
CC4CS: an Off-the-Shelf Unifying Statement-Level

Performance Metric for HW/SW Technologies

Vittoriano Muttillo
Università degli Studi dell’Aquila

Via Vetoio, 1
L’Aquila, Italy

vittoriano.muttillo@graduate.univaq.it

Giacomo Valente
Università degli Studi dell’Aquila

Via Vetoio, 1
L’Aquila, Italy

giacomo.valente@univaq.it

Luigi Pomante
Università degli Studi dell’Aquila

Via Vetoio, 1
L’Aquila, Italy

luigi.pomante@univaq.it

Vincenzo Stoico
Università degli Studi dell’Aquila

Via Vetoio, 1
L’Aquila, Italy

vincenzo.stoico@graduate.univaq.it

Fausto D’Antonio
Università degli Studi dell’Aquila

Via Vetoio, 1
L’Aquila, Italy

fausto.dantonio@graduate.univaq.it

Fabio Salice
Politecnico di Milano

Piazza Leonardo da Vinci, 32
Milano, Italy

fabio.salice@polimi.it

ABSTRACT

Outlining the general characteristics of embedded systems is an

arduous task. In fact, the design of such kind of systems is heavily

influenced by functional and non-functional requirements, and it

is based on quite complex design flows. So, there is often the need

to adopt a HW/SW co-design methodology able to support the

designers during high-level phases so that they can perform early

analysis before dealing with low-level ones. Such a methodology,

to be effective, should consider also performance estimation and

ESL HW/SW timing co-simulation. So, the goal of this paper is to

present a performance metric to speed-up early analysis and

design space exploration, to identify the more promising

architectures for different application domains. In particular, the

paper presents a framework for the evaluation of such a metric

and perform some preliminary analysis to evaluate its

meaningfulness when exploited in the HW/SW domain.

CCS CONCEPTS

• Hardware → Software tools for EDA; • Hardware →

Modeling and parameter extraction; Performance Estimation;

KEYWORDS

HW/SW Co-Design; System-level Metrics; Embedded Systems

1 INTRODUCTION

In the last thirty years there has been an exponential increase

of the exploitation of embedded systems in everyday life. Due to

their HW/SW heterogeneity and the critical importance of non-

functional constraints, for such kind of systems, the adopted

HW/SW co-design methodology is a key factor for a successful

development. In such a context, early performance estimation and

HW/SW timing co-simulation are always fundamental steps. For

such steps, the availability of a performance metric at an

abstraction level suitable for both HW and SW technologies, easy

and fast to evaluate (ideally available off-the-shelf) would be of

greater importance at early design stages also if affected by

relevant estimation errors. In fact, errors could be acceptable if

they allow anyway to compare different technologies. One of the

most known assembly-level metrics for SW performance

estimation are MIPS (Millions of Instructions per Second), CPI

(Clock Cycles per Instructions) or IPC (Instructions per Clock

Cycles) [1]. Within them, at least MIPS can be considered as off-

the-shelf, since it is normally available on the microprocessor

data-sheet. However, not too much information exists on a

standard method to evaluate it, nor information about its statistical

characterization (e.g. variance), are normally provided. More in

general, such metrics can be very useful for comparing different

microprocessors with the same ISA (Instruction Set Architectures)

but they are pointless in comparing different ones. Moreover,

since assembly-based, they are not applicable to functions

implemented directly in HW. Then, they are not so useful for

Electronic System-Level (ESL) HW/SW co-design

methodologies.

In such a context, the goals of this work are to analyze the

usefulness and the meaningfulness of an innovative performance

metric that is concurrently “Off the Shelf”, “HW/SW Unifying”,

and “Statement Level”. In fact, to overcome existing metrics

limitations, the idea is to consider one related to Clock Cycles for

C Statement (CC4CS), i.e. the number of clock cycles needed to a

specific processor technology to execute a generic C statement.

So, it is would be at statement-level of abstraction and, thanks to

even more improved High-Level Synthesis (HLA) tools that are

able to synthesize C functions, it would be targeted to both SW

and HW processor technologies (i.e. HW/SW unifying): processors

built to execute a given ISA (General Purpose Processors, GPP;

Application Specific Processors, ASP) and processors built to

directly (i.e. NO ISA involved) execute applicative functions

(Single/Specific Purpose Processors, SPP). So, such a metric

would be an ideal one for the very early steps of an ESL HW/SW

Co-Design Methodology but also for the comparison of SW

implementation performances. However, some critical issues soon

arise when thinking with more attention to CC4CS. First of all,

the concept of generic C statement is ambiguous, since a C

statement is not a-priori limited in complexity and can give rise to

very different HW/SW implementations. Second, to evaluate it in

a standard, repeatable, fast and low-cost way, they are needed an

evaluation framework and a meaningful set of benchmark

functions. The first point can be addressed by considering as

“generic C statements” the most common way a programmer

writes them (so it is better to talk about common C statements),

and this consideration should drive the selection of the adopted

benchmark. An encouraging precedent can be considered the

work done for the definition of the very first (and successful)

COCOMO model [2] where, by analyzing a very huge set of

source codes, a relationship by the number of Lines of Code

(LOC) and the SW development cost has been identified,

2

independently by the complexity of each line. The second point,

other than identifying a relevant benchmark, can be addressed by

designing a proper framework for CC4CS evaluation. So, this

work mainly focuses on the development of such a framework

and, by means of a simple benchmark, tries to evaluate usefulness

and meaningfulness of CC4CS to understand if further effort must

be invested in such a direction. For this, Sections II and III define

the metric, the framework, and the adopted benchmark, while

Sections IV and V evaluate CC4CS both in the SW and HW

domains also analyzing possible exploitation opportunities.

Finally, Section VI tries to understand if, on the base of the

obtained results, such a metric could have a future or not.

2 DEFINITION OF CC4CS

The proposed metric is related to C programming language

statements, so it is called CC4CS (Clock Cycles for C Statement).

The choice of the C language is motivated by the following three

reasons: it is the most used language for embedded SW

development; it is very similar to SystemC [3] (especially when

focusing on SystemC Synthesizable Subset), one of the most used

specification languages for HW/SW co-design; the most diffused

HLS (High Level Synthesis) tools are able to realize SPPs that

implements an algorithm specified in C/SystemC language. So,

CC4CS is defined as follow:

Def. For a given processor X, CC4CS(X) is the number of

clock cycles needed by processor X to execute a common C

statement

A first clarification is due with respect to the concept of

“common C statement”. It could be generally intended as

“something that ends with a semicolon” (other views are possible

too, e.g. Table 6.1 in [4]) but, to avoid ambiguity, this work

adopts an empirical approach: it refers to the way a common

profiling tool as gcov [5] performs the C statements identification

when profiling their execution. Another clarification is related to

the fact that such a metric will be for sure influenced by the used

compiler or HLS tool. Some ways to manage this issue could be:

to specify also the used tools (possibly giving rise to a set of

CC4CS for each processor); to report the average of the results

obtained by using the most diffused tools; to report only the

results related to the most diffused one. At this point, it is quite

clear that CC4CS, as defined above, will be influenced by several

factors and that a CC4CS-based estimation will be affected by

relevant errors. However, these are acceptable by keeping in mind

the following aspects: it is a straightforward way to have an off-

the-shelf metric; it can be applied to each processor technology

(i.e. GPP, ASP and SPP); it is intended to be used for very early

performance analysis in SW and HW/SW domains. Anyway, as

described in the next sections, CC4CS can be also characterized

by a set of values related to Min, Max, Average, and Standard

Deviation (or by a statistical distribution). In this way, it is

possible to perform different analysis depending on the final goal.

3 CC4CS EVALUATION FRAMEWORK

Starting from the definition provided before, it is clear that to

evaluate CC4CS for a given processor technology there is the

need for a methodology supported by tools to automate the

process and allow fast and repeatable operations. In fact, as

already said, considering a single C function, CC4CS is the ratio

between the number of clock cycles required by the target

processor technology to execute the function and the number of

executed C statements:

CC4CS = #Required_Clock_Cycles / #Executed_C_Statements.

So, to make the metric meaningful for a given processor it is

needed, at least, to: define a set of relevant C functions to be used

as benchmark for all the processor technologies; for each

benchmark function to identify a way to stimulate (i.e. execute) it

by means of relevant input data sets; to identify a tool to perform

profiling in order to count the number of executed C statements

for each input; to identify tools to compile/synthesize the C

function for the target processor and to simulate its execution in

order to obtain the number of clock cycles needed for the on-

target execution. Naturally, such steps must be applied for each

different processor technology. However, it is worth noting that it

is an offline one-shot task since CC4CS, once evaluated, would be

available “for free” for next projects. So, to support CC4CS

evaluation, a proper framework has been developed. Additionally,

such a framework is also able to evaluate statistics on the metric.

A simple benchmark composed of 10 well-known algorithms (i.e.

C leaf functions) has been realized. The functions of the

benchmark are the following ones: Quicksort, Mergesort, Matrix

Multiplication, Kruskal, Floyd-Warshall, Dijkstra, Breadth First

Search, Depth First Search, Banker's Algorithm, A*. The source

code is available on [11]. The following paragraphs describes the

main features of the generic framework. Processor specific

features are described later.

3.1 Input Generation
To evaluate CC4CS, a module that (semi)automatically

generates inputs for the benchmark functions has been created. In

particular, for each function they have been randomly generated

1000 input data sets. Moreover, for each function, different data

types have been considered (i.e. int8, int16, int32, and float) to

analyze the results with respect to the internal architecture of the

considered processor. Each input data set is stored in a header file

to be included in the function at compile time.

3.2 Profiling on the Host Architecture
After the inputs generation phase, a procedure to count the

number of executed C statements is needed. This value is obtained

by performing a profiling of the benchmark functions by means of

the gcov [5] profiler for each generated input. To obtain the total

number of executed C statements for each function, a sum of the

single profiling numbers has been performed. It is worth noting

that such a profiling is performed one-shot on the host platform

since it is independent of the target processor technologies.

3.3 Profiling on the Target Processor
The last data needed to calculate the CC4CS metric is the

number of clock cycles needed by the target processor technology

to execute each function in the benchmark. Depending on the

processor technology there is the need for an Instruction Set

Simulator (ISS) or an HDL Simulator, for SPP (Figure 1).

Figure 1: CC4CS Evaluation Framework.

CC4CS = Number of Clock Cycles

Executed C Statements

Compilaton/Synthesis for

the target processor

Profiling of the program

HDL Simulator (HW)

ISS (SW)

 3

4 CC4CS IN THE SW DOMAIN

Once developed the framework, CC4CS has been evaluated

first in the SW domain by considering two different processor

technologies: an ASP (Intel 8051, an 8-bit CISC micro-controller)

and a GPP (LEON3, a 32-bit RISC core). The first one allows to

analyze the metric in the context of limited HW resources (i.e.

limited registers, limited internal memory to store code and data,

and no cache), while the second one allows to consider a more

performing architecture that relies on external memory and cache.

Figure 2: CC4CS (8051): frequency distribution for int8.

4.1 Evaluation of CC4CS for 8051
The first considered processor technology is an ASP: the

original Intel 8051 microcontroller built around an 8-bit CPU core

with Harvard architecture. The University of California has

developed a project (Dalton Project, [6]) which provides several

tools useful for simulating C code execution on 8051. In

particular, the Dalton ISS provides the number of clock cycles

required by the 8051 to execute a program. So, it has been

integrated into the CC4CS framework customized for 8051. The

benchmark has been compiled, with SDCC (Small Device C

Compiler) [7] by using default optimizations. At the end, the ISS

has been used to simulate the program execution. Then, the

framework provides the metric and some statistics. The obtained

results for 1000 executions of the benchmark functions are

summarized in Table 1.

Table 1: CC4CS (8051)

Data Type Min Max AM SD GM 95%

Int8 59 375 117,51 44,92 110,72 176

Int16 82 493 162,01 64,88 151,09 297

Int32 106 473 223,01 87,57 207,09 402

float 4 1322 526,56 271,68 457,88 1198

*AM: Arithmetic Mean, SD: Standard Deviation, GM: Geometric Mean, 95%: 95th Percentile

For each function, different data types have been considered

(int8, int16, int32, and float). In fact, performances change with

respect to the dimension of data since original 8051 is based on an

8-bit CPU core and an 8-bit ALU. Furthermore, with float data

type, the values of CC4CS(8051) is considerably higher with

respect to the other values due to the lack of a FPU (Floating

Point Unit). For example, by considering int8 data type,

CC4CS(8051) belongs to a Min-Max interval equals to 59-375,

with an Arithmetic Mean near to 118 (with Standard Deviation

near to 45), a Geometric Mean near to 111 and the 95th Percentile

near to 176. It is worth noting the relevant difference between this

last value and the Max one. As an example of further possible

statistical analysis, Figure 2 shows the frequency distribution

graphs of CC4CS(8051) for int8 for the whole benchmark. Such

figure clarifies the reason behind the difference between Max and

95th Percentile values. In [11] it is possible to find more details

about performed analyses.

4.2 Evaluation of CC4CS for LEON3
The second processor technology is a GPP: the LEON3

microprocessor. LEON3 is a 32-bit synthesizable soft-processor

that is compatible with SPARC V8 architecture: it has a seven-

stage pipeline and Harvard architecture, and uses separate

instruction and data caches. It represents a soft-processor for

aerospace applications. Cobham Gaisler offers TSIM System

Emulator as an accurate emulator of LEON3 processors. A free

evaluation version of TSIM/LEON3 is available on Cobham

website [8], but it does not support code coverage, configuration

of caches, memories and so on. Anyway, it has been chosen as the

reference ISS for first analysis since it provides the information

needed to evaluate CC4CS. By default, TSIM/LEON3 emulates

the FPU. Benchmark functions have been compiled, with the Bare

C Cross-Compiler (BCC) for LEON3 with standard optimization

options. Then, the framework has been used to evaluate the metric

and some statistics. The obtained results for 1000 executions of

the 10 benchmark functions are summarized in Table 2.

Table 2: CC4CS (LEON3)

Data Type Min Max AM SD GM 95%

Int8 11 2197 193 304 90 721

Int16 12 2194 291,96 401,52 149,11 1322

Int32 23 2194 437,12 512,07 258,81 2053

float 28 2200 481,70 516,99 305,98 2058

*AM: Arithmetic Mean, SD: Standard Deviation, GM: Geometric Mean, 95%: 95th Percentile

For each function, different data types have been considered

(int8, int16, int32, and float). In fact, performances, especially the

average ones, change with respect to the dimension of data.

However, in this case, the differences with float data type are not

as relevant as in the 8051 case since LEON3 exploits a dedicated

FPU. For example, by considering int8 data type,

CC4CS(LEON3) belongs to the Min-Max interval 11-2197, with

an Arithmetic Mean equals to 193 (with Standard Deviation

equals to 304), a Geometric Mean of 90 and the 95th Percentile

equals to 721. Also in this case it is worth noting the relevant

difference between this last value and the Max while the same

difference is not so relevant when considering int32 and float data

types.

4.3 Exploitation of CC4CS in SW Domain
Since the main goal of this work is to evaluate usefulness and

meaningfulness of CC4CS, this section presents, as a sort of

validation, a first attempt to use CC4CS for very early

performance analysis in the SW domain. In particular, the goal is

to evaluate the errors to be considered when using CC4CS for

execution time estimation at very early stages. For this, a set of 5

functions out of the benchmark has been used as testbench:

Selection Sort, Insertion Sort, GCD, Binary Search, Bellman Ford

(the source code is available on [11]). For each function it has

been performed a profiling with respect to several inputs and

measured the real execution time for 8051@12MHz. Then, such a

time has been compared with the estimation made by multiplying

the profiling results (i.e. the number of executed C statements) for

CC4CS(8051) from Table 1 for the processor frequency.

Considering all the testbench, Table 3 shows the average

estimation errors obtained by using AM and GM as estimations.

4

Table 3: Estimation errors for 8051@12 MHz: AM and GM

Data

Types

RMSE

AM

PRMSE

AM

RMSE

GM

PRMSE

GM

Min

95%

Min

Max

Int8 2.90 ms 42.2% 2.50 ms 37.4% 5.74% 0.00%

Int16 1.35 ms 22.9% 1.43 ms 21.9% 4.40% 0.00%

Int32 1.84 ms 21.0% 1.99 ms 24.3% 7.20% 0.00%

float 1.05 ms 76.6% 0.92 ms 60.2% 0.00% 0.00%

AVG 1.79 ms 40.68% 1.71 ms 35.95% 4.34% 0.00%

*RMSE: Root Mean squared Error, PRMSE: Root Mean Squared Percentage Error

Considering all the testbench, Table 3 shows the percentage of

estimations that are outside of the Min-95th Percentile and Min-

Max intervals. It is worth noting as all the actual results are

contained in Min-Max. Despite to fact that such intervals could be

quite large (e.g. for float), this could mean that CC4CS is quite

robust with respect to different common C statements. Moreover,

by considering Min-95% it is possible to reduce sensitively the

range (at least for int8 and int16) while keeping limited errors.

5 CC4CS IN THE HW DOMAIN

To highlight another important feature of CC4CS, i.e. to be

unifying with respect to HW and SW domains, this section

provides a very preliminary evaluation of CC4CS for functions

implemented by means of SPP (i.e. HW) exploiting FPGA

technologies. For this, to avoid the need of synthesize all the

previously adopted benchmark functions (it will be done for

future analyses), it has been exploited the already synthesized

(with standard-optimization options) benchmark used in [9]. The

selected C functions originate from different application domains,

which are control-flow as well as data-flow dominated. An

important aspect of such benchmarks is that golden inputs and

related output vectors are already available for each program. So,

it has been possible to execute each function to perform profiling.

Then, by exploiting the already available number of clock cycles

needed to execute the HW function on a Virtex7, evaluated by

means of RTL (Register-Transfer Level) simulations, it has been

straightforward to evaluate CC4CS(Virtex7). Table 4 shows the

corresponding CC4CS for each tool considered in [9].

Table 4: CC4CS (Virtex7)

Tool Min AM GM Max

Commercial 0.117 1.137 0.758 4.006

Bambu 0.015 1.179 0.468 7.357

DWARV 0.018 1.253 0.650 4.485

LegUp 0.001 1.339 0.583 7.404

*AM: Arithmetic Mean, GM: Geometric Mean

So, at a very first glance, it is possible to state that

CC4CS(Virtex7), with standard optimizations, belongs to a Min-

Max interval equals to 1-8 (rounding up to the nearest integer).

5.1 Exploitation of CC4CS in HW/SW Domain
The availability of CC4CS for both HW and SW processor

technologies is very important to exploit such a metric in HW/SW

Co-Design methodologies for both early comparison and

selection, and for ESL HW/SW timing co-simulations. In the first

case, by having available CC4CS for different processors

technologies, with the same host-based profiling it is possible to

estimate the execution time of a function of interest for the whole

processor technologies set so making a very fast preliminary

comparison and selection. As an example, given a target function

and a related golden input, by means of host-based profiling is

possible to count the number of executed C statements (e.g. 100).

Then, as shown in Figure 3, it is straightforward to compare the

whole processor technologies set by multiplying 100 for the

related CC4CS (in this case by using the Min-95% interval and

GM). Depending on the required execution time it is then possible

to select a specific processor technology or, at least, to reduce the

set for further analyses. In the second case, CC4CS is useful since

several ESL HW/SW timing co-simulations approaches (e.g.

[10][12]) rely on the availability of an estimated execution time

for each C/SystemC statement composing the functions belonging

to ESL specification.

Figure 3: CC4CS-based HW/SW comparison.

5 CONCLUSION AND FUTURE WORKS

This work has presented an off-the-shelf unifying statement-

level performance metric and a related evaluation framework. The

metric, called CC4CS, has been evaluated both in SW and HW

domains analyzing possible exploitation opportunities. Main goal

has been to evaluate its usefulness and meaningfulness. For sure

some improvements are needed, especially in the C statement and

benchmark definition, and further statistical analyses must be

performed. For example, Figure 2 shows a frequency distributions

graph. Is it possible to individuate a known one (e.g. Poisson-like)

that fits with it? Probably, analyses related to the specific

processor technology features (e.g. registers and memory size,

cache and pipeline interferences, etc.) can be considered as well.

Moreover, this first approach has voluntary avoided any detailed

analysis of the statements composing the given C functions. This

kind of approach will be considered as an opportunity to obtain

more accuracy but at more cost. Anyway, preliminary results are

interesting enough to justify further efforts on the topic.

ACKNOWLEDGMENTS

This work has been partially supported by the ECSEL RIA 2016

MegaM@Rt2 and AQUAS projects.

REFERENCES
[1] D.J. Lilja, Measuring Computer Performance, A Practitioner’s Guide,

Cambridge University Press, New York, USA, 2000.

[2] Barry Boehm's. COCOMO, Software Engineering Economics, 1981.

[3] SystemC, http://accellera.org/downloads/standards/systemc

[4] M. Siegesmund. Embedded C Programming, Newnes, 2014

[5] GCov Profiler, https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[6] Dalton Project, http://www.ann.ece.ufl.edu/i8051/.

[7] SDCC, http://sdcc.sourceforge.net/doc/sdccman.pdf

[8] TSIM/LEON3, http://gaisler.com/doc/tsim-2.0.23.pdf

[9] R. Nane et al., "A Survey and Evaluation of FPGA High-Level Synthesis

Tools," in IEEE Trans. on CAD of Integrated Circuits and Systems, Oct. 2016.

[10] L. Pomante, P. Serri. “SystemC-based HW/SW Co-Design of Heterogeneous

Multiprocessor Dedicated Systems”, International Journal of Information

Systems, July 2014.

[11] CC4CS benchmark, https://github.com/vnzstc/cc4cs

[12] D. Di Pompeo, E. Incerto, V. Muttillo, L. Pomante, and G. Valente. An

Efficient Performance-Driven Approach for HW/SW Co-Design. In

Proceedings of the 8th ACM/SPEC on International Conference on

Performance Engineering (ICPE '17). pages 323-326, ACM, 2017.

