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ABSTRACT 

Outlining the general characteristics of embedded systems is an 

arduous task. In fact, the design of such kind of systems is heavily 

influenced by functional and non-functional requirements, and it 

is based on quite complex design flows. So, there is often the need 

to adopt a HW/SW co-design methodology able to support the 

designers during high-level phases so that they can perform early 

analysis before dealing with low-level ones. Such a methodology, 

to be effective, should consider also performance estimation and 

ESL HW/SW timing co-simulation. So, the goal of this paper is to 

present a performance metric to speed-up early analysis and 

design space exploration, to identify the more promising 

architectures for different application domains. In particular, the 

paper presents a framework for the evaluation of such a metric 

and perform some preliminary analysis to evaluate its 

meaningfulness when exploited in the HW/SW domain. 

CCS CONCEPTS 

• Hardware → Software tools for EDA; • Hardware → 

Modeling and parameter extraction; Performance Estimation; 
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1 INTRODUCTION 

In the last thirty years there has been an exponential increase 

of the exploitation of embedded systems in everyday life. Due to 

their HW/SW heterogeneity and the critical importance of non-

functional constraints, for such kind of systems, the adopted 

HW/SW co-design methodology is a key factor for a successful 

development. In such a context, early performance estimation and 

HW/SW timing co-simulation are always fundamental steps. For 

such steps, the availability of a performance metric at an 

abstraction level suitable for both HW and SW technologies, easy 

and fast to evaluate (ideally available off-the-shelf) would be of 

greater importance at early design stages also if affected by 

relevant estimation errors. In fact, errors could be acceptable if 

they allow anyway to compare different technologies. One of the 

most known assembly-level metrics for SW performance 

estimation are MIPS (Millions of Instructions per Second), CPI 

(Clock Cycles per Instructions) or IPC (Instructions per Clock 

Cycles) [1]. Within them, at least MIPS can be considered as off-

the-shelf, since it is normally available on the microprocessor 

data-sheet. However, not too much information exists on a 

standard method to evaluate it, nor information about its statistical 

characterization (e.g. variance), are normally provided. More in 

general, such metrics can be very useful for comparing different 

microprocessors with the same ISA (Instruction Set Architectures) 

but they are pointless in comparing different ones. Moreover, 

since assembly-based, they are not applicable to functions 

implemented directly in HW. Then, they are not so useful for 

Electronic System-Level (ESL) HW/SW co-design 

methodologies.  

In such a context, the goals of this work are to analyze the 

usefulness and the meaningfulness of an innovative performance 

metric that is concurrently “Off the Shelf”, “HW/SW Unifying”, 

and “Statement Level”. In fact, to overcome existing metrics 

limitations, the idea is to consider one related to Clock Cycles for 

C Statement (CC4CS), i.e. the number of clock cycles needed to a 

specific processor technology to execute a generic C statement. 

So, it is would be at statement-level of abstraction and, thanks to 

even more improved High-Level Synthesis (HLA) tools that are 

able to synthesize C functions, it would be targeted to both SW 

and HW processor technologies (i.e. HW/SW unifying): processors 

built to execute a given ISA (General Purpose Processors, GPP; 

Application Specific Processors, ASP) and processors built to 

directly (i.e. NO ISA involved) execute applicative functions 

(Single/Specific Purpose Processors, SPP). So, such a metric 

would be an ideal one for the very early steps of an ESL HW/SW 

Co-Design Methodology but also for the comparison of SW 

implementation performances. However, some critical issues soon 

arise when thinking with more attention to CC4CS. First of all, 

the concept of generic C statement is ambiguous, since a C 

statement is not a-priori limited in complexity and can give rise to 

very different HW/SW implementations. Second, to evaluate it in 

a standard, repeatable, fast and low-cost way, they are needed an 

evaluation framework and a meaningful set of benchmark 

functions. The first point can be addressed by considering as 

“generic C statements” the most common way a programmer 

writes them (so it is better to talk about common C statements), 

and this consideration should drive the selection of the adopted 

benchmark. An encouraging precedent can be considered the 

work done for the definition of the very first (and successful) 

COCOMO model [2] where, by analyzing a very huge set of 

source codes, a relationship by the number of Lines of Code 

(LOC) and the SW development cost has been identified, 
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independently by the complexity of each line. The second point, 

other than identifying a relevant benchmark, can be addressed by 

designing a proper framework for CC4CS evaluation. So, this 

work mainly focuses on the development of such a framework 

and, by means of a simple benchmark, tries to evaluate usefulness 

and meaningfulness of CC4CS to understand if further effort must 

be invested in such a direction. For this, Sections II and III define 

the metric, the framework, and the adopted benchmark, while 

Sections IV and V evaluate CC4CS both in the SW and HW 

domains also analyzing possible exploitation opportunities. 

Finally, Section VI tries to understand if, on the base of the 

obtained results, such a metric could have a future or not. 

2 DEFINITION OF CC4CS 

The proposed metric is related to C programming language 

statements, so it is called CC4CS (Clock Cycles for C Statement). 

The choice of the C language is motivated by the following three 

reasons: it is the most used language for embedded SW 

development; it is very similar to SystemC [3] (especially when 

focusing on SystemC Synthesizable Subset), one of the most used 

specification languages for HW/SW co-design; the most diffused 

HLS (High Level Synthesis) tools are able to realize SPPs that 

implements an algorithm specified in C/SystemC language. So, 

CC4CS is defined as follow: 

Def. For a given processor X, CC4CS(X) is the number of 

clock cycles needed by processor X to execute a common C 

statement 

A first clarification is due with respect to the concept of 

“common C statement”. It could be generally intended as 

“something that ends with a semicolon” (other views are possible 

too, e.g. Table 6.1 in [4]) but, to avoid ambiguity, this work 

adopts an empirical approach: it refers to the way a common 

profiling tool as gcov [5] performs the C statements identification 

when profiling their execution. Another clarification is related to 

the fact that such a metric will be for sure influenced by the used 

compiler or HLS tool. Some ways to manage this issue could be: 

to specify also the used tools (possibly giving rise to a set of 

CC4CS for each processor); to report the average of the results 

obtained by using the most diffused tools; to report only the 

results related to the most diffused one. At this point, it is quite 

clear that CC4CS, as defined above, will be influenced by several 

factors and that a CC4CS-based estimation will be affected by 

relevant errors. However, these are acceptable by keeping in mind 

the following aspects: it is a straightforward way to have an off-

the-shelf metric; it can be applied to each processor technology 

(i.e. GPP, ASP and SPP); it is intended to be used for very early 

performance analysis in SW and HW/SW domains. Anyway, as 

described in the next sections, CC4CS can be also characterized 

by a set of values related to Min, Max, Average, and Standard 

Deviation (or by a statistical distribution). In this way, it is 

possible to perform different analysis depending on the final goal. 

3 CC4CS EVALUATION FRAMEWORK 

Starting from the definition provided before, it is clear that to 

evaluate CC4CS for a given processor technology there is the 

need for a methodology supported by tools to automate the 

process and allow fast and repeatable operations. In fact, as 

already said, considering a single C function, CC4CS is the ratio 

between the number of clock cycles required by the target 

processor technology to execute the function and the number of 

executed C statements:  

CC4CS = #Required_Clock_Cycles / #Executed_C_Statements. 

So, to make the metric meaningful for a given processor it is 

needed, at least, to: define a set of relevant C functions to be used 

as benchmark for all the processor technologies; for each 

benchmark function to identify a way to stimulate (i.e. execute) it 

by means of relevant input data sets; to identify a tool to perform 

profiling in order to count the number of executed C statements 

for each input; to identify tools to compile/synthesize the C 

function for the target processor and to simulate its execution in 

order to obtain the number of clock cycles needed for the on-

target execution. Naturally, such steps must be applied for each 

different processor technology. However, it is worth noting that it 

is an offline one-shot task since CC4CS, once evaluated, would be 

available “for free” for next projects. So, to support CC4CS 

evaluation, a proper framework has been developed. Additionally, 

such a framework is also able to evaluate statistics on the metric. 

A simple benchmark composed of 10 well-known algorithms (i.e. 

C leaf functions) has been realized. The functions of the 

benchmark are the following ones: Quicksort, Mergesort, Matrix 

Multiplication, Kruskal, Floyd-Warshall, Dijkstra, Breadth First 

Search, Depth First Search, Banker's Algorithm, A*. The source 

code is available on [11]. The following paragraphs describes the 

main features of the generic framework. Processor specific 

features are described later. 

3.1 Input Generation  
To evaluate CC4CS, a module that (semi)automatically 

generates inputs for the benchmark functions has been created. In 

particular, for each function they have been randomly generated 

1000 input data sets. Moreover, for each function, different data 

types have been considered (i.e. int8, int16, int32, and float) to 

analyze the results with respect to the internal architecture of the 

considered processor. Each input data set is stored in a header file 

to be included in the function at compile time. 

3.2 Profiling on the Host Architecture 
After the inputs generation phase, a procedure to count the 

number of executed C statements is needed. This value is obtained 

by performing a profiling of the benchmark functions by means of 

the gcov [5] profiler for each generated input. To obtain the total 

number of executed C statements for each function, a sum of the 

single profiling numbers has been performed. It is worth noting 

that such a profiling is performed one-shot on the host platform 

since it is independent of the target processor technologies. 

3.3 Profiling on the Target Processor 
The last data needed to calculate the CC4CS metric is the 

number of clock cycles needed by the target processor technology 

to execute each function in the benchmark. Depending on the 

processor technology there is the need for an Instruction Set 

Simulator (ISS) or an HDL Simulator, for SPP (Figure 1). 

 

Figure 1: CC4CS Evaluation Framework. 

 

CC4CS =  Number of Clock Cycles

Executed C Statements

Compilaton/Synthesis for
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4 CC4CS IN THE SW DOMAIN 

Once developed the framework, CC4CS has been evaluated 

first in the SW domain by considering two different processor 

technologies: an ASP (Intel 8051, an 8-bit CISC micro-controller) 

and a GPP (LEON3, a 32-bit RISC core). The first one allows to 

analyze the metric in the context of limited HW resources (i.e. 

limited registers, limited internal memory to store code and data, 

and no cache), while the second one allows to consider a more 

performing architecture that relies on external memory and cache. 

 

Figure 2: CC4CS (8051): frequency distribution for int8. 

4.1 Evaluation of CC4CS for 8051 
The first considered processor technology is an ASP: the 

original Intel 8051 microcontroller built around an 8-bit CPU core 

with Harvard architecture. The University of California has 

developed a project (Dalton Project, [6]) which provides several 

tools useful for simulating C code execution on 8051. In 

particular, the Dalton ISS provides the number of clock cycles 

required by the 8051 to execute a program. So, it has been 

integrated into the CC4CS framework customized for 8051. The 

benchmark has been compiled, with SDCC (Small Device C 

Compiler) [7] by using default optimizations. At the end, the ISS 

has been used to simulate the program execution. Then, the 

framework provides the metric and some statistics. The obtained 

results for 1000 executions of the benchmark functions are 

summarized in Table 1.  

Table 1: CC4CS (8051) 

Data Type Min Max AM SD GM 95% 

Int8 59 375 117,51 44,92 110,72 176 

Int16 82 493 162,01 64,88 151,09 297 

Int32 106 473 223,01 87,57 207,09 402 

float 4 1322 526,56 271,68 457,88 1198 

*AM: Arithmetic Mean, SD: Standard Deviation, GM: Geometric Mean, 95%: 95th Percentile 

For each function, different data types have been considered 

(int8, int16, int32, and float). In fact, performances change with 

respect to the dimension of data since original 8051 is based on an 

8-bit CPU core and an 8-bit ALU. Furthermore, with float data 

type, the values of CC4CS(8051) is considerably higher with 

respect to the other values due to the lack of a FPU (Floating 

Point Unit). For example, by considering int8 data type, 

CC4CS(8051) belongs to a Min-Max interval equals to 59-375, 

with an Arithmetic Mean near to 118 (with Standard Deviation 

near to 45), a Geometric Mean near to 111 and the 95th Percentile 

near to 176. It is worth noting the relevant difference between this 

last value and the Max one. As an example of further possible 

statistical analysis, Figure 2 shows the frequency distribution 

graphs of CC4CS(8051) for int8 for the whole benchmark. Such 

figure clarifies the reason behind the difference between Max and 

95th Percentile values. In [11] it is possible to find more details 

about performed analyses. 

4.2 Evaluation of CC4CS for LEON3 
The second processor technology is a GPP: the LEON3 

microprocessor. LEON3 is a 32-bit synthesizable soft-processor 

that is compatible with SPARC V8 architecture: it has a seven-

stage pipeline and Harvard architecture, and uses separate 

instruction and data caches. It represents a soft-processor for 

aerospace applications. Cobham Gaisler offers TSIM System 

Emulator as an accurate emulator of LEON3 processors. A free 

evaluation version of TSIM/LEON3 is available on Cobham 

website [8], but it does not support code coverage, configuration 

of caches, memories and so on. Anyway, it has been chosen as the 

reference ISS for first analysis since it provides the information 

needed to evaluate CC4CS. By default, TSIM/LEON3 emulates 

the FPU. Benchmark functions have been compiled, with the Bare 

C Cross-Compiler (BCC) for LEON3 with standard optimization 

options. Then, the framework has been used to evaluate the metric 

and some statistics. The obtained results for 1000 executions of 

the 10 benchmark functions are summarized in Table 2.  

Table 2: CC4CS (LEON3) 

Data Type Min Max AM SD GM 95% 

Int8 11 2197 193 304 90 721 

Int16 12 2194 291,96 401,52 149,11 1322 

Int32 23 2194 437,12 512,07 258,81 2053 

float 28 2200 481,70 516,99 305,98 2058 

*AM: Arithmetic Mean, SD: Standard Deviation, GM: Geometric Mean, 95%: 95th Percentile 

For each function, different data types have been considered 

(int8, int16, int32, and float). In fact, performances, especially the 

average ones, change with respect to the dimension of data. 

However, in this case, the differences with float data type are not 

as relevant as in the 8051 case since LEON3 exploits a dedicated 

FPU. For example, by considering int8 data type, 

CC4CS(LEON3) belongs to the Min-Max interval 11-2197, with 

an Arithmetic Mean equals to 193 (with Standard Deviation 

equals to 304), a Geometric Mean of 90 and the 95th Percentile 

equals to 721. Also in this case it is worth noting the relevant 

difference between this last value and the Max while the same 

difference is not so relevant when considering int32 and float data 

types. 

4.3 Exploitation of CC4CS in SW Domain 
Since the main goal of this work is to evaluate usefulness and 

meaningfulness of CC4CS, this section presents, as a sort of 

validation, a first attempt to use CC4CS for very early 

performance analysis in the SW domain. In particular, the goal is 

to evaluate the errors to be considered when using CC4CS for 

execution time estimation at very early stages. For this, a set of 5 

functions out of the benchmark has been used as testbench: 

Selection Sort, Insertion Sort, GCD, Binary Search, Bellman Ford 

(the source code is available on [11]). For each function it has 

been performed a profiling with respect to several inputs and 

measured the real execution time for 8051@12MHz. Then, such a 

time has been compared with the estimation made by multiplying 

the profiling results (i.e. the number of executed C statements) for 

CC4CS(8051) from Table 1 for the processor frequency. 

Considering all the testbench, Table 3 shows the average 

estimation errors obtained by using AM and GM as estimations. 
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Table 3: Estimation errors for 8051@12 MHz: AM and GM 

Data  

Types 

RMSE  

AM 

PRMSE  

AM 

RMSE  

GM 

PRMSE  

GM 

Min 

95% 

Min 

Max 

Int8 2.90 ms 42.2% 2.50 ms 37.4% 5.74% 0.00% 

Int16 1.35 ms 22.9% 1.43 ms 21.9% 4.40% 0.00% 

Int32 1.84 ms 21.0% 1.99 ms 24.3% 7.20% 0.00% 

float 1.05 ms 76.6% 0.92 ms 60.2% 0.00% 0.00% 

AVG 1.79 ms 40.68% 1.71 ms 35.95% 4.34% 0.00% 

*RMSE: Root Mean squared Error, PRMSE: Root Mean Squared Percentage Error 

Considering all the testbench, Table 3 shows the percentage of 

estimations that are outside of the Min-95th Percentile and Min-

Max intervals. It is worth noting as all the actual results are 

contained in Min-Max. Despite to fact that such intervals could be 

quite large (e.g. for float), this could mean that CC4CS is quite 

robust with respect to different common C statements. Moreover, 

by considering Min-95% it is possible to reduce sensitively the 

range (at least for int8 and int16) while keeping limited errors. 

5 CC4CS IN THE HW DOMAIN 

To highlight another important feature of CC4CS, i.e. to be 

unifying with respect to HW and SW domains, this section 

provides a very preliminary evaluation of CC4CS for functions 

implemented by means of SPP (i.e. HW) exploiting FPGA 

technologies. For this, to avoid the need of synthesize all the 

previously adopted benchmark functions (it will be done for 

future analyses), it has been exploited the already synthesized 

(with standard-optimization options) benchmark used in [9]. The 

selected C functions originate from different application domains, 

which are control-flow as well as data-flow dominated. An 

important aspect of such benchmarks is that golden inputs and 

related output vectors are already available for each program. So, 

it has been possible to execute each function to perform profiling. 

Then, by exploiting the already available number of clock cycles 

needed to execute the HW function on a Virtex7, evaluated by 

means of RTL (Register-Transfer Level) simulations, it has been 

straightforward to evaluate CC4CS(Virtex7). Table 4 shows the 

corresponding CC4CS for each tool considered in [9]. 

Table 4: CC4CS (Virtex7) 

Tool Min AM GM Max 

Commercial 0.117 1.137 0.758 4.006 

Bambu 0.015 1.179 0.468 7.357 

DWARV 0.018 1.253 0.650 4.485 

LegUp 0.001 1.339 0.583 7.404 

*AM: Arithmetic Mean, GM: Geometric Mean 

So, at a very first glance, it is possible to state that 

CC4CS(Virtex7), with standard optimizations, belongs to a Min-

Max interval equals to 1-8 (rounding up to the nearest integer). 

5.1 Exploitation of CC4CS in HW/SW Domain 
The availability of CC4CS for both HW and SW processor 

technologies is very important to exploit such a metric in HW/SW 

Co-Design methodologies for both early comparison and 

selection, and for ESL HW/SW timing co-simulations. In the first 

case, by having available CC4CS for different processors 

technologies, with the same host-based profiling it is possible to 

estimate the execution time of a function of interest for the whole 

processor technologies set so making a very fast preliminary 

comparison and selection. As an example, given a target function 

and a related golden input, by means of host-based profiling is 

possible to count the number of executed C statements (e.g. 100). 

Then, as shown in Figure 3, it is straightforward to compare the 

whole processor technologies set by multiplying 100 for the 

related CC4CS (in this case by using the Min-95% interval and 

GM). Depending on the required execution time it is then possible 

to select a specific processor technology or, at least, to reduce the 

set for further analyses. In the second case, CC4CS is useful since 

several ESL HW/SW timing co-simulations approaches (e.g. 

[10][12]) rely on the availability of an estimated execution time 

for each C/SystemC statement composing the functions belonging 

to ESL specification. 

 

Figure 3: CC4CS-based HW/SW comparison. 

5 CONCLUSION AND FUTURE WORKS 

This work has presented an off-the-shelf unifying statement-

level performance metric and a related evaluation framework. The 

metric, called CC4CS, has been evaluated both in SW and HW 

domains analyzing possible exploitation opportunities. Main goal 

has been to evaluate its usefulness and meaningfulness. For sure 

some improvements are needed, especially in the C statement and 

benchmark definition, and further statistical analyses must be 

performed. For example, Figure 2 shows a frequency distributions 

graph. Is it possible to individuate a known one (e.g. Poisson-like) 

that fits with it? Probably, analyses related to the specific 

processor technology features (e.g. registers and memory size, 

cache and pipeline interferences, etc.) can be considered as well. 

Moreover, this first approach has voluntary avoided any detailed 

analysis of the statements composing the given C functions. This 

kind of approach will be considered as an opportunity to obtain 

more accuracy but at more cost. Anyway, preliminary results are 

interesting enough to justify further efforts on the topic. 
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