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Abstract—Modern Field-Programmable Gate Arrays offer Dy-
namic Partial Reconfiguration (DPR) capabilities, a characteristic
that opens new scheduling opportunities for real-time applica-
tions running on heterogeneous platforms. To evaluate when it
is really useful to exploit a DPR, in this letter we present the
characterization of its reconfiguration cost in terms of time and a
definition of the ”DPR Profitability” concept targeting real-time
systems. To obtain such results, the components involved in a
DPR process have been identified and an innovative approach
to calculate the DPR time and its worst-case bound is provided.
We validate our approach on a real DPR-compliant platform,
showing that our proposal is general enough to be applied to
modern DPR-compliant platforms.

Index Terms—Dynamic Reconfiguration, FPGA, Real-Time
Systems.

I. INTRODUCTION

M odern Field Programmable Gate Arrays (FPGAs) offer
Dynamic Partial Reconfiguration (DPR) capabilities,

enabling the user to dynamically reconfigure a portion of
the FPGA, while the remainder of the device continues to
operate. This process occurs by moving a reconfiguration
file from a memory to an FPGA reconfiguration area, along
a Reconfiguration Path (RP) composed of buses, memories,
reconfiguration controllers and reconfiguration interfaces. Since
the DPR produces a change in the HW architecture, it can
be used to improve task performances in terms of timing
and/or power. These potentialities make the DPR process highly
desirable in a wide range of systems, such as hard (e.g., [1], [2],
[3], [4]) and soft real-time systems (e.g., [5], [6]). With respect
to a full design-time approach, possible advantages can be,
e.g., to allow schedulability of a given task set also in the case
where the available FPGA resources are not enough to host all
the HW tasks at the same time [2], or to keep schedulability
also in the case of a run-time changing task set by moving
some of the tasks in HW. However, in hard real-time systems,
where it is mandatory to guarantee the worst-case response time
(wcrt) of each process, the usage of DPR rarely appears, due to
the non-negligible reconfiguration time impact [1] [5] and the
lack of a general approach to calculate its worst-case. In fact,
during the last years, the problem of calculating the DPR time
has been addressed in literature by first considering it null or
constant; then, it has been refined introducing a dependency on
the reconfiguration file size and the reconfiguration interface
throughput [2]. However, as highlighted in [1] in 2017, all the
components of the RP need to be considered to guarantee a
worst-case bound of the DPR time (i.e., worst-case DPR time,

wcdprt). In fact, after an in-depth analysis of the literature, we
discovered that only the works in [1], [3] and [4] propose an
approach to calculate the wcdprt considering this dependency.
However, such approaches are based on ad-hoc architectural
elements, making them target-dependent. Conversely, in [5] and
[6] no ad-hoc architectural elements are involved. However, the
proposed measurement-based approaches are not applicable to
hard real-time systems, since their DPR time is an average value
among different tests that do not involve worst-case conditions.
In this letter, we overcome all the limitations described above
by providing a novel approach to calculate the DPR time and
the wcdprt (i.e., suitable for hard real-time systems). It is based
on a deterministic and target-independent static timing analysis
that accounts for all the RP elements, and it is potentially
applicable to all the actual DPR-compliant platforms [7] [8].
Furthermore, based on such approach, we also formalize the
concept of Profitability of the DPR process associated to a
generic task. This formalization has to be considered as a solid
foundation of tools supporting the selection of when to perform
the DPR. It is worth noting that this is beyond the scope of this
paper, that directly focuses on DPR time calculation. The rest
of the paper is organized as follows: in Section II, we present
our approach to calculate the DPR time and the wcdprt; in
Section III, we formalize the DPR Profitability concept for real-
time systems. In Section IV, we apply the proposed approach
to an actual DPR-compliant platform, and, in Section V, we
conclude with a discussion and future works.

II. DPR TIME CHARACTERIZATION

To provide a general approach to calculate the DPR time,
we consider the general reference platform shown in Fig. 1.
The DPR follows a RP (see the solid curve line in Fig. 1): a
processor (PS) transfers a reconfiguration file (bitstream, BS)
from a shared external memory to a local memory; then, PS
transfers the BS from local memory to Dynamic Reconfigu-
ration Memory (DRM) through a Dynamic Reconfiguration
Controller (DRC) and a Dynamic Reconfiguration Interface
(DRI). The DRM content directly acts on the FPGA array.
The DPR time is dependent on the BS size (BSsize) and the
throughput of the transfer along the whole RP (TPRP ):

tDPR =
BSsize

TPRP
(1)

With the purpose of obtaining an expression of tDPR, we have
modeled the BS transfer along the RP as a transfer along a

Authorized licensed use limited to: University of L'Aquila. Downloaded on June 25,2020 at 20:42:52 UTC from IEEE Xplore.  Restrictions apply. 



1943-0663 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LES.2020.3004302, IEEE Embedded
Systems Letters

2

Fig. 1. A general reference platform for DPR, defined by analyzing Xilinx
and Intel products [7] [8] and some works from literature [2] [5].

chain of N elementary paths (EPs, see Fig. 2a), where the
BS can be transferred in chunks of different sizes (sizechunk ).
In general, an i-th elementary path (EPi), shown in Fig. 2b,
is defined as a master (e.g., processor, DMA) that transfers
data between two memories (e.g., RAM, queue) through an
interconnection (e.g., bus). For instance, with reference to
Fig. 1, an EP is from the shared external memory to the local
memory. In our approach, we assume that, by using datasheets,
it is possible to clearly identify: (i) the EPs that compose a RP,
and (ii) the master, the two memories and the interconnection
of each EP. Considering typical DPR-compliant platforms (e.g.,
[9] [8]), this is not a strong assumption, since their datasheets
report information at this level of detail.

Fig. 2. Reconfiguration path as a chain of N EPs. a) shows the chunks
propagation in elementary paths. b) shows the EP model.

With the proposed modeling, tDPR can be expressed as:

tDPR = fM (BSsize, TPi,j , RPMi,j
)

i = 1, ..., N j = 1, ..., Fi (2)

where N is the number of EPs that compose the RP and Fi

is the number of chunks to be transferred within the i-th EP
(EPi). In Eq. (2), tDPR is a function (fM ) of: (i) the BSsize,
(ii) the TPi,j , that represents, ∀ EPi, the throughput associated
to the transfer of each chunki,j (of size sizechunki,j ) within
EPi, and (iii) RPMi,j

, that represents the RP policy adopted to
manage the transfer of chunks among adjacent EPs. Then, we
make the following hypothesis: (hp1) concurrent transfers (i.e.,
pipelined) among EPs are not allowed (this represents a worst-
case); (hp2) sizechunki,j is constant within each EP (the worst-
case is given by assuming the chunk as the smallest possible).
Consequently, considering hp1, the fM can be written as a sum,

while considering hp2 we have that Fi = BSsize/sizechunki
,

valid ∀ EPi. Eq. (2) becomes:

tDPR =
N∑
i=1

[ Fi∑
j=1

(
sizechunki,j

TPi,j

)]
=

N∑
i=1

[(
BSsize

sizechunki

· sizechunki

TPi

)]
=

N∑
i=1

BSsize

sizechunki

· tMi

(3)

where TPi has been expressed as TPi = sizechunki/tMi , with
tMi

being the time required to transfer the chunki along the
EPi. Considering the EP model, tMi

depends on:

tMi = ft(tMEMi , tMEMi+1 , tINTi , tMSTi) i = 1, ..., N (4)

In turn, tMEMi
, tINTi

and tMSTi
depend, ∀ EPi, on:

tMEMi = fMEMi(t
a
MEMi

, tsMEMi
) (5)

tINTi
= fINTi

(ttINTi
, tsINTi

) (6)
tMSTi

= fMSTi
(teMSTi

, tsMSTi
) (7)

where, in Eq. (5), taMEMi
is the time to perform an exclusive

access to MEMi and tsMEMi
is the waiting time caused by

MEMi sharing. In particular:

taMEMi
= fa

MEMi
(freqin, freqout, sizein, sizeout,

sizetot, latency) (8)
tsMEMi

= fs
MEMi

(shpolicy) (9)

where, ∀ MEMi, starting from the datasheet of the selected
DPR-compliant platform, it is possible to identify the values
of taMEMi

and tsMEMi
: freqin and freqout are the input and

output frequencies of MEMi, sizein and sizeout are the input
and output ports sizes, sizetot is the total memory capacity,
shpolicy is a factor to be kept into account for memory sharing,
and, finally, latency is the time to access to a generic data
stored in memory; latency, expressed in number of clock
cycles, is considered constant for the access to every memory
address, except the time to wait for the memory sharing. In
Eq. (6), ttINTi

is the time to perform an exclusive access to
INTi and tsINTi

is the waiting time caused by INTi sharing.
Since INTi could model more than one HW interconnection
(e.g., a cascade of buses, with different data sizes [9]), within
each EP we refer to the interconnection with the lowest
bandwidth. In particular:

ttINTi
= f t

INTi
(freq, datasize, beatsize,lat,num,WT ) (10)

tsINTi
= fs

INTi
(shpolicy) (11)

where, ∀ INTi, freq is the working frequency, datasize is the
size of the bus data, shpolicy is a factor to be taken into account
for interconnection sharing. Moreover, beatsize,lat,num,WT are
four parameters related to the bus transfer policy. Without loss
of generality, we consider a policy based on bursts, in which
each burst is composed of beatnum number of beats, and each
beat has a size, namely the beatsize. Each beat requires some
time to be transmitted, indicated as beatlat, expressed in clock
cycles, and there can be a waiting time, beatWT , between
different beats. tsINTi

is calculated starting from datasheets,
while ttINTi

can be further expanded as follows:
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ttINTi
=

G∑
k=0

burstctbk =

G∑
k=0

[(
beatlatk + beatWTk

)
· beatnumk

]
· 1

freq
(12)

where G are the total bursts required to transfer a chunki
and burstctbk is the contribution of the k − th burst to ttINTi

.
In Eq. (7), teMSTi

is the time to execute commands by the
MSTi and tsMSTi

is a waiting time caused by MSTi sharing.
In particular:

teMSTi
= fe

MSTi
(numcmd,mastertime) (13)

tsMSTi
= fs

MSTi
(shpolicy) (14)

where, ∀ MSTi, numcmd is the number of commands to be
executed to manage the transfer, mastertime is the time to
execute a command, and shpolicy is a factor to be taken into
account for master sharing. tsMSTi

and teMSTi
are calculated

starting from datasheets. The function ft in Eq. (4) can be
written, without loss of generality, as follows:

tMi = G · (tMEMi + tMEMi+1 + tMSTi) + tINTi (15)

where we consider that the memory accesses and the master
time are spent per-burst. Expanding tINTi

and bringing the
contribution of MEM and MST in the sum in Eq. (15), we get:

tMi =

G∑
k=0

(
taMEMi,k

+ tsMEMi,k
+ taMEMi+1,k

+ tsMEMi+1,k
+

burstctbk + tsINTi.k
+ tsMSTi,k

+ teMSTi,k
) (16)

In conclusion, using Eq. (16) in Eq. (3), we can write the
expression of tDPR, that can be used also to get the wcdprt.

III. DPR PROFITABILITY FORMALIZATION

To exploit the proposed DPR time characterization for the
evaluation of the profitability in accelerating a task execution
(DPR Profitability), we propose the following definition:

Definition 1. The DPR Profitability P is a Boolean variable
to evaluate whether doing a DPR to accelerate a task is useful
or not. P can take the following values :

P =

{
1 if tATK + tDPR ≤ DTK

0 otherwise.
(17)

where DTK is the deadline of the task, tATK is the execution
time of the accelerated task and tDPR is the time to perform
the DPR.

DTK and tATK are given at design time, while tDPR is
calculated by means of Eq. (3). In the case of hard real-time
systems, tATK is replaced by its wcrt, and tDPR by its wcdprt.

IV. EXPERIMENTAL ACTIVITIES

In order to validate the proposed approach on a real DPR-
compliant platform, we apply it on the Xilinx Zynq7000 PCAP-
associated RP [9]. The considered case study is a task executed
on a single-core ARM Cortex A9 on a Zedboard [10]. The task
can be accelerated using an IP-core for matrix multiplication,

introduced with the DPR through the Processor Configuration
Access Port (PCAP) [9] [11]. The BS related to the accelerator
is stored within the external DRAM [10] and its size is
BSsize = 857740 bytes. For this validation, we refer to
the tDPR calculated by means of Eq.(3) as tCAL

DPR. Using the
Xilinx datasheet [9], we first modelled the PCAP-associated
RP of Zynq-7000, which results to be composed of three
elementary paths. Fig. 3 shows the RP in a) and its model in
b). Then, from Eq. (3):

tCAL
DPR =

3∑
i=1

BSsize

TPi
=

3∑
i=1

(
BSsize

chunki
· tMi

)
(18)

In the considered application, MEM1 (i.e., the external
DRAM) is not shared: this causes a negligible contribution
of EP1 (≈ ns), while DPR times are in the order of ms [2].
Moreover, for the EP3 the datasheet directly provides the
transfer bandwidth TP3, that is equal to the PCAP bandwidth
BWPCAP [9]. Then:

tCAL
DPR ≈

(
BSsize

chunk2
· tM2

+
BSsize

BWPCAP

)
(19)

In the EP2, ∀k, since the memory access contributions
are negligible (≈ ns, since they are on-chip memories and
not shared [9]), we assume taMEM2,k

= 0, tsMEM2,k
= 0,

taMEM3,k
= 0 and tsMEM3,k

= 0. INT2 refers to the
interconnection with the lowest bandwidth within EP2 that, in
the case of Fig. 3, is the SI interconnect (INT2 hereinafter). In
the proposed application, INT2 is not shared (tsINT2,k

= 0 ∀k).
We know from documentation [9] that INT2 is based on
NIC301 ARM interconnect [12]. With reference to the bus
model (AMBA [13]), which is not shared, we assume that
INT2, ∀k, has a constant beatnumk

(hp3), a constant beatsizek
(hp4) and a beatWTk

= 0 (hp5). Moreover, for INT2 we have
beatlatk = 1 clock cycle. hp3, hp4 and hp5 represent the
worst-case in the considered application, since we have paths
composed of one master and one slave, with a one clock cycle
arbitration and a full pipelining among transfers, providing a
continuous beats transmission [12] [13]. Finally, the master of
the EP2, represented by a DMA, has numcmd = 1, for which
the mastertime is negligible (≈ ns, since it is a dedicated finite
state-machine [9])). Moreover, it is not shared, so teMST2,k

= 0
and tsMST2,k

= 0 ∀k. For the EP2 we then have:

tM2 =

G∑
k=0

burstctbk ≈

(
chunk2

beatnum2
·beatsize2

)∑
k=0

burstctbk ≈(
chunk2

beatnum2
· beatsize2

· beatnum2
· 1

freq2

)
(20)

The final expression of tCAL
DPR becomes:

tCAL
DPR ≈ BSsize

(
1

freq2 · beatsize2
+

1

BWPCAP

)
(21)

By means of Eq. (21), it is now possible to evaluate the
DPR time and the wcdprt for the considered BS. This is
done by considering all the possible values for the unknown
beatsize2 parameter (the datasheet does not provide enough
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Fig. 3. Model of the PCAP-associated RP of Zynq7000. a) shows the RP,
where a Processor System (PS) commands the start of DPR: a Direct Memory
Access (DMA) transfers the BS from a DDR3 DRAM external memory (where
the BS is initially stored) to a TX FIFO queue, through two AMBA [13] buses
(Central Interconnect (CI) and Slave Interconnect for Master (SI)). Due to
different clock domains between the involved HW elements, an ASYNC queue
is present, connected with a custom bus LinkA with the DDR3 controller. From
TX FIFO, a PCAP starts transferring BS from TX FIFO to DRM, through a
custom bus LinkB. When the transfer is complete, an interrupt is signaled to
PS. b) shows the model using three EPs: below each component, there is
the correspondent indication of the modeled HW element.

details and it is normally not observable, since it is a hardwired
implementation). Since the bus related to EP2 has a width of 32
bit, beatsize2 can be only of 1, 2, 3 or 4 bytes [13]. So, recalling
the the BSsize = 857740 bytes for the considered application,
tCAL
DPR can be 8.6 ms, 5.4 ms, 4.3 ms or 3.7 ms, where 8.6 ms

represents the wcdprt. This is fully reasonable since, with a
beatsize2 equal to 1, we are exploiting the available bus in the
worst possible way. By introducing a custom HW monitoring
system [14], we measured the real value of the DPR time for
the same BS, indicated as tACT

DPR, that results in 6.6 ms. Such
a value, as expected, belongs to the interval [3.7, 8.6] ms.

TABLE I
RESULTS FOR BSsize = 857740 BYTES, WHERE

acc = |tCAL
DPR − tACT

DPR|/t
ACT
DPR

beatsize2 (bytes) 1 (worst case) 2 3 4
tCAL
DPR − tACT

DPR(ms) 2 -1.2 -2.3 -2.9
acc% 30.3 18.1 34.8 43.9

V. DISCUSSION AND FUTURE WORKS

In this letter, we have dealt with the exploitation of the DPR
process in the real-time systems domain. With respect to the
literature, three main innovative results have been obtained:
(i) the definition of a general approach to calculate the DPR
time and the wcdprt in all DPR-compliant platforms, (ii) the
formalization of the DPR Profitability, and (iii) the calculation
of the DPR time and the wcdprt associated to the PCAP RP of
Zynq7000 SoC [10]. In particular, we have discovered that the
DPR time and the wcdprt for that RP are mainly dependent
on the AHB-lite internal bus. Table 1 reports the calculated
results and their accuracy, using the four possible values of the
beatsize2 parameter [13], and it highlights a wcdprt accuracy of
30.3%. Differently from other works in literature (i.e, [1], [3],
[4]), our approach is target-independent and, to the best of our
knowledge, our wcdprt represents the first worst-case bound
(i.e., suitable for hard real-time systems) related to Zynq7000

PCAP RP. At the same time, the other values in the table, that
present an accuracy comparable with other works in literature
[5], can be used for more speculative scheduling approaches in
soft real-time systems. As a final result, the achieved DPR time
and wcdprt are exploited to evaluate the DPR Profitability. As
future works, the accuracy of our calculation will be enhanced
by overcoming the lack of observability inside Zynq7000 [10]
with the insertion of custom monitoring systems. Moreover, we
will continue validating the proposed tDPR calculation with
other platforms and applications, together with the exploitation
of the proposed DPR Profitability concept to improve existing
tools for schedulability analysis of real-time systems (e.g., [2]).
With respect to applications, we will improve their complexity
by considering scenarios with multiple shared resources.
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