
Model-Based HW/SW Co-Design Methodology for
UAV Systems Development

Vittoriano Muttillo, Vincenzo Stoico
Center of Excellence DEWS

University of L’Aquila
L’Aquila, Italy

vittoriano.muttillo@univaq.it, vincenzo.stoico@graduate.univaq.it

Abstract—Nowadays, Cyber-Physical Systems development be-
came the most critical activity for industries, especially in un-
manned aircraft systems (UAS), while its main significant com-
ponent is the unmanned aerial vehicle (UAV). The design of such
kind of aircraft requires the use of well-established methodologies
and tools. In this context, this paper presents the usage of a model-
based HW/SW co-design methodology to develop UAVs in an
European project scenario. The UAV hardware platform is made
of heterogeneous multicore execution nodes, which makes the
design exploration space rather complex to explore. The reference
approach is illustrated, while an unmanned aircraft system, taken
from AQUAS European project, is used to show the usefulness of
the proposed method. Obtained results justify more effort in such
a direction as currently done in the proposed methodology has
lots of room for improvements, and it is currently used in several
ongoing European projects.

Index Terms—embedded system design, HW/SW Co-Design,
UAV, design space exploration, timing performance

I. INTRODUCTION

Nowadays, there has been an exponential increase in the
exploitation of Cyber-Physical Systems (CPS) in everyday life
[1], [2]. Their development became the most critical activity
for industries, especially in unmanned aircraft systems (UAS),
used in several domains (e.g., precision agriculture, parcel
delivery). The main component here is the unmanned aerial
vehicles (UAV) [3]. UAVs are expressly efficient to perform
a wide variety of tasks (e.g., autonomous control, surveillance,
navigation, image processing), and their development is strictly
related to the design of complex embedded systems. In this
way, it is possible to have a modular heterogeneous system
capable of processing several workload types [4]. Heterogeneity
involves both Hardware (HW) and Software (SW) and focuses
on integrating off-the-shelf components. This approach is an
excellent solution to optimize different design metrics. For
example, the designer may choose a component configuration
to reach an optimal trade-off between size, performance, and
costs. However, the continuous demand for high-performance
systems led system designers in the adoption of heterogeneous
components often on the same integrated circuit (i.e., System
on Chip [5], [6]). This technology seems to be the best
solution to reach a positive trade-off in terms of design metrics.
Systems based on heterogeneous multi-processor architectures
(Heterogeneous Multi-Processor Systems, HMPS) have been
recently exploited for a wide range of application domains
(e.g., avionics [7], aerospace [8]). Due to their complexity, the
adopted design methodology plays a crucial role in settling the

product’s quality. However, selecting a suitable implementation
is problematic due to the significant number of heterogeneous
HW/SW components available on the market.

A model-based approach can be helpful to cope with these
challenges. A model is an abstraction of the system, high-
lighting its essential characteristics. Modeling is a widespread
technique, as witnessed by the incredible amount of work in this
field. Many works converge in using an abstract representation
of the system that is gradually refined in the subsequent
steps. Furthermore, models may be built following formal
semantics that allows the verification of system functional
and non-functional correctness. However, very few HW/SW
co-design flows exploit models to support designers during
HW/SW partitioning and mapping the system specification into
a candidate heterogeneous multi-processor architecture.

In such a context, this work presents the use of an existing
HW/SW co-design methodology, called HEPSYCODE [9], to
develop UAV platforms inside an industrial UAS real scenario,
provided within the AQUAS European project [10]. Several
different embedded computing boards have been evaluated,
while application models, performance metrics, and Design
Space Exploration (DSE) lead the designers to suitable (in
terms of safety-oriented partitioning) and powerful (in terms
of timing) solutions for the considered scenarios. Results have
been reported in AQUAS deliverables, and future enhancement
will be exploited in the ongoing COMP4DRONES European
Project [11]. Synchronous (rendezvous based) process network
Model of Computation (MoC) has been considered as a starting
point for the subsequent System-Level HW/SW Co-Design
Flow. Simultaneously, heuristic (evolutionary-based) algorithms
and SystemC simulations contributed to a correct model-aware
hardware boards comparison, introducing timing estimation
techniques for first preliminary analysis and platform selection.

II. RELATED WORKS

The adoption of modeling languages and tools for CPSs
design has experienced significant growth during the last years.
This tendency has led to several studies exploiting model-based
design for CPSs [12]. This section describes existing design ap-
proaches comparable to the proposed one (i.e, HEPSYCODE):
Ptolemy II, Metro II, Metronomy, and ForSyDe.

Ptolemy II [13] is a framework for codesign of CPSs de-
veloped in the Industrial Cyber-Physical Systems Center (iCy-
Phy) at the University of California, Berkeley. The framework



follows an actor-based design approach [14] in which actors
represent system components. Actors interaction is specified
using a model of computation (MoC). Unlike HEPSYCODE, a
model contains diverse MoCs identified by Ptolemy directors.
A director manages a region of the model called domain.
Directors may describe system behavior at different levels of
abstraction and combined to form a hierarchy. The hierarchical
model serves for the co-simulation of multiple MoCs at the
same time. For example, the communication between a domain
following a synchronous dataflow (SDF) director and a second
one governed by a continuous-time (CT) might be managed
by a third director implementing a discrete event (DF) director
[15]. Furthermore, DSE activities are limited to a fixed number
of selected platform models [16].

Metro II [17] obeys the same principle as Ptolemy sup-
porting several MoCs in a single model. A Metro II model
comprises three views of the system: Function, Mapping, and
Architecture. An architecture represents system services and
their costs. Instead, system functionalities are described as a set
of concurrent executing sequential processes. Their interaction
is performed through an object called media. Communication
is encapsulated in a media instance, and it is detached from
processes specification. HEPSYCODE provides a similar sep-
aration of concerns employing ports as interfaces for processes
that communicate throughout channels. Mapping serves to map
the function model to the architectural one. Finally, both Metro
II and HEPSYCODE offer functional verification translating the
system model into a SystemC model.

Ptolemy and Metro II benefits are exploited in the Metron-
omy project [18]. Metronomy uses a CoSimDirector to co-
simulate the functional model of Ptolemy with the architec-
tural model of Metro II. A timing contract provides a set of
assumptions concerning the timing model of the functional
and architectural model. Metronomy performs an evolution-
ary Design Space Exploration (DSE) to output a suitable
system implementation. Indeed, the DSE in Metronomy is
executed as a multiobjective optimization problem guided by
timing checkers. This approach is similar to the one employed
by HEPSYCODE. Indeed, HEPSYCODE adopts Timing Co-
Simulation to verify the suitability of a solution proposed by
the genetic algorithm that drives the DSE. At the end of this
process, HEPSYCODE is able to suggest a candidate HW/SW
implementation of the system specification. This seems to be a
novelty for the HW/SW Co-Design domain.

Finally, ForSyDe [19] differs from the above-described
methodologies since it uses functional programming for system
specification. A system is described as a set of processes
executing concurrently. The processes communicate by reading
and writing information carried by signals. ForSyDe shares
the same features as Ptolemy II and Metro II allowing the
specification of multiple MoCs in a single model. The initial
model is refined through several steps to obtain a lower-
level model synthesizable to an VHDL implementation on
FPGA hardware platforms. The transformation includes rules to
preserve the functional behavior and non-functional properties
of the system. The remainder of this work will present the use
of HEPSYCODE methodology in the AQUAS European project

scenario. In contrast, future work will analyze and compare
several other approaches with further comparative analysis.

III. HEPSYCODE APPROACH

In the context of Mixed-Criticality Embedded Systems
(MCESs) [20], HEPSYCODE adopts a specific Electronic Sys-
tem Level (ESL) HW/SW co-design flow to manage in a right
manner Mixed-Criticality (MC), and Real-Time (RT) require-
ments [21]. During the proposed work, HEPSYCODE has been
integrated with another external tool, called CHESS [22], by
re-using results from ECSEL RIA 2016 737494 MegaM@Rt2
European Project [23]. The main work focuses on the interoper-
ability between the tools exploiting an automatic transformation
pattern between CHESS and HEPSYCODE meta-models using
the CERBERO Interoperability Framework (CIF) [24]. This
work has been proposed as an initial collaboration pattern
among several European project partners to define a uniform
interoperability and transformation pattern for several MDE
methodologies and tools based on custom meta-models and
standard ones (e.g., UML/MARTE).

After the transformation between CHESS (UML/MARTE
contract-based) and HEPSYCODE models, the central part
of the HEPSYCODE methodology is related to the System
Description, the Metrics Evaluation and Estimation, and the
Design Space Exploration (DSE) activities that drive designers
to find an implementation that fulfills input requirements. The
presented combined analysis considers the UAV system parti-
tioning alternatives in processes allocation, binding, and map-
ping the proposed virtualized environment in this context. The
final step is the partition allocation on the different considered
cores present in the final board, as shown in Fig. 1(a). The UAV
software platform has been modeled inside the HEPSYCODE
environment as a series of blocks and modules composing the
whole system. Two different design space explorations will find
the best allocation among the different HW system components.
Several assumptions have to be considered: the UAV can be
viewed as a classical mixed-critical embedded platform with
constraints on tasks (or processes) allocation. The application
with a higher criticality level will not be affected by tasks with
a lower criticality.

The first step of the co-design flow is the Functional Simu-
lation where the System Behaviour Mode (SBM) is simulated
to check its correctness w.r.t. some test-benches. Test-benches
are of critical importance since they have to be as much
as possible representative of the possible system’s operating
conditions. Such a simulation allows timed inputs to be taken
into account (i.e., there is a concept of simulated time), but it
does not consider the time needed to execute the statements
composing the processes; in other words, statements (both
computation and communication) are executed in 0 simulated
time. HEPSYCODE offers an environment and a set of tools
that can also extract information about system behaviour at
different abstraction levels. This step aims at extracting as
much information as possible about the system by analysing
the SBM (i.e., the Application Model) while considering the
available HW architectural components (Platform Model) and
the use of hypervisors (i.e., Partition Model). Firstly, the tool



(a) Proposed Design Space Exploration (b) AQUAS Reference UAV Architecture

Fig. 1. HEPSYCODE Reference HW/SW Co-Design Approach.

inspects the potential concurrency. Concurrency is expressed by
the set of processes and channels pairs that could be potentially
working concurrently and could potentially transfer data con-
currently. Concurrency is evaluated by means of the functional
simulation. Their evaluation relies on using the HEPSYCODE
Simulator (HEPSIM) software, where concurrency has been
calculated counting all active processes and channel pairs every
time communication occurs. DSE activity uses these values to
find better allocations and solutions.

The next activity performed is ”Load” metric estimation. The
”Load” is the processor utilization percentage that each process
would impose on each processor to satisfy imposed timing con-
straints. The ”Load” is estimated by simulating a system where
all the processes are allocated onto a single instance of each
processor core while considering the need to satisfy imposed
timing constraints. If the load is under a pre-fixed upper bound
[25], the load upper bound is on the order of ' 70%) for
a given processor-process pair, this implies that the processor
potentially could satisfy such constraints. Simulations exploit
previous timing estimations where statements are executed in
an estimated time.

After metrics evaluation, the co-design flow reaches the
Design Space exploration step. Starting mainly from the Appli-
cation Model, Partition Model, and Platform Model, it includes
two iterative activities: (1) ”Search Methods”, that perform
HW/SW partitioning, architecture definition and mapping using
an evolutionary algorithm where the design space is explored
looking for feasible architecture/mapping items suitable to
satisfy imposed constraints; (2) ”Timing Co-Simulation”, that
considers suggested mapping/architecture items to actually
check for timing constraints satisfaction.

The ”Search Methods” is split into two main phases: Par-
titioning, Architecture Definition, and Mapping Phase 1 and
2 (PAM1 and PAM2). PAM1 provides the partial HW/SW

architecture (with the number and type of needed processors),
the partitioning between HW and SW components, and the
mapping between processes and basic hardware components.
PAM2 provides the final HW/SW architecture ready to be
implemented. PAM2 also finds the number of needed intercon-
nection links (physical links) with a specific topology graph.

Finally, after the search method activity, the ”Timing Co-
Simulation” helps to check input constraints and to evaluate
and compare different solutions applying Pareto analysis, using
the HEPSIM (HEPSYCODE SIMulator [26]). The next section
presents the experimental results related to a real UAV scenario.

IV. EXPERIMENTAL RESULTS

The reference use case has been taken from the Aggre-
gated Quality Assurance for Systems (AQUAS [27]) European
project, i.e., Use Case 1 - Air Traffic Management (ATM) [28].
The main idea was to take as input CHESS (UML/MARTE)
ATM models and adapt them to HEPSYCODE modelling
approach, using CIF framework [23]. Fig. 1(b) shows the
reference AQUAS UAV target architecture, that uses a single
multi-core embedded computing board to safely run both flight
control, surveillance, and navigation tasks. The initial idea was
to consider only two partitions, one flight control partition
for safety critical tasks (i.e., the UAV autopilot, which is
responsible, among other tasks, for controlling motors to adjust
UAV position, heading and speed, keep drone stability, etc.),
and one payload partition for non-safety critical tasks (i.e.,
the navigation and surveillance modules). The ATM UAV
model and the HEPSYCODE workspace are shown in Fig. 2.
The autopilot process is the safety critical task designated
for single partition allocation. The autopilot task periodically
receives the sensors’ data and the orders from the control
station. Based on them, it generates the output signals for
actuation. An essential element is the model of the physical



Fig. 2. HEPSYCODE workspace and ATM modelling Activity

environment in which the UAV operates. This model has to
simulate the aerodynamics of the UAV. Either autopilot code,
ground station control data, and environment test bench have
been provided to us by AQUAS ATM use case owners. The
other tasks are not mission critical, so they can share resources
and compete to access CPU and memory locations. The main
reference model is a synchronous process network Model of
Computation (MoC) represented by threads inside SystemC
modules, where tasks and processes have the same meaning
in HEPSYCODE workflow. Starting from Fig. 2, the system
model is translated into a SystemC executable functional model
by means of Model Driven Engineering (MDE) techniques.
As said before, for each UAV process/task, also defined at
CHESS process level, a single-source SystemC code has been
generated. The main tasks’ behaviour have been extracted
from source code offered by Integrasys [29] during the design
and verification activities. It is worth noting that not all the
functionalities have been implemented by Integrasys since the
goal of the use case was the design methodology and not the
final system realization (i.e., reduced task functionalities). The
design methodology considers combined analysis to analyse
the impact of performance, safety, and security into a co-
engineering evaluation approach, integrated within the AQUAS
Product Life-Cycle Co-Engineering method [27]..

After Model-to-Model transformation (using MDE Eclipse
tools, i.e., Sirius [30], and Xtext [31]), the SystemC model
has been generated, where the correct computation can be
checked. The designer can refine the code at system-level while
focusing on other possible metrics that can better drive the
designer choice during the whole Product Life-Cycle develop-
ment flow. The next activity involved the metrics evaluation and
estimation using SystemC simulation, based on the considered
synchronous process network model. Processes and channels
concurrency values have been calculated, starting from AQUAS

TABLE I
WORKLOAD ESTIMATION (USED FOR DSE STEPS) WITHOUT OPERATING

SYSTEM OVERHEAD (SINGLE-CORE LEON3 ON VIRTEX-7)

Process Sim. ET Load Metric

LTE 71.1068 ms 11.4566%

NAV 290.361 ms 46.7823%

Rtlsdr 91.0938 ms 14.6768%

ADS B 112.907 ms 18.1914%

Autopilot 55.1954 ms 8.8929%

Tot. 620.664 ms 100%

ATM use case. In this work, we do not consider communication
or links among system components since the primary purpose
is system enhancement in performance and safety constraints.
The next metric considered is the ”Load” one while the board’s
description and model have been added into the workspace,
described by XML schemas and files.

Several selected hardware architectures have been considered
as possible alternatives for the ATM use case. We chose to
reduce the number of possible boards to 4: (1) Intel AERO,
that mounts an Intel ATOM x7-Z8750 64 bit processor with 4
cores/4 threads, 2.56GHz burst, 2M Cache, 4 GB RAM, and an
Altera MAX 10 FPGA; (2) The Raspberry Pi 3, that mounts
a quad Core 1.2GHz ARM Cortex-A53, and 1GB RAM; (3)
The ZedBoard, that mounts a Zynq-7000 AP SoC XC7Z020-
1CLG484 with a dual-core ARM Cortex-A9 MPCore with
CoreSight at 866 MHz, L1 Cache 32 KB Instruction, L1
Cache 32 KB data per processor, L2 Cache 512 KB, On-Chip
Memory 256 KB, 512 Mbyte DDR3, and an Artix-7 FPGA;
(4) Virtex-7 FPGA mounted on the VC707 board. The VC707
board provides features common to many embedded processing
systems, including a LVDS 200 MHz oscillator (U51) and



Fig. 3. Design Space Exploration Alternatives w.r.t. total (average) execution time and cost (i.e., monetary and design cost).

TABLE II
HEPSIM TIMING SIMULATION (MULTI-CORE LEON3 ON VIRTEX-7)

Process Sim. ET ATM Sim. ET PAM1

LTE 64.4138 ms 64.4138 ms

NAV 289.409 ms 291.633 ms

Rtlsdr 185.78 ms 78.2138 ms

ADS B 123.974 ms 133.497 ms

Autopilot 55.2507 ms 55.2507 ms

Tot. 718.8275 ms 623.03588 ms

DDR3 SODIMM memory.
We have also decided to synthesize inside the FPGAs even

a 2-core multi-processor system with the LEON3 [32], a 32-
bit RISC soft-microprocessor with seven-stage pipeline, and a
75 MHz system clock. It is possible to implement tasks on
FPGAs in software (running on LEON3 processors) and/or
hardware (e.g., tasks described in VHDL code) in this way
(e.g., tasks on ZedBoard can be executed in SW on ARM
and LEON3 cores, or HW on FPGA [33]). Table I presents
the Simulated HEPSIM Execution Time (Sim. ET) and the
load metric evaluation for the ATM UAV application running
on LEON3 single-core synthesized on Virtex-7 FPGA. The
following DSE approach uses all these metrics.

The reference ATM UAV allocation, chosen by the AQUAS
partners as a reference allocation and binding solution, as
shown in Fig. 1(b), considers the allocation of the autopilot
on a single-core partition while allocating the remainder on
another hypervisor partition on the same core. From a DSE
point of view, this solution may not be the best feasible one;
the idea was to compare alternatives and motivate the choice of

this partitioning plan for the AQUAS use case, maybe changing
the proposed allocation. Fig. 1(a) presents the solution found
after one run of the search method step, considering the Intel
ATOM board. The DSE has been constrained with respect to
the hypervisors feature (i.e., partitions), while each partition
can be allocated only on one core, avoiding the possibility
to have two or more partitions on the same shared resources,
and to guarantee spatial and temporal isolation for the different
mixed-critical tasks set. The number of feasible solutions, and
the average cost function values, do not change enough during
the evolutionary algorithm runs, while the reduced number of
cores and processes is reflected on the total population size and
average cost functions values.

Table II presents results related to the allocation and mapping
found during the search method run and the timing simulations
extracted from the HEPSIM tool [26] considering LEON3
on Virtex-7 scenario. Finally, Fig. 3 compares the solutions
obtained from the design space exploration considering all the
boards. The different acronyms refer to regarded boards (Virtex-
7, Raspberry, AERO, Zedboard), mapping solutions (ATM
stands for AQUAS reference UAV architecture, PAM1 stands
for HEPSYCODE DSE result), and processor technologies
(ARM, LEON3, ATOM, and HW synthesized in VHDL code).
From this graph, it seems that Intel AERO is one of the best
solutions in terms of performance and cost. Simultaneously,
a new allocation and partitioning plan concerning process
allocation on partitions and cores have to be used to improve
the whole system’s performance.

V. CONCLUSION AND FUTURE WORKS

This work presented an HW/SW Co-Design approach inte-
grated inside the AQUAS Co-Engineering method (i.e., consid-
ering safety/security/performance requirements at different In-



teraction Points [27]). The proposed approach helps design and
simulating UAV systems in a cyber-physical environment while
considering several orthogonal non-functional constraints. The
results allow the AQUAS partners to evaluate several embedded
computing board alternatives, while the final selected board
was the better solution found during the co-design flow. Future
works will consider the possibility of using an ARM multi-
core system (e.g., raspberry boards) instead of the selected Intel
board to validate the presented approach. Furthermore, FPGA
technologies will be a possible alternative to implementing HW
processes and tasks to accelerate the system computation and
reduce workload. Designers can consider all these aspects as
likely UAV’s future improvements.

ACKNOWLEDGMENT

This work has been partially supported by the ECSEL
RIA 2016 737475 AQUAS and ECSEL-JU 2018 826610
COMP4DRONES projects.

REFERENCES

[1] P. Derler, E. A. Lee, and A. Sangiovanni Vincentelli, “Modeling cy-
ber–physical systems,” Proceedings of the IEEE, vol. 100, no. 1, pp.
13–28, 2012.

[2] Y. Z. Lun, A. D’Innocenzo, F. Smarra, I. Malavolta, and
M. D. D. Benedetto, “State of the art of cyber-physical systems
security: An automatic control perspective,” Journal of Systems and
Software, vol. 149, pp. 174 – 216, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121218302681

[3] G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin, Quadrotor
Helicopter Flight Dynamics and Control: Theory and Experiment. AIAA
ARC, 2012.

[4] Avionics Application Software Standard Interface: ARINC Specification
653P1-3, Required Services, Accessed: 01.04.2019., aeronautical Radio,
Inc. 2010-11-15. Retrieved 2013-10-20.

[5] Xilinx. (2020, nov) Xilinx zynq7000. Xilinx Inc. [Online]. Available:
http://www.xilinx.com/

[6] G. Valente, T. Di Mascio, G. D’Andrea, and L. Pomante, “Dynamic par-
tial reconfiguration profitability for real-time systems,” IEEE Embedded
Systems Letters, pp. 1–1, 2020.

[7] E. Villar, J. Merino, H. Posadas, R. Henia, and L. Rioux, “Mega-modeling
of complex, distributed, heterogeneous cps systems,” Microprocessors
and Microsystems, vol. 78, p. 103244, 2020.

[8] V. Muttillo, L. Tiberi, L. Pomante, and P. Serri, “Benchmarking analysis
and characterization of hypervisors for space multicore systems,” Journal
of Aerospace Information Systems, vol. 16, no. 11, pp. 500–511, 2019.

[9] L. Pomante, V. Muttillo, M. Santic, and P. Serri, “Systemc-based elec-
tronic system-level design space exploration environment for dedicated
heterogeneous multi-processor systems,” Microprocessors and Microsys-
tems, vol. 72, 2020.

[10] M. W. Christian Fuss. (2018, nov) Deliverable d4.1 - report
on co-engineering process support. AQUAS. [Online]. Available:
http://aquas-project.eu/wp-content/uploads/2019/09/D4.1.pdf

[11] M. Hussein, R. Nouacer, Y. Ouhammou, E. Villar, F. Corradi, C. Tieri,
and R. Castiñeira, “Key enabling technologies for drones,” in 2020 23rd
Euromicro Conference on Digital System Design (DSD). Kranj, Slovenia,
Slovenia: IEEE, 2020, pp. 489–496.

[12] S. K. Khaitan and J. D. McCalley, “Design Techniques and Applications
of Cyberphysical Systems: A Survey,” IEEE Systems Journal, vol. 9,
no. 2, pp. 350–365, Jun. 2015, conference Name: IEEE Systems Journal.

[13] J. Eker, J. W. Janneck, E. A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Yuhong Xiong, “Taming heterogeneity
- the ptolemy approach,” Proceedings of the IEEE, vol. 91, no. 1, pp.
127–144, 2003.

[15] Q. Zhu and A. Sangiovanni-Vincentelli, “Codesign methodologies and
tools for cyber–physical systems,” Proceedings of the IEEE, vol. 106,
no. 9, pp. 1484–1500, 2018.

[14] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin, “Actor-Oriented Design of
Embedded Hardware and Software Systems,” Journal of Circuits, Systems
and Computers, vol. 12, no. 03, pp. 231–260, Jun. 2003, publisher: World
Scientific Publishing Co.

[16] H. Kim, L. Guo, E. A. Lee, and A. Sangiovanni-Vincentelli, “A tool
integration approach for architectural exploration of aircraft electric power
systems,” in 2013 IEEE 1st International Conference on Cyber-Physical
Systems, Networks, and Applications (CPSNA), 2013, pp. 38–43.

[17] A. Davare, D. Densmore, T. Meyerowitz, A. Pinto, A. Sangiovanni-
Vincentelli, G. Yang, H. Zeng, and Q. Zhu, “A next-generation design
framework for platform-based design,” in DVCon 2007, February 2007.
[Online]. Available: http://chess.eecs.berkeley.edu/pubs/228.html

[18] L. Guo, Q. Zhu, P. Nuzzo, R. Passerone, A. Sangiovanni-Vincentelli,
and E. Lee, “Metronomy: A function-architecture co-simulation frame-
work for timing verification of cyber-physical systems,” 2014 Interna-
tional Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS 2014, 10 2014.

[19] G. Ungureanu, T. Sundström, A. Åhlander, I. Sander, and I. Söderquist,
“Design of sensor signal processing with ForSyDe: Modeling, validation
and synthesis,” KTH Royal Institute of Tehnology, Tech. Rep., 2019.
[Online]. Available: https://forsyde.github.io/docs/aesa-radar/

[20] A. Burns and R. Davis. (2019, nov) Mixed criticality systems
- a review. University of York. [Online]. Available: https://www-
users.cs.york.ac.uk/burns/review.pdf

[21] V. Muttillo, G. Valente, and L. Pomante, “Design space exploration
for mixed-criticality embedded systems considering hypervisor-based sw
partitions,” in 2018 21st Euromicro Conference on Digital System Design
(DSD), 2018, pp. 740–744.

[22] INTECS. (2008, nov) Chess: Composition with guarantees for high-
integrity embedded software components assembly. CHESS Consortium.
[Online]. Available: http://rcl.dsi.unifi.it/projects/chess/chess

[23] Consortium. (2019, nov) D5.3: Megam@rt integrated frame-
work - final version. MegaM@rt2 Consortium. [Online].
Available: https://megamart2-ecsel.eu/wp-content/uploads/2020/05/D5.3-
MegaM@Rt-Integrated-Framework-final-version.pdf

[24] M. van den Baar and J. Oliveira. (2017, nov) Cerbero
interoperability framework. CERBERO Consortium. [Online]. Available:
https://www.cerbero-h2020.eu/toolchain/cif/

[25] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, p. 46–61,
Jan. 1973.

[26] D. Ciambrone, V. Muttillo, L. Pomante, and G. Valente, “Hepsim: An esl
hw/sw co-simulator/analysis tool for heterogeneous parallel embedded
systems,” in 2018 7th Mediterranean Conference on Embedded Comput-
ing (MECO), 2018, pp. 1–6.

[27] L. Pomante, V. Muttillo, B. Křena, T. Vojnar, F. Veljković, P. Magnin,
M. Matschnig, B. Fischer, J. Martinez, and T. Gruber, “The aquas ecsel
project aggregated quality assurance for systems: Co-engineering inside
and across the product life cycle,” Microprocessors and Microsystems,
vol. 69, pp. 54–67, 2019.

[28] Consortium. (2016, nov) Use cases. AQUAS. [Online]. Available:
https://aquas-project.eu/use-cases/

[29] Integrasys, 2020 (accessed: 24.11.2020). [Online]. Available:
https://www.integrasys-space.com/

[30] Sirius - The easiest way to get your own Modeling Tool, 2020 (accessed:
24.11.2020). [Online]. Available: https://www.eclipse.org/sirius/

[31] Xtext - Language Engineering Made Easy!, 2020 (accessed: 24.11.2020).
[Online]. Available: https://www.eclipse.org/Xtext/

[32] V. Muttillo, G. Valente, F. Federici, L. Pomante, M. Faccio, C. Tieri, and
S. Ferri, “A design methodology for soft-core platforms on fpga with
smp linux, openmp support, and distributed hardware profiling system,”
EURASIP Journal on Embedded Systems, vol. 1, no. 15, pp. 1–14, 2016.

[33] G. D’Andrea, T. Di Mascio, and G. Valente, “Self-adaptive loop for
cpss: is the dynamic partial reconfiguration profitable?” in 2019 8th
Mediterranean Conference on Embedded Computing (MECO), 2019, pp.
1–5.


