
HW/SW Co-Simulator for
Embedded Heterogeneous Parallel Systems

D. Ciambrone1, V. Muttillo1, G. Valente1, L. Pomante1

1Università Degli Studi Dell’Aquila - Center of Excellence DEWS, L’Aquila, Italy
{daniele.ciambrone}@student.univaq.it, {vittoriano.muttillo, giacomo.valente}@graduate.univaq.it, {luigi.pomante}@univaq.it

I. INTRODUCTION

The growing complexity of nowadays embedded digital
systems, especially if based on modern System-on-Chip (SoC)
adopting explicit heterogeneous parallel architectures [7], and
their reduced time-to-market has radically changed the
common design methodologies. Traditional design techniques,
based on independent design of HW/SW components are no
longer sufficient to support the integration of subparts of such
SoCs. Here, HW/SW co-design methodologies, where
designers can easily check system-level constraints satisfaction
and evaluate cost/performance trade-off for different
architectural solutions, are of renovated relevance.

These kinds of methodologies are able to lead the system-
level analysis by means of several models, metrics and tools,
supporting the designer in all those activities that are normally
entrusted only to his experience. In particular, HW/SW co-
simulation tools cover a very important role in a HW/SW co-
design flow, because they allow a fast and correct analysis of
the system properties, and to realize a virtual system prototype.
In such a context, this work presents a HW/SW co-simulator to
be integrated into an ESL HW/SW co-design methodology
targeting embedded heterogeneous parallel systems [8].

II. STATE OF THE ART

In the recent years, with the advent of Electronic Design
Automation (EDA), we have seen a push towards the
development of the so-called Electronic System-Level (ESL)
tools, able to span the complete design space across hardware
and software boundaries.

CoFluent Studio [1] by Intel is a modeling and simulation
environment for early high-level design space exploration. As a
graphical frontend for SystemC, it allows capturing of
application functionality, system architecture and their
mapping. Application models are specified as networks of
timed processes, communicating through high-level message-
passing channels, queues, events and shared variables.
CoFluent studio can generate a SystemC TLM of the resulting
architecture for simulation and virtual prototyping.

Among academic simulators, it is possible to find eSSYn
[2], developed at University of Cantabria. eSSYn is a software
synthesis tool for embedded systems. The system model is
made of three sub-models, following the Y structure, quite
common in current design methodologies. The two branches of
the Y are the separate Platform Independent Model (PIM) for
SW application on one side and the Platform Description
Model (PDM) on the other. Both models are connected by the
Platform Specific Model (PSM) that defines the mapping of
SW into HW. In order to use eSSYn, system designers need to
provide a software component-based model of the application,

a model for the hardware platform to specify the available
resources, and a mapping of software components and cores.
Then, eSSYn will generate all required code and system calls
implementing communications among software components,
all required makefiles for compilation and executable files
ready to be uploaded to the HW platform. Furthermore, it
provides a simulation environment called VIPPE.

All these simulators are placed within a framework of
HW/SW co-design to perform functional and timing
simulations by using SystemC as HW/SW description
language. The proposed co-simulator, also if still based on
SystemC, presents some important differences. First of all, the
system behavior modeling is based on a CSP-like
(Communicating Sequential Processes [3]) Model of
Computation (MoC), from which is then generated the
simulated SystemC code. This allows the designer to perform
the modeling activity focusing on a straightforward and well-
known MoC that can be later further exploited also to perform
further analysis on the model. Second, all commercial and
academic simulators are based on a HW architecture, bounded
to the designers choices in the initial steps of the co-design
flow, while the proposed simulator is designed to interact
(during Design Space Exploration step) with another tool that
is able to automatically define a HW architecture and a
mapping. In other words, the whole approach does not follow
the classical Y structure, but a linear structure where the HW
platform is automatically defined depending on behavioral,
timing and architectural constraints.

III. REFERENCE ESL HW/SW CO-DESIGN FLOW

The reference ESL HW/SW co-design flow is described in
[4]. The entry point of the flow consists of a System Behavior
Model (SBM) based on a CSP-like MoC and supported by the
HW/SW description language SystemC. Passing from a
computational model to a functional model, there is the first
step of the level flow, called Functional Simulation. This step
takes in input all processes and channels composing the
system, to verify the correctness of SBM through functional
simulation.

In the following steps, the flow is supported by a
Technology Library, which can be considered a generic
"database" that provides the characterization of all the
technologies (i.e. processors, memories, interconnections)
available to build the target HW system.

The next step is the Co-Analysis&Co-Estimation. During
Co-Analysis, the proposed co-simulator is exploited to analyze
the system and to evaluate different metrics: affinity and
concurrency. The first represents how much a process is
suitable to be executed on a specific class of processor [5]. The

second one concerns both processes and channels to define
how much each one could be concurrent respectively with the
others. Co-Estimation is in charge to estimate load, size and
bandwidth. Load represents processor utilization percentage
that each process would impose to each processor when
implemented in SW. Size represents the number of bytes in
RAM and ROM needed to store data and instructions for each
process implemented in SW processor. For hardware
implementations, it is the number of mm2 (or Geq, LUT, LB,
etc.) needed to realize processing, memory and connection
elements. Bandwidth represents the number of bits
sent/received over each channel in a time specified by the
designer (i.e. Time to Completion). After that, it is possible to
enter into the Design Space Exploration step, which is
characterized by 2 activities: HW/SW partitioning, mapping
and architecture definition and Timing Co-simulation. The first
one is responsible to define the HW architecture of the target
system, partitioning and mapping of processes on available
processors, and mapping of links. The first activity defines all
necessary inputs needed to the timing co-simulator to check if
timing constraints are satisfied. The next section will provide
more details about the proposed co-simulator.

Fig. 1. SystemC-based Co-Simulator Architecture

IV. HW/SW CO-SIMULATOR

The main goal of the present work concerns the design and
the implementation of a HW/SW co-simulator. The first step
has been to define the SW architecture, as represented in the
Fig. 1. The large component on the left is the SystemC [6]
Library, which embeds a SystemC Scheduler and has been
extended with a new SystemC channel to model also CSP
channel semantic. In fact, SC_CSP_CHANNEL has been
developed according to properties of CSP model and SystemC.
It inherits from a SystemC primitive channel and implements a
full-handshake policy with blocking read() and write()
methods.

This component works with System, SystemManager and
SchedulingManager components, supported by a Technology
Library. System represents the SBM. It is instrumented by
means of some macros in order to take into account timing and
scheduling effects. SystemManager defines details and features
of the target system that needs to be simulated. It is a C++
class, responsible for generating instances of processors,
processes and interconnection links.

The class SchedulingManager probably represents the
central element in the simulator. This block is responsible to
realize processes scheduling and implement different
scheduling policies. So, the key elements of the proposed co-
simulator are the instrumentation of code by macros and
scheduling policies. The first are used to support a mechanism
of full handshake among the SchedulerManager and the
processes to allow the desired scheduling of processes. This
mechanism represents an additional level of scheduling to the
one of SystemC Kernel, which is execution-driven without
preemption (cooperative multi-tasking simulation
environment). On the base of such a mechanism, it has been
possible to implement different scheduling policies (e.g. Round
Robin, Fixed Priority, etc.).

The simultaneous use of macro and scheduling policies
ensures the possibility to simulate all the possible process-
processor mapping combinations. Moreover, to take into
account the scheduling overhead, simulation time is charged by
a fixed constant time related to the use of the scheduler and an
additional fixed one (defined by the designers for each possible
processor) in case of context switch. It is worth noting that
processes implemented directly in HW are not subject to
scheduling issues and overhead. In the end, it is possible to
execute HW/SW co-simulations to evaluate timing constraints
satisfactions for different reference applications.

CONCLUSIONS

This work has presented a SystemC-based HW/SW co-
simulator for Embedded Heterogeneous Parallel Systems. The
next steps will be to fully integrate and validate it in the context
of a full working ESL HW/SW co-design flow [8].

ACKNOWLEDGMENTS

This work has been partially supported by the ECSEL RIA
2016 MegaM@Rt2 and AQUAS projects.

REFERENCES
[1] CoFluent Design & CoFluent Studio, http://www.cofluentdesign.com/,

Accessed 2017-04-29.

[2] H. Posadas, P. Penil, A. Nicol as, and E. Villar. Automatic synthesis of
communication and concurrency for exploring component-based system
implementations considering UML channel semantics. Journal of
Systems Architecture, 61(8):341360, 2015.

[3] C. A. R. Hoare, Communicating sequential processes, Springer New
York, pp. 413-443, 1978.

[4] L. Pomante, P. Serri. “SystemC-based HW/SW Co-Design of
Heterogeneous Multiprocessor Dedicated Systems”. International
Journal of Information Systems, 2014.

[5] D. Sciuto, F. Salice, W. Fornaciari, C. Brandolese, Affinity-Driven
System Design Exploration for Heterogeneous Multiprocessor SoC.
IEEE Transactions on Computers, vol. 55, no. 5, May 2006.

[6] SystemC, http://www.systemc.org, Accessed 2017-04-29.

[7] https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

[8] https://www.hepsycode.com

