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Abstract—This work presents an early-stage statement-level
metric for energy consumption of embedded SW. In particular,
based on an existing assembly-level analysis and some profiling
activities performed on a given C benchmark, it defines a
metric related to the average energy consumption of a generic C
statement for a given target processor. Such a metric, evaluated
with a one-time effort, can be then used to rapidly estimate
the energy consumption of a given C function for all the
characterized processors. Two reference embedded processors
are then considered in order to show an example of usage of
the proposed metric.

Index Terms—Embedded SW, Energy Consumption, Profiling,
Benchmarking, Metrics

I. INTRODUCTION

Energy consumption is one of the most critical design
issues in the embedded systems domain. In fact, the need to
guarantee an even longer life for all battery-powered devices
is one of the main problems that affect the design activities.
In particular, especially at the system-level of abstraction, the
choices made by designers can drastically influence the final
system energy consumption, since different optimizations can
be considered in the whole Electronic System Level (ESL)
design flow. For this, different energy consumption models can
be taken into account to estimate the energy consumption of
the final system implementation. Such models can be related
to processors, Application Specific Integrated Circuit (ASIC),
memories, and the interconnections among them. Moreover,
the models can be at different levels of abstraction and granu-
larity, mainly depending on the required estimation accuracy.
Since this work focuses on embedded processors, Figure 1
shows the typical abstraction levels involved in a classical
ESL design flow for embedded processors development [1].
The first abstraction level, called Functional, also catches very
few non-functional static processor features, as average Clock
cycles Per Instruction (CPI), static power dissipation, etc.
The Architectural/ISS abstraction level involves the knowledge
of the Instruction Set Architecture (ISA) and it is normally
supported by a so-called Instruction Set Simulator (ISS) to
perform several kinds of dynamic analysis. The Pipeline-
accurate Architectural/ISS abstraction level adds details about
the pipelines behaviour to the simulator, so considering a
more refined processor model. Finally, the Cycle-accurate
Micro-Architectural abstraction level introduces further details
about the processor architecture in terms of Control Unit
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Fig. 1. Classical ESL design flow for embedded processors.

and Data Path allowing a cycle-accurate analysis of the final
implementation. The work presented in this paper is located
between the first two levels of the design flow, since it proposes
a statement-level metric, called J4CS (Joule for C Statement),
to measure the average energy consumption associated to the
execution of a generic C statement by means of a given target
processor. However, while considering J4CS, two main issues
have to be discussed. The first one is related to the definition of
“generic C statement”. This work adopts the same approach
presented in [3], where it has been defined by adopting an
empirical approach: it refers to the way a common profiling
tool as gcov [2] performs C statements identification and
counting when profiling their execution. The second issue is
related to the fact that J4CS is influenced also by the used C
compiler. Some possible ways to manage such an influence
are to specify also the used one (possibly giving rise to a
JACS for each processor/compiler pairs), or to consider the
average of the results obtained by using the most diffused C
compilers. In any case, the issue can be managed by means of
a statistical characterization of J4CS, i.e., by evaluating a set of
values related to Min, Max, Average, Standard Deviation and
by trying to identify an associated statistical distribution. Such
a characterization is then performed basing on the assembly-
level analysis presented in [4], as explained in Section III, and



by exploiting the framework developed in [3]. Obtained J4CS
can be so assigned to each statement of a C function and used,
by means of an host-based source-level profiling, to estimate
the total amount of energy consumed when providing specific
inputs.

The remainder of the work is organized as follows: Section
IT describes the works related to the power/energy consump-
tion estimation and evaluation problem. Section III formally
defines the J4CS metric proposed in this work. Then, Section
IV presents the J4CS metric evaluation procedure for two
reference embedded processors, while Section V shows how it
is possible to use the obtained values to estimate and compare
the energy consumption associated to the execution of a given
C function. Finally, Section VI closes the paper with some
conclusions and future works description.

II. RELATED WORKS

Starting from lower-levels of abstraction, such as gate or
Register-Transfer (RT) ones [7], a lot of works consider
the problem of estimate power/energy consumption by us-
ing very time-consuming simulators [8]. Other works start
from an accurate modeling of the target ISS [S5] [9], but
this still requires a considerable time for both the modeling
and simulation activities. Some works try to increase the
abstraction level, by going towards the system level one. This
is often done by directly considering source-code [10], but also
this kind of analysis could involve different time-consuming
activities strictly related to the need of taking into account
the peculiarities of the considered target processors. The same
problems arise in approaches that involve the introduction
of some kind of Virtual Instruction Set (e.g., [11]), but
that still requires some explicit detailed knowledge of the
final processors architecture. With respect to the source-code
analysis, the work in [12] presents a statement-level timing
estimation (and related energy consumption estimation that
depends on timing), by evaluating the power/energy metrics
directly on the base of timing and profiling activities. A work
that tries to bridge the gap between the reduced simulation
time of high-level dynamic analysis of code with the accuracy
of low-level dynamic analysis is [13], that introduces an
intermediate pseudo instruction set for analyzing application
and HW architectures, using an approach still similar to [11].
Finally, a statement-level energy estimation based on GCC has
been proposed in [14] and [15].

In such a context, the work presented in this paper is
close to the work in [4], but its purpose is to reduce the
time of estimation activities by means of a strategy that
allows to quickly evaluate and select processors in an early-
stage analysis. In fact, the estimation of the energy consumed
during SW execution is very fast since it is based only on
a host-based source-level profiling. More detailed ISA-related
analysis, if needed, can be then performed by focusing only
on the selected processors.

III. METRIC DEFINITION

The power consumption of a microprocessor [9] during the
execution of a given program can be evaluated as:

Ptot:den+Pstat:CL'Vngd'f+Vdd'Ileak (1)

where P, is the total power consumption made up of dynamic
and static power contributions, C7, is the average switched ca-
pacitance per clock cycle during the execution of the program,
Vaq is the supply voltage, f is the clock frequency, and Ijcqx
is the current leakage, i.e., the current that flows through the
circuit to ground. Considering the execution time associated
to the given SW program, it is possible to evaluate the total
energy consumption as:

Eiot = Piot -t = Cror - Vi + Vaa - Leak - t 2

where Cj,; is the total switched capacitance. Changing the
clock frequency (and so decreasing/increasing the program
execution time) doesn’t change C',; [9] and so the energy con-
sumption decrease/increase linearly with the scaled frequency
with the slope proportional to the amount of leakage.

Considering the average power consumed by a micropro-
cessor while running a program, it is possible to simplify the
Equation 2 by considering P = I x V4, where I is the average
current and Vg the voltage supply. So, the average energy
consumed by a program can be expressed by: £ = Px N x T,
where N is the number of program clock cycles and 7 is the
clock period [6].

Thus, while taking into account the formulas described
above, the method proposed in this work exploits some bench-
mark activities on a specific set of C functions to evaluate
a metric related to the average energy consumption per C
statement, as described below, to estimate a statistical interval
of energy consumption.

A. Definition of J4CS

As said in [4], many embedded microprocessors have a
statistical property of constant energy consumption for each
executed assembly instruction. So, the proposed idea is to
apply the same approach to a higher abstraction level (i.e.,
statement-level) by characterizing the energy cost (e.g., mini-
mum, maximum, average) associated to the execution of a C
statement. This is done by performing several simulations to
consider a lot of execution paths depending on the inputs.

In order to perform statistical analysis, some assumptions
must be made:

« if the program has a huge amount of lines of code (LOC),
then the energy consumed for each instruction can be
considered constant without great loss of accuracy [9];

o the entire statements set is considered homogeneous
between C operators and variables (as the analysis is
given from a statistical point of view, each statement
contributes in the same way for the evaluation of the total
energy consumption);

¢ an average number of assembly instructions per C state-
ment is considered;



« all the assumptions made in [4] respect to pipeline stages,
number of clock cycles and so on must be considered as
valid too.

Under these assumptions, it is possible to define the average
energy of a machine instruction [4] as F = %, where P is
the mean power consumption of a microprocessor, f is the
frequency and ¢ is the processor power efficiency (related
to the MIPS parameter, normally provided on processors
datasheets [16]). Starting from this equation, using a profiling
step in order to find the total number of assembly instructions
executed (N) and the total number of C statements executed
(M), by using gcov [3], it is possible to define a source-level
energy consumption metric as presented below.

Definition II1.1. J4CS (Joule for C Statements). Considering
a single C function, J4CS is the ratio between the number
of assembly instructions executed by the target processor exe-
cuting the function and the number of executed C statements
multiplied by the average energy of a machine instruction exe-
cution, i.e.: the J4CS metric is the average energy consumption
associated to a C statements executed on a specific processor,
and it is defined as:

N x E
M

IV. EVALUATION OF J4CS

JACS = 3)

A. General Framework

To evaluate the metric for a given processor it is needed,
at least, to: define a set of relevant C functions to be used as
benchmark [3]; for each function belonging to the benchmark,
to identify a way to stimulate (i.e., to execute) it by means
of relevant input data sets; to identify a tool to perform
source-level profiling in order to count the number of executed
C statements for each input; to identify tools to compile
the C function for the target processor and to simulate its
execution in order to obtain total number of executed assembly
instructions. Naturally, such steps must be applied for each
different processors that have to be characterized. However, it
is worth noting that it is an one-time effort since J4CS, once
evaluated, is available “for free” for any successive estimation
activities. So, to support J4CS evaluation, a proper framework
has been adapted. Additionally, such a framework is also
able to evaluate statistics on the metric itself. The following
paragraphs describe the general features of the proposed
framework while processor specific features are described
later.

1) Inputs Generation: To evaluate J4CS, a module that
(semi)automatically generates inputs for the benchmark func-
tions has been used. In particular, for each function they have
been randomly generated 1000 input data sets. Moreover, for
each function, different data types have been considered (i.e.,
int8, intl6, int32, and float) to analyze the results with respect
to the internal architecture of the considered processor. Each
input data set is then stored in a header file to be included in
the function at compile time.

2) Profiling on the Host Architecture: After the inputs
generation phase, a tool to count the number of executed C
statements is needed. This value is obtained by performing a
profiling of the benchmark functions by means of the gcov [2]
profiler for each generated input. The total number of executed
C statements for each function is simply the sum of the single
profiling numbers associated to each statements. It is worth
noting that such a profiling is performed one-time on the host
platform since it is independent of the target processor.

3) Profiling on the Target Processor: The last data needed
to calculate the J4CS metric is the number of assembly
instructions executed by the target processor for each function
and input set in the benchmark. So, for each target processor
there is the need for an Instruction Set Simulator (ISS) (Fig. 2).
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Fig. 2. J4CS Evaluation Framework.

B. Processor Specific Framework: Two Examples

J4CS has been evaluated by considering some specific pro-
cessors. In this work two processors have been analyzed [3]:
the LEON3, a 32-bit synthesizable soft-processor compatible
with SPARC V8 architecture [18], and the ATmega328/P [19],
a low-power CMOS 8-bit microcontroller based on the AVR
RISC architecture. The execution has been performed with a
software simulation of the processor by using the Instruction
Set Simulators (ISS) GAISLER TSIM [17] and SimulAVR
[20].

In order to evaluate results in a real scenario, two boards
have been considered to take voltage and frequency informa-
tion (the power information can be found in the processor
datasheets): LEON3FT-RTAX [21] and Arduino Uno [22]. The
processors parameters used to evaluate the metric [18] are
shown in Table I;

TABLE I
BOARD CHARACTERISTICS.

Parameters LEON3FT-RTAX Arduino UNO
Clock 25 MHz 16 MHz
Vaa 33V 50V

P 500 mW 60 mW
MIPS 20 16

1) 0,025 0,0037

It is worth noting that LEON3-FT is a System-On-Chip
design based on LEON3FT core, and it has the same ISA
of the classical LEON3 processor. Therefore, the number
of assembly instructions executed by the ISS is the same



for both processors since they rely on the same compiler.
So, considering these characteristics, the average energy con-
sumption associated to each executed assembly instruction
is: ( ERTAX = 0,8 ’n,J/I’I'LStT’. and EATMEGA328/P =
1 nJ/Instr.). The obtained results for the executions of the
benchmark functions are summarized in Table II.

TABLE 11
J4CS MEASURED ON LEON3FT-RTAX AND ARDUINO UNO (IN NJ)

Data Type Min  Median Max AM! SD? Var’  GM*  85%°  95%°
LEON3FT-RTAX int§ 1 36 869 100,73 13703 18779 4833 220 338
LEON3FT-RTAX int16 1 67 868 140,66 17338 30061 7533 312 523
LEON3FT-RTAX in32 4 129 868 213,11 208,60 43513 13198 451 814
LEON3FT-RTAX float 4 202 869 27045 240,16 57676 17318 597 814
LEON3FTRTAX AVG 5 1085 869 18124 189,79 37507 10720 34825 622,25
Arduino UNO int§ 7 2 89 1443 745 5563 13,19 20 30
Arduino UNO int16 9 16 116 1857 889 79,12 17,06 25 38
Arduino UNO int32 11 21 151 3387 3245 10534 2628 48 146
Arduino UNO float 16 41 260 6144 5206 27106 4834 78 204
Arduino UNO AVG 10,75 2235 156 3208 2521 9747 2622 4275 1045

1 AM: Arithmetic Mean; 2SD: Standard Deviation; > Var: Variance;
4GM: Geometric Mean; °85%: 85'" Percentile; ©95%: 95" Percentile;

For each function, different data types have been considered
(int8, intl6, int32, and float). In fact, both timing [3] and
energy, especially the average ones, change with respect to
the dimension of data. Fig. 3 shows the distribution related
to J4CS evaluated for LEON3 and ATMega ISS, with respect
to the reference benchmark. The described evaluation process
of J4CS for the two processors has required a total of near
10 non-consecutive hours on a standard workstation (Intel i7,
1.5 GHz, 16 GB RAM). However, as highlighted before, this
is a one-time effort to make available J4CS for subsequent
analysis (as shown in the next section).
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(a) J4CS for LEON3FT-RTAX. (b) JACS for Arduino UNO.
Fig. 3. J4CS BoxPlot results.

V. J4CS-BASED ENERGY CONSUMPTION ESTIMATIONS

The availability of J4CS is very useful for very fast early-
stage estimation, comparison, and selection. In fact, by having
available J4CS for different processors, with a single host-
based profiling it is possible to estimate the energy consump-
tion of a function of interest for the whole processors set.
As an example, given a target function #f{) and considering
a specific golden input x, by means of a host-based profiling
(that take less than a second on the same workstation described
in the previous section) it is possible to count the number of
executed C statements during the execution of tf(x) (e.g., 100).
Then, as shown in Fig. 4 (the x-axis is in a logarithmic scale),
it is straightforward to compare the whole processors set by

multiplying 100 for the related J4CS. Depending on a possible
energy consumption constraint it is then possible to select a
specific processors or, at least, to reduce the set to the ones to
be considered for further analyses.

UNO@16MHz (float) b |
UNO@16MHz (int32)
UNO@16MHz (int16)
UNO@16MHz (int8) |-

RTAX@25MHz (float) -

RTAX@25MHz (int32)

RTAX@25MHz (int16) -

RT (int8)

10? 10° 10t 10°
Energy Consumption (nJ)

Fig. 4. J4CS-based SW comparison.

VI. CONCLUSION AND FUTURE WORK

This work has presented a metric useful to estimate in
an early-stage design phase the energy consumption related
to the execution of embedded SW on a target processor.
This metric is good for very fast estimation, comparison and
selection activities. Then, more accurate approaches at lower
abstraction levels can be used for more precise and time-
consuming estimations. Other than in the pure SW domain,
this metric can be easily exploited into specific HW/SW
Co-Design methodologies and tools (e.g., [24]), in order to
consider energy requirements during system-level design space
exploration. In fact, it is worth noting that this metric can
be evaluated also in the HW domain, by using High-Level
Synthesis (HLS) tools and HDL simulators able to provide
energy information as output. Such values can be used to
substitute the N x E numerator value in Definition IIL1.
Moreover, J4CS can be also useful in ESL energy consumption
estimation approaches that rely on the availability of an esti-
mated energy consumption for each statement composing the
ESL specification (e.g., [25]). As future work, some interesting
opportunities, still at early-stage, are related to the use of HW
profilers [26] to evaluate estimation errors directly on-target,
and to the combined exploitation of the Affinity metric [23] to
reduce such errors by identifying a proper distribution subset,
and to the exploitation of a more detailed static analysis of
source-code in order to assign different weights to different
statements.
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