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ABSTRACT 

Heterogeneous platforms are becoming widely diffused in the 

embedded system area, mainly because of the opportunities to 

increase application execution performance and, at the same time, 

to optimize other orthogonal metrics. In such a context, the 

introduction of mixed-criticality constraints, while considering 

heterogenous parallel architectures, creates new challenges to 

industrial and academic research. The main design issue is related 

to a Design Space Exploration (DSE) approach able to cope with 

mixed-criticality constraints that typically limits the number of 

feasible solutions. So, this work focuses on DSE for embedded 

systems based on heterogeneous parallel architectures and 

subjected to mixed-criticality constraints. In particular, it presents 

a criticality-driven evolutionary approach integrated into a 

reference Electronic System Level HW/SW Co-Design flow to 

support the designer of mixed-criticality embedded systems. 
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1 INTRODUCTION 

In recent years, there has been a growing trend for switching 

from single-processor/core to (heterogeneous) multi-

processor/core (i.e. parallel) platforms to execute embedded 

applications with different levels of criticality (i.e. Mixed-

Criticality Embedded Systems, MCESs). In case of single-

processor/core MCESs, it is crucial to ensure temporal isolation 

between tasks. In fact, such MCES can be viewed as systems with 

Time Division Multiple Access (TDMA), in which resources are 

assigned to each task in different time slots. In case of parallel 

MCESs, different embedded applications run in parallel on 

different processors competing for the access to shared resources, 

using different communication and synchronization mechanisms. 

The main problem in the management of a MCES is to ensure 

that low criticality embedded applications do not interfere with 

high criticality ones. This type of systems can be found in many 

domains such as aerospace [1] or automotive industry [2]. The 

basis for integrating mixed-criticality applications on a single 

embedded platform are all the mechanisms that allow to create 

multiple partitions with a strict temporal and/or spatial isolation 

[4]. According to this approach, embedded applications with 

different criticality levels can be allocated on different partitions. 

In such a context, the purpose of this work is to present a Design 

Space Exploration (DSE) step, integrated into an Electronic 

System-Level (ESL) HW/SW Co-Design framework, to support the 

development of heterogeneous parallel MCES. The remainder of 

the paper is organized as follows: Section II presents related 

works that consider mixed-critical requirements into the whole 

design flow. Section III describes the adopted design flow, while 

Section IV presents the main features of the proposed DSE 

approach. Then, Section V analyzes experimental results. Finally, 

Section VI closes the paper with some conclusions and future 

works description. 

2 Design Space Exploration for Safety Critical 

Applications 

In the last few years, a growing trend in the embedded systems 

domain is to run multiple embedded applications with different 

levels of criticality on a shared hardware platform. The criticality 

of an application is an indication of the required level of safety 

and security (i.e. assurance). After Vestal mixed-criticality paper 

[5], that first analyzed mixed-criticality system with focus on real-

time performances, a series of research papers have been 

published [6], with no standard problem formulation with respect 

to the assurance level and the real-time task model [7][8][9]. In 

such a context, the most critical development steps are related to 

the System Specification and the Design Space Exploration 

activities [10] and the main differences among the various works 

in the literature are mainly related to the different amount of 

information and actions that explicitly rely on the designer 

experience. For example, AUTOFOCUS3 [11] proposes a model-

based development process at different levels of abstraction 

introducing safety-oriented constraints associated to computing 

components. The tool assigns the levels of criticality to 

application tasks and computing resources, avoiding the allocation 

of high-criticality tasks to low-criticality resources. Another work, 

called CONTREP (CONTREX Eclipse plug-in, [12]) is a 

framework supporting UML/MARTE based modeling, analysis 

and design of mixed-criticality embedded systems. It is based on 

the CONTREX UML/MARTE modeling methodology [13] and 

considers safety constraints into the different design activities, 
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integrating external tool like Multicube Explorer [14] for the DSE 

step. The work in [15] proposes a combined-DSE flow for design 

of time-critical systems. Starting from a joint analytical and 

simulation-based (JSA) DSE phase, while relying on constraint 

programming and worst-case estimations, it filters the design 

space and get a set of safe solutions. Finally, DeSyDe [16] 

provides a DSE tool for bare-metal applications, finding 

implementations for a set of tasks on a shared multi-processor 

platform starting from synchronous dataflow graphs (SDFGs), 

used to describe the application, and a predictable model for target 

platform. 

So, at the best of our knowledge, there are few works that 

introduce mixed-criticality issues directly into a HW/SW co-

design flow. In this context, this work proposes a DSE approach 

that is able to consider mixed-criticality issues into the 

development of heterogeneous parallel MCES. The main 

differences among the proposed approach and the previous works 

are related to the system behavior model, that is based on a CSP-

like (Communicating Sequential Processes) Model of 

Computation (MoC) that allows to perform several analysis and 

estimations. Then, the proposed approach is able to suggest a 

criticality-aware HW/SW partitioning/mapping by means of an 

evolutionary approach. 

3 Reference HW/SW Co-Design Framework  

In the context of MCES, this work adopts a specific framework 

(HEPSYCODE: HW/SW Co-Design of Heterogeneous Parallel 

Dedicated Systems) [17], based on an existing Electronic System-

Level HW/SW Co-Design Methodology [18], and introduces the 

possibility to specify mixed-criticality requirements. The 

framework is shown in Figure 1. 

3.1 Modeling Language  

The system behavior modeling language, named HML (HEPSY 

Modeling Language) [19], is based on the well-known CSP MoC 

[20]. By means of HML it is possible to specify the System 

Behavior Model (SBM), an executable model of the system 

behavior, a set of Non–Functional Constraints (NFCs) and a set 

of Reference Inputs (RI) to be used for simulation-based activities. 

Definition 1. SBM = {PS, CH} is a CSP-based executable 

model of the system behavior that explicitly defines also a model 

of communication among processes (PS) using unidirectional 

point-to-point blocking channels (CH) for data exchange. In this 

work, the language used to model the SBM is SystemC. 

Definition 2. PS = {ps1, ps2, .. , psn} is a set of n concurrent 

processes that communicate exclusively by means of channels and 

use only local variables. Each process has a criticality level C(psi): 

0 (lower) to max (higher) imposed by the designer depending on 

the safety standard related to the specific application domain [3].  

Definition 3. CH = {ch1, ch2, .. , chc} is a set of c logical 

channels where each channel is characterized by source and 

destination processes, and some details (i.e. size, type) about 

transferred data. 

Definition 4. RI: {(i1 ,o1), …, (ii ,oi)} is a set of inputs 

(possibly timed), representative as much as possible of typical 

system operating conditions of the system, and related expected 

outputs, to be used for analysis and simulation-based validation. 

NFCs are composed of Timing Constraints (TCs), 

Architectural Constraints (ACs) and Scheduling Directives (SDs). 

In this work, the TC expressed by the designer is the Time-to-

Completion (TTC) one. It is the time available to complete the 

SBM execution from the first input trigger to the complete output 

generation. ACs are related to the Target Form Factor (TFF) as 

System On-chip (SoC: ASIC or FPGA) or System On-Board (SoB: 

PCB) and to the Target Template Architecture (TTA) depending 

on the available Basic Blocks (BBs). Finally, SDs specify the 

available scheduling policies. At the moment, they are only First-

Came First-Served and Fixed Priority preemption ones [21]. 
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Figure 1: Reference HW/SW Co-Design Framework. 

3.2  Technologies Library and Basic Blocks 

The target HW architectures is composed of different basic 

HW components. These components are collected into a 

Technologies Library (TL). TL can be considered as a generic 

“database” that provides the characterization of the available 

technologies.  

Definition 5.  TL = {PU, MU, EIL} is the Technology Library 

where PU = {pu1, pu2, .. , pup} is a set of p Processing Units, MU 

= {mu1, mu2, .. , mum} is a set of m Memory Units and IL = {il1, 

il2, .. , ill} is a set of Interconnection Links.  

However, the detailed characterizations are dependent on TFF. 

The main differences are related to the different attributes needed 

to characterize PU, MU, and IL. This work considers only TL for 

SOB where each PU that executes SW shall be a discrete 

Commercial Off-The-Shelf (COTS) Integrated Circuit (IC) 

mounted on a board. 

PU elements are then divided into two main groups: the ones 

that perform processing by means of the execution of some 

Instruction Set Architecture (ISA), called SW-PU, and the ones 

that perform processing without relying on an ISA, called HW-

PU. Each pui in PU for PCB is characterized by a Name, a 

Processor Type, Capacity (SW-PU: max allowed load; HW-PU: 
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available resources as number of equivalent-gates, LUT, Cell, 

etc.), ISA (only for SW-PU), Frequency, Context Switch Overhead 

(only for SW-PU), a statement-level performance metric (like 

CC4CS [22] or equivalent ones), and a unit cost (€). With respect 

to Processor Type, PU elements are further classified in three 

classes: General-Purpose Processors (SW-PU: GPP); 

Application-Specific Processors (SW-PU: ASP) targeted to tasks 

related to a particular application domain (e.g.  Digital Signal 

Processors, DSP); Single-Purpose Processor (HW-PU: SPP; 

realized by means of ASIC or FPGA). MU elements are divided 

in two main classes: Volatile Memory Units (VLMU) and Non-

Volatile Memory Units (NVLMU), with a main parameter related 

to capacity (i.e. bytes). IL elements are characterized by some 

parameters related to bandwidth, number of connectable items and 

concurrency properties. 

 

Figure 2: Design Space Exploration Approach. 

The designer uses such components to build a set of Basic 

Blocks (BB) (Instances TL).  

Definition 6. BB = {bb1, bb2, .. , bbb} is the set of b Basic 

Blocks available during DSE step to automatically define the HW 

architecture. A generic BB is composed of a set of PU, a set of 

MU and a Communication Unit (CU). CU represents the set of IL 

that can be managed by a BB. BB internal architecture is 

dependent on TFF and TTA. In particular, each BB element can 

be generally composed of 1 or more PU elements, some MU 

elements and 1 CU element. The target HW architecture can be 

seen as a set of BB elements interconnected by means of one or 

more IL elements. The type of available BB is automatically 

defined by the selected TTA. This work focuses on 

Heterogeneous Multi-Processor System with Distributed Memory 

where each BB element is composed of only 1 PU element 

(possibly heterogeneous among BB elements), some local MU 

elements and 1 CU element. It is worth noting that the reference 

methodology is able to consider other TTA, but the current 

prototypal tools fully support only the one listed above [23]. 

3.3 ESL HW/SW Co-Design Flow 

The first step of the adopted co-design flow is the Functional 

Simulation where SBM is simulated to check its correctness with 

respect to RI. Then, the next step aims at extracting as much as 

possible information about the system by analyzing the SBM 

(Application) while considering the available BB (Instances TL). 

This step is supported by Co-Analysis and Co-Estimation 

activities to evaluate/estimate several metrics related to the BB 

involved in the design flow. Co-analysis performs evaluation of 

Affinity [24], Concurrency and Communication metrics. Co-

estimation performs a Static Estimation of Size, and a Dynamic 

Estimation of Load. After these steps, the reference co-design 

flow reaches the DSE step (as shown in Figure 1 and Figure 2). 

Starting from Application, Instances TL and PAM parameters, it 

includes two iterative activities: “HW/SW Partitioning, Mapping 

and Architecture Definition”, based on a genetic algorithm that 

allows to explore the design space looking for feasible 

mapping/architecture items suitable to satisfy imposed constraints; 

“Timing Co-Simulation”, that considers suggested 

mapping/architecture (Mapping) items to actually check for 

timing constraints satisfaction. 

4 Design Space Exploration Approach 

The proposed DSE is based on a Genetic Algorithm (GA) used to 

optimize a multi-objective cost function that quantifies the quality 

of each individual of the GA population, as listed below: 

𝐶𝐹𝑖,𝑗 = 𝑓𝑖,𝑗(𝑋1,𝑗 , 𝑋2,𝑗 , . . , 𝑋𝑘,𝑗)    ∀ 𝑖 = 1 . . 𝐼, 𝑗 = 1 . . 𝑃 (1) 

CF𝑖,𝑗 =  𝜔𝑇𝐷𝐴𝑋𝑇𝐷𝐴𝑗
+ 𝜔𝐸𝑃𝑋𝐸𝑃𝑗

+ 𝜔𝑁𝑇𝐶𝐶𝑋𝑁𝑇𝐶𝐶𝑗
 

+𝜔𝐿𝑋𝐿𝑗
+ 𝜔𝐶𝑋𝐶𝑗

+ 𝜔𝑆𝑋𝑆𝑗
+ 𝜔𝐶𝑅𝐼𝑇𝑋𝐶𝑅𝐼𝑇𝑗

 
(2) 

CFi,j is the cost function evaluated at iteration i for each 

individual j, I is the maximum number of iterations of the search 

algorithm and P is the size of population at iteration i. Xk 

represents the value of metric k for each individual, while ωk is 

the weight associated to each metric. The rest of this paragraph 

defines the metrics and the methods used to evaluate them. For 

such a purpose, the instance of an individual INDj is defined as a 

vector where the index represents processes and the value 

represents BB instances, for example: 

𝐼𝑁𝐷𝑗 =  ⟨𝑎0|𝑎1| ⋯ |𝑎𝑖| ⋯ |𝑎𝑛⟩  with i =  𝑝𝑠𝑖 ∈ PS, 𝑎𝑖 ∈ BB (3) 

The first metric considered is the Affinity Index. The Affinity 

Ai = {[a1, a2, .. an] | ai = [A(GPPi), A(DSPi), A(SPPi)]} of a 

process psi is a triplet of values in the interval [0,1] that provides a 

quantification of the matching among the structural and functional 

features of the functionality implemented by a process and the 

architectural features of each one of the following processor 

types: GPP, DSP, SPP. Higher the Affinity value, more suitable 

the corresponding processor type. Starting from this definition, for 

each individual INDj, it is possible to evaluate the Total Degree of 

Affinity (TDA) Index as: 

𝑋𝑇𝐷𝐴𝑗
= 1 − 

∑ 𝑎𝑖
𝑛
𝑖=1

𝑛
 (4) 

The second metric is related to Process Concurrency Index. It 

is based on a Concurrency Matrix:  
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𝐶𝑂𝑁𝑃𝑆 =  [  

𝑐𝑜𝑛1,1 𝑐𝑜𝑛1,2 ⋯ 𝑐𝑜𝑛1,𝑛

𝑐𝑜𝑛2,1 𝑐𝑜𝑛2,2 ⋯ 𝑐𝑜𝑛2,𝑛

⋮ ⋮ ⋮ ⋮
𝑐𝑜𝑛𝑛,1 𝑐𝑜𝑛𝑛,2 ⋯ 𝑐𝑜𝑛𝑛,𝑛

  ] (5) 

CONPS provides information about how much processes pairs 

can be potentially concurrently “working”, where CONPS = {coni,z 

≠ 0 : psi ˄ psz can be potentially executed concurrently}. So, for 

each individual INDj, it is possible to define the Exploited 

Parallelism (EP): 

𝑋𝐸𝑃𝑗
=

∑ ∑ 𝐸𝐼𝐶𝑃𝑖,𝑧
𝑛
𝑧=1

𝑛
𝑖=1

𝑚𝑎𝑥𝐸𝑃
 (6) 

EICP𝑖,𝑧 = {
con𝑖,𝑧   𝑖𝑓 𝑝𝑠𝑖 ∈ 𝑝𝑢𝑥 ∧ 𝑝𝑠𝑧 ∈ 𝑝𝑢𝑦 ∧ 𝑝𝑢𝑥 ≠ 𝑝𝑢𝑦

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7) 

maxEP =  ∑ ∑ 𝑐𝑜𝑛𝑖,𝑧

𝑛

𝑧=1

𝑛

𝑖=1
    (8)    

EICP stands for Exploited Inter Cluster Parallelism, that 

indicates how much an individual can exploit the potential 

concurrency. 

The third metric is the Process Communication Index. It is 

based on a Communication Matrix: 

𝐶𝑀𝑃𝑆 =  [  

𝑐𝑚1,1 𝑐𝑚1,2 ⋯ 𝑐𝑚1,𝑛

𝑐𝑚2,1 𝑐𝑚2,2 ⋯ 𝑐𝑚2,𝑛

⋮ ⋮ ⋮ ⋮
𝑐𝑚𝑛,1 𝑐𝑚𝑛,2 ⋯ 𝑐𝑚𝑛,𝑛

  ] (9) 

CMPS is expressed by the number of bits sent/received over 

each channel. So, for each individual INDj, it is possible to define 

the Normalized Total Communication Cost (NTCC) Index as: 

𝑋𝑁𝑇𝐶𝐶𝑗
=

∑ ∑ 𝐼𝐶𝐶𝐶𝑖,𝑧
𝑛
𝑧=1

𝑛
𝑖=1

𝑚𝑎𝑥𝑁𝑇𝐶𝐶
  (10) 

ICCC𝑖,𝑧 = {
cm𝑖,𝑧     𝑖𝑓 𝑝𝑠𝑖 ∈ 𝑝𝑢𝑥 ∧ 𝑝𝑠𝑧 ∈ 𝑝𝑢𝑦 ∧ 𝑝𝑢𝑥 ≠ 𝑝𝑢𝑦

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11) 

maxNTCC =   ∑ ∑ 𝑐𝑚𝑖,𝑧

𝑛

𝑧=1

𝑛

𝑖=1
  (12) 

ICCC stands for Inter Cluster Communication Cost, that is the 

cost associated to process communication if processes are 

allocated on different processors. 

The fourth metric is the Load Index. The Load Li is the load 

that each psi would impose to each non-SPP processor (used in at 

least one BB) to satisfy TTC. Li is estimated by allocating all the n 

processes to a single-instance of each software processor and 

performing some simulations. Three parameters have to be 

computed: FRTz (Free Running Time), i.e. the total application 

simulated time on processor puz; ti, the simulated time for each 

process psi on processor puz; Ni, the number of executions. 

Starting from these estimated parameters, the Free Running Load 

FRLi is calculated by the equation: 

𝐹𝑅𝐿𝑖 =
(𝑡𝑖∗𝑁𝑖)

𝐹𝑅𝑇𝑧
  ∀𝑖 = 1. . 𝑛   (13) 

where FRTz/Ni is the average period of each processes on 

processor puz. By imposing that the simulated time shall be equal 

to TTC, it is possible to evaluate the Load Li that processes psi 

would impose to the SW processor to satisfy TTC itself. In fact, 

setting FRTz equal to TTC, for each process/processor pair, such 

as: 

TTC = 𝑥𝑧 ∗ 𝐹𝑅𝑇𝑧         𝑤𝑖𝑡ℎ 0 ≤ 𝑥𝑧  ≤ 1 (14) 

The value of estimated Load Li that the system imposes to 

processor puz to satisfy TTC is: 

L 𝑖 =
(𝑡𝑖 ∗ 𝑁𝑖)

𝑇𝑇𝐶
=

(𝑡𝑖 ∗ 𝑁𝑖)

𝐹𝑅𝑇𝑧

∗ 
𝐹𝑅𝑇𝑧

𝑇𝑇𝐶
=

𝐹𝑅𝐿𝑖

𝑥𝑧

  ∀𝑖 = 1. . 𝑛 (15) 

From a DSE perspective, by considering the sum of the Load 

Li of all the processes allocated to a GPP/ASP, it is possible to 

check if the total imposed Load is acceptable. So, it is possible to 

define the Load Index as: 

X𝐿𝑗
= 1 −  

∑ 𝐿𝑖
𝑠
𝑖=1

𝑠
     𝑤𝑖𝑡ℎ 𝑠 =  𝑠𝑖𝑧𝑒(𝑃𝑈) − 𝑠𝑖𝑧𝑒(𝐻𝑊_𝑃𝑈) (16) 

L 𝑖 = {

𝐹𝑅𝐿𝑖

𝑥𝑧

     𝑖𝑓 𝑇𝑇𝐶 ≤ 𝐹𝑅𝑇𝑧

𝐹𝑅𝐿𝑖     𝑖𝑓 𝑇𝑇𝐶 > 𝐹𝑅𝑇𝑧

 (17) 

The fifth metric is the Cost Index. This is a metric related to 

the monetary cost Ci associated to each bbi considered in the 

specific INDj (considering PU, MU and CU): 

X𝐶𝑗
=

∑ 𝐶𝑖
𝑑
𝑖=1

𝑚𝑎𝑥𝐶𝑂𝑆𝑇
     𝑤𝑖𝑡ℎ 𝑑 = (# 𝑏𝑏𝑖  𝑢𝑠𝑒𝑑 𝑖𝑛 𝐼𝑁𝐷𝑗) (18) 

maxCOST = size(BB) ∗ max(C𝑖) (19) 

The sixth metric is the Size Index. Size is a set of estimations 

for each statement of each process with respect to each available 

processor. It is related to number of bytes or area/resources 

metrics depending on SW or HW implementations: 

X𝑠𝑗
= 𝑋𝑆𝑊 + 𝑋𝐻𝑊    (20) 

X𝑆𝑊 =
∑ (𝑅𝐴𝑀𝑖 + 𝑅𝑂𝑀𝑖) − 𝑚𝑎𝑥𝑆𝐼𝑍𝐸_𝑆𝑊𝑠

𝑖=1

𝑚𝑎𝑧𝑆𝐼𝑍𝐸_𝑆𝑊
    (21) 

X𝐻𝑊 =
∑ (𝑒𝑞𝐺𝑖) − 𝑚𝑎𝑥𝑆𝐼𝑍𝐸_𝐻𝑊ℎ

𝑖=1

𝑚𝑎𝑧𝑆𝐼𝑍𝐸_𝐻𝑊
    (22) 

RAMi and ROMi are the size value of each process psi 

allocated on SW processor pux. eqGi is the equivalent gate value 

associated to each process psz allocated on HW processor puy.  

The final metric, specifically introduced in this paper, is the 

Criticality Index, related to the criticality level associated to each 

psi such as: 
 

X𝐶𝑅𝐼𝑇 = {
0 𝑖𝑓 𝐶(𝑝𝑠𝑖) − 𝐶(𝑝𝑠𝑗) = 0 ∧  𝑝𝑠𝑖 ∈ 𝑝𝑢𝑥 ∧ 𝑝𝑠𝑗 ∈ 𝑝𝑢𝑦 ∧ 𝑝𝑢𝑥 = 𝑝𝑢𝑦

1 𝑖𝑓 𝐶(𝑝𝑠𝑖) − 𝐶(𝑝𝑠𝑗) > 0 ∧  𝑝𝑠𝑖 ∈ 𝑝𝑢𝑥 ∧ 𝑝𝑠𝑗 ∈ 𝑝𝑢𝑦 ∧ 𝑝𝑢𝑥 = 𝑝𝑢𝑦

 (23) 

 

The goal behind this metric is to avoid having processes with 

different criticality levels on the same (shared) processor/core 

resource. If the constraint is not satisfied, the index value becomes 

1, so the final cost function has a higher value if an individual 

doesn’t satisfy criticality constraint. 

4.1 DSE with mixed-criticality constraints 

Considering the criticality level associated to each process, this 

work proposes different methods to manage mixed-criticality 

constraints to avoid interferences derived from damages or 

software errors and bugs. The main idea is to drive the DSE to 

avoid having processes with different criticality levels allocated 

on the same (shared) processor/core. For this, it is exploited the 

previously defined Criticality Index. Moreover, it is also possible 

to exploit the possibility to constrain the initial population of the 

GA to have only feasible individuals, and/or to constrain the 

crossover and mutation steps to make the population evolving 
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only with feasible individuals (with respect to criticality 

constraints) avoiding generation of unfeasible solutions [25]. 

 

Figure 3: Design space representation with MC 

requirements. 

5 Validation 

This section presents some results related to the DSE step. Fig. 

3 shows a design space where mixed-criticality constraints are 

introduced into classical DSE methods. Limiting the processes 

allocation taking into account mixed-criticality has two main 

effects: to increase the minimum cost value and to decrease the 

maximum execution time, because the number of BBs instances 

will not be less than the number of criticality levels (Figure 3).  

Table 1: DSE Parameter Settings 

Parameters Nr. Values 

BBs ≤ 8 
2 8051, 2 DSPIC, 2 LEON3, 

2 Spartan3an, 2 Virtex-7 

App. processes 8 CSP processes 

App. Channels 15 CSP channels 

GA Selection 1 Random 

GA Crossover (C) 1 One-Point 

C probability (pc) 1 0.3 

GA Mutation (M) 1 Random 

M probability (pm) 1 0.1 

Survival Selection (S) 1 Fitness-Based 

S probability (ps) 1 0.15 

Search Iteration (I) 40 - 

Initial Population Size (P) 1000 Number of Starting individuals 

 

Table 1 shows the parameters setting related to DSE 

performed in this section. In the validation step, the available BBs 

are: bb1 (SW_PU, GPP): 16 MHz 8-bit 8051 CISC core with 128 

byte of Internal RAM, 64KB of internal ROM (cost 10); bb2 

(SW_PU, DSP): 16 MHz 16-bit PIC24 core with 14KB of internal 

ROM and 1KB of internal RAM (cost 20); bb3 (SW-PU, GPP): 

150 MHz 32-bit LEON3 soft-processor with 2*4 KB L1 caches, 

RAM size of 4096 KB and a ROM of 2048 KB (cost 100); bb4 

(HW-PU, ASP): 50 MHz Spartan3an (cost 400). bb5 (HW_PU, 

ASP): 250 MHz Virtex-7 (cost 900). Considering AC, the 

maximum number of instances for each bbi is 2, the maximum 

number of instances of bbi considered into the DSE is equal to the 

number of processes (8) and bbi are supposed to communicate by 

means of a shared bus.  

 

Figure 4: Simulated time with respect to different 

weights. 

A first analysis involves the impact of the different metrics 

(i.e. indexes) with respect to the simulated time of the final 

system. Fig. 4 shows some radar charts where each angle 

represents the simulated time related to DSE solutions while 

setting one weight equal to 1 and the other ones to zero. The only 

metrics TTC-dependent is the load L, so the charts present 

different values for the Load Index when changing requested 

TTC. It is possible to see that the only metrics that badly drives 

the DSE with respect to timing performance is the Cost Index 

metrics, as could be expected if your goal is only to limit the cost. 

The other metrics find a sub-optimal solution every time, 

considering a decreasing TTC. In the adopted case study, the 

lower bound in the simulated time is driven by the arrival time of 

the input triggers (i.e. 20 inputs each one every 1 ms), so the 

simulated time is hovering around 20 ms. 

 

Figure 5:  DSE small-set result. 

After that, Figure 5 shows a subset of solutions suggested by 

the DSE while considering different weights and TTCs, with and 

without MC constraints. As expected, the Pareto set with no MC 

constraints (blue points more to the left) have solutions with a 

lower cost with respect to solutions with MC constraints (orange 

points, as shown in Figure 5). Considering the best solutions, the 

advantages of this DSE step is to directly identify individuals 

optimizing different metrics at the same time. Starting from the 

Worst Case TTC (0,06710 s) equal to the simulated time evaluated 

by means of a timing co-simulation performed allocating all the 

processes on the slowest available processor (in this case the one 

in bb1), the DSE suggests a set of architecture/mapping pairs able 

to provide TTCs equal, respectively, to 0.90*WCTTC (0,06039 

s), 0.75*WCTTC (0,05033 s), 0.5*WCTTC (0,03355 s), 

0.40*WCTTC (0,02684 s) and 0.25*WCTTC (0,01678 s, it is 

worth noting that such a value is under the lower-bound, so the 

final simulated time is still above 0.02 s). Given the previous set 

of TTC constraints, the DSE provides the results shown in Figure 

6. The results are always under the blue Requested Time line, with 

costs that increase with the decreasing simulated time (i.e. from 

right to left). When considering also MC constraints, the DSE 
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suggests solutions that are under the green Estimated Time line 

but with higher costs. In fact, MC applications are more expensive 

in terms of resources and the final solution space is reduced. 

 

Figure 6: DSE step results  

All the steps, prior to DSE one, have been executed in a few 

minutes (on a high-end notebook). It is worth noting that this is a 

one-time effort, while the time for the DSE step depends on 

designer experience and number of considered constraints. A 

more exhaustive analysis involves more time (Figure 5) with 

respect to one that directly suggest a possible 

partitioning/mapping item able to satisfy all the constraints. Just to 

propose an example, by exploiting an Intel Core i7-6700HQ 2.60 

GHz CPU, 16 GB RAM and 64-bit Xubuntu 16.04 operating 

systems, the chart in Figure 6 has been achieved in 5 min, 

considering also MC constraints, meanwhile Figure 5 has been 

achieved in about 15 min because timing simulation has been the 

most expensive step. 

6 CONCLUSIONS 

This work has proposed a criticality-driven design space 

exploration for mixed-criticality heterogeneous parallel embedded 

systems. By introducing the Criticality Index into an evolutionary 

algorithm, the DSE is able to suggest solutions that fulfill 

constraints avoiding allocating applications with different levels 

of criticality on the same shared resource. Results show that 

mixed-criticality solutions are typically more expensive, and that 

this work helps to partition in a fast way processes into a 

heterogeneous parallel platform. Future works involve the 

introduction into the DSE step also the concept of SW partitions 

in order to allow modeling also hypervisors technologies. 
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