW 
Figure 1 shows the reference ESL HW/SW co-design flow 

while the main steps are briefly described below by giving 
emphasis to the interaction with HEPSIM. More details about 
the methodology can be found in [13][18][4]. 

The entry point of the reference HW/SW co-design flow 
consists of a System Behavior Model (SBM) based on a CSP-

like MoC and described by means of SystemC SC_THREAD. It 
is enriched by Timing Constraints and Reference Inputs. The 
first step of the reference flow, performed by means of 
HEPSIM, is the Functional Simulation. It allows to check the 
correctness of SBM with respect to Reference Inputs. In the 
following steps, the reference HW/SW co-design flow is 
supported by a Technology Library (TL), which can be 
considered as a generic "database" that provides the 
characterization of all the HW technologies available to build 
the final system. The next step is the Co-Analysis and Co-
Estimation. During Co-Analysis, SBM is analyzed to evaluate 
two metrics: Affinity [13] and Concurrency. The first one 
represents how much a process is suitable to be executed on a 
specific processor class [14]: General Purpose Processor 
(GPP); Application Specific Processor (ASP); Single Purpose 
Processor (SPP). The second one is an indication about of how 
much concurrency can be found in the activities of CSP 
processes and channels. It is evaluated by means of HEPSIM 
run in a configuration similar to the one used for the Functional 
Simulation. Co-Estimation is in charge to estimate Timing, Size 
and Load. Timing represents the time needed by each processor 
in the TL to execute a SBM statement (e.g. [16][17] presents 
two possible approaches). Size represents the number of bytes 
in RAM and ROM needed to store data and instructions for 
each process implemented in SW. For HW implementations, it 
is the number of mm2 (depending on the target HW technology, 
equivalent metrics like Geq, LUT, TLB, etc. can be used) 
needed to implement processing, memory and connection 
elements. Load represents the utilization percentage that each 
process, when implemented in SW, would impose to a 
processor to satisfy a timing constraint specified by the 
designer (i.e. Time to Completion, TTC). After this step, the 
flow enters in the Design Space Exploration (DSE) one, which 
is composed by 2 activities: “HW/SW Partitioning, Mapping 
and Architecture Definition” and “Timing Co-simulation”. The 
first one is responsible to define the HW architecture of the 
target system, and to perform partitioning and mapping of 
processes and channels on available processors and links. All 
these data are then provided to HEPSIM to check if timing 
constraints are satisfied by the proposed architecture/mapping 
item. This kind of simulation exploits all the features of the 
proposed tool as described in the next sections. 

 
Figure 2. SystemC-based HEPSIM Architecture 
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IV. HEPSIM: SOFTWARE ARCHITECTURE 
This section, together with the next one, describes main 

design and implementation issues related to HEPSIM. The 
description starts by briefly analyzing the HEPSIM SW 
Architecture and its components (represented in Figure 2). The 
large package on the left of Figure 2 is the SystemC Library, 
which contains also the standard SystemC Scheduler. The 
library has been extended with a SC_CSP_CHANNEL template 
class to implement the point-to-point CSP channel semantic. 
The other cooperating items are SystemModel, SystemManager 
and SchedulingManager. All them are supported by the 
Technology Library. 

A. SystemModel 
SystemModel contains the definition of all the processes 

and channels used in the SBM (System Class) together with 
their corresponding SystemC code (SBM Package). Depending 
on the kind of simulation/analysis to be performed (i.e. 
Functional Simulation, Concurrency Analysis, Load 
Estimation, Timing Simulation) SBM code is instrumented by 
means of some Macros defined in the SystemManager. It is 
worth noting that the use of macros has been adopted to 
simplify automatic instrumentation of code by still keeping 
readability. 

B. SystemManager 
This class contains all the details needed to simulate the 

system. In fact, it manages all the data structure needed to drive 
the simulation. Moreover, it defines the macros used for SBM 
code instrumentation. Depending on the kind of simulation to 
be performed, they allow to take into account the concept of 
simulated time, to implement different Scheduling Policies, 
and to evaluate some of the metrics used in the reference 
HW/SW co-design flow. 

 
Figure 3. Blocking CSP read method 

C. SC_CSP_CHANNEL 
The SystemC Library has been extended with a 

SC_CSP_CHANNEL. This channel has been developed 
according to properties of CSP MoC and SystemC. It inherits 
from the SystemC sc_prim_channel and uses two interfaces, 
sc_csp_channel_in_if and sc_csp_channel_out_if, for reading 
and writing respectively on the channel with blocking read() 
and write() methods. This full handshake mechanism has been 
realized through two Boolean flags, ready_to_read and 
ready_to_write, to check the state of process on the other side 
of the channel, in combination with two sc_event and the use of 
notify() and wait() methods in order to properly return the 
control, when needed, to the SystemC Scheduler. Figure 3 
shows the code related to the read() method. Finally, it is worth 
noting that there exist two versions of SC_CSP_CHANNEL: 
functional and timing channels. The second one inherits from 
the first one and it allows to consider also communication 
times among processes depending on their allocation. The 
basic policy is that, if two processes are mapped on the same 
instance of a GPP/ASP or on two SPP, then the time of 
communication is negligible, otherwise it will mainly depend 
on the amount of data to be transferred. Such a policy can be 
customized to consider different contributions and also to take 
into consideration the allocation of channels on different 
physical links. Currently, other than point-to-point physical 
links, HEPSIM allows to consider shared buses by taking into 
account also the latency needed to access the shared bus itself. 

 
Figure 4. HEPSCHED full handshake methods 

D. SchedulingManager 
This class represents the central element in HEPSIM. It 

implements a second-level scheduler (i.e. HEPSCHED) with 
respect to the standard SystemC one. HEPSCHED has been 
implemented as a SystemC SC_MODULE containing a 
dedicated HEPSCHED instance for each instance of GPP and 
ASP composing the system. Each HEPSCHED instance is 
implemented as a SC_THREAD. The implementation of 
different analysis mechanisms and scheduling policies in 
HEPSIM is based on the instrumentation of code by means of 
macros and their interaction with the SchedulingManager. 
Such macros are defined in the SystemManager and they are of 
two types. Macro P is placed at the end of the infinite loop of 
each SC_THREAD representing a process, to count the 
number of times it has been executed. It calls the Profiling() 
method in SchedulingManager. Macro S is inserted as a prefix 
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to the SystemC statements composing the SBM to support the 
handshake mechanism for the scheduling of processes as 
shown in Figure 4. It calls the Increase() method into 
SchedulingManager. During this activity, control passes from S 
to the HEPSCHED instance (i.e. a SC_THREAD) associated to 
the GPP/ASP processor that executes the process and vice 
versa. This allows to take into account the time needed to 
execute each statement of the process for statistical purposes, 
and then to wait for a notify() from the HEPSCHED instance. 
So, the HEPSCHED instance has the opportunity to select the 
next ready process to be executed following the implemented 
scheduling policy. Then, the control passes again to macro S 
that advance the simulated time and then the control comes 
back to the HEPSCHED instance that will finally release() the 
control to allow the SystemC Scheduler performing the 
scheduling of the next process (i.e. SC_THREAD). Such a last 
release is performed by an additional wait() that allows also to 
take into account the overhead due to scheduling activities (i.e. 
Context Switch Overhead). Based on such a mechanism, two 
different scheduling policies have been implemented. Adding 
new ones is straightforward since it is needed only to code the 
desired algorithm inside a HEPSCHED instance (i.e. a 
SC_THREAD). The first algorithm is a First-Come First-
Served (FCFS) scheduling, i.e., after the execution of a 
SystemC statement (or a group of them) of a process it is 
selected the next ready process into a First-In First-Out (FIFO) 
queue, among the ones mapped on the GPP/ASP that execute 
the related HEPSCHED instance. The second algorithm is a 
Fixed-Priority with Statement-Level Preemption. In this case, 
after the execution of each SystemC statement of a process, it 
is selected the ready process with the highest priority. 

V. HEPSIM: MAIN DESIGN AND IMPLEMENTATION ISSUES 
This section provides more details about design and 

implementation of HEPSIM analysis capabilities: Concurrency 
Analysis and Load Estimation. 

A. Concurrency Analysis 
In the activity of co-analysis, HEPSIM is used to evaluate 

the possible degree of concurrency among processes and 
channels within the system. The goal is to obtain an indication 
about “how much” concurrency can be found in the activities 
of processes and channels pairs. It is evaluated by means of 
HEPSIM run in a configuration similar to the one used for the 
Functional Simulation. The difference is that, by using some 
supporting data structures, it is possible to build two matrixes 
of concurrency, one for processes pairs and one for channels 
pairs. Values in the matrixes represent the number of times two 
processes or two channels have been active concurrently. More 
in detail, the strategy adopted in HEPSIM is the following one. 
First, it has been defined two data structures, in particular two 
arrays to represent the state of processes and channels and two 
macros (C and CH) to check the state of these ones. Besides, 
they have been defined two matrices to contain the 
concurrency values for each pair of processes and channels. 
Then, the macros have been inserted within the code of 
processes, in particular at each read() and write() call on the 
channel, and within the code of the SC_CSP_CHANNEL 

itself. The mechanism to evaluate the possible concurrency is 
the following one: in correspondence of macro C, it is called 
the function checksStatesProcesses() in SystemManager, to 
verify which processes are potentially concurrent. In detail, if 
there is a process ready, its state value is equal to 1. Each other 
process with the same state is potentially concurrent with the 
first and this is accounted by increasing the corresponding 
values in the matrix. The same mechanism is adopted for the 
channels, by calling the function checksStatesChannels() in 
SystemManager for the macro CH and using the appropriate 
data structures. As said above, in general, values contained in 
the matrices (properly normalized between 0 and 1) represent 
the number of times (i.e. how much) two processes or two 
channels are potentially concurrent. From a DSE perspective, 
such values are used to evaluate which processes and channels 
can benefit from an allocation on, respectively, different 
processors and links. 

B. Load Estimation 
The load Li represents the utilization percentage that each 

process, when implemented in SW, would impose to a 
GPP/ASP to satisfy a timing constraint specified by the 
designer (i.e. Time to Completion, TTC). Li is estimated by 
allocating all the processes to a single-instance of each 
software processor and performing some timing simulations. 
Three parameters have to be computed: FRTj (Free Running 
Time), i.e. the total simulated time needed to provide all the 
expected outputs (i.e. to complete the simulation) on a specific 
processor j; ti, the average net (i.e. that doesn’t consider 
communication times and scheduling overhead) simulated time 
needed to process i to make a loop on processor j; Ni, the 
number of loops performed by process i on processor j. 
Starting from this parameters, in the hypothesis of periodic 
processes, it is possible to evaluate the so called Free Running 
Load (FRLi) for each pair of SW-related process/processor by 
the equation: 

𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 =
(𝑡𝑡𝑖𝑖 ∗ 𝑁𝑁𝑖𝑖)
𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗

 (1) 

where is FRTi/Ni the average period of each processes on 
processor j. At this point, by imposing the requited execution 
time (i.e. TTC), it is possible to estimate Li that each process 
would impose to the GPP/ASP processor to satisfy TTC itself. 
In fact, setting FRTj equal to TTC, for each process/processor 
pair, such as: 

TTC = 𝑥𝑥𝑗𝑗 ∗ 𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗          𝑤𝑤𝑤𝑤𝑤𝑤ℎ 0 ≤ 𝑥𝑥𝑗𝑗  ≤ 1 (2) 

the value of estimated Li imposed to processor j to satisfy TTC 
is: 

L 𝑖𝑖 =
(𝑡𝑡𝑖𝑖 ∗ 𝑁𝑁)
𝑇𝑇𝑇𝑇𝑇𝑇 =

(𝑡𝑡𝑖𝑖 ∗ 𝑁𝑁)
𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗

∗  
𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗
𝑇𝑇𝑇𝑇𝑇𝑇 =

𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗
𝑥𝑥𝑗𝑗

 (3) 

If Li is greater than 1, it is possible to assert that the related 
process/processor pair is not able to satisfy TTC. From a DSE 
perspective, by considering the sum of the Li of all the 
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processes allocated to a GPP/ASP, it is possible to check if the 
total imposed load is acceptable (i.e. in general less than 1). 

 
Figure 5. Illustrative case study: SBM 

VI. ILLUSTRATIVE CASE STUDY 
This section shows a possible use of HEPSIM to perform 

analysis and co-simulations by means of an illustrative case 
study. The application is called fir8-fir16-gcd and an overview 
of its SBM is represented in Figure 5. The process Stimulus 
generates 10 random sc_uint<8> pairs every 1 ms as input to 
the system. Such pairs are sent to fir8 and fir16 processes 
(where fir is the Finite Impulse Response) that respectively 
interacts with other two processes. In fact, the fir computation 
is decomposed in 2 parts: the first one executes multiplications 
with proper coefficients (evaluation) while the other one 
executes needed shifting operations (shifting). The output of 
the filtering operations is sent to the gcd process (where gcd is 
the Greatest Common Divisor) that cooperates with the 
evaluation process to provide the greatest common divisor 
between each received data pairs. In the end, the output of the 
gcd process is sent to the Display process to be visualized. 
Summarizing, the application is composed of 8 processes and 
12 internal channels. Finally, there are 3 external channels used 
to make connections with the testbench (i.e. Stimulus and 
Display processes). In this case study, the processors selected 
from the TL and available to implement the final system are 
composed by: max 2 instances of Intel 8051 (16 MHz, CC4CS 
297, Context Switch Overhead 15 ms), max 1 instance of 
Microchip DSPIC (24 MHz, CC4CS 260, Context Switch 
Overhead 15 ms) and max 1 instance of Xilinx Spartan 3 (50 
MHz, CC4CS 10, Context Switch N/A). It is worth noting that 
CC4CS has been evaluated as described in [16]. To identify 
processes, different identifiers (id) have been used: 0 and 1 for 
the testbench, 2 for fir8, 3 for fir8 evaluation, 4 for fir8 
shifting, 5 for fir16 main, 6 for fir16 evaluation, 7 for fir16 
shifting, 8 for gcd, 9 for gcd evaluation. To identify processors, 
identifier 1 is for Intel 8051 instance 1, 2 for Intel 8051 
instance 2, 3 for DSPIC and 4 for Xilinx Spartan3. Starting 
from such a case study, HEPSIM exploitation in the different 
steps of the reference ESL HW/SW co-design flow is described 
below. 

During the Functional Simulation, HEPSIM is used to 
verify the correctness of SBM with respect to Reference Inputs 
looking for situations like wrong outputs or deadlocks, without 
considering communication or computation times. In Co-
Analysis and Co-Estimation steps, HEPSIM is used to evaluate 
Concurrency and to estimate Load. The output related to 
Concurrency is a couple of triangular matrixes (Figure 6). First 
rows and columns of the two matrixes refer to processes and 
channels id, and each internal value represents “how much” 
processes and channels pairs have been concurrently “active” 
during the simulation. This allow to discover which processes 
and channels pairs could be usefully allocated respectively on 
different processors and links. Anyway, such information is not 
meant for human analysis but are provided to the DSE step that 
will trade-off such a metric with the other ones as defined in 
the reference ESL HW/SW co-design flow. With respect to 
Load, the values obtained for each process represent the load 
that would be imposed to each available GPP/ASP to satisfy 
TTC in the case of single-instance allocation. Table 1 shows 
Load Estimation results for the case study processes with 
respect to an Intel 8051 and TTC equal to 0.1 s. 

 
Figure 6. Processes and Channels Concurrency Matrixes 

TABLE I.  LOAD ESTIMATION FOR INTEL 8051 

ID  
Process 

Free Running  
Load 

Load  
(TTC=0.1 s) 

2 0.06 0.65 
3 0.12 1.30 
4 0.10 1.02 
5 0.07 2.41 
6 0.23 0.23 
7 0.17 1.85 
8 0.05 0.50 
9 0.20 2.13 

 

Intuitively, if estimated load is greater than 1 for one or 
more of the processes, these cannot be allocated on the 
considered GPP/ASP instance since it will lead to TTC 
violation. Again, such information is not meant for human 
analysis but are provided to the DSE step that will trade-off 
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such a metric with the other ones as defined in the reference 
ESL HW/SW co-design flow. Finally, HEPSIM is exploited to 
the best during the DSE step, when a Timing Co-Simulation is 
needed to validate if the proposed architecture/mapping items 
are able to satisfy TTC. 

To give an example of the results of such an activity some 
simulations have been performed by considering different 
architecture/mapping items, as shown in Table 2. For each 
architecture/mapping item it has been used the two scheduling 
algorithms previously described (i.e. FCFS with statement-
level context-switch, and FP with statement-level preemption 
in the case of the same priority for all processes). The first 
column of Table 2 represents the simulated 
architecture/mapping items. The second column represents the 
timing constraints. It is worth noting as, while reducing TTC, 
the DSE step always provides new items able to satisfy them. 
Additionally, next columns show total simulated time for each 
scheduling algorithm (FCFS, FP) and the related context 
switch overhead (OH FCFS, OH FP). 

TABLE II.  RESULTS FROM THE DSE ON THE USE CASE 

Allocation TTC 
(s) 

FCFS  
(s) 

OH FCFS  
(s) 

FP  
(s) 

OH FP  
(s) 

All (1) 0,2 0,23 0,14 (1) 0,11 0,02 (1) 
All (3) 0,2 0.13 0.09 (3) 0.06 0.01 (3) 

23489 (1) 
567 (2) 0,1 0,11 0.06 (1) 

0.13 (2) 0.06 0.01 (1) 
0.02 (2) 

2349 (1) 
5678 (3) 0,1 0.09 0.05 (1)  

0.07 (3) 0.05 0.01 (1) 
0.03 (3) 

234 (1) 
5678 (3) 0,05 0.08 0.05 (1)  

0.04 (3) 0.04 0.01 (1) 
0.01 (3) 

234 (1) 
567 (2) 
89 (3) 

0,05 0,05 
0.03 (1)  
0.02 (2)  
0.04 (3) 

0,05 
0.02 (1) 
0.01 (2) 
0.04 (3) 

234 (1) 
67 (4) 
589 (3) 

0,05 0,04 0.01 (1)  
0.02 (3) 0,03 0.01 (1) 

0.02 (3) 

All (4) 0,02 0.001 - 0.001 - 
 

VII. CONCLUSIONS 
This work has presented a SystemC-based HW/SW co-

simulator and analysis tool, called HEPSIM, for heterogeneous 
parallel embedded systems. The next steps will be to fully 
integrate and validate it in the context of a full working ESL 
HW/SW co-design flow [19] and its future extensions (e.g. 
[20]). HEPSYM relies only on the SystemC Scheduler and the 
need to manage the concept of simulated time is very minimal 
so the simulation time is near to the fastest one obtainable by 
means of SystemC technology. The proposed case study has 
been simulated in less than 2 seconds on a Windows 10 Home 
64 bit with an Intel Core i7-6700HQ CPU 2.60 GHz and 16 
GB RAM. Future works will consider the possibility to 
increase the simulator performance by introducing code 
parallelization in the final implementation. The instrumentation 
associated with macro S, that is placed in correspondence of all 
statements within the code of processes, involve a not 
negligible overhead in the simulation time but it ensures the 
simulatability of all the possible combinations of mapping of 

processes to processors allowing also to adopt a different 
(customizable) scheduling policy for each GPP/ASP. So, future 
works involves also the quantification and limitation of this 
kind of overhead in order to improve simulation time. 
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