
Criticality-driven Design Space Exploration for

Mixed-Criticality Heterogeneous Parallel Embedded Systems

Vittoriano Muttillo
Center of Excellence DEWS

Via Vetoio, 1
L’Aquila, Italy

vittoriano.muttillo@graduate.univaq.it

Giacomo Valente
Center of Excellence DEWS

Via Vetoio, 1
L’Aquila, Italy

giacomo.valente@graduate.univaq.it

Luigi Pomante
Center of Excellence DEWS

Via Vetoio, 1
L’Aquila, Italy

luigi.pomante@univaq.it

ABSTRACT

Heterogeneous platforms are becoming widely diffused in the

embedded system area, mainly because of the opportunities to

increase application execution performance and, at the same time,

to optimize other orthogonal metrics. In such a context, the

introduction of mixed-criticality constraints, while considering

heterogenous parallel architectures, creates new challenges to

industrial and academic research. The main design issue is related

to a Design Space Exploration (DSE) approach able to cope with

mixed-criticality constraints that typically limits the number of

feasible solutions. So, this work focuses on DSE for embedded

systems based on heterogeneous parallel architectures and

subjected to mixed-criticality constraints. In particular, it presents

a criticality-driven evolutionary approach integrated into a

reference Electronic System Level HW/SW Co-Design flow to

support the designer of mixed-criticality embedded systems.

CCS CONCEPTS

• Hardware → Software tools for EDA; • Hardware →

Modeling and parameter extraction; Design Space Exploration;

Safety Assurance Level; Mixed-Criticality Systems;

KEYWORDS

HW/SW Co-Design, Heterogeneous Parallel Systems, Design

Space Exploration, Mixed-Criticality Systems

1 INTRODUCTION

In recent years, there has been a growing trend for switching

from single-processor/core to (heterogeneous) multi-

processor/core (i.e. parallel) platforms to execute embedded

applications with different levels of criticality (i.e. Mixed-

Criticality Embedded Systems, MCESs). In case of single-

processor/core MCESs, it is crucial to ensure temporal isolation

between tasks. In fact, such MCES can be viewed as systems with

Time Division Multiple Access (TDMA), in which resources are

assigned to each task in different time slots. In case of parallel

MCESs, different embedded applications run in parallel on

different processors competing for the access to shared resources,

using different communication and synchronization mechanisms.

The main problem in the management of a MCES is to ensure

that low criticality embedded applications do not interfere with

high criticality ones. This type of systems can be found in many

domains such as aerospace [1] or automotive industry [2]. The

basis for integrating mixed-criticality applications on a single

embedded platform are all the mechanisms that allow to create

multiple partitions with a strict temporal and/or spatial isolation

[4]. According to this approach, embedded applications with

different criticality levels can be allocated on different partitions.

In such a context, the purpose of this work is to present a Design

Space Exploration (DSE) step, integrated into an Electronic

System-Level (ESL) HW/SW Co-Design framework, to support the

development of heterogeneous parallel MCES. The remainder of

the paper is organized as follows: Section II presents related

works that consider mixed-critical requirements into the whole

design flow. Section III describes the adopted design flow, while

Section IV presents the main features of the proposed DSE

approach. Then, Section V analyzes experimental results. Finally,

Section VI closes the paper with some conclusions and future

works description.

2 Design Space Exploration for Safety Critical

Applications

In the last few years, a growing trend in the embedded systems

domain is to run multiple embedded applications with different

levels of criticality on a shared hardware platform. The criticality

of an application is an indication of the required level of safety

and security (i.e. assurance). After Vestal mixed-criticality paper

[5], that first analyzed mixed-criticality system with focus on real-

time performances, a series of research papers have been

published [6], with no standard problem formulation with respect

to the assurance level and the real-time task model [7][8][9]. In

such a context, the most critical development steps are related to

the System Specification and the Design Space Exploration

activities [10] and the main differences among the various works

in the literature are mainly related to the different amount of

information and actions that explicitly rely on the designer

experience. For example, AUTOFOCUS3 [11] proposes a model-

based development process at different levels of abstraction

introducing safety-oriented constraints associated to computing

components. The tool assigns the levels of criticality to

application tasks and computing resources, avoiding the allocation

of high-criticality tasks to low-criticality resources. Another work,

called CONTREP (CONTREX Eclipse plug-in, [12]) is a

framework supporting UML/MARTE based modeling, analysis

and design of mixed-criticality embedded systems. It is based on

the CONTREX UML/MARTE modeling methodology [13] and

considers safety constraints into the different design activities,

2

integrating external tool like Multicube Explorer [14] for the DSE

step. The work in [15] proposes a combined-DSE flow for design

of time-critical systems. Starting from a joint analytical and

simulation-based (JSA) DSE phase, while relying on constraint

programming and worst-case estimations, it filters the design

space and get a set of safe solutions. Finally, DeSyDe [16]

provides a DSE tool for bare-metal applications, finding

implementations for a set of tasks on a shared multi-processor

platform starting from synchronous dataflow graphs (SDFGs),

used to describe the application, and a predictable model for target

platform.

So, at the best of our knowledge, there are few works that

introduce mixed-criticality issues directly into a HW/SW co-

design flow. In this context, this work proposes a DSE approach

that is able to consider mixed-criticality issues into the

development of heterogeneous parallel MCES. The main

differences among the proposed approach and the previous works

are related to the system behavior model, that is based on a CSP-

like (Communicating Sequential Processes) Model of

Computation (MoC) that allows to perform several analysis and

estimations. Then, the proposed approach is able to suggest a

criticality-aware HW/SW partitioning/mapping by means of an

evolutionary approach.

3 Reference HW/SW Co-Design Framework

In the context of MCES, this work adopts a specific framework

(HEPSYCODE: HW/SW Co-Design of Heterogeneous Parallel

Dedicated Systems) [17], based on an existing Electronic System-

Level HW/SW Co-Design Methodology [18], and introduces the

possibility to specify mixed-criticality requirements. The

framework is shown in Figure 1.

3.1 Modeling Language

The system behavior modeling language, named HML (HEPSY

Modeling Language) [19], is based on the well-known CSP MoC

[20]. By means of HML it is possible to specify the System

Behavior Model (SBM), an executable model of the system

behavior, a set of Non–Functional Constraints (NFCs) and a set

of Reference Inputs (RI) to be used for simulation-based activities.

Definition 1. SBM = {PS, CH} is a CSP-based executable

model of the system behavior that explicitly defines also a model

of communication among processes (PS) using unidirectional

point-to-point blocking channels (CH) for data exchange. In this

work, the language used to model the SBM is SystemC.

Definition 2. PS = {ps1, ps2, .. , psn} is a set of n concurrent

processes that communicate exclusively by means of channels and

use only local variables. Each process has a criticality level C(psi):

0 (lower) to max (higher) imposed by the designer depending on

the safety standard related to the specific application domain [3].

Definition 3. CH = {ch1, ch2, .. , chc} is a set of c logical

channels where each channel is characterized by source and

destination processes, and some details (i.e. size, type) about

transferred data.

Definition 4. RI: {(i1 ,o1), …, (ii ,oi)} is a set of inputs

(possibly timed), representative as much as possible of typical

system operating conditions of the system, and related expected

outputs, to be used for analysis and simulation-based validation.

NFCs are composed of Timing Constraints (TCs),

Architectural Constraints (ACs) and Scheduling Directives (SDs).

In this work, the TC expressed by the designer is the Time-to-

Completion (TTC) one. It is the time available to complete the

SBM execution from the first input trigger to the complete output

generation. ACs are related to the Target Form Factor (TFF) as

System On-chip (SoC: ASIC or FPGA) or System On-Board (SoB:

PCB) and to the Target Template Architecture (TTA) depending

on the available Basic Blocks (BBs). Finally, SDs specify the

available scheduling policies. At the moment, they are only First-

Came First-Served and Fixed Priority preemption ones [21].

Functional Simulation

C
o

n
cu

rr
en

cy

A
ff

in
it

y

Si
ze

Lo
a

d

Instances TLApplication

Mapping

PAM parameters

Partitioning
Timing

Simulation

C
o

m
u

n
ic

a
ti

o
n

Application

SYSTEM BEHAVIORAL MODEL

Instances TL

C
o
-E
st
im

at
io
n

C
o
-A
n
al
ys
is

SYSTEM-LEVEL FLOW

DESIGN SPACE EXPLORATION

ALGORITHMIC-LEVEL FLOW

HETEROGENEOUS PARALLEL DEDICATED SYSTEM

REFERENCE
INPUT

NF
CONSTRAINTS

Figure 1: Reference HW/SW Co-Design Framework.

3.2 Technologies Library and Basic Blocks

The target HW architectures is composed of different basic

HW components. These components are collected into a

Technologies Library (TL). TL can be considered as a generic

“database” that provides the characterization of the available

technologies.

Definition 5. TL = {PU, MU, EIL} is the Technology Library

where PU = {pu1, pu2, .. , pup} is a set of p Processing Units, MU

= {mu1, mu2, .. , mum} is a set of m Memory Units and IL = {il1,

il2, .. , ill} is a set of Interconnection Links.

However, the detailed characterizations are dependent on TFF.

The main differences are related to the different attributes needed

to characterize PU, MU, and IL. This work considers only TL for

SOB where each PU that executes SW shall be a discrete

Commercial Off-The-Shelf (COTS) Integrated Circuit (IC)

mounted on a board.

PU elements are then divided into two main groups: the ones

that perform processing by means of the execution of some

Instruction Set Architecture (ISA), called SW-PU, and the ones

that perform processing without relying on an ISA, called HW-

PU. Each pui in PU for PCB is characterized by a Name, a

Processor Type, Capacity (SW-PU: max allowed load; HW-PU:

 3

available resources as number of equivalent-gates, LUT, Cell,

etc.), ISA (only for SW-PU), Frequency, Context Switch Overhead

(only for SW-PU), a statement-level performance metric (like

CC4CS [22] or equivalent ones), and a unit cost (€). With respect

to Processor Type, PU elements are further classified in three

classes: General-Purpose Processors (SW-PU: GPP);

Application-Specific Processors (SW-PU: ASP) targeted to tasks

related to a particular application domain (e.g. Digital Signal

Processors, DSP); Single-Purpose Processor (HW-PU: SPP;

realized by means of ASIC or FPGA). MU elements are divided

in two main classes: Volatile Memory Units (VLMU) and Non-

Volatile Memory Units (NVLMU), with a main parameter related

to capacity (i.e. bytes). IL elements are characterized by some

parameters related to bandwidth, number of connectable items and

concurrency properties.

Figure 2: Design Space Exploration Approach.

The designer uses such components to build a set of Basic

Blocks (BB) (Instances TL).

Definition 6. BB = {bb1, bb2, .. , bbb} is the set of b Basic

Blocks available during DSE step to automatically define the HW

architecture. A generic BB is composed of a set of PU, a set of

MU and a Communication Unit (CU). CU represents the set of IL

that can be managed by a BB. BB internal architecture is

dependent on TFF and TTA. In particular, each BB element can

be generally composed of 1 or more PU elements, some MU

elements and 1 CU element. The target HW architecture can be

seen as a set of BB elements interconnected by means of one or

more IL elements. The type of available BB is automatically

defined by the selected TTA. This work focuses on

Heterogeneous Multi-Processor System with Distributed Memory

where each BB element is composed of only 1 PU element

(possibly heterogeneous among BB elements), some local MU

elements and 1 CU element. It is worth noting that the reference

methodology is able to consider other TTA, but the current

prototypal tools fully support only the one listed above [23].

3.3 ESL HW/SW Co-Design Flow

The first step of the adopted co-design flow is the Functional

Simulation where SBM is simulated to check its correctness with

respect to RI. Then, the next step aims at extracting as much as

possible information about the system by analyzing the SBM

(Application) while considering the available BB (Instances TL).

This step is supported by Co-Analysis and Co-Estimation

activities to evaluate/estimate several metrics related to the BB

involved in the design flow. Co-analysis performs evaluation of

Affinity [24], Concurrency and Communication metrics. Co-

estimation performs a Static Estimation of Size, and a Dynamic

Estimation of Load. After these steps, the reference co-design

flow reaches the DSE step (as shown in Figure 1 and Figure 2).

Starting from Application, Instances TL and PAM parameters, it

includes two iterative activities: “HW/SW Partitioning, Mapping

and Architecture Definition”, based on a genetic algorithm that

allows to explore the design space looking for feasible

mapping/architecture items suitable to satisfy imposed constraints;

“Timing Co-Simulation”, that considers suggested

mapping/architecture (Mapping) items to actually check for

timing constraints satisfaction.

4 Design Space Exploration Approach

The proposed DSE is based on a Genetic Algorithm (GA) used to

optimize a multi-objective cost function that quantifies the quality

of each individual of the GA population, as listed below:

𝐶𝐹𝑖,𝑗 = 𝑓𝑖,𝑗(𝑋1,𝑗 , 𝑋2,𝑗 , . . , 𝑋𝑘,𝑗) ∀ 𝑖 = 1 . . 𝐼, 𝑗 = 1 . . 𝑃 (1)

CF𝑖,𝑗 = 𝜔𝑇𝐷𝐴𝑋𝑇𝐷𝐴𝑗
+ 𝜔𝐸𝑃𝑋𝐸𝑃𝑗

+ 𝜔𝑁𝑇𝐶𝐶𝑋𝑁𝑇𝐶𝐶𝑗

+𝜔𝐿𝑋𝐿𝑗
+ 𝜔𝐶𝑋𝐶𝑗

+ 𝜔𝑆𝑋𝑆𝑗
+ 𝜔𝐶𝑅𝐼𝑇𝑋𝐶𝑅𝐼𝑇𝑗

(2)

CFi,j is the cost function evaluated at iteration i for each

individual j, I is the maximum number of iterations of the search

algorithm and P is the size of population at iteration i. Xk

represents the value of metric k for each individual, while ωk is

the weight associated to each metric. The rest of this paragraph

defines the metrics and the methods used to evaluate them. For

such a purpose, the instance of an individual INDj is defined as a

vector where the index represents processes and the value

represents BB instances, for example:

𝐼𝑁𝐷𝑗 = ⟨𝑎0|𝑎1| ⋯ |𝑎𝑖| ⋯ |𝑎𝑛⟩ with i = 𝑝𝑠𝑖 ∈ PS, 𝑎𝑖 ∈ BB (3)

The first metric considered is the Affinity Index. The Affinity

Ai = {[a1, a2, .. an] | ai = [A(GPPi), A(DSPi), A(SPPi)]} of a

process psi is a triplet of values in the interval [0,1] that provides a

quantification of the matching among the structural and functional

features of the functionality implemented by a process and the

architectural features of each one of the following processor

types: GPP, DSP, SPP. Higher the Affinity value, more suitable

the corresponding processor type. Starting from this definition, for

each individual INDj, it is possible to evaluate the Total Degree of

Affinity (TDA) Index as:

𝑋𝑇𝐷𝐴𝑗
= 1 −

∑ 𝑎𝑖
𝑛
𝑖=1

𝑛
 (4)

The second metric is related to Process Concurrency Index. It

is based on a Concurrency Matrix:

4

𝐶𝑂𝑁𝑃𝑆 = [

𝑐𝑜𝑛1,1 𝑐𝑜𝑛1,2 ⋯ 𝑐𝑜𝑛1,𝑛

𝑐𝑜𝑛2,1 𝑐𝑜𝑛2,2 ⋯ 𝑐𝑜𝑛2,𝑛

⋮ ⋮ ⋮ ⋮
𝑐𝑜𝑛𝑛,1 𝑐𝑜𝑛𝑛,2 ⋯ 𝑐𝑜𝑛𝑛,𝑛

] (5)

CONPS provides information about how much processes pairs

can be potentially concurrently “working”, where CONPS = {coni,z

≠ 0 : psi ˄ psz can be potentially executed concurrently}. So, for

each individual INDj, it is possible to define the Exploited

Parallelism (EP):

𝑋𝐸𝑃𝑗
=

∑ ∑ 𝐸𝐼𝐶𝑃𝑖,𝑧
𝑛
𝑧=1

𝑛
𝑖=1

𝑚𝑎𝑥𝐸𝑃
 (6)

EICP𝑖,𝑧 = {
con𝑖,𝑧 𝑖𝑓 𝑝𝑠𝑖 ∈ 𝑝𝑢𝑥 ∧ 𝑝𝑠𝑧 ∈ 𝑝𝑢𝑦 ∧ 𝑝𝑢𝑥 ≠ 𝑝𝑢𝑦

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7)

maxEP = ∑ ∑ 𝑐𝑜𝑛𝑖,𝑧

𝑛

𝑧=1

𝑛

𝑖=1
 (8)

EICP stands for Exploited Inter Cluster Parallelism, that

indicates how much an individual can exploit the potential

concurrency.

The third metric is the Process Communication Index. It is

based on a Communication Matrix:

𝐶𝑀𝑃𝑆 = [

𝑐𝑚1,1 𝑐𝑚1,2 ⋯ 𝑐𝑚1,𝑛

𝑐𝑚2,1 𝑐𝑚2,2 ⋯ 𝑐𝑚2,𝑛

⋮ ⋮ ⋮ ⋮
𝑐𝑚𝑛,1 𝑐𝑚𝑛,2 ⋯ 𝑐𝑚𝑛,𝑛

] (9)

CMPS is expressed by the number of bits sent/received over

each channel. So, for each individual INDj, it is possible to define

the Normalized Total Communication Cost (NTCC) Index as:

𝑋𝑁𝑇𝐶𝐶𝑗
=

∑ ∑ 𝐼𝐶𝐶𝐶𝑖,𝑧
𝑛
𝑧=1

𝑛
𝑖=1

𝑚𝑎𝑥𝑁𝑇𝐶𝐶
 (10)

ICCC𝑖,𝑧 = {
cm𝑖,𝑧 𝑖𝑓 𝑝𝑠𝑖 ∈ 𝑝𝑢𝑥 ∧ 𝑝𝑠𝑧 ∈ 𝑝𝑢𝑦 ∧ 𝑝𝑢𝑥 ≠ 𝑝𝑢𝑦

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11)

maxNTCC = ∑ ∑ 𝑐𝑚𝑖,𝑧

𝑛

𝑧=1

𝑛

𝑖=1
 (12)

ICCC stands for Inter Cluster Communication Cost, that is the

cost associated to process communication if processes are

allocated on different processors.

The fourth metric is the Load Index. The Load Li is the load

that each psi would impose to each non-SPP processor (used in at

least one BB) to satisfy TTC. Li is estimated by allocating all the n

processes to a single-instance of each software processor and

performing some simulations. Three parameters have to be

computed: FRTz (Free Running Time), i.e. the total application

simulated time on processor puz; ti, the simulated time for each

process psi on processor puz; Ni, the number of executions.

Starting from these estimated parameters, the Free Running Load

FRLi is calculated by the equation:

𝐹𝑅𝐿𝑖 =
(𝑡𝑖∗𝑁𝑖)

𝐹𝑅𝑇𝑧
 ∀𝑖 = 1. . 𝑛 (13)

where FRTz/Ni is the average period of each processes on

processor puz. By imposing that the simulated time shall be equal

to TTC, it is possible to evaluate the Load Li that processes psi

would impose to the SW processor to satisfy TTC itself. In fact,

setting FRTz equal to TTC, for each process/processor pair, such

as:

TTC = 𝑥𝑧 ∗ 𝐹𝑅𝑇𝑧 𝑤𝑖𝑡ℎ 0 ≤ 𝑥𝑧 ≤ 1 (14)

The value of estimated Load Li that the system imposes to

processor puz to satisfy TTC is:

L 𝑖 =
(𝑡𝑖 ∗ 𝑁𝑖)

𝑇𝑇𝐶
=

(𝑡𝑖 ∗ 𝑁𝑖)

𝐹𝑅𝑇𝑧

∗
𝐹𝑅𝑇𝑧

𝑇𝑇𝐶
=

𝐹𝑅𝐿𝑖

𝑥𝑧

 ∀𝑖 = 1. . 𝑛 (15)

From a DSE perspective, by considering the sum of the Load

Li of all the processes allocated to a GPP/ASP, it is possible to

check if the total imposed Load is acceptable. So, it is possible to

define the Load Index as:

X𝐿𝑗
= 1 −

∑ 𝐿𝑖
𝑠
𝑖=1

𝑠
 𝑤𝑖𝑡ℎ 𝑠 = 𝑠𝑖𝑧𝑒(𝑃𝑈) − 𝑠𝑖𝑧𝑒(𝐻𝑊_𝑃𝑈) (16)

L 𝑖 = {

𝐹𝑅𝐿𝑖

𝑥𝑧

 𝑖𝑓 𝑇𝑇𝐶 ≤ 𝐹𝑅𝑇𝑧

𝐹𝑅𝐿𝑖 𝑖𝑓 𝑇𝑇𝐶 > 𝐹𝑅𝑇𝑧

 (17)

The fifth metric is the Cost Index. This is a metric related to

the monetary cost Ci associated to each bbi considered in the

specific INDj (considering PU, MU and CU):

X𝐶𝑗
=

∑ 𝐶𝑖
𝑑
𝑖=1

𝑚𝑎𝑥𝐶𝑂𝑆𝑇
 𝑤𝑖𝑡ℎ 𝑑 = (# 𝑏𝑏𝑖 𝑢𝑠𝑒𝑑 𝑖𝑛 𝐼𝑁𝐷𝑗) (18)

maxCOST = size(BB) ∗ max(C𝑖) (19)

The sixth metric is the Size Index. Size is a set of estimations

for each statement of each process with respect to each available

processor. It is related to number of bytes or area/resources

metrics depending on SW or HW implementations:

X𝑠𝑗
= 𝑋𝑆𝑊 + 𝑋𝐻𝑊 (20)

X𝑆𝑊 =
∑ (𝑅𝐴𝑀𝑖 + 𝑅𝑂𝑀𝑖) − 𝑚𝑎𝑥𝑆𝐼𝑍𝐸_𝑆𝑊𝑠

𝑖=1

𝑚𝑎𝑧𝑆𝐼𝑍𝐸_𝑆𝑊
 (21)

X𝐻𝑊 =
∑ (𝑒𝑞𝐺𝑖) − 𝑚𝑎𝑥𝑆𝐼𝑍𝐸_𝐻𝑊ℎ

𝑖=1

𝑚𝑎𝑧𝑆𝐼𝑍𝐸_𝐻𝑊
 (22)

RAMi and ROMi are the size value of each process psi

allocated on SW processor pux. eqGi is the equivalent gate value

associated to each process psz allocated on HW processor puy.

The final metric, specifically introduced in this paper, is the

Criticality Index, related to the criticality level associated to each

psi such as:

X𝐶𝑅𝐼𝑇 = {
0 𝑖𝑓 𝐶(𝑝𝑠𝑖) − 𝐶(𝑝𝑠𝑗) = 0 ∧ 𝑝𝑠𝑖 ∈ 𝑝𝑢𝑥 ∧ 𝑝𝑠𝑗 ∈ 𝑝𝑢𝑦 ∧ 𝑝𝑢𝑥 = 𝑝𝑢𝑦

1 𝑖𝑓 𝐶(𝑝𝑠𝑖) − 𝐶(𝑝𝑠𝑗) > 0 ∧ 𝑝𝑠𝑖 ∈ 𝑝𝑢𝑥 ∧ 𝑝𝑠𝑗 ∈ 𝑝𝑢𝑦 ∧ 𝑝𝑢𝑥 = 𝑝𝑢𝑦

 (23)

The goal behind this metric is to avoid having processes with

different criticality levels on the same (shared) processor/core

resource. If the constraint is not satisfied, the index value becomes

1, so the final cost function has a higher value if an individual

doesn’t satisfy criticality constraint.

4.1 DSE with mixed-criticality constraints

Considering the criticality level associated to each process, this

work proposes different methods to manage mixed-criticality

constraints to avoid interferences derived from damages or

software errors and bugs. The main idea is to drive the DSE to

avoid having processes with different criticality levels allocated

on the same (shared) processor/core. For this, it is exploited the

previously defined Criticality Index. Moreover, it is also possible

to exploit the possibility to constrain the initial population of the

GA to have only feasible individuals, and/or to constrain the

crossover and mutation steps to make the population evolving

 5

only with feasible individuals (with respect to criticality

constraints) avoiding generation of unfeasible solutions [25].

Figure 3: Design space representation with MC

requirements.

5 Validation

This section presents some results related to the DSE step. Fig.

3 shows a design space where mixed-criticality constraints are

introduced into classical DSE methods. Limiting the processes

allocation taking into account mixed-criticality has two main

effects: to increase the minimum cost value and to decrease the

maximum execution time, because the number of BBs instances

will not be less than the number of criticality levels (Figure 3).

Table 1: DSE Parameter Settings

Parameters Nr. Values

BBs ≤ 8
2 8051, 2 DSPIC, 2 LEON3,

2 Spartan3an, 2 Virtex-7

App. processes 8 CSP processes

App. Channels 15 CSP channels

GA Selection 1 Random

GA Crossover (C) 1 One-Point

C probability (pc) 1 0.3

GA Mutation (M) 1 Random

M probability (pm) 1 0.1

Survival Selection (S) 1 Fitness-Based

S probability (ps) 1 0.15

Search Iteration (I) 40 -

Initial Population Size (P) 1000 Number of Starting individuals

Table 1 shows the parameters setting related to DSE

performed in this section. In the validation step, the available BBs

are: bb1 (SW_PU, GPP): 16 MHz 8-bit 8051 CISC core with 128

byte of Internal RAM, 64KB of internal ROM (cost 10); bb2

(SW_PU, DSP): 16 MHz 16-bit PIC24 core with 14KB of internal

ROM and 1KB of internal RAM (cost 20); bb3 (SW-PU, GPP):

150 MHz 32-bit LEON3 soft-processor with 2*4 KB L1 caches,

RAM size of 4096 KB and a ROM of 2048 KB (cost 100); bb4

(HW-PU, ASP): 50 MHz Spartan3an (cost 400). bb5 (HW_PU,

ASP): 250 MHz Virtex-7 (cost 900). Considering AC, the

maximum number of instances for each bbi is 2, the maximum

number of instances of bbi considered into the DSE is equal to the

number of processes (8) and bbi are supposed to communicate by

means of a shared bus.

Figure 4: Simulated time with respect to different

weights.

A first analysis involves the impact of the different metrics

(i.e. indexes) with respect to the simulated time of the final

system. Fig. 4 shows some radar charts where each angle

represents the simulated time related to DSE solutions while

setting one weight equal to 1 and the other ones to zero. The only

metrics TTC-dependent is the load L, so the charts present

different values for the Load Index when changing requested

TTC. It is possible to see that the only metrics that badly drives

the DSE with respect to timing performance is the Cost Index

metrics, as could be expected if your goal is only to limit the cost.

The other metrics find a sub-optimal solution every time,

considering a decreasing TTC. In the adopted case study, the

lower bound in the simulated time is driven by the arrival time of

the input triggers (i.e. 20 inputs each one every 1 ms), so the

simulated time is hovering around 20 ms.

Figure 5: DSE small-set result.

After that, Figure 5 shows a subset of solutions suggested by

the DSE while considering different weights and TTCs, with and

without MC constraints. As expected, the Pareto set with no MC

constraints (blue points more to the left) have solutions with a

lower cost with respect to solutions with MC constraints (orange

points, as shown in Figure 5). Considering the best solutions, the

advantages of this DSE step is to directly identify individuals

optimizing different metrics at the same time. Starting from the

Worst Case TTC (0,06710 s) equal to the simulated time evaluated

by means of a timing co-simulation performed allocating all the

processes on the slowest available processor (in this case the one

in bb1), the DSE suggests a set of architecture/mapping pairs able

to provide TTCs equal, respectively, to 0.90*WCTTC (0,06039

s), 0.75*WCTTC (0,05033 s), 0.5*WCTTC (0,03355 s),

0.40*WCTTC (0,02684 s) and 0.25*WCTTC (0,01678 s, it is

worth noting that such a value is under the lower-bound, so the

final simulated time is still above 0.02 s). Given the previous set

of TTC constraints, the DSE provides the results shown in Figure

6. The results are always under the blue Requested Time line, with

costs that increase with the decreasing simulated time (i.e. from

right to left). When considering also MC constraints, the DSE

0
0,005

0,01
0,015

0,02
0,025

0,03
0,035

0,04

L

Affinity

Par

Comm

Cost

Crit

DSE
TTC (s)

0
0,005

0,01
0,015

0,02
0,025

0,03
0,035

0,04

L

Affinity

Par

Comm

Cost

Crit

DSE
TTC (s)

0
0,005

0,01
0,015

0,02
0,025

0,03
0,035

0,04

L

Affinity

Par

Comm

Cost

Crit

DSE

TTC (s)

0,02

0,02

0,03

0,03

0,04

0,04

0,05

0 500 1000 1500 2000 2500 3000

Si
m

u
la

te
d

 T
im

e
 (

s)

Cost

DSE Normal
Mixed-Criticality DSE

6

suggests solutions that are under the green Estimated Time line

but with higher costs. In fact, MC applications are more expensive

in terms of resources and the final solution space is reduced.

Figure 6: DSE step results

All the steps, prior to DSE one, have been executed in a few

minutes (on a high-end notebook). It is worth noting that this is a

one-time effort, while the time for the DSE step depends on

designer experience and number of considered constraints. A

more exhaustive analysis involves more time (Figure 5) with

respect to one that directly suggest a possible

partitioning/mapping item able to satisfy all the constraints. Just to

propose an example, by exploiting an Intel Core i7-6700HQ 2.60

GHz CPU, 16 GB RAM and 64-bit Xubuntu 16.04 operating

systems, the chart in Figure 6 has been achieved in 5 min,

considering also MC constraints, meanwhile Figure 5 has been

achieved in about 15 min because timing simulation has been the

most expensive step.

6 CONCLUSIONS

This work has proposed a criticality-driven design space

exploration for mixed-criticality heterogeneous parallel embedded

systems. By introducing the Criticality Index into an evolutionary

algorithm, the DSE is able to suggest solutions that fulfill

constraints avoiding allocating applications with different levels

of criticality on the same shared resource. Results show that

mixed-criticality solutions are typically more expensive, and that

this work helps to partition in a fast way processes into a

heterogeneous parallel platform. Future works involve the

introduction into the DSE step also the concept of SW partitions

in order to allow modeling also hypervisors technologies.

ACKNOWLEDGMENTS

This work has been partially supported by the ECSEL RIA 2016

MegaM@Rt2 and AQUAS projects.

REFERENCES
[1] Prisaznuk, P. J.: Integrated Modular Avionics. In: Proceedings of the IEEE

National Aerospace and Electronics Conference (NAECON), 1992.

[2] ISO 26262 - Road vehicles a Functional safety. Geneva, Switzerland, 2011.

[3] Baruah, S., Li, H., Stougie, L.: Towards the Design of Certifiable Mixed-

criticality Systems, In: Proceedings of the 16th IEEE RealTime and Embedded

Technology and Applications Symposium (RTAS), 2010, pp. 13-22

[4] Pellizzoni, R., Meredith, P., Nam, M. Y., Sun, M., Caccamo, M., Sha, L.:

Handling mixed-criticality in SoC-based real-time embedded systems, In:

Proceedings Of the 7th ACM international conference on Embedded software

(EMSOFT), 2009.

[5] Vestal., S.: Preemptive scheduling of multi-criticality systems with varying

degrees of execution time assurance. In: 28th IEEE International Real-Time

Systems Symposium (RTSS), 2007, pp. 239-243.

[6] Burns, A., Davis, R. I.: Mixed Criticality Systems - A Review. In: Research

report, University of York, 2014.

[7] Baruah, S., Li, H., Stougie, L.: Towards the Design of Certifiable Mixed-

criticality Systems, In: Proceedings of the 16th IEEE Real Time and Embedded

Technology and Applications Symposium (RTAS), 2010, pp. 13-22.

[8] Esper, A., Nelissen, G., and Nélis, V., Tovar, E.: How realistic is the mixed-

criticality real-time system model?. In: Proceedings of the 23rd International

Conference on Real Time and Networks Systems (RTNS), 2015, pp. 139-148.

[9] Barhorst, J., Belote, T., Binns, P., Hoffman, J., Paunicka, J., Sarathy, P.,

Stanfill, J. S. P., Stuart, D., Urzi, R.: A research agenda for mixed-criticality

systems. In: Workshop on Mixed Criticality (CPS Week), 2009.

[10] J. Teich, "Hardware/Software Codesign: The Past, the Present, and Predicting

the Future," in Proceedings of the IEEE, vol. 100, no. Special Centennial Issue,

2012, pp. 1411-1430.

[11] Voss, S., Eder, J., Hölzl, F. Design Space Exploration and its Visualization in

AUTOFOCUS3. In: Software Engineering (Workshops), 2014, pp. 57-66.

[12] Herrera, F., Pablo, P., and Eugenio, V. "A model-based, single-source approach

to design-space exploration and synthesis of mixed-criticality systems."

Proceedings of the 18th International Workshop on Software and Compilers for

Embedded Systems. ACM, 2015.

[13] Contrex project, https://contrex.offis.de/home/

[14] V. Zaccaria, G. Palermo, F. Castro, C. Silvano and G. Mariani, "Multicube

Explorer: An Open Source Framework for Design Space Exploration of Chip

Multi-Processors," 23th International Conference on Architecture of

Computing Systems 2010, Hannover, Germany, 2010, pp. 1-7.

[15] Herrera, F. and Sander, I. Combining analytical and simulation-based design

space exploration for time-critical systems. Proceedings of the 2013 Forum on

specification and Design Languages (FDL), Paris, France, 2013, pp. 1-8.

[16] Rosvall, K., Khalilzad, N., Ungureanu, G. and Sander., I. Throughput

Propagation in Constraint-Based Design Space Exploration for Mixed-

Criticality Systems. In Proceedings of the 9th Workshop on Rapid Simulation

and Performance Evaluation: Methods and Tools (RAPIDO '17). ACM, New

York, NY, USA, 2017.

[17] Hepsycode: A System-Level Methodology for HW/SW Co-Design of

Heterogeneous Parallel Dedicated Systems, www.hepsycode.com, Accessed

13/09/2017.

[18] Pomante, L. System-level design space exploration for dedicated heterogeneous

multi-processor systems. Conference on Application-specific Systems,

Architectures and Processors (ASAP), 2011, pp. 79-86.

[19] D. Di Pompeo, E. Incerto, V. Muttillo, L. Pomante, G. Valente. An Efficient

Performance-Driven Approach for HW/SW Co-Design. In Proceedings of the

8th ACM/SPEC on International Conference on Performance Engineering

(ICPE '17). ACM, New York, NY, USA, 2017, pp. 323-326.

[20] Hoare, C. A. R. Communicating sequential processes. Springer, New York,

NY, 1978, pp. 413-443.

[21] V. Muttillo, G. Valente, D. Ciambrone, V. Stoico, and L. Pomante.

HEPSYCODE-RT: a Real-Time Extension for an ESL HW/SW Co-Design

Methodology. In Proceedings of the 10th Workshop on Rapid Simulation and

Performance Evaluation: Methods and Tools (RAPIDO '18). ACM, New York,

NY, USA, 2018.

[22] V. Stoico, V. Muttillo, G. Valente, F. D'Antonio. "CC4CS: A Unifying

Statement-Level Performance Metric for HW/SW Technologies", Euromicro

Conference on Digital Systems Design (DSD) - WIP Session, 2017.

[23] L. Pomante. HW/SW Co-Design of Dedicated Heterogeneous Parallel Systems:

an Extended Design Space Exploration Approach. IET Computers & Digital

Techniques, vol. 7, no. 6, pp. 246-254, Nov. 2013.

[24] L. Pomante, D. Sciuto, F. Salice, W. Fornaciari, C. Brandolese. Affinity-Driven

System Design Exploration for Heterogeneous Multiprocessor SoC. IEEE

Transactions on Computers, vol. 55, no. 5, May 2006.

[25] V. Muttillo, G. Valente and L. Pomante. Criticality-aware Design Space

Exploration for Mixed-Criticality Embedded Systems. In Proceedings of the

9th ACM/SPEC on International Conference on Performance Engineering

(ICPE '18). 2018. Accepted.

0,06710

0,06039

0,05033

0,03355

0,02684

0,01678

0,04317

0,04317

0,03188

0,026750,02125
0,030010,03001

0,021010,02059
0,02002

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,01 0,02 0,03 0,04 0,05 0,06 0,07

Si
m

u
la

te
d

 t
im

e
 (

s)

TTC (s)

Requested Time
Estimated Time
Estimated Time (Mixed-Criticality)

Cost=1710
Cost=1330

Cost=1310

Cost=1310

Cost=1310

Cost=1800
Cost=1330

Cost=1800Cost=1710
Cost=2600

