
HW/SW Co-Design Framework for
Mixed-Criticality Embedded Systems considering

Xtratum-based SW Partitions
1st Vittoriano Muttillo
University of L’Aquila

L’Aquila, Italy
vittoriano.muttillo@graduate.univaq.it

2nd Luigi Pomante
University of L’Aquila

L’Aquila, Italy
luigi.pomante@univaq.it

3rd Patricia Balbastre
Universitat Politècnica de València

Valencia, Spain
pbalbastre@ai2.upv.es

4th José Simó
Universitat Politècnica de València

Valencia, Spain
jsimo@ai2.upv.es

5th Alfons Crespo
Universitat Politècnica de València

Valencia, Spain
acrespo@ai2.upv.es

Abstract—Heterogeneous parallel devices are becoming widely
diffused in the embedded systems application field since they
allow to improve time performances and other orthogonal metrics
(e.g., cost, power, size, etc.) at the same time. In such a context,
the introduction of safety requirements, as dictated by the
relevant standards (i.e., DO-178 B/C and RTCA/DO-254 in
airborne systems, ARINC 653 for avionics software, ISO-26262 in
automotive domain, etc.) while considering shared resources on
a heterogeneous parallel HW platform, adds further challenges
to industrial and academic research. This kind of platforms that
execute tasks with different levels of criticality are commonly
called mixed-criticality embedded systems. So, the main problem
in their management is to ensure that low criticality tasks do
not interfere with high criticality ones. The final goal is to
allow several applications to interact and coexist on the same
platform. For this, the exploitation of virtualization technologies
(i.e., hypervisors) allows to guarantee isolation and to satisfy
certification requirements but introduces scheduling overhead
and new HW/SW partitioning challenges. In such a scenario,
this work focuses on a framework for modeling, analysis, and
validation of mixed-criticality and real-time systems based on
an existing ”Model-Based Electronic System Level HW/SW Co-
Design” methodology. The main contribution of this work is the
integration of the considered framework with Xamber tool in
order to provide systems implementations by exploiting a design
space exploration able to consider Xtratum-based SW partitions.

Index Terms—HW/SW Co-Design, Heterogeneous Parallel Sys-
tems, Design Space Exploration, Mixed-Criticality, Hypervisor

I. INTRODUCTION

In the last thirty years, there has been an exponential
increase in the diffusion and evolution of Embedded Informa-
tion and Communication Technologies (Embedded ICT). As a
consequence, the presence of embedded systems in everyday
life is constant and, often, almost invisible. Embedded systems
have common characteristics like the periodic execution of a
single application (or a very limited set of applications) and
the reactivity to external triggers possibly in Real-Time (RT).

More in general, other than the main Functional Requirements
(FR), it is possible to identify several Non-Functional ones
(NFR) normally relevant in the embedded systems domain
(e.g., cost, size, power/energy, etc.) and well known in ad-
vance.

During system development, the exploitation of proper
HW/SW technologies normally allows to satisfy all the design
requirements. However, it is not simple to identify the ones
to be used, given the great number of heterogeneous available
HW/SW components and the strong interdependence among
the involved tasks. Furthermore, nowadays it is also possible
to implement different functionality on a single chip to reduce
manufacturing cost and design time. Such systems can include
several heterogeneous processors (i.e., by following the clas-
sification provided in [1]: General-Purpose, GPP; Application
Specific, ASP; Single Purpose, SPP), memories, and a set of
interconnection links among them. In this context, the correct
choice of the processor technologies (mainly as GPP/ASP
that execute SW vs SPP that implement specific functionality
directly in HW) plays an essential role in the design activity
and HW/SW Co-Design methodologies with related Electronic
Design Automation (EDA) tools, are of fundamental support
for the designers. Unfortunately, there are no fully engineered
general methodologies defined for this purpose and often the
best option is still to refer to designers experience.

In such a context, an additional challenge is the recent
switch from single-processor/core to (heterogeneous) parallel
HW/SW platforms used to execute embedded applications
with different levels of criticality (i.e., Mixed-Criticality Em-
bedded Systems, MCESs). The main problem in the manage-
ment of a MCES is to ensure that low criticality applications
do not interfere with high criticality ones. This type of systems
can be found in many domains such as aerospace (e.g.,
Integrated Modular Avionic, IMA [2]) and automotive industry
[3]. Critical and non-critical applications can be further divided

by identifying different criticality classes. The goal is always
to allow these applications to interact and coexist on the
same platform, but a proper management of such Mixed
Criticality (MC) systems becomes a very complex task that
poses several challenges also from the implementation point of
view [4]. The basis for integrating various critical applications
are the isolation mechanisms that allow to enforce temporal
and spatial separation [5]. As an example, according to this
approach, embedded applications with different levels of crit-
icality can be allocated on different ”partitions” by exploiting
Hypervisors (HPVs) technologies, which can be verified and
validated in isolation (e.g., PikeOS [6], Xtratum [7]). Another
approach is to allocate them on different HW components.
The identification of the best solution is not always possible
so heuristics methods are needed to support MCESs designers.
At Electronic System Level (ESL) of abstraction, there are
very few works that introduce Mixed-Criticality (MC) issues
directly into a HW/SW co-design flow.

So, according with the scenario described above, this work
extends an existing open-source SystemC-based HW/SW Co-
Design Environment for Heterogeneous Parallel Systems ([8],
[9]) by introducing RT and MC requirements as additional
non-functional constraints. More in detail, the focus is on: the
extension of the Design Space Exploration (DSE) approach
to take into consideration MC constraints; the introduction of
the ”SW partition” concept as provided by HPV technologies;
the integration of Xamber external tool for HPV configuration
and (semi)automatic code generation.

The remainder of the paper is organized as follows: Section
II presents related works that consider mixed-critical require-
ments into the whole design flow. Section III describes the
reference HW/SW co-design framework. Then, Section IV
analyzes experimental results. Finally, Section V closes the
paper with some conclusions and future works.

II. HW/SW CO-DESIGN FOR MIXED-CRITICALITY
APPLICATIONS

A remarkable number of research works have focused on
ESL HW/SW Co-Design of Dedicated Heterogeneous Multi-
Processor Systems (D-HMPS). As presented in [10], the
HW/SW Co-Design has a long history of more than 30 years.
The main problem is related to (automatically) find a solution
(in terms of final platform implementations) able to consider
at the same time different FR/NFR starting from an ESL
of abstraction, in a HW/SW Co-Design context. Since this
work focuses particularly on RT and MC requirements, in the
following, the most similar works in the literature are analyzed
and compared with the proposed one.

In this scenario, AUTOFOCUS3 [11] proposes a model-
based development process introducing safety-oriented con-
straints associated to computing components. The tool assigns
the levels of criticality to application tasks and computing
resources, avoiding the allocation of high-criticality tasks to
low-criticality resources. AUTOFOCUS considers a generic
System ”Logical Architecture”, that is intrinsically non be-
havioural. Moreover, the safety constraints are related to

SIL classification, meanwhile it avoids allocation of higher-
criticality level tasks on different lower-criticality level re-
sources, but they do not consider different criticality level tasks
interference.

CONTREP [12] is a framework supporting UML/MARTE
based modeling, analysis and design of Cyber-Physical Sys-
tems (CPS), also with MC constraints. It is based on the
CONTREX UML/MARTE modeling methodology [13] with
some SysML features integration and considers safety con-
straints into the different design activities. CONTREP allows
to convert MARTE models into ForSyDe-SystemC simulatable
models for a formal functional validation. CONTREP offers
schedulability analysis producing models that can be processed
by the MAST schedulability analysis tool [14]. CONTREP
enables embedded software synthesis for heterogeneous multi-
core platforms using eSSYN features [15]. The CONTREP
framework allows the user to select a specific exploration
tool for DSE (i.e., Multicube Explorer [16]). CONTREP
is then combined with simulation-based tools (i.e., VIPPE
[17]) to perform timing and power analysis. To support MC
constraints, CONTREP applies a minor extension to MARTE
profile, adding a criticality attribute to a NonFunctionalProp-
erties subprofile as an integer to denote an abstract criticality
level. CONTREP offers also MC-aware schedulability analysis
and architectural mapping validation. Note that DSE does not
consider MC requirements, while the CONTREP modeling
methodology offers the possibility to check MC constraints
fulfillment, and CONTREP does not consider HPV technolo-
gies into the design flow.

ForSyDe (Formal System Design) models [23] have been
enabled as a design entry to an analytical DSE tool, called
DeSyDe [19]. DeSyDe is a modular tool which provides a DSE
for bare-metal applications, finding implementations for a set
of tasks on a shared Multi-processor System-on-chip (MPSoC)
starting from synchronous dataflow graphs (SDFGs) and a
predictable model for target platform. DeSyDe also offers
support for MC, in the sense that constraints on performance
and cost metrics can be hard for some applications, and
they will be implemented on specific safety resources, while
other applications are provided with best-effort service on the
remaining resources [24]. In that work, the concept of Mixed-
Criticality System (MCS) is not-well established since it refers
only to the complexity in implementing such MCS on specific
(safety) resources.

The work in [20] [25] presents a design methodology, called
OSSS (Oldenburg System Synthesis Subset), for MPSoC. The
OSSS design entry point is the Application Layer (AL), the
platform model is a Virtual Target Architecture Layer (VTAL),
while a manual mapping between application tasks and system
components allows to simulate system behaviour to check
input requirements. Using FOSSY (Functional Oldenburg Sys-
tem SYnthesiser) tool [26], it is possible to synthesize a
specific target platform in a separate step using AL and VTAL
models. In [27] [28] the authors extend the methodology
introducing MCS constraints, presenting the OSSS-MC sys-
tem methodology. In these works OSSS-MC partitions the

TABLE I
CLASSIFICATION OF DIFFERENT ESL METHODOLOGY APPROACHES (CONSIDERING MC ISSUES).

Specification Specification Implementation Decision Making Refinement

ESL Approach Appl.1 Arch.2 Language MoS3 MoP4 DSE5 Comp.6 Comm.7 Comp.6 Comm.7

AUTOFOCUS3 [11] PN HeMPES Custom Component TAPM • • ◦ • -
CONTREP [18] UML, SDF HeMPES MARTE & SysML & SystemC TLM TAPM • • ◦ • ◦
DeSyDe [19] SDF HeMPSoC XML - - • • ◦ • ◦
OSSS-MC [20] OSSS/MC HeMPSoC SystemC TLM T/ISAPM - • - • -
MultiPARTES [21] UML HoMPES MARTE TLM TAPM • • - • -
This work [22] CSP HeMPES SystemC TLM T/ISAPM • • • • ◦

1 Appl.: Application Model; 2 Arch.: Architecture Model; 3 MoS: Model of Structure; 4 MoP: Model of Performance; 5 DSE: Design Space Exploration;
6 Comp.: Computation; 7 Comm.: Communication; CP: Constraint Programming; PN: Process Network; CSP: communicating sequential processes; UML: Unified Modeling Language; SDF: Synchronous Dataflow;

He/HoMPS: Heterogeneous/Homogeneous Multi-processor Systems; He/HoMPSoC: Heterogeneous/Homogeneous Multi-processor System on chip; He/HoMPES: Heterogeneous/Homogeneous Multi-processor Embedded System;
TLM: Transaction-Level Model; TAPM: Task Accurate Performance Model; ISAPM: Instruction Set Accurate Performance Model; CAPM: Cycle-Accurate Performance Model;

system behaviour into tasks and shared objects, clustered using
criticality levels, defining a criticality-dependant end-to-end
execution time and a criticality-dependant behaviour regarding
system mode of execution respect to criticality levels.

A work that considers HPV and a methodology to identify a
set of HPV-based SW partitions is MultiPARTES [21]. It relies
on Model Driven Engineering (MDE) toolset and offers HPV
partitions identification (i.e., Xtratum software partitions) and
application allocation. However, MultiPARTES considers only
a fixed multi-core architecture, managing HPV partitions only
in a homogeneous multi-processor platform.

Starting from this list of methodologies considering MC
requirements, it is possible to classify them updating the
table described in [29] with some modifications and new
tools. Table I presents a classification of this different ESL
methodologies in terms of application and platform specifica-
tion, DSE support and refinement activities. The specification
column specifies the application models, in terms of Model of
Computation (MoC) and meta-models, and the corresponding
specification languages, and the platform architecture, in terms
of heterogeneous/homogeneous multi-processor ones. From an
implementation point of view, the Model of Structure (MoS)
represents the system architecture and structure. MoS may be
a netlist with a semantics limited to describing component
connectivity or a Transaction Level Model (TLM) that tries to
abstract as-much-as-possible architectural concepts. In order
to estimate performances (in terms of timing, power/energy,
cost/area etc.), a Model of Performance (MoP) is defined as
a model where each individual elements is associated to a
quality numbers respect to specific given implementations.
The granularity is a measurements of the accuracy associated
to each implemented elements in different solutions. It may
be cycle-accurate (using RTL representations), instruction-set-
accurate (using also Instruction-Set Simulators, ISS), or task-
accurate (with estimations at a high level of abstraction).
This quality numbers are used by the DSE step to find
different implementation alternatives. Finally, starting from the
specification, the synthesis is driven by decision making (into
the DSE step) and system refinements (in terms of ESL syn-
thesis activities) with both computational and communication
elements. In the Table I, all the previous classification criteria
are taken into account, where a full circle implies that the ESL

aspect is fully supported, while an open circle means a partial
support (and a partial automation). It is worth noting that
this work fully support all the ESL synthesis criteria presents
in the Table I, while future works will try to complete the
missing features in terms of communication refinements and
also external tools integration, to make advanced comparisons
and to validate the final methodology.

III. REFERENCE HW/SW CO-DESIGN FRAMEWORK

In the context of MCESs, this work exploits an existing
open-source ESL HW/SW co-design framework ([8], [9]),
and extends it by introducing the possibility to consider
also MC and RT requirements (the extended framework is
called HEPSYCODE-MC: HW/SW Co-Design of Heteroge-
neous Parallel Dedicated Systems with Real-Time and Mixed-
Criticality Constraints).

While the general methodology has been described in [30]
[31], this work proposes a specialization of the reference
framework, in the context of MegaM@Rt2 [32] European
Project, in order to define a DSE methodology able to take
into account MCES based on Xtratum HPV [7]. In particular,
the work focuses on agnostic models for partitioned MCES
into multi-core systems and on generation of automatic pro-
jects/code of partitions, using model transformation between
Xamber tool [33] and HEPSYCODE-MC approach (Fig. 1).

Xamber is a graphical configuration tool adapted to assist
the user through completion of the configuration of partitioned
systems, and provides an interface for capturing and editing
the elements that are part of the system. Xamber generates
the configuration file needed by a HPV (i.e., Xtratum) to
execute the system. Meanwhile, XtratuM [7] is a bare metal
HPV supporting paravirtualization for multiple architectures.
XtratuM natively supports SPARC architecture and LEON
processors.

Starting from HEPSYCODE-MC methodology (and related
tools) and Xamber tool, an integration step has been performed
in order to check overlapping functionality and to exploit
HEPSYCODE-MC framework functionality.

The list of activities involves different modeling and design
adaptation in the HEPSYCODE-MC HW/SW Co-Design Flow
in order to introduce HPV technologies in the DSE step, by
considering a System-Level RT MoC based on Communi-
cating Sequential Processes (CSP), modified with some for-

Fig. 1. HEPSYCODE-MC - Xamber Integration.

mal communication constraints with respect to unidirectional
point-to-point blocking channels that allow tasks communica-
tion in a deterministic network model.

Starting from a CSP System Behavioural Model (CSP-
SBM), representing an executable model of the application
behavior, splitting processes into pieces of code that repre-
sent tasks in the RT domain (creating the so called Process
Interaction Model, PIM), it is possible to transform the initial
CSP application model into the final Process to Task Graph
Model (PTM), conform to the most used RT standards, as
presented in [34]. After these assumptions and related transfor-
mation activities, the integration between HEPSYCODE-MC
and Xamber has been realized with a methodology change in
the HEPSYCODE-MC framework, as shown in Fig. 1.

The rest of the paper describes the integration activity in
details.

A. HML Specification

The reference System-Level modelling language in
HEPSYCODE-MC is the Hepsy Modeling Languages (HML),
where the application is described by a process network
connected via synchronous channels. In the HEPSYCODE-
MC environment, the application described via HML is trans-
formed into a System Behaviour Model (SBM). The SBM is
a Communicating Sequential Process (CSP-based) executable
Model of Computation (MoC) of the system behavior that

explicitly defines also a model of communication among pro-
cesses using unidirectional point-to-point blocking channels
for data exchange. An example of HML application is shown
in Fig. 2.

Fig. 2. HEPSYCODE-MC HML example.

The reference language in HEPSYCODE-MC is the Sys-
temC, a C++ class library able to capture and define system
specification. The SBM is implemented by SystemC modules
and threads. Starting from the SBM code and following the
CSP-to-RT adaptation step described in [34], it is possible to
transform the CSP (concurrent process network model, not
suitable for modeling RT scenarios) into a task-graph DAG
model.

B. Metrics Evaluation

After the modeling step, several metrics evaluations and
estimations have been performed and the execution time asso-
ciated to each task has been estimated by means of HEPSIM
[35].

C. Design Space Exploration

The DSE step is able to find a solution, in terms of
HPV-based SW partitions in a heterogeneous multi-processor
parallel scenario. In order to transform HEPSYCODE-MC
input models into Xamber projects, it is needed to fix some
parameters:

1) Only single core scenarios (with LEON3 processor
cores) is permitted (Xamber support only single-core
scenario at the moment);

2) No other basic HW components (in terms of extra
processors connected into a heterogeneous distributed
scenarios) are considered in the DSE step;

3) To consider a safety-critical scenario, a criticality level
is assigned to different processes respect to their func-
tionality;

4) A maximum number of 4 Xtratum SW partitions are
allowed in the DSE.

D. HEPSYCODE-MC - Xamber Project Transformation

The final integration between HEPSYCODE-MC and Xam-
ber has been realized with a methodology change in the
HEPSYCODE-MC framework, as shown in Fig. 1. Using
a transformation between XML schemas, the Partitioning
solution, saved in a XML exchange file, has been translated
into a Xamber compliant project, and schedulability analysis

has been performed in order to find the best Hyperplan for
the initial task set, setting Xamber project parameters (in
terms of tasks, processors, partitions, RT parameters and so
on) from HEPSYCODE-MC Co-Analysis, Co-Estimation and
Partitioning steps.

The application model, the platform model, the partition
model and the mapping among these entities have been
transformed into a Xamber compliant project, using Java
Architecture for XML Binding (JAXB) technology. JAXB is
a software framework that allows Java developers to map Java
classes to XML representations using marshal transformation.

All the Xamber parameters are derived from the Hepsycode
framework (i.e., processes execution time and partitions allo-
cation, End-To-End-Flow representation, IPC channels parti-
tions) . This transformation allows also to use the Contrex
tool that performs schedulability analysis and find the best
hyper-plan for the reference application. After this activity,
Xamber produces the Xtratum Configuration file for SparcV8
architectures (file .xmc) and it is possible to perform 2 different
activities: (1) simulate the solution into the HEPSYCODE-MC
HPV Simulator engine (with hierarchical scheduling feature);
(2) check execution time (to check different HPV behavior
respect to the specific use case) implementing the proposed
input application.

E. HEPSIM Hierarchical Scheduling

In order to to simulate HPV timing behaviors, in the context
of this work, HEPSIM has been extended by implementing
a hierarchical scheduler, i.e., a second-level scheduler (i.e.,
HEPSCHED2, 2 Levels HEPSYCODE-MC SCHEDuler) with
respect to the standard SystemC one. HEPSCHED2 has been
implemented as a SystemC SC MODULE containing a ded-
icated HEPSCHED2 instance for each instance of processor
composing the system. Each HEPSCHED2 instance is imple-
mented as a SC THREAD. The implementation of different
analysis mechanisms and scheduling policies in HEPSIM is
based on the instrumentation of code by means of macros and
their interaction with the HEPSCHED2. Macro S is inserted
as a prefix to the SystemC statements composing the SBM
to support the handshake mechanism for the scheduling of
processes as shown in Listing 1.

Listing 1. HEPSCHED2 Full Handshake: Interactions with macro S

/ * Macro S * /
d e f i n e S (X) \

pSystemManager−>I n c r e a s e (X) ; \
i f (! pSystemManager−>checkSPP (X)) \

w a i t (pSchedul ingManager−>s c h e d u l e [X]) ; \
.
/ * HEPSCHED2 * /
i f (r e a d y [ps . i d]== t rue){

s c h e d u l e [ps . i d] . n o t i f y (SC ZERO TIME) ;
w a i t (r e l e a s e [ps . i d]) ;

}
.
/ * Macro S * /
w a i t (pSystemManager−>upSimTime (X)) ; \

i f (! pSystemManager−>checkSPP (X)) \
pSchedul ingManager−>r e l e a s e [X] . n o t i f y (SC ZERO TIME) ;

e n d i f
.
/ * The h an d l e goes t o HEPSCHED2 * /

When control passes from S to the HEPSCHED2 instance
(i.e., a SC THREAD) associated to the processor that executes
the process and support HPV technologies, a further handshake
between processor and the related partition (a sort of Partition
Manager) has been implemented. This mechanism lasts as
long as the duration of the time slice associated to each
partitions. To avoid partition overrun, HEPSCHED2 controls
if the time needed for the execution of the next ready process
statement exceeds the time bound (i.e., the partition time slice)
associated to the considered partition. HEPSCHED2 is also
able to define a specific Partition Hyperplan, as suggested
by the DSE step. Then, after the handshake among the
HEPSCHED2 and the macro S, the control came back to the
SystemC scheduler.

IV. EXPERIMENTAL RESULTS

This section presents some results regarding the simulation
and the implementation of a specific use case. The reference
use case taken into account is shown in Fig. 3, where the
FirFirGCD application presented in [31] has been changed to
match RT DAG representation.

Fig. 3. CSP-SBM to Process to Task Graph Model (PTM) example transfor-
mation.

In this example, the initial CSP processes are divided into
different tasks, by following to the transformation pattern
defined in [34]. This transformation is driven by the CSP
MoC. In Fig. 3, i1 and i2 are system inputs, o1 is the system
output, while the red number under the name of each process
represents the criticality level that has been associated to pro-
cesses (the value has been assigned depending on the number
of communicating channels and interactions among different
processes in order to verify the proposed methodology). The
resulting processes inherit the criticality levels associated to
the corresponding CSP-SBM processes.

The process communication matrix (the number of bits
exchanged among the different processes) is shown in Table II.

Considering the example model in Fig. 3, some metric
results has been evaluated by means of timing simulation
activities, as described in [35]. During the Load Estimation

TABLE II
PROCESS COMMUNICATION.

Process ID 2 3 4 5 6 7 8 9 10 11 12 13 14
2 0 80 0 1630 0 0 0 0 0 0 0 0 0
3 0 0 80 0 720 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 80 0 0
5 0 190 0 0 0 0 0 0 0 0 0 0 0
6 0 0 640 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 80 0 2990 0 0 0 0
8 0 0 0 0 0 0 0 80 0 1360 0 0 0
9 0 0 0 0 0 0 0 0 0 0 80 0 0
10 0 0 0 0 0 0 190 0 0 0 0 0 0
11 0 0 0 0 0 0 0 1280 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 160 0
13 0 0 0 0 0 0 0 0 0 0 0 0 80
14 0 0 0 0 0 0 0 0 0 0 0 0 0

step, the ”Free Running Time” (FRT, the application execution
time when all the processes are allocated on the same BB
instance) has been estimated for the BB with LEON3 PU,
and the values is equal to 0.0138695 s. The ”Free Running
Loads” (FRLs, the load evaluated for each process when all
the processes are allocated on the same BB instance) and the
average execution time for each process (called Average-Case
Response Time, ACRT) are presented in Table III.

TABLE III
PROCESS FREE RUNNING LOAD AND AVERAGE-CASE RESPONSE TIME.

Process ID FRL ACRT
2 0.032503 263 µ s
3 0.0301813 243 µ s
4 0.0198998 175 µ s
5 0.162515 1085 µ s
6 0.119067 850 µ s
7 0.0298497 263 µ s
8 0.0262014 234 µ s
9 0.0172465 175 µ s

10 0.256044 2050 µ s
11 0.179761 1554 µ s
12 0.030513 293 µ s
13 0.0859007 243 µ s
14 0.0102816 117 µ s

The FRLs have been calculated using the HEPSIM tim-
ing simulator. It is worth noting that such information are
useful in order to find better tasks allocation among HPV
software partitions (also considering tasks workload, concur-
rency, ACRT parameters, and MC requirements). Considering
single core scenarios (because Xamber do not support multi-
core architectures), only communication and criticality level
are used to allocate and bind tasks on different partitions,
then a schedulability analysis allows to refine the allocation
in order to verify the correct behavior of tasks execution,
considering also several system overhead (e.g., HPV context
switch, tasks context switch, IPC). Moreover, HEPSYCODE-
MC DSE produces one solution represented in Table IV.

This solution has been transformed into Xamber compliant
project, as shown in Fig 4. Finally, the hyper-plan generated
by Contrex tool is presented in Listing 2

Listing 2. FirFriGCD Contrex Hyper-plan

TABLE IV
DSE WITH HPV-BASED SW PARTITIONS.

Cost Partition PAM1

Iteration Function 1 2 3 4 Execution Time
0 1.5* 9,11,12,14 3,5,7,8,10,13 2,4,6 - 0.007046 s
22 0.516461 12,13,14 2,3,4,5,6 7,8,10,11 9 0.322346 s
25 0.50823 7,8,9,10,11 3,5,6 2,4 12,13,14 0.534798 s
35 0.502418 7,8,9,10,11 5 12,13,14 2,3,4,6 3.17861 s
36 0.5 2,3,4,5,6 12,13,14 7,8,9,11 10 3.63263 s
100 0.5 2,3,4,5,6 12,13,14 7,8,9,11 10 33.5264 s

* Unfeasible Solution (Minimum Cost function ≥ 1 [31])

<S y s t e m D e s c r i p t i o n xmlns=” h t t p : / /www. x t r a t u m . org / xm−3.x ”
v e r s i o n =” 1 . 0 . 0 ” name=” FirFirGCD ”>
<HwDesc r ip t ion><P r o c e s s o r T a b l e><P r o c e s s o r i d =” 0 ” f r e q =” 75MHz”>
<C y c l i c P l a n T a b l e>
<Plan name=” P lan Auto ” i d =” 0 ” majorFrame=” 16 .116 ms”>
<S l o t i d =” 0 ” s t a r t =” 0ms” d u r a t i o n =” 6 .167 ms” p a r t I d =” 1 ” />
<S l o t i d =” 1 ” s t a r t =” 6 .167 ms” d u r a t i o n =” 0 .543 ms” p a r t I d =” 3 ” />
<S l o t i d =” 2 ” s t a r t =” 6 .710 ms” d u r a t i o n =” 4 .120 ms” p a r t I d =” 4 ” />
<S l o t i d =” 3 ” s t a r t =” 10 .830 ms” d u r a t i o n =” 3 .953 ms” p a r t I d =” 3 ” />
<S l o t i d =” 4 ” s t a r t =” 14 .783 ms” d u r a t i o n =” 1 .333 ms” p a r t I d =” 2 ” />
</ P l an>
</ C y c l i c P l a n T a b l e>
</ P r o c e s s o r></ P r o c e s s o r T a b l e></ HwDesc r ip t ion>

Using this hyper-plan configuration into the HEPSIM simula-
tor, the output in Table V has been produced, where each lap
represents the execution time of one instance of the hyper-plan
(in seconds). It is worth noting that the HEPSIM simulation
follows the hyper-plan defined in the Xamber configuration
tool (for each one of the 10 input triggers) without timing
errors.

For the system implementation, the LEON3 General Pur-
pose processor (GPP) has been considered. LEON3 is a 32-bit
synthesizable soft-processor that is compatible with SPARC
V8 architecture: it has a seven-stage pipeline and Harvard
architecture, uses separate instruction and data caches and
supports multiprocessor configurations in Symmetric Multi-
processor (SMP) mode. It represents a soft-processor for
aerospace applications. The single-core reference implementa-
tion is shown in Fig. 5. The development board is the Xilinx
ML605 Virtex-6 FPGA with 512 MB RAM.

Starting from GRLIB, a VHDL library of IP cores for
designing a complete system on chip centered around the
LEON3 processor, the LEON3 processor has been customized
with a system clock of 75 MHz per core and the following
characteristics:
• 1 Cobham Gaisler LEON3 SPARC V8 Processor con-

nected with AHB shared bus;
• 8 register windows;
• GRFPU High-Performance Floating-Point Unit;
• 2*8 KiB instruction caches, with 32 bytes per line with

Least-Recently-Used (LRU) replacement algorithm;
• 2*4 KiB data caches, with 16 bytes per line with LRU

replacement algorithm.
The final software partitioned system (suggested by the DSE
activity) uses the Xtratum services to implement the FIR-FIR-
GCD use case. All the processes are implemented as a bare-
metal application into the partitions, where communication is
allowed using sampling channels. Fig. 6 presents the compar-
ison between the execution time on the real target (LEON3

Fig. 4. HEPSYCODE-MC - Xamber transformation (Task View).

TABLE V
HEPSIM HPV TIMING SIMULATION.

HPV Hyper-Plan LAPS (s)

Partition 1 2 3 4 5 6 7 8 9 10
1 0.006170 0.022297 0.038433 0.054567 0.070703 0.086835 0.102967 0.119103 0.135239 0.151373
3 0.006715 0.022841 0.038977 0.055113 0.071249 0.087381 0.103513 0.119649 0.135785 0.151919
4 0.010837 0.026966 0.043102 0.059238 0.075374 0.091506 0.107638 0.123774 0.139911 0.156044
3 0.014792 0.030924 0.047059 0.063195 0.079331 0.095463 0.111595 0.127731 0.143867 0.160001
2 0.016125 0.032262 0.048396 0.064532 0.080664 0.096796 0.112932 0.129068 0.145202 0.160336
Display 0.015047 0.031184 0.047354 0.063491 0.079736 0.095898 0.111890 0.128026 0.144232 0.159366
Tot. LAP Time 0.016125 0.032262 0.048396 0.064532 0.080664 0.096796 0.112932 0.129068 0.145202 0.160336

Fig. 5. Single-core LEON3 Hardware reference implementation.

single-core) and the simulation made with HEPSIM. The final
average error estimation is under 2 %, so the simulator is able
to evaluate HPV timing behavior with a very limited error.

V. CONCLUSION AND FUTURE WORK

This work has presented an ESL HW/SW Co-Design ap-
proach able to take into account mixed-criticality and real-

Fig. 6. HPV Simulation (HEPSIM) vs Real Execution (on a Single-core
LEON3).

time constraints. The presented methodology, design flow and
framework are able to drive the designer from the input
specification to the final implementation solution, while of-
fering timing simulation capabilities, DSE activities with the
support of analysis tool, integrating this approach with external
tools (in this scenario Xamber [33], but other tools are under
evaluation). Despite of the obtained results, a lot of works

should be made in future in order to consider the multi-core
scenario [8] while introducing schedulability and real-time
analysis, introduce fixed WCET values (taken from external
tools) to be used also in the DSE step to improve allocation
and binding of processes/tasks, and to improve performance,
integrate other external tools to enhance HEPSYCODE-MC
functionality (i.e., art2kitekt [36], CHESS [37], CODEO [38]),
and improve the hierarchical scheduling implementation con-
sidering Inter Partition Communication (IPC) overheads by
means of benchmarking activities.

ACKNOWLEDGMENT

This work has been partially supported by the ECSEL RIA
2016 MegaM@Rt2, AQUAS and ECSEL RIA 2017 FitOptivis
projects.

REFERENCES

[1] T. G. F. Vahid, Embedded system design: A unified hard-ware/software
approach. Wiley, 1999.

[2] P. J. Prisaznuk, “Integrated modular avionics,” in Proceedings of the
IEEE 1992 National Aerospace and Electronics Conference, NAECON
1992, pp. 39–45 vol.1, May 1992.

[3] R. I. D. A. Burns, “Mixed criticality systems - a review,” in Research
report, University of York, 2015.

[4] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in 2010 16th IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 13–22, April 2010.

[5] R. Pellizzoni, P. Meredith, M. Y. Nam, M. Sun, M. Caccamo, and
L. Sha, “Handling mixed-criticality in soc-based real-time embedded
systems,” in Proceedings of the Seventh ACM International Conference
on Embedded Software, EMSOFT ’09, (New York, NY, USA), pp. 235–
244, ACM, 2009.

[6] PikeOS Hypervisor, 2018 (accessed: 31.03.2019). https://www.sysgo.
com/products/pikeos-hypervisor/.

[7] M. Masmano, I. Ripoll, and A. Crespo, “Xtratum: a hypervisor for safety
critical embedded systems,” in 11th Real Time Linux Workshop, 2012.

[8] L. Pomante, “Hw/sw co-design of dedicated heterogeneous parallel sys-
tems: an extended design space exploration approach,” IET Computers
& Digital Techniques, vol. 7, pp. 246–254, Nov 2013.

[9] L. Pomante, “System-level design space exploration for dedicated
heterogeneous multi-processor systems,” in ASAP 2011 - 22nd IEEE
International Conference on Application-specific Systems, Architectures
and Processors, pp. 79–86, Sept 2011.

[10] J. Teich, “Hardware/software codesign: The past, the present, and
predicting the future,” Proceedings of the IEEE, vol. 100, pp. 1411–
1430, May 2012.

[11] S. Voss, J. Eder, and F. Hölzl, “Design space exploration and its
visualization in autofocus3,” in Software Engineering, 2014.

[12] F. Herrera, P. Peñil, and E. Villar, “A model-based, single-source
approach to design-space exploration and synthesis of mixed-criticality
systems,” in Proceedings of the 18th International Workshop on Software
and Compilers for Embedded Systems, SCOPES ’15, (New York, NY,
USA), pp. 88–91, ACM, 2015.

[13] Contrex project, 2018 (accessed: 31.03.2019). https://contrex.offis.de/
home/.

[14] MAST - Modeling and Analysis Suite for Real-Time Applications, 2018
(accessed: 31.03.2019). https://mast.unican.es/.

[15] eSSYN - Embedded software synthesis, 2018 (accessed: 31.03.2019).
http://essyn.com/.

[16] V. Zaccaria, G. Palermo, F. Castro, C. Silvano, and G. Mariani, “Multic-
ube explorer: An open source framework for design space exploration of
chip multi-processors,” in 23th International Conference on Architecture
of Computing Systems 2010, pp. 1–7, Feb 2010.

[17] VIPPE: Virtual Platform Parallel Performance Evaluation, 2018 (ac-
cessed: 31.03.2019). http://vippe.teisa.unican.es/.

[18] F. Mallet, E. Villar, and F. Herrera, MARTE for CPS and CPSoS, pp. 81–
108. Singapore: Springer Singapore, 2017.

[19] DeSyDe: Design space exploration for System Design, 2018 (accessed:
31.03.2019). https://github.com/forsyde/DeSyDe.

[20] A. Schallenberg, W. Nebel, A. Herrholz, P. A. Hartmann, and F. Op-
penheimer, “Osss+r: A framework for application level modelling and
synthesis of reconfigurable systems,” in 2009 Design, Automation Test
in Europe Conference Exhibition, pp. 970–975, April 2009.

[21] S. Trujillo, A. Crespo, and A. Alonso, “Multipartes: Multicore virtual-
ization for mixed-criticality systems,” in 2013 Euromicro Conference on
Digital System Design, pp. 260–265, Sept 2013.

[22] Hepsycode: A System-Level Methodology for HW/SW Co-Design of Het-
erogeneous Parallel Dedicated Systems, 2018 (accessed: 31.03.2019).
http://www.hepsycode.com.

[23] S.-H. Attarzadeh-Niaki, E. Altinel, M. Koedam, A. Molnos, I. Sander,
and K. Goossens, A Composable and Predictable MPSoC Design Flow
for Multiple Real-Time Applications, pp. 157–174. Springer, 12 2017.

[24] K. Rosvall, N. Khalilzad, G. Ungureanu, and I. Sander, “Throughput
propagation in constraint-based design space exploration for mixed-
criticality systems,” in Proceedings of the 9th Workshop on Rapid
Simulation and Performance Evaluation: Methods and Tools, RAPIDO
’17, (New York, NY, USA), pp. 4:1–4:8, ACM, 2017.

[25] K. Grttner, P. A. Hartmann, P. Reinkemeier, F. Oppenheimer, and
W. Nebel, “Challenges of multi- and many-core architectures for
electronic system-level design,” in 2011 International Conference on
Embedded Computer Systems: Architectures, Modeling and Simulation,
pp. 331–338, July 2011.

[26] FOSSY: Functional Oldenburg System SYnthesiser, 2018 (accessed:
31.03.2019). http://system-synthesis.org/synthesis/home.

[27] P. Ittershagen, K. Gruttner, and W. Nebel, “Mixed-criticality system
modelling with dynamic execution mode switching,” in 2015 Forum
on Specification and Design Languages (FDL), pp. 1–6, Sept 2015.

[28] P. Ittershagen, K. Grüttner, and W. Nebel, “An integration flow for
mixed-critical embedded systems on a flexible time-triggered platform,”
ACM Trans. Des. Autom. Electron. Syst., vol. 23, pp. 51:1–51:25, May
2018.

[29] A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P. Stefanov, D. D. Gajski,
and J. Teich, “Electronic system-level synthesis methodologies,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, pp. 1517–1530, Oct 2009.

[30] V. Muttillo and G. Valente, “Injecting hypervisor-based software par-
titions into design space exploration activities considering mixed-
criticality requirements,” in 6th EUROMICRO/IEEE Workshop on Em-
bedded and Cyber-Physical Systems, ECYPS 2018, IEEE, 2018.

[31] V. Muttillo, G. Valente, and L. Pomante, “Design space exploration for
mixed-criticality embedded systems considering hypervisor-based sw
partitions,” in Euromicro Conference on Digital System Design (DSD
2018), DSD ’18, 2018. Best Poster Award.

[32] W. Afzal, H. Bruneliere, D. D. Ruscio, A. Sadovykh, S. Mazzini,
E. Cariou, D. Truscan, J. Cabot, A. Gmez, J. Gorroogoitia, L. Po-
mante, and P. Smrz, “The megam@rt2 ecsel project: Megamodelling at
runtime scalable model-based framework for continuous development
and runtime validation of complex systems,” Microprocessors and
Microsystems, vol. 61, pp. 86 – 95, 2018.

[33] Xamber, 2018 (accessed: 31.03.2019). http://www.fentiss.com/en/
products/xamber.html.

[34] V. Muttillo, G. Valente, D. Ciambrone, V. Stoico, and L. Pomante,
“Hepsycode-rt: A real-time extension for an esl hw/sw co-design
methodology,” in Proceedings of the Rapido’18 Workshop on Rapid
Simulation and Performance Evaluation: Methods and Tools, RAPIDO
’18, (New York, NY, USA), pp. 6:1–6:6, ACM, 2018.

[35] V. Muttillo, G. Valente, D. Ciambrone, and L. Pomante, “Hepsim: an esl
hw/sw co-simulator/analysis tool for heterogeneous parallel embedded
systems,” in 6th EUROMICRO/IEEE Workshop on Embedded and
Cyber-Physical Systems, ECYPS 2018, IEEE, 2018. Best Paper Award.

[36] H. Isakovic, R. Grosu, D. Ratasich, J. Kadlec, Z. Pohl, S. Kerrison,
K. Georgiou, K. Eder, N. Druml, L. Tadros, F. Christensen, E. Wheatley,
B. Farkas, R. Meyer, and M. Berekovic, “A survey of hardware tech-
nologies for mixed-critical integration explored in the project emc2,” in
Computer Safety, Reliability, and Security (S. Tonetta, E. Schoitsch, and
F. Bitsch, eds.), (Cham), pp. 127–140, Springer International Publishing,
2017.

[37] CHESS: Composition with guarantees for High-integrity Embedded
Software components assembly, 2018 (accessed: 31.03.2019). http:
//www.en.intecs.it/page/chess.

[38] PikeOS Hypervisor Eclipse based CODEO, 2018 (accessed:
31.03.2019). https://www.sysgo.com/products/pikeos-hypervisor/
eclipse-based-codeo/.

