
HEPSYCODE-RT: a Real-Time Extension for an  

ESL HW/SW Co-Design Methodology 

Vittoriano Muttillo 
Center of Excellence DEWS 

Via Vetoio, 1 
L’Aquila, Italy 

vittoriano.muttillo@graduate.univaq.it 

Giacomo Valente 
Center of Excellence DEWS 

Via Vetoio, 1 
L’Aquila, Italy 

giacomo.valente@graduate.univaq.it 

Daniele Ciambrone 
Center of Excellence DEWS 

Via Vetoio, 1 
L’Aquila, Italy 

daniele.ciambrone@student.univaq.it 

Vincenzo Stoico 
Center of Excellence DEWS  

Via Vetoio, 1  
L’Aquila, Italy 

vincenzo.stoico@student.univaq.it 

Luigi Pomante 
Center of Excellence DEWS  

Via Vetoio, 1  
L’Aquila, Italy 

luigi.pomante@univaq.it 

ABSTRACT 

This work focuses on the definition of a methodology for handling 

embedded real-time applications, starting from an existing 

HW/SW co-design methodology able to support the design of 

dedicated heterogeneous parallel systems. The state-of-the-art 

related to similar tools and methodologies is presented and the 

reference framework with the proposed extension to the real-time 

world is introduced. A case study is then described to show a 

design space exploration able to consider such an extension. 

CCS CONCEPTS 

• Hardware → Software tools for EDA; • Hardware → 

Modeling and parameter extraction; Timing Simulation; DSE; 

KEYWORDS 

HW/SW Co-Design, Heterogeneous Parallel Systems, DSE, real-

time systems 

1 INTRODUCTION 

During the last years, the spread and importance of embedded 

systems are increasing but it is still not yet possible to completely 

engineer their system-level design flow. Designers commonly 

adopt one or more system-level models (e.g. block diagrams, 

UML, SystemC, etc.) to have a complete problem view, to 

perform a check on HW/SW resources allocation and to validate 

the design by simulating the system behavior. In this scenario, SW 

tools to support designers to reduce costs and overall complexity 

of systems development are even more of fundamental 

importance. Unfortunately, there are no fully engineered general 

methodologies defined for this purpose and often the best option 

is still to refer to experienced designer indications to take 

advantage of empirical criteria and qualitative assessments. For 

example, systems based on heterogeneous multi-processor 

architectures (Heterogeneous Multi-Processor Systems, HMPS) 

have been recently exploited for a wide range of application 

domains, especially in the System-on-Chip (SoC) form factor (e.g. 

[2]). In particular, such architectures are often used to implement 

Dedicated Systems (DS), i.e. digital electronic systems with an 

application-specific HW/SW architecture designed to satisfy a 

priori known application with F/NF requirements. In such a case, 

they are called Dedicated Heterogeneous Multi-Processor 

Systems (D-HMPS). D-HMPS are so complex that the adopted 

HW/SW Co-Design Methodology plays a major role in 

determining the success of a product. The situation is even worse 

if the considered system is a hard/soft real-time one. In such a 

case, time constraints are normally defined considering the worst 

possible case (hard) or an average situation (soft). 

In such a context, this work focuses on the definition of a 

HW/SW co-design methodology and the development of a related 

prototypal tool to improve the design time of embedded real-time 

applications. Specifically, the whole framework drives the 

designer from an Electronic System-Level (ESL) behavioral 

model, with related NF requirements, including real-time ones, to 

the final HW/SW implementation, considering specific HW 

technologies, scheduling policies and Inter-Process 

Communication (IPC) mechanisms. The remainder of the paper is 

organized as follows: Section II provides an overview of HW/SW 

co-design tools related to embedded real-time computing systems. 

Section III describes the reference HW/SW Co-Design 

methodology, whereas Section IV discusses the extension to adapt 

it to the real-time world. Section V presents a case study that 

shows a design space exploration able to consider such an 

extension. Finally, Section VI reports some conclusive 

considerations and presents future works. 

2 HW/SW CO-DESIGN OF REAL-TIME 

EMBEDDED SYSTEMS 

A remarkable number of research works have focused on the 

system-level HW/SW co-design of D-HMPS [3]. In such a 

context, the most critical steps are always related to the System 

Specification and the Design Space Exploration (DSE) activities 



2 

 

[4]. The main differences between the approaches are related to 

the amount of information and actions explicitly requested to the 

designer and influenced by his experience. In particular, many 

approaches (especially those based on the Y-Chart principle [5]) 

explicitly require as an input the HW architecture to be considered 

for mapping purposes. Other works [6] aims to the problem of 

designing embedded real-time systems starting from the 

input/output constraints on the final implementation. Offline 

schedulability and feasibility analysis involve different research 

works [7][8], with respect to the correct algorithms that can 

guarantee optimality depending on the load parameters. To 

analyze the behavior of a system, many tools have been developed 

to evaluate/estimate timing parameters, to validate scheduling and 

to perform simulations. In such a domain, the work presented in 

[9] starts from three sub-models, considering a model for SW 

application (Platform Independent Model) on one side and a 

platform (Platform Description Model) on the other side, and both 

models are connected by a Platform Specific Model that defines 

the mapping of SW into HW. By exploiting a specific extension 

for DSE and performance evaluation [10], in order to consider 

non-functional properties such as real-time, power, temperature, 

reliability constraints and so on, the tool offers different 

simulation and estimation outputs that drive the designer from the 

system-level model to the final implementation. 

With respect to works that heavily relies on Model of 

Computations (MoC) theory, ForSyDe (Formal System Design) 

[11] is a methodology for modeling and design heterogeneous 

embedded and cyber-physical systems. The starting application is 

modeled by a network of processes interconnected by signals. 

Then, the model is refined by different design transformations into 

a target implementation language. 

An interesting academic tool is SynDEx [12], a system level 

EDA tool based on the Algorithm-Architecture Adequation (AAA) 

methodology intended to find implementation solution, under 

real-time constraints, for embedded applications onto multi-

component HW/SW architectures. 

Finally, to have a look also to a SystemC-based commercial 

product, it is worth noting to cite Intel CoFluent [13] as a 

promising system-level modeling and simulation environment. 

Other than the model of the system behavior, it explicitly requires 

a manual modeling of both the hardware architecture and the 

mapping. 

So, at the best of our knowledge, there are very few system-

level HW/SW co-design methodologies that try to fully address 

the problem of both “automatically suggest an HW/SW 

partitioning of the system specification” and “map the partitioned 

entities onto an automatically defined heterogeneous multi-

processor architecture” while considering also real-time 

constraints. 

 

Figure 1: Reference HW/SW Co-Design Flow. 

3  HW/SW CO-DESIGN FRAMEWORK 

In the context of embedded real-time systems design, this work 

starts from a specific framework (called HEPSYCODE: HW/SW 

Co-Design of Heterogeneous Parallel Dedicated Systems) [14], 

based on an existing System-Level HW/SW Co-Design 

Methodology [15][19][21], and introduces the possibility to 

specify real-time requirements in the set of non-functional ones 

(the new framework is so called HEPSYCODE-RT). The main 

items composing such a methodology and its extension are 

discussed in the next paragraphs, while the reference ESL 

HW/SW Co-Design Flow is shown in Fig. 1. 

3.1 Modeling Language  

The system behavior modeling language introduced in 

HEPSYCODE-RT, named HML (HEPSY Modeling Language) 

[17], is based on the Communicating Sequential Processes (CSP) 

MoC [16]. It allows modeling the behavior of the system as a 

network of processes communicating through unidirectional 

synchronous channels. By means of HML it is possible to specify 

the System Behavior Model (SBM), an executable model of the 

system behavior, a set of Non–Functional constraints (NFC) and a 

set of Reference Inputs (RI) to be used for simulation-based 

activities. It is worth noting that another HEPSYCODE extension 

able to exploit more formal approaches is currently under 

development [17]. 

In particular SBM = {PS, CH} is a CSP-based executable 

model of the system behavior that explicitly defines 

communication among processes (PS) using unidirectional point-

to-point blocking channels (CH) for data exchange. PS = {ps1, 

ps2, .. , psn} is a set of concurrent processes that communicate 

with each others exclusively by means of channels and use only 

local variables. Each process is described by means of a sequence 

of statements by using a suitable modeling language. Each process 

can have a priority p: 1 (lower) to 100 (higher) imposed by the 

designer. The concept of statement has to be fixed once selected a 



 3 

proper specification/modeling language. Languages suitable to 

describe CSP are SystemC (chosen for this work), OCCAM, 

Handel-C, ADA and so on. More abstract languages are UML, 

SysML, Simulink and so on. CH = {ch1, ch2, .. , chn} is a set of 

channels where each channel is characterized by source and 

destination processes, and some details (i.e. size, type) about 

transferred data. Each channel can have also a priority p: 1 (lower) 

to 100 (higher) imposed by the designer. 

RI: {(i1 ,o1), …, (in ,on)} is a set of inputs (possibly timed), 

representative as much as possible of typical operating conditions 

of the system, and related expected outputs to be used for analysis 

and simulation-based validation. 

The Non–Functional Constraints (NFC) are composed of  

Timing Constraints (TC), Architectural Constraints (AC) and 

Scheduling Directives. Two different TC can be considered by the 

designer: Time-to-Completion (TTC), unique and related to the 

whole SBM, is the time available to complete the SBM execution 

from the first input trigger to the complete output generation; 

Time-to-Reaction (TTR) is a set of real-time constraints related to 

the time available for the execution of leaf CSP processes (i.e. the 

time available to execute the statements inside an input/output 

pair that delimits the CPS process main body, see Fig. 2). 

Different leaf processes can have different associated TTR. This 

real-time constraints are not strictly related to classical RT 

requirements, but impose a timing bound to the execution of some 

specific processes. Both TTC and TTR constraints shall be 

satisfied by each element of RI. 

 

Figure 2: Time-To-Reaction Constrain. 

The Architectural Constraints (AC) are related to the Target 

Form Factor (TFF) as On-chip (ASIC, FPGA) or On-Board 

(PCB) and to the Target Template Architecture (TTA) as type of 

available Basic Blocks (BB), min/max number of possible BB 

instances, min/max number of available Interconnections 

instances and/or total available area (or an equivalent metric). 

Finally, the Scheduling Directives (SD) specify the available 

scheduling policies. At the moment they are First-Come First-

Served (FCFS) and Fixed Priority (FP) preemptive scheduling.  

3.2  Technologies Library and Basic Blocks 

The target HW architectures is composed of different basic HW 

components. These components are collected into a Technologies 

Library (TL). TL can be considered as a generic “database” that 

provides the characterization of the available technologies. In 

particular TL = {PU, MU, EIL}, where PU = {pu1, pu2, .. , pup} is 

a set of Processing Units, MU = {mu1, mu2, .. , mum} is a set of 

Memory Units and EIL = {il1, il2, .. , ilc} is a set of External 

Interconnection Links. However, the detailed characterizations are 

dependent on TFF. The main differences are related to the 

different attributes (or different meaning of the same attribute) 

needed to characterize processing units, local memories, and 

interconnections. This work considers only TL for PCB where 

each PU that executes SW shall be a separate discrete Commercial 

Off-The-Shelf (COTS) Integrated Circuit (IC) mounted on a 

board. 

PU elements are divided into two main groups: the ones that 

perform processing by means of the execution of some Instruction 

Set Architecture (ISA), called SW-PU, and the ones that perform 

processing without relying on an ISA, called HW-PU. Each pui in 

PU for PCB is characterized by a Name, a Processor Type, 

Capacity (SW-PU: max allowed load; HW-PU: available 

resources as number of equivalent-gates, LUT, Cell, etc.), ISA 

(only for SW-PU), Frequency, Context Switch Overhead (only for 

SW-PU), a statement-level performance metric (like CC4CS [18] 

or equivalent ones), and a unit cost (€). With respect to Processor 

Type, PU elements are further classified in three classes [1]: 

General-Purpose Processors (SW-PU: GPP); Application-

Specific Processors (SW-PU: ASP) targeted to particular 

application domains (e.g.  Digital Signal Processors, DSP); 

Single-Purpose Processor (HW-PU: SPP; realized by means of 

ASIC/FPGA. 

MU elements are divided in two main classes: Volatile 

Memory Units (VLMU) and Non-Volatile Memory Units 

(NVLMU), with a main parameter related to capacity (i.e. bytes). 

EIL elements are characterized by some parameters related to 

bandwidth, number of connectable items and concurrency 

properties. 

The designer will use such components to build a set of Basic 

Blocks (BB). So, BB = {bb1, bb2, .. , bbb} is the set of BB 

available during DSE step to automatically define the HW 

architecture. A generic BB is composed of a set of PU, a set of 

MU and a Communication Unit (CU). CU represents the set of 

EIL that can be managed by a BB. BB internal architecture is 

dependent on TFF and TTA. In particular, each BB element can be 

generally composed of 1 or more PU elements, some MU 

elements and 1 CU element.  BB elements are the ones effectively 

taken as input by the system-level flow for analysis, estimations 

and DSE steps. So, the target HW architecture can be seen as a set 

of BB elements interconnected by means of one or more EIL 

elements. The type of available BB are automatically defined by 

the selected TTA.  

This work currently focuses only on: Homogeneous Multi-

Processor System with Distributed Memory where each BB 

element is composed of only 1 PU element (homogenous among 

BB elements), some local MU elements and 1 CU element; 

Heterogeneous Multi-Processor System with Distributed Memory 

where each BB element is composed of only 1 PU element 

(heterogeneous among BB elements), some local MU elements 

and 1 CU element. 



4 

 

3.3 ESL HW/SW Co-Design Flow 

The first step of the adopted co-design flow is the Functional 

Simulation where SBM is simulated to check its correctness with 

respect to RI. Then, the next step aims at extracting as much as 

possible information about the system by analyzing the SBM 

while considering the available BB. This step is supported by Co-

Analysis and Co-Estimation activities to evaluate/estimate several 

metrics related to the BB involved in the design flow. 

Co-Analysis performs evaluation of two metrics. The first one 

is called Affinity [19]. The Affinity A = {[a1, a2, .. an] | ai = 

[A(GPPi), A(DSPi), A(SPPi)]} of a process psi is a triplet of values 

in the interval [0,1] that provides a quantification of the matching 

between the structural and functional features of the functionality 

implemented by a process and the architectural features of each of 

GPP, DSP, and SPP. The second metric evaluated during Co-

analysis is related to Concurrency. The concurrency CN(PS, CH) 

= [CNPS, CNCH] is expressed by the set of processes PS and 

channels CH pairs that could be potentially  concurrently 

“working”, where CNPS = { [psi, psj] : psi ˄ psj could be 

potentially executed concurrently} and CNCH = { [chi, chj] : chi ˄ 

chj could potentially  transfer data concurrently}. CN is evaluated 

by means of a functional simulation with respect to RI. 

Co-estimation performs two kinds of estimations: Static 

Estimations of Timing and Size, and Dynamic Estimations of Load 

and Bandwidth. The Timing metric is the number of clock cycles 

needed to execute each statement j of each process psi by means 

of each processor k in the available BB, with k=1..n. The goal is 

to estimate how many clock cycles are needed by a specific BB to 

execute the implementation  of a specific statement (e.g. [18] and 

[20] presents two possible approaches). 

Size is a set of estimations for each statement of each process 

with respect to each available processor. It is related to bytes or 

area/resources metrics depending on SW or HW implementations. 

L is the Load (i.e. the processor utilization percentage)  that each 

process would impose to each not-SPP processor to satisfy 

imposed TTC/TTR timing constraints (see Section IV). Finally the 

Bandwidth (B) is the number of bits sent/received over each 

channel (i.e. bits exchanged by communicating processes pairs in 

PS) during an interval of time equal to TTC. 

After this steps, the reference co-design flow reaches the DSE 

step (as shown in Figure 3). It includes two iterative activities: 

“HW/SW Partitioning, Mapping and Architecture Definition”, 

based on a genetic algorithm that allows to explore the design 

space looking for feasible mapping/architecture items suitable to 

satisfy imposed constraints; “Timing Co-Simulation”, that 

considers suggested mapping/architecture items to actually check 

for timing constraints satisfaction. When the mapping/architecture 

item proposed by the DSE step is acceptable, it is possible to 

proceed with system implementation (i.e. Algorithm-Level Flow). 

 

Figure 3: Design Space Exploration Framework. 

4 HEPSYCODE-RT: PROPOSED EXTENSION 

With respect to NF requirements, this work provides an extension 

that allow the methodology to better consider architectural and 

timing constraints. Related to the SBM model, it is now possible 

to identify two classes of CSP processes: classical CSP process 

and  real-time CSP processes. In the current version, the last ones 

shall be leaf processes and their body (i.e. a never-ending loop) 

shall start with a channel read and end with a channel write 

towards the same process. To such input/output pair will be 

referred the TTR constraint. Moreover, in such a context, a CSP to 

Task Model transformation has been defined to allow considering 

classical real-time world notations. Such a transformation 

involves concepts related to both processes and channels. 

 

Figure 4: Time-To-Reaction Constrain. 

The general transformation is shown in Figure 4. In this 

example the CSP SBM model is first expanded in a Process 

Interaction Model (PIM), where the processes A and B are split 

into different pieces of code, delimited by channel calls. The final 

transformation starts from the PIM model and associates the 

single pieces of code to specific tasks in the classical task 

representation models (i.e. Process-Task Model, PTM). At this 

time, the designer should write a SBM avoiding cycles to match 

the classical real-time DAG representation of tasks. 



 5 

 

Figure 5: Time-To-Reaction Constrain. 

With respect to the real-time CSP processes, the actual 

transformation is the one shown in Figure 5. With this specific 

kind of representation it is possible to consider concurrently 

timing constraints related to the whole SBM (TTC) and real-time 

constraints related to the reaction of specific processes (TTR) 

while considering periodic leaf processes as periodic ones. 

With this assumption, it is possible to adapt the Load 

Estimation step to consider such real-time constraints. In 

particular, the load can be defined in two different ways. 

The Load Li that each non real-time process psi would impose 

to each non-SPP processor s to satisfy TTC. Li is estimated by 

allocating all the n processes to a single-instance of each software 

processor s (puj ⊆ {[pu1, .. , pus]} with s ≤ Total Number of puj) 

and performing some simulations. Three parameters have to be 

computed: FRTj (Free Running Time), i.e. the total application 

simulation time on processor puj; ti, the simulated time for each 

process psi in a loop on processor puj; N, the number of simulation 

loops. Starting from this estimated parameters, the Free Running 

Load FRLi is calculated by the equation: 

𝐹𝑅𝐿𝑖 =
(𝑡𝑖 ∗ 𝑁)

𝐹𝑅𝑇𝑗
 (1) 

where 𝐹𝑅𝑇𝑗 𝑁⁄  is the average period of each processes on 

processor puj. By imposing that the execution time shall be equal 

to TTC, it is possible to evaluate the Load Li that processes psi 

would impose to the SW processor to satisfy TTC itself. In fact, 

setting FRTj equal to TTC, for each process/processor pair, such 

as: 

TTC = 𝑥𝑗 ∗ 𝐹𝑅𝑇𝑗         𝑤𝑖𝑡ℎ 0 ≤ 𝑥𝑗  ≤ 1 (2) 

The value of estimated Load Li that the system imposes to 

processor puj to satisfy TTC is: 

L 𝑖 =
(𝑡𝑖 ∗ 𝑁)

𝑇𝑇𝐶
=

(𝑡𝑖 ∗ 𝑁)

𝐹𝑅𝑇𝑗
∗  

𝐹𝑅𝑇𝑗

𝑇𝑇𝐶
=

𝐹𝑅𝐿𝑗

𝑥𝑗
 (3) 

The Load Li that each real-time process psi would impose to 

each s software processor to satisfy input real-time constrain TTRi 

is directly set equal to: 

𝐿𝑖 =
𝑡𝑖

𝑇𝑇𝑅𝑖
 (4) 

TTRi is the real-time constraint related to the process psi. In 

this way it is possible to consider two different situations: Hard 

real-time process, if ti < TTRi, the constraints are fulfilled and it is 

possible to consider the value Li as an input to the DSE step; Soft 

real-time process, if ti < (TTRi + δ(t)), then constraints could be 

considered as soft real-time ones. 

Then, thanks to all the estimated TTC/TTR loads, it is possible 

to perform DSE step in order to fulfill also RT constraints. 

Moreover, an additional architectural constraint deriving from 

TTR is that non-SPP processors executing real-time processes 

have to adopt a scheduling policy suitable for real-time scheduling 

(e.g. fixed-priority preemptive scheduling). Finally, the effect of 

such scheduling policy shall be considered during the timing co-

simulations performed to validate the proposed solutions. 

5 CASE STUDY 

This section presents a simple case study used to show the effects 

of the proposed real-time extension to HEPSYCODE. 

 

Figure 6: CSP MoC Example 

The reference SBM is shown in Figure 6, where the processes 

PS = {ps1, .. , ps4}, with priority of {ps1, ps2, ps4} equal to each 

other and priority of ps3 higher than the others, exchange data 

using the channels CH = {ch1, .. , ch7}. In this scenario there are 

three non real-time processes {ps1, ps2, ps4} and one process {ps3} 

with real-time constraint equal to TTR3. The whole SBM is also 

subject to a TTC. So, for a given processor puj, the load 

parameters for the four processes are: L1,j=t1,j/([xj*FTRj]/N), 

L2,j=t2,j/([xj*FTRj]/N), L4,j= t4,j/([xj*FTRj] /N), L3,j = t3,j/TTR3. 

After the Co-analysis and Co-estimation steps, by considering 

such loads, the DSE step should be able to suggest a 

partition/mapping item able to fulfill both TTC and TTR3 

constraints. Several DSE have been performed considering 

different TTC/TTR pairs. In the considered use case the available 

BBs are: bb1 (SW-PU): 20 MHz 8-bit 8051 CISC core with 128 

byte of Internal RAM, 64K of internal ROM, without cache and 

external memory (cost 10); bb2 (SW-PU): 150 MHz 32-bit 

LEON3 soft-processor with 2*4 KiB L1 caches, RAM size of 

4096 KiB and a ROM of 2048 KiB (cost 50); bb3 (HW-PU): 300 

MHz Altera Stratix V (cost 300). 

For each BB is allowed maximum 1 instance and they are 

supposed to communicate by means of a shared bus. Moreover, 

each SW-PU uses a Fixed Priority preemptive scheduling 

algorithm. Results shown in Table 1 figure out as the DSE step 

with real-time extension is able to satisfy TTC/TTR constraints, at 



6 

 

least with respect to timing simulations. In particular, by setting 

TTR and decreasing TTC, DSE suggests solutions that fulfil the 

timing requirements most of the time (two not satisfactory 

suggestions are underlined in Table 1). Decreasing the TTR, the 

DSE suggests to allocate the real-time process on puj that fulfil the 

constraints. It is worth noting that, if the TTR is very strict, the 

only valid mapping involve the use of a more expensive FPGA.  

Table 1: Results from the  DSE on the  Use Case Example 

Allocation 
Simulated 

Time (ms) 
ps3 (ms) 

TTC 

(ms) 

TTR 

(ms) 

All on bb1
 794,88 8,10 600 10 

All on bb2
 650,66 5,54 600 10 

ps1, ps2, ps3 on bb1 

ps4 on bb2, 590,80 8,10 600 10 

ps3 on bb1 

ps1, ps4 on bb2 

ps2 on bb3 
264,89 8,10 400 10 

ps1, ps3 on bb1 

ps4 on bb2 

ps2 on bb3 
298,88 8,10 300 10 

ps4 on bb1 

ps1, ps2, ps3 on bb3 201,48 0,009 200 10 

ps3 on bb1 

ps4 on bb2 

ps1, ps2 on bb3 
145,67 8,10 200 10 

ps3 on bb1 

ps1, ps2, ps4 on bb3 
81,04 8,10 100 10 

ps1, ps2 on bb1 

ps3, ps4 on bb2, 562,85 5,54 600 7 

ps1, pu4 on bb1 

ps2, ps3 on bb2 462,58 5,54 400 7 

ps1 on bb1 

ps3, ps4 on bb2 

ps2 on bb3 
220,80 5,54 400 7 

ps1, on bb1 

ps3 on bb2 

ps2, ps4 on bb3 

206,99 5,54 300 7 

ps3 on bb2 

ps1, ps2, ps4 on bb3 
55,55 5,55 200 7 

ps1, ps4 on bb1 

ps2 on bb2 

ps3 on bb3 

428,87 0,009 600 4 

ps4 on bb1 

ps1, ps2 on bb2 

ps3 on bb3 
337,56 0,009 400 4 

ps4 on bb1 

ps1 on bb2 

ps2, ps3 on bb3 
214,80 0,009 300 4 

ps4 on bb2 

ps1, ps2, ps3 on bb3 137,62 0,009 200 4 

All on bb3 0,22 0,009 100 4 

4 CONCLUSIONS 

This work has proposed an extended Electronic Design 

Automation (EDA) methodology (and related tools) in the ESL 

domain supporting the development of Real-time Embedded 

Systems. The final result is a methodology able to support real-

time systems developments by suggesting both the platform and 

mapping solutions for the specific application. Future works will 

involve the introduction of other parameters associated to PU such 

as Power (peak power [W] or other metrics) and Energy. Others 

analysis, use cases and tests will be done in future, but starting 

from this preliminary results it is easy to note that the DSE step 

with load estimation and real-time extension seem to be quite 

effective with respect to execution times estimated by simulation. 

Validation on the final HW/SW implementation must be done in 

future to reduce errors at design time. 

ACKNOWLEDGMENTS 

This work has been partially supported by the ECSEL RIA 2016 

MegaM@Rt2 and AQUAS projects. 

REFERENCES 
[1] Vahid, F. and Givargis, T. Embedded System Design: A Unified 

Hardware/Software Introduction. John Wiley & Sons, NY, USA, 2001. 

[2] Xilinx Zynq7000, http://www.xilinx.com.  

[3] Jia, Z. J., Bautista, T., Núñez, A. Pimentel, A. D. and Thompson, M. A system-

level infrastructure for multidimensional MP-SoC design space co-exploration. 

In ACM Trans. Embedd. Comput. Syst. 13, 1s, Article 27 (December 2013), 26 

pages, 2013. 

[4] Teich, J. Hardware/Software Codesign: The Past, the Present, and Predicting 

the Future. Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, pp. 

1411-1430, 2012. 

[5] Keutzer, K., Malik, S., Newton, A., Rabaey, J., and Sangiovanni-Vincentelli, 

A. System level design: Orthogonalization of concerns and platform-based 

design. IEEE Trans. Comput.-Aided Des. Integ. Circ. Syst. 19, 12, 1523–1543, 

2000. 

[6] Lee, E. A. and Seshia, S. A. Introduction to Embedded Systems, a Cyber-

Physical Systems approach. In MIT Press, Second Edition, 2015. 

[7] Real, J. and Crespo, A. Mode Change Protocols for Real-Time Systems: A 

Survey and a New Proposal. In Journal Real-Time Systems, 26, 2, 161-19, 

2004. 

[8] Buttazzo, G. Hard Real-Time Computing Systems - Predictable Scheduling 

Algorithms and Applications. In Springer, 3rd edition, 2011. 

[9] Posadas, H., Penil, P., Nicolas, A. and Villar., E. Automatic synthesis of 

communication and concurrency for exploring component-based system 

implementations considering uml channel semantics. In Journal of Systems 

Architecture, 61, 8, 341-360, 2015. 

[10] Contrex - Design of embedded mixed-criticality CONTRol systems under 

consideration of EXtra-functional properties. https://contrex.offis.de. 

[11] Rosvall, K. and Sander. I. A constraint-based design space exploration 

framework for real-time applications on MPSoCs. In Design, Automation and 

Test in Europe, Dresden, Germany. 2014. 

[12] Yu, H., Ma, Y., Gautier, T., Besnard, L., Talpin, J.P., Le Guernic, P. and Sorel., 

Y. Exploring system architectures in aadl via polychrony and syndex. In 

Frontiers of Computer Science Journal, 7, 5, 627-649, 2013. 

[13] Intel cofluent. http://www.intel.com. 

[14] Hepsycode: A System-Level Methodology for HW/SW Co-Design of 

Heterogeneous Parallel Dedicated Systems, www.hepsycode.com. 

[15] Pomante, L. System-level design space exploration for dedicated heterogeneous 

multi-processor systems. In Conf. on Appl. Syst., 79-86, 2011. 

[16] Hoare, C. A. R. Communicating sequential processes. In Springer, New York, 

NY, 413-443, 1978. 

[17] Di Pompeo, D., Incerto, E., Muttillo, V., Pomante, L. and Valente, G. An 

Efficient Performance-Driven Approach for HW/SW Co-Design. In 

Proceedings of the 8th ACM/SPEC on International Conference on 

Performance Engineering (ICPE '17), ACM, New York, NY, USA, 323-326, 

2017. 

[18] Stoico, V., Muttillo, V., Valente, G., Pomante, L. and D'Antonio, F. CC4CS: A 

Unifying Statement-Level Performance Metric for HW/SW Technologies, In 

Eur. Conf. on Digit. Syst. (DSD), 2017. 

[19] Pomante, L., Sciuto, D., Salice, F., Fornaciari, W. and Brandolese, C. Affinity-

Driven System Design Exploration for Heterogeneous Multiprocessor SoC, In 

IEEE Trans. on Comp., 55, 5, 2006. 

[20] Allara, A., Brandolese, C., Fornaciari, W., Salice, F. and Sciuto, D. System-

level performance estimation strategy for sw and hw, In Proc. Int. Conf. on 

Comp., Austin, TX, 48-53, 1998. 

[21] Pomante, L. HW/SW Co-Design of Dedicated Heterogeneous Parallel Systems: 

an Extended Design Space Exploration Approach. In IET Computers & Digital 

Technique, 2013. 

 


